1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59 };
60
61 #define CHECK_CIPHER_DESC(cipher,ci) \
62 static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \
63 static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \
64 static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
65 static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \
66 static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \
67 static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \
68 static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \
69 static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70
71 #define __CIPHER_DESC(ci) \
72 .iv_offset = offsetof(struct ci, iv), \
73 .key_offset = offsetof(struct ci, key), \
74 .salt_offset = offsetof(struct ci, salt), \
75 .rec_seq_offset = offsetof(struct ci, rec_seq), \
76 .crypto_info = sizeof(struct ci)
77
78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
79 .nonce = cipher ## _IV_SIZE, \
80 .iv = cipher ## _IV_SIZE, \
81 .key = cipher ## _KEY_SIZE, \
82 .salt = cipher ## _SALT_SIZE, \
83 .tag = cipher ## _TAG_SIZE, \
84 .rec_seq = cipher ## _REC_SEQ_SIZE, \
85 .cipher_name = algname, \
86 .offloadable = _offloadable, \
87 __CIPHER_DESC(ci), \
88 }
89
90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91 .nonce = 0, \
92 .iv = cipher ## _IV_SIZE, \
93 .key = cipher ## _KEY_SIZE, \
94 .salt = cipher ## _SALT_SIZE, \
95 .tag = cipher ## _TAG_SIZE, \
96 .rec_seq = cipher ## _REC_SEQ_SIZE, \
97 .cipher_name = algname, \
98 .offloadable = _offloadable, \
99 __CIPHER_DESC(ci), \
100 }
101
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103 CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104 CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105 CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106 CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107 CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108 CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111 };
112
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129 const struct proto *base);
130
update_sk_prot(struct sock * sk,struct tls_context * ctx)131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132 {
133 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134
135 WRITE_ONCE(sk->sk_prot,
136 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137 WRITE_ONCE(sk->sk_socket->ops,
138 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139 }
140
wait_on_pending_writer(struct sock * sk,long * timeo)141 int wait_on_pending_writer(struct sock *sk, long *timeo)
142 {
143 DEFINE_WAIT_FUNC(wait, woken_wake_function);
144 int ret, rc = 0;
145
146 add_wait_queue(sk_sleep(sk), &wait);
147 while (1) {
148 if (!*timeo) {
149 rc = -EAGAIN;
150 break;
151 }
152
153 if (signal_pending(current)) {
154 rc = sock_intr_errno(*timeo);
155 break;
156 }
157
158 ret = sk_wait_event(sk, timeo,
159 !READ_ONCE(sk->sk_write_pending), &wait);
160 if (ret) {
161 if (ret < 0)
162 rc = ret;
163 break;
164 }
165 }
166 remove_wait_queue(sk_sleep(sk), &wait);
167 return rc;
168 }
169
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)170 int tls_push_sg(struct sock *sk,
171 struct tls_context *ctx,
172 struct scatterlist *sg,
173 u16 first_offset,
174 int flags)
175 {
176 struct bio_vec bvec;
177 struct msghdr msg = {
178 .msg_flags = MSG_SPLICE_PAGES | flags,
179 };
180 int ret = 0;
181 struct page *p;
182 size_t size;
183 int offset = first_offset;
184
185 size = sg->length - offset;
186 offset += sg->offset;
187
188 ctx->splicing_pages = true;
189 while (1) {
190 /* is sending application-limited? */
191 tcp_rate_check_app_limited(sk);
192 p = sg_page(sg);
193 retry:
194 bvec_set_page(&bvec, p, size, offset);
195 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196
197 ret = tcp_sendmsg_locked(sk, &msg, size);
198
199 if (ret != size) {
200 if (ret > 0) {
201 offset += ret;
202 size -= ret;
203 goto retry;
204 }
205
206 offset -= sg->offset;
207 ctx->partially_sent_offset = offset;
208 ctx->partially_sent_record = (void *)sg;
209 ctx->splicing_pages = false;
210 return ret;
211 }
212
213 put_page(p);
214 sk_mem_uncharge(sk, sg->length);
215 sg = sg_next(sg);
216 if (!sg)
217 break;
218
219 offset = sg->offset;
220 size = sg->length;
221 }
222
223 ctx->splicing_pages = false;
224
225 return 0;
226 }
227
tls_handle_open_record(struct sock * sk,int flags)228 static int tls_handle_open_record(struct sock *sk, int flags)
229 {
230 struct tls_context *ctx = tls_get_ctx(sk);
231
232 if (tls_is_pending_open_record(ctx))
233 return ctx->push_pending_record(sk, flags);
234
235 return 0;
236 }
237
tls_process_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239 unsigned char *record_type)
240 {
241 struct cmsghdr *cmsg;
242 int rc = -EINVAL;
243
244 for_each_cmsghdr(cmsg, msg) {
245 if (!CMSG_OK(msg, cmsg))
246 return -EINVAL;
247 if (cmsg->cmsg_level != SOL_TLS)
248 continue;
249
250 switch (cmsg->cmsg_type) {
251 case TLS_SET_RECORD_TYPE:
252 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253 return -EINVAL;
254
255 if (msg->msg_flags & MSG_MORE)
256 return -EINVAL;
257
258 rc = tls_handle_open_record(sk, msg->msg_flags);
259 if (rc)
260 return rc;
261
262 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
263 rc = 0;
264 break;
265 default:
266 return -EINVAL;
267 }
268 }
269
270 return rc;
271 }
272
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)273 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274 int flags)
275 {
276 struct scatterlist *sg;
277 u16 offset;
278
279 sg = ctx->partially_sent_record;
280 offset = ctx->partially_sent_offset;
281
282 ctx->partially_sent_record = NULL;
283 return tls_push_sg(sk, ctx, sg, offset, flags);
284 }
285
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)286 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287 {
288 struct scatterlist *sg;
289
290 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291 put_page(sg_page(sg));
292 sk_mem_uncharge(sk, sg->length);
293 }
294 ctx->partially_sent_record = NULL;
295 }
296
tls_write_space(struct sock * sk)297 static void tls_write_space(struct sock *sk)
298 {
299 struct tls_context *ctx = tls_get_ctx(sk);
300
301 /* If splicing_pages call lower protocol write space handler
302 * to ensure we wake up any waiting operations there. For example
303 * if splicing pages where to call sk_wait_event.
304 */
305 if (ctx->splicing_pages) {
306 ctx->sk_write_space(sk);
307 return;
308 }
309
310 #ifdef CONFIG_TLS_DEVICE
311 if (ctx->tx_conf == TLS_HW)
312 tls_device_write_space(sk, ctx);
313 else
314 #endif
315 tls_sw_write_space(sk, ctx);
316
317 ctx->sk_write_space(sk);
318 }
319
320 /**
321 * tls_ctx_free() - free TLS ULP context
322 * @sk: socket to with @ctx is attached
323 * @ctx: TLS context structure
324 *
325 * Free TLS context. If @sk is %NULL caller guarantees that the socket
326 * to which @ctx was attached has no outstanding references.
327 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)328 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329 {
330 if (!ctx)
331 return;
332
333 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335 mutex_destroy(&ctx->tx_lock);
336
337 if (sk)
338 kfree_rcu(ctx, rcu);
339 else
340 kfree(ctx);
341 }
342
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)343 static void tls_sk_proto_cleanup(struct sock *sk,
344 struct tls_context *ctx, long timeo)
345 {
346 if (unlikely(sk->sk_write_pending) &&
347 !wait_on_pending_writer(sk, &timeo))
348 tls_handle_open_record(sk, 0);
349
350 /* We need these for tls_sw_fallback handling of other packets */
351 if (ctx->tx_conf == TLS_SW) {
352 tls_sw_release_resources_tx(sk);
353 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354 } else if (ctx->tx_conf == TLS_HW) {
355 tls_device_free_resources_tx(sk);
356 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357 }
358
359 if (ctx->rx_conf == TLS_SW) {
360 tls_sw_release_resources_rx(sk);
361 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362 } else if (ctx->rx_conf == TLS_HW) {
363 tls_device_offload_cleanup_rx(sk);
364 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365 }
366 }
367
tls_sk_proto_close(struct sock * sk,long timeout)368 static void tls_sk_proto_close(struct sock *sk, long timeout)
369 {
370 struct inet_connection_sock *icsk = inet_csk(sk);
371 struct tls_context *ctx = tls_get_ctx(sk);
372 long timeo = sock_sndtimeo(sk, 0);
373 bool free_ctx;
374
375 if (ctx->tx_conf == TLS_SW)
376 tls_sw_cancel_work_tx(ctx);
377
378 lock_sock(sk);
379 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380
381 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382 tls_sk_proto_cleanup(sk, ctx, timeo);
383
384 write_lock_bh(&sk->sk_callback_lock);
385 if (free_ctx)
386 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388 if (sk->sk_write_space == tls_write_space)
389 sk->sk_write_space = ctx->sk_write_space;
390 write_unlock_bh(&sk->sk_callback_lock);
391 release_sock(sk);
392 if (ctx->tx_conf == TLS_SW)
393 tls_sw_free_ctx_tx(ctx);
394 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395 tls_sw_strparser_done(ctx);
396 if (ctx->rx_conf == TLS_SW)
397 tls_sw_free_ctx_rx(ctx);
398 ctx->sk_proto->close(sk, timeout);
399
400 if (free_ctx)
401 tls_ctx_free(sk, ctx);
402 }
403
tls_sk_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)404 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405 struct poll_table_struct *wait)
406 {
407 struct tls_sw_context_rx *ctx;
408 struct tls_context *tls_ctx;
409 struct sock *sk = sock->sk;
410 struct sk_psock *psock;
411 __poll_t mask = 0;
412 u8 shutdown;
413 int state;
414
415 mask = tcp_poll(file, sock, wait);
416
417 state = inet_sk_state_load(sk);
418 shutdown = READ_ONCE(sk->sk_shutdown);
419 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420 return mask;
421
422 tls_ctx = tls_get_ctx(sk);
423 ctx = tls_sw_ctx_rx(tls_ctx);
424 psock = sk_psock_get(sk);
425
426 if (skb_queue_empty_lockless(&ctx->rx_list) &&
427 !tls_strp_msg_ready(ctx) &&
428 sk_psock_queue_empty(psock))
429 mask &= ~(EPOLLIN | EPOLLRDNORM);
430
431 if (psock)
432 sk_psock_put(sk, psock);
433
434 return mask;
435 }
436
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)437 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
438 int __user *optlen, int tx)
439 {
440 int rc = 0;
441 const struct tls_cipher_desc *cipher_desc;
442 struct tls_context *ctx = tls_get_ctx(sk);
443 struct tls_crypto_info *crypto_info;
444 struct cipher_context *cctx;
445 int len;
446
447 if (get_user(len, optlen))
448 return -EFAULT;
449
450 if (!optval || (len < sizeof(*crypto_info))) {
451 rc = -EINVAL;
452 goto out;
453 }
454
455 if (!ctx) {
456 rc = -EBUSY;
457 goto out;
458 }
459
460 /* get user crypto info */
461 if (tx) {
462 crypto_info = &ctx->crypto_send.info;
463 cctx = &ctx->tx;
464 } else {
465 crypto_info = &ctx->crypto_recv.info;
466 cctx = &ctx->rx;
467 }
468
469 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
470 rc = -EBUSY;
471 goto out;
472 }
473
474 if (len == sizeof(*crypto_info)) {
475 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
476 rc = -EFAULT;
477 goto out;
478 }
479
480 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
481 if (!cipher_desc || len != cipher_desc->crypto_info) {
482 rc = -EINVAL;
483 goto out;
484 }
485
486 memcpy(crypto_info_iv(crypto_info, cipher_desc),
487 cctx->iv + cipher_desc->salt, cipher_desc->iv);
488 memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
489 cctx->rec_seq, cipher_desc->rec_seq);
490
491 if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
492 rc = -EFAULT;
493
494 out:
495 return rc;
496 }
497
do_tls_getsockopt_tx_zc(struct sock * sk,char __user * optval,int __user * optlen)498 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
499 int __user *optlen)
500 {
501 struct tls_context *ctx = tls_get_ctx(sk);
502 unsigned int value;
503 int len;
504
505 if (get_user(len, optlen))
506 return -EFAULT;
507
508 if (len != sizeof(value))
509 return -EINVAL;
510
511 value = ctx->zerocopy_sendfile;
512 if (copy_to_user(optval, &value, sizeof(value)))
513 return -EFAULT;
514
515 return 0;
516 }
517
do_tls_getsockopt_no_pad(struct sock * sk,char __user * optval,int __user * optlen)518 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
519 int __user *optlen)
520 {
521 struct tls_context *ctx = tls_get_ctx(sk);
522 int value, len;
523
524 if (ctx->prot_info.version != TLS_1_3_VERSION)
525 return -EINVAL;
526
527 if (get_user(len, optlen))
528 return -EFAULT;
529 if (len < sizeof(value))
530 return -EINVAL;
531
532 value = -EINVAL;
533 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
534 value = ctx->rx_no_pad;
535 if (value < 0)
536 return value;
537
538 if (put_user(sizeof(value), optlen))
539 return -EFAULT;
540 if (copy_to_user(optval, &value, sizeof(value)))
541 return -EFAULT;
542
543 return 0;
544 }
545
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)546 static int do_tls_getsockopt(struct sock *sk, int optname,
547 char __user *optval, int __user *optlen)
548 {
549 int rc = 0;
550
551 lock_sock(sk);
552
553 switch (optname) {
554 case TLS_TX:
555 case TLS_RX:
556 rc = do_tls_getsockopt_conf(sk, optval, optlen,
557 optname == TLS_TX);
558 break;
559 case TLS_TX_ZEROCOPY_RO:
560 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
561 break;
562 case TLS_RX_EXPECT_NO_PAD:
563 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
564 break;
565 default:
566 rc = -ENOPROTOOPT;
567 break;
568 }
569
570 release_sock(sk);
571
572 return rc;
573 }
574
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)575 static int tls_getsockopt(struct sock *sk, int level, int optname,
576 char __user *optval, int __user *optlen)
577 {
578 struct tls_context *ctx = tls_get_ctx(sk);
579
580 if (level != SOL_TLS)
581 return ctx->sk_proto->getsockopt(sk, level,
582 optname, optval, optlen);
583
584 return do_tls_getsockopt(sk, optname, optval, optlen);
585 }
586
validate_crypto_info(const struct tls_crypto_info * crypto_info,const struct tls_crypto_info * alt_crypto_info)587 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
588 const struct tls_crypto_info *alt_crypto_info)
589 {
590 if (crypto_info->version != TLS_1_2_VERSION &&
591 crypto_info->version != TLS_1_3_VERSION)
592 return -EINVAL;
593
594 switch (crypto_info->cipher_type) {
595 case TLS_CIPHER_ARIA_GCM_128:
596 case TLS_CIPHER_ARIA_GCM_256:
597 if (crypto_info->version != TLS_1_2_VERSION)
598 return -EINVAL;
599 break;
600 }
601
602 /* Ensure that TLS version and ciphers are same in both directions */
603 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
604 if (alt_crypto_info->version != crypto_info->version ||
605 alt_crypto_info->cipher_type != crypto_info->cipher_type)
606 return -EINVAL;
607 }
608
609 return 0;
610 }
611
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)612 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
613 unsigned int optlen, int tx)
614 {
615 struct tls_crypto_info *crypto_info;
616 struct tls_crypto_info *alt_crypto_info;
617 struct tls_context *ctx = tls_get_ctx(sk);
618 const struct tls_cipher_desc *cipher_desc;
619 union tls_crypto_context *crypto_ctx;
620 int rc = 0;
621 int conf;
622
623 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
624 return -EINVAL;
625
626 if (tx) {
627 crypto_ctx = &ctx->crypto_send;
628 alt_crypto_info = &ctx->crypto_recv.info;
629 } else {
630 crypto_ctx = &ctx->crypto_recv;
631 alt_crypto_info = &ctx->crypto_send.info;
632 }
633
634 crypto_info = &crypto_ctx->info;
635
636 /* Currently we don't support set crypto info more than one time */
637 if (TLS_CRYPTO_INFO_READY(crypto_info))
638 return -EBUSY;
639
640 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
641 if (rc) {
642 rc = -EFAULT;
643 goto err_crypto_info;
644 }
645
646 rc = validate_crypto_info(crypto_info, alt_crypto_info);
647 if (rc)
648 goto err_crypto_info;
649
650 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
651 if (!cipher_desc) {
652 rc = -EINVAL;
653 goto err_crypto_info;
654 }
655
656 if (optlen != cipher_desc->crypto_info) {
657 rc = -EINVAL;
658 goto err_crypto_info;
659 }
660
661 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
662 sizeof(*crypto_info),
663 optlen - sizeof(*crypto_info));
664 if (rc) {
665 rc = -EFAULT;
666 goto err_crypto_info;
667 }
668
669 if (tx) {
670 rc = tls_set_device_offload(sk);
671 conf = TLS_HW;
672 if (!rc) {
673 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
674 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
675 } else {
676 rc = tls_set_sw_offload(sk, 1);
677 if (rc)
678 goto err_crypto_info;
679 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
680 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
681 conf = TLS_SW;
682 }
683 } else {
684 rc = tls_set_device_offload_rx(sk, ctx);
685 conf = TLS_HW;
686 if (!rc) {
687 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
688 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
689 } else {
690 rc = tls_set_sw_offload(sk, 0);
691 if (rc)
692 goto err_crypto_info;
693 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
694 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
695 conf = TLS_SW;
696 }
697 tls_sw_strparser_arm(sk, ctx);
698 }
699
700 if (tx)
701 ctx->tx_conf = conf;
702 else
703 ctx->rx_conf = conf;
704 update_sk_prot(sk, ctx);
705 if (tx) {
706 ctx->sk_write_space = sk->sk_write_space;
707 sk->sk_write_space = tls_write_space;
708 } else {
709 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
710
711 tls_strp_check_rcv(&rx_ctx->strp);
712 }
713 return 0;
714
715 err_crypto_info:
716 memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
717 return rc;
718 }
719
do_tls_setsockopt_tx_zc(struct sock * sk,sockptr_t optval,unsigned int optlen)720 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
721 unsigned int optlen)
722 {
723 struct tls_context *ctx = tls_get_ctx(sk);
724 unsigned int value;
725
726 if (sockptr_is_null(optval) || optlen != sizeof(value))
727 return -EINVAL;
728
729 if (copy_from_sockptr(&value, optval, sizeof(value)))
730 return -EFAULT;
731
732 if (value > 1)
733 return -EINVAL;
734
735 ctx->zerocopy_sendfile = value;
736
737 return 0;
738 }
739
do_tls_setsockopt_no_pad(struct sock * sk,sockptr_t optval,unsigned int optlen)740 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
741 unsigned int optlen)
742 {
743 struct tls_context *ctx = tls_get_ctx(sk);
744 u32 val;
745 int rc;
746
747 if (ctx->prot_info.version != TLS_1_3_VERSION ||
748 sockptr_is_null(optval) || optlen < sizeof(val))
749 return -EINVAL;
750
751 rc = copy_from_sockptr(&val, optval, sizeof(val));
752 if (rc)
753 return -EFAULT;
754 if (val > 1)
755 return -EINVAL;
756 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
757 if (rc < 1)
758 return rc == 0 ? -EINVAL : rc;
759
760 lock_sock(sk);
761 rc = -EINVAL;
762 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
763 ctx->rx_no_pad = val;
764 tls_update_rx_zc_capable(ctx);
765 rc = 0;
766 }
767 release_sock(sk);
768
769 return rc;
770 }
771
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)772 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
773 unsigned int optlen)
774 {
775 int rc = 0;
776
777 switch (optname) {
778 case TLS_TX:
779 case TLS_RX:
780 lock_sock(sk);
781 rc = do_tls_setsockopt_conf(sk, optval, optlen,
782 optname == TLS_TX);
783 release_sock(sk);
784 break;
785 case TLS_TX_ZEROCOPY_RO:
786 lock_sock(sk);
787 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
788 release_sock(sk);
789 break;
790 case TLS_RX_EXPECT_NO_PAD:
791 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
792 break;
793 default:
794 rc = -ENOPROTOOPT;
795 break;
796 }
797 return rc;
798 }
799
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)800 static int tls_setsockopt(struct sock *sk, int level, int optname,
801 sockptr_t optval, unsigned int optlen)
802 {
803 struct tls_context *ctx = tls_get_ctx(sk);
804
805 if (level != SOL_TLS)
806 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
807 optlen);
808
809 return do_tls_setsockopt(sk, optname, optval, optlen);
810 }
811
tls_ctx_create(struct sock * sk)812 struct tls_context *tls_ctx_create(struct sock *sk)
813 {
814 struct inet_connection_sock *icsk = inet_csk(sk);
815 struct tls_context *ctx;
816
817 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
818 if (!ctx)
819 return NULL;
820
821 mutex_init(&ctx->tx_lock);
822 ctx->sk_proto = READ_ONCE(sk->sk_prot);
823 ctx->sk = sk;
824 /* Release semantic of rcu_assign_pointer() ensures that
825 * ctx->sk_proto is visible before changing sk->sk_prot in
826 * update_sk_prot(), and prevents reading uninitialized value in
827 * tls_{getsockopt, setsockopt}. Note that we do not need a
828 * read barrier in tls_{getsockopt,setsockopt} as there is an
829 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
830 * and ctx->sk_proto.
831 */
832 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
833 return ctx;
834 }
835
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto_ops * base)836 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
837 const struct proto_ops *base)
838 {
839 ops[TLS_BASE][TLS_BASE] = *base;
840
841 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
842 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof;
843
844 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
845 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
846 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll;
847 ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock;
848
849 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
850 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
851 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll;
852 ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock;
853
854 #ifdef CONFIG_TLS_DEVICE
855 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
856
857 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
858
859 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
860
861 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
862
863 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
864 #endif
865 #ifdef CONFIG_TLS_TOE
866 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
867 #endif
868 }
869
tls_build_proto(struct sock * sk)870 static void tls_build_proto(struct sock *sk)
871 {
872 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
873 struct proto *prot = READ_ONCE(sk->sk_prot);
874
875 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
876 if (ip_ver == TLSV6 &&
877 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
878 mutex_lock(&tcpv6_prot_mutex);
879 if (likely(prot != saved_tcpv6_prot)) {
880 build_protos(tls_prots[TLSV6], prot);
881 build_proto_ops(tls_proto_ops[TLSV6],
882 sk->sk_socket->ops);
883 smp_store_release(&saved_tcpv6_prot, prot);
884 }
885 mutex_unlock(&tcpv6_prot_mutex);
886 }
887
888 if (ip_ver == TLSV4 &&
889 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
890 mutex_lock(&tcpv4_prot_mutex);
891 if (likely(prot != saved_tcpv4_prot)) {
892 build_protos(tls_prots[TLSV4], prot);
893 build_proto_ops(tls_proto_ops[TLSV4],
894 sk->sk_socket->ops);
895 smp_store_release(&saved_tcpv4_prot, prot);
896 }
897 mutex_unlock(&tcpv4_prot_mutex);
898 }
899 }
900
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)901 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
902 const struct proto *base)
903 {
904 prot[TLS_BASE][TLS_BASE] = *base;
905 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
906 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
907 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
908
909 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
910 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
911 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof;
912
913 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
914 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
915 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
916 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
917
918 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
919 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
920 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
921 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
922
923 #ifdef CONFIG_TLS_DEVICE
924 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
925 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
926 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof;
927
928 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
929 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
930 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof;
931
932 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
933
934 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
935
936 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
937 #endif
938 #ifdef CONFIG_TLS_TOE
939 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
940 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
941 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
942 #endif
943 }
944
tls_init(struct sock * sk)945 static int tls_init(struct sock *sk)
946 {
947 struct tls_context *ctx;
948 int rc = 0;
949
950 tls_build_proto(sk);
951
952 #ifdef CONFIG_TLS_TOE
953 if (tls_toe_bypass(sk))
954 return 0;
955 #endif
956
957 /* The TLS ulp is currently supported only for TCP sockets
958 * in ESTABLISHED state.
959 * Supporting sockets in LISTEN state will require us
960 * to modify the accept implementation to clone rather then
961 * share the ulp context.
962 */
963 if (sk->sk_state != TCP_ESTABLISHED)
964 return -ENOTCONN;
965
966 /* allocate tls context */
967 write_lock_bh(&sk->sk_callback_lock);
968 ctx = tls_ctx_create(sk);
969 if (!ctx) {
970 rc = -ENOMEM;
971 goto out;
972 }
973
974 ctx->tx_conf = TLS_BASE;
975 ctx->rx_conf = TLS_BASE;
976 update_sk_prot(sk, ctx);
977 out:
978 write_unlock_bh(&sk->sk_callback_lock);
979 return rc;
980 }
981
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))982 static void tls_update(struct sock *sk, struct proto *p,
983 void (*write_space)(struct sock *sk))
984 {
985 struct tls_context *ctx;
986
987 WARN_ON_ONCE(sk->sk_prot == p);
988
989 ctx = tls_get_ctx(sk);
990 if (likely(ctx)) {
991 ctx->sk_write_space = write_space;
992 ctx->sk_proto = p;
993 } else {
994 /* Pairs with lockless read in sk_clone_lock(). */
995 WRITE_ONCE(sk->sk_prot, p);
996 sk->sk_write_space = write_space;
997 }
998 }
999
tls_user_config(struct tls_context * ctx,bool tx)1000 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1001 {
1002 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1003
1004 switch (config) {
1005 case TLS_BASE:
1006 return TLS_CONF_BASE;
1007 case TLS_SW:
1008 return TLS_CONF_SW;
1009 case TLS_HW:
1010 return TLS_CONF_HW;
1011 case TLS_HW_RECORD:
1012 return TLS_CONF_HW_RECORD;
1013 }
1014 return 0;
1015 }
1016
tls_get_info(struct sock * sk,struct sk_buff * skb)1017 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1018 {
1019 u16 version, cipher_type;
1020 struct tls_context *ctx;
1021 struct nlattr *start;
1022 int err;
1023
1024 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1025 if (!start)
1026 return -EMSGSIZE;
1027
1028 rcu_read_lock();
1029 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1030 if (!ctx) {
1031 err = 0;
1032 goto nla_failure;
1033 }
1034 version = ctx->prot_info.version;
1035 if (version) {
1036 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1037 if (err)
1038 goto nla_failure;
1039 }
1040 cipher_type = ctx->prot_info.cipher_type;
1041 if (cipher_type) {
1042 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1043 if (err)
1044 goto nla_failure;
1045 }
1046 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1047 if (err)
1048 goto nla_failure;
1049
1050 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1051 if (err)
1052 goto nla_failure;
1053
1054 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1055 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1056 if (err)
1057 goto nla_failure;
1058 }
1059 if (ctx->rx_no_pad) {
1060 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1061 if (err)
1062 goto nla_failure;
1063 }
1064
1065 rcu_read_unlock();
1066 nla_nest_end(skb, start);
1067 return 0;
1068
1069 nla_failure:
1070 rcu_read_unlock();
1071 nla_nest_cancel(skb, start);
1072 return err;
1073 }
1074
tls_get_info_size(const struct sock * sk)1075 static size_t tls_get_info_size(const struct sock *sk)
1076 {
1077 size_t size = 0;
1078
1079 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1080 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1081 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1082 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1083 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1084 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1085 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1086 0;
1087
1088 return size;
1089 }
1090
tls_init_net(struct net * net)1091 static int __net_init tls_init_net(struct net *net)
1092 {
1093 int err;
1094
1095 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1096 if (!net->mib.tls_statistics)
1097 return -ENOMEM;
1098
1099 err = tls_proc_init(net);
1100 if (err)
1101 goto err_free_stats;
1102
1103 return 0;
1104 err_free_stats:
1105 free_percpu(net->mib.tls_statistics);
1106 return err;
1107 }
1108
tls_exit_net(struct net * net)1109 static void __net_exit tls_exit_net(struct net *net)
1110 {
1111 tls_proc_fini(net);
1112 free_percpu(net->mib.tls_statistics);
1113 }
1114
1115 static struct pernet_operations tls_proc_ops = {
1116 .init = tls_init_net,
1117 .exit = tls_exit_net,
1118 };
1119
1120 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1121 .name = "tls",
1122 .owner = THIS_MODULE,
1123 .init = tls_init,
1124 .update = tls_update,
1125 .get_info = tls_get_info,
1126 .get_info_size = tls_get_info_size,
1127 };
1128
tls_register(void)1129 static int __init tls_register(void)
1130 {
1131 int err;
1132
1133 err = register_pernet_subsys(&tls_proc_ops);
1134 if (err)
1135 return err;
1136
1137 err = tls_strp_dev_init();
1138 if (err)
1139 goto err_pernet;
1140
1141 err = tls_device_init();
1142 if (err)
1143 goto err_strp;
1144
1145 tcp_register_ulp(&tcp_tls_ulp_ops);
1146
1147 return 0;
1148 err_strp:
1149 tls_strp_dev_exit();
1150 err_pernet:
1151 unregister_pernet_subsys(&tls_proc_ops);
1152 return err;
1153 }
1154
tls_unregister(void)1155 static void __exit tls_unregister(void)
1156 {
1157 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1158 tls_strp_dev_exit();
1159 tls_device_cleanup();
1160 unregister_pernet_subsys(&tls_proc_ops);
1161 }
1162
1163 module_init(tls_register);
1164 module_exit(tls_unregister);
1165