1  /*
2   * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3   * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4   *
5   * This software is available to you under a choice of one of two
6   * licenses.  You may choose to be licensed under the terms of the GNU
7   * General Public License (GPL) Version 2, available from the file
8   * COPYING in the main directory of this source tree, or the
9   * OpenIB.org BSD license below:
10   *
11   *     Redistribution and use in source and binary forms, with or
12   *     without modification, are permitted provided that the following
13   *     conditions are met:
14   *
15   *      - Redistributions of source code must retain the above
16   *        copyright notice, this list of conditions and the following
17   *        disclaimer.
18   *
19   *      - Redistributions in binary form must reproduce the above
20   *        copyright notice, this list of conditions and the following
21   *        disclaimer in the documentation and/or other materials
22   *        provided with the distribution.
23   *
24   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31   * SOFTWARE.
32   */
33  
34  #include <linux/module.h>
35  
36  #include <net/tcp.h>
37  #include <net/inet_common.h>
38  #include <linux/highmem.h>
39  #include <linux/netdevice.h>
40  #include <linux/sched/signal.h>
41  #include <linux/inetdevice.h>
42  #include <linux/inet_diag.h>
43  
44  #include <net/snmp.h>
45  #include <net/tls.h>
46  #include <net/tls_toe.h>
47  
48  #include "tls.h"
49  
50  MODULE_AUTHOR("Mellanox Technologies");
51  MODULE_DESCRIPTION("Transport Layer Security Support");
52  MODULE_LICENSE("Dual BSD/GPL");
53  MODULE_ALIAS_TCP_ULP("tls");
54  
55  enum {
56  	TLSV4,
57  	TLSV6,
58  	TLS_NUM_PROTS,
59  };
60  
61  #define CHECK_CIPHER_DESC(cipher,ci)				\
62  	static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);		\
63  	static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);		\
64  	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
65  	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
66  	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
67  	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
68  	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
69  	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70  
71  #define __CIPHER_DESC(ci) \
72  	.iv_offset = offsetof(struct ci, iv), \
73  	.key_offset = offsetof(struct ci, key), \
74  	.salt_offset = offsetof(struct ci, salt), \
75  	.rec_seq_offset = offsetof(struct ci, rec_seq), \
76  	.crypto_info = sizeof(struct ci)
77  
78  #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
79  	.nonce = cipher ## _IV_SIZE, \
80  	.iv = cipher ## _IV_SIZE, \
81  	.key = cipher ## _KEY_SIZE, \
82  	.salt = cipher ## _SALT_SIZE, \
83  	.tag = cipher ## _TAG_SIZE, \
84  	.rec_seq = cipher ## _REC_SEQ_SIZE, \
85  	.cipher_name = algname,	\
86  	.offloadable = _offloadable, \
87  	__CIPHER_DESC(ci), \
88  }
89  
90  #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91  	.nonce = 0, \
92  	.iv = cipher ## _IV_SIZE, \
93  	.key = cipher ## _KEY_SIZE, \
94  	.salt = cipher ## _SALT_SIZE, \
95  	.tag = cipher ## _TAG_SIZE, \
96  	.rec_seq = cipher ## _REC_SEQ_SIZE, \
97  	.cipher_name = algname,	\
98  	.offloadable = _offloadable, \
99  	__CIPHER_DESC(ci), \
100  }
101  
102  const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103  	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104  	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105  	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106  	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107  	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108  	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109  	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110  	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111  };
112  
113  CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114  CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115  CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116  CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117  CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118  CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119  CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120  CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121  
122  static const struct proto *saved_tcpv6_prot;
123  static DEFINE_MUTEX(tcpv6_prot_mutex);
124  static const struct proto *saved_tcpv4_prot;
125  static DEFINE_MUTEX(tcpv4_prot_mutex);
126  static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127  static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128  static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129  			 const struct proto *base);
130  
update_sk_prot(struct sock * sk,struct tls_context * ctx)131  void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132  {
133  	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134  
135  	WRITE_ONCE(sk->sk_prot,
136  		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137  	WRITE_ONCE(sk->sk_socket->ops,
138  		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139  }
140  
wait_on_pending_writer(struct sock * sk,long * timeo)141  int wait_on_pending_writer(struct sock *sk, long *timeo)
142  {
143  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
144  	int ret, rc = 0;
145  
146  	add_wait_queue(sk_sleep(sk), &wait);
147  	while (1) {
148  		if (!*timeo) {
149  			rc = -EAGAIN;
150  			break;
151  		}
152  
153  		if (signal_pending(current)) {
154  			rc = sock_intr_errno(*timeo);
155  			break;
156  		}
157  
158  		ret = sk_wait_event(sk, timeo,
159  				    !READ_ONCE(sk->sk_write_pending), &wait);
160  		if (ret) {
161  			if (ret < 0)
162  				rc = ret;
163  			break;
164  		}
165  	}
166  	remove_wait_queue(sk_sleep(sk), &wait);
167  	return rc;
168  }
169  
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)170  int tls_push_sg(struct sock *sk,
171  		struct tls_context *ctx,
172  		struct scatterlist *sg,
173  		u16 first_offset,
174  		int flags)
175  {
176  	struct bio_vec bvec;
177  	struct msghdr msg = {
178  		.msg_flags = MSG_SPLICE_PAGES | flags,
179  	};
180  	int ret = 0;
181  	struct page *p;
182  	size_t size;
183  	int offset = first_offset;
184  
185  	size = sg->length - offset;
186  	offset += sg->offset;
187  
188  	ctx->splicing_pages = true;
189  	while (1) {
190  		/* is sending application-limited? */
191  		tcp_rate_check_app_limited(sk);
192  		p = sg_page(sg);
193  retry:
194  		bvec_set_page(&bvec, p, size, offset);
195  		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196  
197  		ret = tcp_sendmsg_locked(sk, &msg, size);
198  
199  		if (ret != size) {
200  			if (ret > 0) {
201  				offset += ret;
202  				size -= ret;
203  				goto retry;
204  			}
205  
206  			offset -= sg->offset;
207  			ctx->partially_sent_offset = offset;
208  			ctx->partially_sent_record = (void *)sg;
209  			ctx->splicing_pages = false;
210  			return ret;
211  		}
212  
213  		put_page(p);
214  		sk_mem_uncharge(sk, sg->length);
215  		sg = sg_next(sg);
216  		if (!sg)
217  			break;
218  
219  		offset = sg->offset;
220  		size = sg->length;
221  	}
222  
223  	ctx->splicing_pages = false;
224  
225  	return 0;
226  }
227  
tls_handle_open_record(struct sock * sk,int flags)228  static int tls_handle_open_record(struct sock *sk, int flags)
229  {
230  	struct tls_context *ctx = tls_get_ctx(sk);
231  
232  	if (tls_is_pending_open_record(ctx))
233  		return ctx->push_pending_record(sk, flags);
234  
235  	return 0;
236  }
237  
tls_process_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)238  int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239  		     unsigned char *record_type)
240  {
241  	struct cmsghdr *cmsg;
242  	int rc = -EINVAL;
243  
244  	for_each_cmsghdr(cmsg, msg) {
245  		if (!CMSG_OK(msg, cmsg))
246  			return -EINVAL;
247  		if (cmsg->cmsg_level != SOL_TLS)
248  			continue;
249  
250  		switch (cmsg->cmsg_type) {
251  		case TLS_SET_RECORD_TYPE:
252  			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253  				return -EINVAL;
254  
255  			if (msg->msg_flags & MSG_MORE)
256  				return -EINVAL;
257  
258  			rc = tls_handle_open_record(sk, msg->msg_flags);
259  			if (rc)
260  				return rc;
261  
262  			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
263  			rc = 0;
264  			break;
265  		default:
266  			return -EINVAL;
267  		}
268  	}
269  
270  	return rc;
271  }
272  
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)273  int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274  			    int flags)
275  {
276  	struct scatterlist *sg;
277  	u16 offset;
278  
279  	sg = ctx->partially_sent_record;
280  	offset = ctx->partially_sent_offset;
281  
282  	ctx->partially_sent_record = NULL;
283  	return tls_push_sg(sk, ctx, sg, offset, flags);
284  }
285  
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)286  void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287  {
288  	struct scatterlist *sg;
289  
290  	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291  		put_page(sg_page(sg));
292  		sk_mem_uncharge(sk, sg->length);
293  	}
294  	ctx->partially_sent_record = NULL;
295  }
296  
tls_write_space(struct sock * sk)297  static void tls_write_space(struct sock *sk)
298  {
299  	struct tls_context *ctx = tls_get_ctx(sk);
300  
301  	/* If splicing_pages call lower protocol write space handler
302  	 * to ensure we wake up any waiting operations there. For example
303  	 * if splicing pages where to call sk_wait_event.
304  	 */
305  	if (ctx->splicing_pages) {
306  		ctx->sk_write_space(sk);
307  		return;
308  	}
309  
310  #ifdef CONFIG_TLS_DEVICE
311  	if (ctx->tx_conf == TLS_HW)
312  		tls_device_write_space(sk, ctx);
313  	else
314  #endif
315  		tls_sw_write_space(sk, ctx);
316  
317  	ctx->sk_write_space(sk);
318  }
319  
320  /**
321   * tls_ctx_free() - free TLS ULP context
322   * @sk:  socket to with @ctx is attached
323   * @ctx: TLS context structure
324   *
325   * Free TLS context. If @sk is %NULL caller guarantees that the socket
326   * to which @ctx was attached has no outstanding references.
327   */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)328  void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329  {
330  	if (!ctx)
331  		return;
332  
333  	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334  	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335  	mutex_destroy(&ctx->tx_lock);
336  
337  	if (sk)
338  		kfree_rcu(ctx, rcu);
339  	else
340  		kfree(ctx);
341  }
342  
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)343  static void tls_sk_proto_cleanup(struct sock *sk,
344  				 struct tls_context *ctx, long timeo)
345  {
346  	if (unlikely(sk->sk_write_pending) &&
347  	    !wait_on_pending_writer(sk, &timeo))
348  		tls_handle_open_record(sk, 0);
349  
350  	/* We need these for tls_sw_fallback handling of other packets */
351  	if (ctx->tx_conf == TLS_SW) {
352  		tls_sw_release_resources_tx(sk);
353  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354  	} else if (ctx->tx_conf == TLS_HW) {
355  		tls_device_free_resources_tx(sk);
356  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357  	}
358  
359  	if (ctx->rx_conf == TLS_SW) {
360  		tls_sw_release_resources_rx(sk);
361  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362  	} else if (ctx->rx_conf == TLS_HW) {
363  		tls_device_offload_cleanup_rx(sk);
364  		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365  	}
366  }
367  
tls_sk_proto_close(struct sock * sk,long timeout)368  static void tls_sk_proto_close(struct sock *sk, long timeout)
369  {
370  	struct inet_connection_sock *icsk = inet_csk(sk);
371  	struct tls_context *ctx = tls_get_ctx(sk);
372  	long timeo = sock_sndtimeo(sk, 0);
373  	bool free_ctx;
374  
375  	if (ctx->tx_conf == TLS_SW)
376  		tls_sw_cancel_work_tx(ctx);
377  
378  	lock_sock(sk);
379  	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380  
381  	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382  		tls_sk_proto_cleanup(sk, ctx, timeo);
383  
384  	write_lock_bh(&sk->sk_callback_lock);
385  	if (free_ctx)
386  		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387  	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388  	if (sk->sk_write_space == tls_write_space)
389  		sk->sk_write_space = ctx->sk_write_space;
390  	write_unlock_bh(&sk->sk_callback_lock);
391  	release_sock(sk);
392  	if (ctx->tx_conf == TLS_SW)
393  		tls_sw_free_ctx_tx(ctx);
394  	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395  		tls_sw_strparser_done(ctx);
396  	if (ctx->rx_conf == TLS_SW)
397  		tls_sw_free_ctx_rx(ctx);
398  	ctx->sk_proto->close(sk, timeout);
399  
400  	if (free_ctx)
401  		tls_ctx_free(sk, ctx);
402  }
403  
tls_sk_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)404  static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405  			    struct poll_table_struct *wait)
406  {
407  	struct tls_sw_context_rx *ctx;
408  	struct tls_context *tls_ctx;
409  	struct sock *sk = sock->sk;
410  	struct sk_psock *psock;
411  	__poll_t mask = 0;
412  	u8 shutdown;
413  	int state;
414  
415  	mask = tcp_poll(file, sock, wait);
416  
417  	state = inet_sk_state_load(sk);
418  	shutdown = READ_ONCE(sk->sk_shutdown);
419  	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420  		return mask;
421  
422  	tls_ctx = tls_get_ctx(sk);
423  	ctx = tls_sw_ctx_rx(tls_ctx);
424  	psock = sk_psock_get(sk);
425  
426  	if (skb_queue_empty_lockless(&ctx->rx_list) &&
427  	    !tls_strp_msg_ready(ctx) &&
428  	    sk_psock_queue_empty(psock))
429  		mask &= ~(EPOLLIN | EPOLLRDNORM);
430  
431  	if (psock)
432  		sk_psock_put(sk, psock);
433  
434  	return mask;
435  }
436  
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)437  static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
438  				  int __user *optlen, int tx)
439  {
440  	int rc = 0;
441  	const struct tls_cipher_desc *cipher_desc;
442  	struct tls_context *ctx = tls_get_ctx(sk);
443  	struct tls_crypto_info *crypto_info;
444  	struct cipher_context *cctx;
445  	int len;
446  
447  	if (get_user(len, optlen))
448  		return -EFAULT;
449  
450  	if (!optval || (len < sizeof(*crypto_info))) {
451  		rc = -EINVAL;
452  		goto out;
453  	}
454  
455  	if (!ctx) {
456  		rc = -EBUSY;
457  		goto out;
458  	}
459  
460  	/* get user crypto info */
461  	if (tx) {
462  		crypto_info = &ctx->crypto_send.info;
463  		cctx = &ctx->tx;
464  	} else {
465  		crypto_info = &ctx->crypto_recv.info;
466  		cctx = &ctx->rx;
467  	}
468  
469  	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
470  		rc = -EBUSY;
471  		goto out;
472  	}
473  
474  	if (len == sizeof(*crypto_info)) {
475  		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
476  			rc = -EFAULT;
477  		goto out;
478  	}
479  
480  	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
481  	if (!cipher_desc || len != cipher_desc->crypto_info) {
482  		rc = -EINVAL;
483  		goto out;
484  	}
485  
486  	memcpy(crypto_info_iv(crypto_info, cipher_desc),
487  	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
488  	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
489  	       cctx->rec_seq, cipher_desc->rec_seq);
490  
491  	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
492  		rc = -EFAULT;
493  
494  out:
495  	return rc;
496  }
497  
do_tls_getsockopt_tx_zc(struct sock * sk,char __user * optval,int __user * optlen)498  static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
499  				   int __user *optlen)
500  {
501  	struct tls_context *ctx = tls_get_ctx(sk);
502  	unsigned int value;
503  	int len;
504  
505  	if (get_user(len, optlen))
506  		return -EFAULT;
507  
508  	if (len != sizeof(value))
509  		return -EINVAL;
510  
511  	value = ctx->zerocopy_sendfile;
512  	if (copy_to_user(optval, &value, sizeof(value)))
513  		return -EFAULT;
514  
515  	return 0;
516  }
517  
do_tls_getsockopt_no_pad(struct sock * sk,char __user * optval,int __user * optlen)518  static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
519  				    int __user *optlen)
520  {
521  	struct tls_context *ctx = tls_get_ctx(sk);
522  	int value, len;
523  
524  	if (ctx->prot_info.version != TLS_1_3_VERSION)
525  		return -EINVAL;
526  
527  	if (get_user(len, optlen))
528  		return -EFAULT;
529  	if (len < sizeof(value))
530  		return -EINVAL;
531  
532  	value = -EINVAL;
533  	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
534  		value = ctx->rx_no_pad;
535  	if (value < 0)
536  		return value;
537  
538  	if (put_user(sizeof(value), optlen))
539  		return -EFAULT;
540  	if (copy_to_user(optval, &value, sizeof(value)))
541  		return -EFAULT;
542  
543  	return 0;
544  }
545  
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)546  static int do_tls_getsockopt(struct sock *sk, int optname,
547  			     char __user *optval, int __user *optlen)
548  {
549  	int rc = 0;
550  
551  	lock_sock(sk);
552  
553  	switch (optname) {
554  	case TLS_TX:
555  	case TLS_RX:
556  		rc = do_tls_getsockopt_conf(sk, optval, optlen,
557  					    optname == TLS_TX);
558  		break;
559  	case TLS_TX_ZEROCOPY_RO:
560  		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
561  		break;
562  	case TLS_RX_EXPECT_NO_PAD:
563  		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
564  		break;
565  	default:
566  		rc = -ENOPROTOOPT;
567  		break;
568  	}
569  
570  	release_sock(sk);
571  
572  	return rc;
573  }
574  
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)575  static int tls_getsockopt(struct sock *sk, int level, int optname,
576  			  char __user *optval, int __user *optlen)
577  {
578  	struct tls_context *ctx = tls_get_ctx(sk);
579  
580  	if (level != SOL_TLS)
581  		return ctx->sk_proto->getsockopt(sk, level,
582  						 optname, optval, optlen);
583  
584  	return do_tls_getsockopt(sk, optname, optval, optlen);
585  }
586  
validate_crypto_info(const struct tls_crypto_info * crypto_info,const struct tls_crypto_info * alt_crypto_info)587  static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
588  				const struct tls_crypto_info *alt_crypto_info)
589  {
590  	if (crypto_info->version != TLS_1_2_VERSION &&
591  	    crypto_info->version != TLS_1_3_VERSION)
592  		return -EINVAL;
593  
594  	switch (crypto_info->cipher_type) {
595  	case TLS_CIPHER_ARIA_GCM_128:
596  	case TLS_CIPHER_ARIA_GCM_256:
597  		if (crypto_info->version != TLS_1_2_VERSION)
598  			return -EINVAL;
599  		break;
600  	}
601  
602  	/* Ensure that TLS version and ciphers are same in both directions */
603  	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
604  		if (alt_crypto_info->version != crypto_info->version ||
605  		    alt_crypto_info->cipher_type != crypto_info->cipher_type)
606  			return -EINVAL;
607  	}
608  
609  	return 0;
610  }
611  
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)612  static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
613  				  unsigned int optlen, int tx)
614  {
615  	struct tls_crypto_info *crypto_info;
616  	struct tls_crypto_info *alt_crypto_info;
617  	struct tls_context *ctx = tls_get_ctx(sk);
618  	const struct tls_cipher_desc *cipher_desc;
619  	union tls_crypto_context *crypto_ctx;
620  	int rc = 0;
621  	int conf;
622  
623  	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
624  		return -EINVAL;
625  
626  	if (tx) {
627  		crypto_ctx = &ctx->crypto_send;
628  		alt_crypto_info = &ctx->crypto_recv.info;
629  	} else {
630  		crypto_ctx = &ctx->crypto_recv;
631  		alt_crypto_info = &ctx->crypto_send.info;
632  	}
633  
634  	crypto_info = &crypto_ctx->info;
635  
636  	/* Currently we don't support set crypto info more than one time */
637  	if (TLS_CRYPTO_INFO_READY(crypto_info))
638  		return -EBUSY;
639  
640  	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
641  	if (rc) {
642  		rc = -EFAULT;
643  		goto err_crypto_info;
644  	}
645  
646  	rc = validate_crypto_info(crypto_info, alt_crypto_info);
647  	if (rc)
648  		goto err_crypto_info;
649  
650  	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
651  	if (!cipher_desc) {
652  		rc = -EINVAL;
653  		goto err_crypto_info;
654  	}
655  
656  	if (optlen != cipher_desc->crypto_info) {
657  		rc = -EINVAL;
658  		goto err_crypto_info;
659  	}
660  
661  	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
662  				      sizeof(*crypto_info),
663  				      optlen - sizeof(*crypto_info));
664  	if (rc) {
665  		rc = -EFAULT;
666  		goto err_crypto_info;
667  	}
668  
669  	if (tx) {
670  		rc = tls_set_device_offload(sk);
671  		conf = TLS_HW;
672  		if (!rc) {
673  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
674  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
675  		} else {
676  			rc = tls_set_sw_offload(sk, 1);
677  			if (rc)
678  				goto err_crypto_info;
679  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
680  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
681  			conf = TLS_SW;
682  		}
683  	} else {
684  		rc = tls_set_device_offload_rx(sk, ctx);
685  		conf = TLS_HW;
686  		if (!rc) {
687  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
688  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
689  		} else {
690  			rc = tls_set_sw_offload(sk, 0);
691  			if (rc)
692  				goto err_crypto_info;
693  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
694  			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
695  			conf = TLS_SW;
696  		}
697  		tls_sw_strparser_arm(sk, ctx);
698  	}
699  
700  	if (tx)
701  		ctx->tx_conf = conf;
702  	else
703  		ctx->rx_conf = conf;
704  	update_sk_prot(sk, ctx);
705  	if (tx) {
706  		ctx->sk_write_space = sk->sk_write_space;
707  		sk->sk_write_space = tls_write_space;
708  	} else {
709  		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
710  
711  		tls_strp_check_rcv(&rx_ctx->strp);
712  	}
713  	return 0;
714  
715  err_crypto_info:
716  	memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
717  	return rc;
718  }
719  
do_tls_setsockopt_tx_zc(struct sock * sk,sockptr_t optval,unsigned int optlen)720  static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
721  				   unsigned int optlen)
722  {
723  	struct tls_context *ctx = tls_get_ctx(sk);
724  	unsigned int value;
725  
726  	if (sockptr_is_null(optval) || optlen != sizeof(value))
727  		return -EINVAL;
728  
729  	if (copy_from_sockptr(&value, optval, sizeof(value)))
730  		return -EFAULT;
731  
732  	if (value > 1)
733  		return -EINVAL;
734  
735  	ctx->zerocopy_sendfile = value;
736  
737  	return 0;
738  }
739  
do_tls_setsockopt_no_pad(struct sock * sk,sockptr_t optval,unsigned int optlen)740  static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
741  				    unsigned int optlen)
742  {
743  	struct tls_context *ctx = tls_get_ctx(sk);
744  	u32 val;
745  	int rc;
746  
747  	if (ctx->prot_info.version != TLS_1_3_VERSION ||
748  	    sockptr_is_null(optval) || optlen < sizeof(val))
749  		return -EINVAL;
750  
751  	rc = copy_from_sockptr(&val, optval, sizeof(val));
752  	if (rc)
753  		return -EFAULT;
754  	if (val > 1)
755  		return -EINVAL;
756  	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
757  	if (rc < 1)
758  		return rc == 0 ? -EINVAL : rc;
759  
760  	lock_sock(sk);
761  	rc = -EINVAL;
762  	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
763  		ctx->rx_no_pad = val;
764  		tls_update_rx_zc_capable(ctx);
765  		rc = 0;
766  	}
767  	release_sock(sk);
768  
769  	return rc;
770  }
771  
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)772  static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
773  			     unsigned int optlen)
774  {
775  	int rc = 0;
776  
777  	switch (optname) {
778  	case TLS_TX:
779  	case TLS_RX:
780  		lock_sock(sk);
781  		rc = do_tls_setsockopt_conf(sk, optval, optlen,
782  					    optname == TLS_TX);
783  		release_sock(sk);
784  		break;
785  	case TLS_TX_ZEROCOPY_RO:
786  		lock_sock(sk);
787  		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
788  		release_sock(sk);
789  		break;
790  	case TLS_RX_EXPECT_NO_PAD:
791  		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
792  		break;
793  	default:
794  		rc = -ENOPROTOOPT;
795  		break;
796  	}
797  	return rc;
798  }
799  
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)800  static int tls_setsockopt(struct sock *sk, int level, int optname,
801  			  sockptr_t optval, unsigned int optlen)
802  {
803  	struct tls_context *ctx = tls_get_ctx(sk);
804  
805  	if (level != SOL_TLS)
806  		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
807  						 optlen);
808  
809  	return do_tls_setsockopt(sk, optname, optval, optlen);
810  }
811  
tls_ctx_create(struct sock * sk)812  struct tls_context *tls_ctx_create(struct sock *sk)
813  {
814  	struct inet_connection_sock *icsk = inet_csk(sk);
815  	struct tls_context *ctx;
816  
817  	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
818  	if (!ctx)
819  		return NULL;
820  
821  	mutex_init(&ctx->tx_lock);
822  	ctx->sk_proto = READ_ONCE(sk->sk_prot);
823  	ctx->sk = sk;
824  	/* Release semantic of rcu_assign_pointer() ensures that
825  	 * ctx->sk_proto is visible before changing sk->sk_prot in
826  	 * update_sk_prot(), and prevents reading uninitialized value in
827  	 * tls_{getsockopt, setsockopt}. Note that we do not need a
828  	 * read barrier in tls_{getsockopt,setsockopt} as there is an
829  	 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
830  	 * and ctx->sk_proto.
831  	 */
832  	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
833  	return ctx;
834  }
835  
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto_ops * base)836  static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
837  			    const struct proto_ops *base)
838  {
839  	ops[TLS_BASE][TLS_BASE] = *base;
840  
841  	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
842  	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
843  
844  	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
845  	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
846  	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
847  	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
848  
849  	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
850  	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
851  	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
852  	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
853  
854  #ifdef CONFIG_TLS_DEVICE
855  	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
856  
857  	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
858  
859  	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
860  
861  	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
862  
863  	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
864  #endif
865  #ifdef CONFIG_TLS_TOE
866  	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
867  #endif
868  }
869  
tls_build_proto(struct sock * sk)870  static void tls_build_proto(struct sock *sk)
871  {
872  	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
873  	struct proto *prot = READ_ONCE(sk->sk_prot);
874  
875  	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
876  	if (ip_ver == TLSV6 &&
877  	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
878  		mutex_lock(&tcpv6_prot_mutex);
879  		if (likely(prot != saved_tcpv6_prot)) {
880  			build_protos(tls_prots[TLSV6], prot);
881  			build_proto_ops(tls_proto_ops[TLSV6],
882  					sk->sk_socket->ops);
883  			smp_store_release(&saved_tcpv6_prot, prot);
884  		}
885  		mutex_unlock(&tcpv6_prot_mutex);
886  	}
887  
888  	if (ip_ver == TLSV4 &&
889  	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
890  		mutex_lock(&tcpv4_prot_mutex);
891  		if (likely(prot != saved_tcpv4_prot)) {
892  			build_protos(tls_prots[TLSV4], prot);
893  			build_proto_ops(tls_proto_ops[TLSV4],
894  					sk->sk_socket->ops);
895  			smp_store_release(&saved_tcpv4_prot, prot);
896  		}
897  		mutex_unlock(&tcpv4_prot_mutex);
898  	}
899  }
900  
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)901  static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
902  			 const struct proto *base)
903  {
904  	prot[TLS_BASE][TLS_BASE] = *base;
905  	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
906  	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
907  	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
908  
909  	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
910  	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
911  	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
912  
913  	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
914  	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
915  	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
916  	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
917  
918  	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
919  	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
920  	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
921  	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
922  
923  #ifdef CONFIG_TLS_DEVICE
924  	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
925  	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
926  	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
927  
928  	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
929  	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
930  	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
931  
932  	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
933  
934  	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
935  
936  	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
937  #endif
938  #ifdef CONFIG_TLS_TOE
939  	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
940  	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
941  	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
942  #endif
943  }
944  
tls_init(struct sock * sk)945  static int tls_init(struct sock *sk)
946  {
947  	struct tls_context *ctx;
948  	int rc = 0;
949  
950  	tls_build_proto(sk);
951  
952  #ifdef CONFIG_TLS_TOE
953  	if (tls_toe_bypass(sk))
954  		return 0;
955  #endif
956  
957  	/* The TLS ulp is currently supported only for TCP sockets
958  	 * in ESTABLISHED state.
959  	 * Supporting sockets in LISTEN state will require us
960  	 * to modify the accept implementation to clone rather then
961  	 * share the ulp context.
962  	 */
963  	if (sk->sk_state != TCP_ESTABLISHED)
964  		return -ENOTCONN;
965  
966  	/* allocate tls context */
967  	write_lock_bh(&sk->sk_callback_lock);
968  	ctx = tls_ctx_create(sk);
969  	if (!ctx) {
970  		rc = -ENOMEM;
971  		goto out;
972  	}
973  
974  	ctx->tx_conf = TLS_BASE;
975  	ctx->rx_conf = TLS_BASE;
976  	update_sk_prot(sk, ctx);
977  out:
978  	write_unlock_bh(&sk->sk_callback_lock);
979  	return rc;
980  }
981  
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))982  static void tls_update(struct sock *sk, struct proto *p,
983  		       void (*write_space)(struct sock *sk))
984  {
985  	struct tls_context *ctx;
986  
987  	WARN_ON_ONCE(sk->sk_prot == p);
988  
989  	ctx = tls_get_ctx(sk);
990  	if (likely(ctx)) {
991  		ctx->sk_write_space = write_space;
992  		ctx->sk_proto = p;
993  	} else {
994  		/* Pairs with lockless read in sk_clone_lock(). */
995  		WRITE_ONCE(sk->sk_prot, p);
996  		sk->sk_write_space = write_space;
997  	}
998  }
999  
tls_user_config(struct tls_context * ctx,bool tx)1000  static u16 tls_user_config(struct tls_context *ctx, bool tx)
1001  {
1002  	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1003  
1004  	switch (config) {
1005  	case TLS_BASE:
1006  		return TLS_CONF_BASE;
1007  	case TLS_SW:
1008  		return TLS_CONF_SW;
1009  	case TLS_HW:
1010  		return TLS_CONF_HW;
1011  	case TLS_HW_RECORD:
1012  		return TLS_CONF_HW_RECORD;
1013  	}
1014  	return 0;
1015  }
1016  
tls_get_info(struct sock * sk,struct sk_buff * skb)1017  static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1018  {
1019  	u16 version, cipher_type;
1020  	struct tls_context *ctx;
1021  	struct nlattr *start;
1022  	int err;
1023  
1024  	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1025  	if (!start)
1026  		return -EMSGSIZE;
1027  
1028  	rcu_read_lock();
1029  	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1030  	if (!ctx) {
1031  		err = 0;
1032  		goto nla_failure;
1033  	}
1034  	version = ctx->prot_info.version;
1035  	if (version) {
1036  		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1037  		if (err)
1038  			goto nla_failure;
1039  	}
1040  	cipher_type = ctx->prot_info.cipher_type;
1041  	if (cipher_type) {
1042  		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1043  		if (err)
1044  			goto nla_failure;
1045  	}
1046  	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1047  	if (err)
1048  		goto nla_failure;
1049  
1050  	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1051  	if (err)
1052  		goto nla_failure;
1053  
1054  	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1055  		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1056  		if (err)
1057  			goto nla_failure;
1058  	}
1059  	if (ctx->rx_no_pad) {
1060  		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1061  		if (err)
1062  			goto nla_failure;
1063  	}
1064  
1065  	rcu_read_unlock();
1066  	nla_nest_end(skb, start);
1067  	return 0;
1068  
1069  nla_failure:
1070  	rcu_read_unlock();
1071  	nla_nest_cancel(skb, start);
1072  	return err;
1073  }
1074  
tls_get_info_size(const struct sock * sk)1075  static size_t tls_get_info_size(const struct sock *sk)
1076  {
1077  	size_t size = 0;
1078  
1079  	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1080  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1081  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1082  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1083  		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1084  		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1085  		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1086  		0;
1087  
1088  	return size;
1089  }
1090  
tls_init_net(struct net * net)1091  static int __net_init tls_init_net(struct net *net)
1092  {
1093  	int err;
1094  
1095  	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1096  	if (!net->mib.tls_statistics)
1097  		return -ENOMEM;
1098  
1099  	err = tls_proc_init(net);
1100  	if (err)
1101  		goto err_free_stats;
1102  
1103  	return 0;
1104  err_free_stats:
1105  	free_percpu(net->mib.tls_statistics);
1106  	return err;
1107  }
1108  
tls_exit_net(struct net * net)1109  static void __net_exit tls_exit_net(struct net *net)
1110  {
1111  	tls_proc_fini(net);
1112  	free_percpu(net->mib.tls_statistics);
1113  }
1114  
1115  static struct pernet_operations tls_proc_ops = {
1116  	.init = tls_init_net,
1117  	.exit = tls_exit_net,
1118  };
1119  
1120  static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1121  	.name			= "tls",
1122  	.owner			= THIS_MODULE,
1123  	.init			= tls_init,
1124  	.update			= tls_update,
1125  	.get_info		= tls_get_info,
1126  	.get_info_size		= tls_get_info_size,
1127  };
1128  
tls_register(void)1129  static int __init tls_register(void)
1130  {
1131  	int err;
1132  
1133  	err = register_pernet_subsys(&tls_proc_ops);
1134  	if (err)
1135  		return err;
1136  
1137  	err = tls_strp_dev_init();
1138  	if (err)
1139  		goto err_pernet;
1140  
1141  	err = tls_device_init();
1142  	if (err)
1143  		goto err_strp;
1144  
1145  	tcp_register_ulp(&tcp_tls_ulp_ops);
1146  
1147  	return 0;
1148  err_strp:
1149  	tls_strp_dev_exit();
1150  err_pernet:
1151  	unregister_pernet_subsys(&tls_proc_ops);
1152  	return err;
1153  }
1154  
tls_unregister(void)1155  static void __exit tls_unregister(void)
1156  {
1157  	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1158  	tls_strp_dev_exit();
1159  	tls_device_cleanup();
1160  	unregister_pernet_subsys(&tls_proc_ops);
1161  }
1162  
1163  module_init(tls_register);
1164  module_exit(tls_unregister);
1165