1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_JIFFIES_H
3  #define _LINUX_JIFFIES_H
4  
5  #include <linux/cache.h>
6  #include <linux/limits.h>
7  #include <linux/math64.h>
8  #include <linux/minmax.h>
9  #include <linux/types.h>
10  #include <linux/time.h>
11  #include <linux/timex.h>
12  #include <vdso/jiffies.h>
13  #include <asm/param.h>			/* for HZ */
14  #include <generated/timeconst.h>
15  
16  /*
17   * The following defines establish the engineering parameters of the PLL
18   * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
19   * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
20   * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
21   * nearest power of two in order to avoid hardware multiply operations.
22   */
23  #if HZ >= 12 && HZ < 24
24  # define SHIFT_HZ	4
25  #elif HZ >= 24 && HZ < 48
26  # define SHIFT_HZ	5
27  #elif HZ >= 48 && HZ < 96
28  # define SHIFT_HZ	6
29  #elif HZ >= 96 && HZ < 192
30  # define SHIFT_HZ	7
31  #elif HZ >= 192 && HZ < 384
32  # define SHIFT_HZ	8
33  #elif HZ >= 384 && HZ < 768
34  # define SHIFT_HZ	9
35  #elif HZ >= 768 && HZ < 1536
36  # define SHIFT_HZ	10
37  #elif HZ >= 1536 && HZ < 3072
38  # define SHIFT_HZ	11
39  #elif HZ >= 3072 && HZ < 6144
40  # define SHIFT_HZ	12
41  #elif HZ >= 6144 && HZ < 12288
42  # define SHIFT_HZ	13
43  #else
44  # error Invalid value of HZ.
45  #endif
46  
47  /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
48   * improve accuracy by shifting LSH bits, hence calculating:
49   *     (NOM << LSH) / DEN
50   * This however means trouble for large NOM, because (NOM << LSH) may no
51   * longer fit in 32 bits. The following way of calculating this gives us
52   * some slack, under the following conditions:
53   *   - (NOM / DEN) fits in (32 - LSH) bits.
54   *   - (NOM % DEN) fits in (32 - LSH) bits.
55   */
56  #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
57                               + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
58  
59  /* LATCH is used in the interval timer and ftape setup. */
60  #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
61  
62  extern int register_refined_jiffies(long clock_tick_rate);
63  
64  /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
65  #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
66  
67  /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68  #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69  
70  #ifndef __jiffy_arch_data
71  #define __jiffy_arch_data
72  #endif
73  
74  /*
75   * The 64-bit value is not atomic on 32-bit systems - you MUST NOT read it
76   * without sampling the sequence number in jiffies_lock.
77   * get_jiffies_64() will do this for you as appropriate.
78   *
79   * jiffies and jiffies_64 are at the same address for little-endian systems
80   * and for 64-bit big-endian systems.
81   * On 32-bit big-endian systems, jiffies is the lower 32 bits of jiffies_64
82   * (i.e., at address @jiffies_64 + 4).
83   * See arch/ARCH/kernel/vmlinux.lds.S
84   */
85  extern u64 __cacheline_aligned_in_smp jiffies_64;
86  extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
87  
88  #if (BITS_PER_LONG < 64)
89  u64 get_jiffies_64(void);
90  #else
91  /**
92   * get_jiffies_64 - read the 64-bit non-atomic jiffies_64 value
93   *
94   * When BITS_PER_LONG < 64, this uses sequence number sampling using
95   * jiffies_lock to protect the 64-bit read.
96   *
97   * Return: current 64-bit jiffies value
98   */
get_jiffies_64(void)99  static inline u64 get_jiffies_64(void)
100  {
101  	return (u64)jiffies;
102  }
103  #endif
104  
105  /**
106   * DOC: General information about time_* inlines
107   *
108   * These inlines deal with timer wrapping correctly. You are strongly encouraged
109   * to use them:
110   *
111   * #. Because people otherwise forget
112   * #. Because if the timer wrap changes in future you won't have to alter your
113   *    driver code.
114   */
115  
116  /**
117   * time_after - returns true if the time a is after time b.
118   * @a: first comparable as unsigned long
119   * @b: second comparable as unsigned long
120   *
121   * Do this with "<0" and ">=0" to only test the sign of the result. A
122   * good compiler would generate better code (and a really good compiler
123   * wouldn't care). Gcc is currently neither.
124   *
125   * Return: %true is time a is after time b, otherwise %false.
126   */
127  #define time_after(a,b)		\
128  	(typecheck(unsigned long, a) && \
129  	 typecheck(unsigned long, b) && \
130  	 ((long)((b) - (a)) < 0))
131  /**
132   * time_before - returns true if the time a is before time b.
133   * @a: first comparable as unsigned long
134   * @b: second comparable as unsigned long
135   *
136   * Return: %true is time a is before time b, otherwise %false.
137   */
138  #define time_before(a,b)	time_after(b,a)
139  
140  /**
141   * time_after_eq - returns true if the time a is after or the same as time b.
142   * @a: first comparable as unsigned long
143   * @b: second comparable as unsigned long
144   *
145   * Return: %true is time a is after or the same as time b, otherwise %false.
146   */
147  #define time_after_eq(a,b)	\
148  	(typecheck(unsigned long, a) && \
149  	 typecheck(unsigned long, b) && \
150  	 ((long)((a) - (b)) >= 0))
151  /**
152   * time_before_eq - returns true if the time a is before or the same as time b.
153   * @a: first comparable as unsigned long
154   * @b: second comparable as unsigned long
155   *
156   * Return: %true is time a is before or the same as time b, otherwise %false.
157   */
158  #define time_before_eq(a,b)	time_after_eq(b,a)
159  
160  /**
161   * time_in_range - Calculate whether a is in the range of [b, c].
162   * @a: time to test
163   * @b: beginning of the range
164   * @c: end of the range
165   *
166   * Return: %true is time a is in the range [b, c], otherwise %false.
167   */
168  #define time_in_range(a,b,c) \
169  	(time_after_eq(a,b) && \
170  	 time_before_eq(a,c))
171  
172  /**
173   * time_in_range_open - Calculate whether a is in the range of [b, c).
174   * @a: time to test
175   * @b: beginning of the range
176   * @c: end of the range
177   *
178   * Return: %true is time a is in the range [b, c), otherwise %false.
179   */
180  #define time_in_range_open(a,b,c) \
181  	(time_after_eq(a,b) && \
182  	 time_before(a,c))
183  
184  /* Same as above, but does so with platform independent 64bit types.
185   * These must be used when utilizing jiffies_64 (i.e. return value of
186   * get_jiffies_64()). */
187  
188  /**
189   * time_after64 - returns true if the time a is after time b.
190   * @a: first comparable as __u64
191   * @b: second comparable as __u64
192   *
193   * This must be used when utilizing jiffies_64 (i.e. return value of
194   * get_jiffies_64()).
195   *
196   * Return: %true is time a is after time b, otherwise %false.
197   */
198  #define time_after64(a,b)	\
199  	(typecheck(__u64, a) &&	\
200  	 typecheck(__u64, b) && \
201  	 ((__s64)((b) - (a)) < 0))
202  /**
203   * time_before64 - returns true if the time a is before time b.
204   * @a: first comparable as __u64
205   * @b: second comparable as __u64
206   *
207   * This must be used when utilizing jiffies_64 (i.e. return value of
208   * get_jiffies_64()).
209   *
210   * Return: %true is time a is before time b, otherwise %false.
211   */
212  #define time_before64(a,b)	time_after64(b,a)
213  
214  /**
215   * time_after_eq64 - returns true if the time a is after or the same as time b.
216   * @a: first comparable as __u64
217   * @b: second comparable as __u64
218   *
219   * This must be used when utilizing jiffies_64 (i.e. return value of
220   * get_jiffies_64()).
221   *
222   * Return: %true is time a is after or the same as time b, otherwise %false.
223   */
224  #define time_after_eq64(a,b)	\
225  	(typecheck(__u64, a) && \
226  	 typecheck(__u64, b) && \
227  	 ((__s64)((a) - (b)) >= 0))
228  /**
229   * time_before_eq64 - returns true if the time a is before or the same as time b.
230   * @a: first comparable as __u64
231   * @b: second comparable as __u64
232   *
233   * This must be used when utilizing jiffies_64 (i.e. return value of
234   * get_jiffies_64()).
235   *
236   * Return: %true is time a is before or the same as time b, otherwise %false.
237   */
238  #define time_before_eq64(a,b)	time_after_eq64(b,a)
239  
240  /**
241   * time_in_range64 - Calculate whether a is in the range of [b, c].
242   * @a: time to test
243   * @b: beginning of the range
244   * @c: end of the range
245   *
246   * Return: %true is time a is in the range [b, c], otherwise %false.
247   */
248  #define time_in_range64(a, b, c) \
249  	(time_after_eq64(a, b) && \
250  	 time_before_eq64(a, c))
251  
252  /*
253   * These eight macros compare jiffies[_64] and 'a' for convenience.
254   */
255  
256  /**
257   * time_is_before_jiffies - return true if a is before jiffies
258   * @a: time (unsigned long) to compare to jiffies
259   *
260   * Return: %true is time a is before jiffies, otherwise %false.
261   */
262  #define time_is_before_jiffies(a) time_after(jiffies, a)
263  /**
264   * time_is_before_jiffies64 - return true if a is before jiffies_64
265   * @a: time (__u64) to compare to jiffies_64
266   *
267   * Return: %true is time a is before jiffies_64, otherwise %false.
268   */
269  #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
270  
271  /**
272   * time_is_after_jiffies - return true if a is after jiffies
273   * @a: time (unsigned long) to compare to jiffies
274   *
275   * Return: %true is time a is after jiffies, otherwise %false.
276   */
277  #define time_is_after_jiffies(a) time_before(jiffies, a)
278  /**
279   * time_is_after_jiffies64 - return true if a is after jiffies_64
280   * @a: time (__u64) to compare to jiffies_64
281   *
282   * Return: %true is time a is after jiffies_64, otherwise %false.
283   */
284  #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
285  
286  /**
287   * time_is_before_eq_jiffies - return true if a is before or equal to jiffies
288   * @a: time (unsigned long) to compare to jiffies
289   *
290   * Return: %true is time a is before or the same as jiffies, otherwise %false.
291   */
292  #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
293  /**
294   * time_is_before_eq_jiffies64 - return true if a is before or equal to jiffies_64
295   * @a: time (__u64) to compare to jiffies_64
296   *
297   * Return: %true is time a is before or the same jiffies_64, otherwise %false.
298   */
299  #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
300  
301  /**
302   * time_is_after_eq_jiffies - return true if a is after or equal to jiffies
303   * @a: time (unsigned long) to compare to jiffies
304   *
305   * Return: %true is time a is after or the same as jiffies, otherwise %false.
306   */
307  #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
308  /**
309   * time_is_after_eq_jiffies64 - return true if a is after or equal to jiffies_64
310   * @a: time (__u64) to compare to jiffies_64
311   *
312   * Return: %true is time a is after or the same as jiffies_64, otherwise %false.
313   */
314  #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
315  
316  /*
317   * Have the 32-bit jiffies value wrap 5 minutes after boot
318   * so jiffies wrap bugs show up earlier.
319   */
320  #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
321  
322  /*
323   * Change timeval to jiffies, trying to avoid the
324   * most obvious overflows..
325   *
326   * And some not so obvious.
327   *
328   * Note that we don't want to return LONG_MAX, because
329   * for various timeout reasons we often end up having
330   * to wait "jiffies+1" in order to guarantee that we wait
331   * at _least_ "jiffies" - so "jiffies+1" had better still
332   * be positive.
333   */
334  #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
335  
336  extern unsigned long preset_lpj;
337  
338  /*
339   * We want to do realistic conversions of time so we need to use the same
340   * values the update wall clock code uses as the jiffies size.  This value
341   * is: TICK_NSEC (which is defined in timex.h).  This
342   * is a constant and is in nanoseconds.  We will use scaled math
343   * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
344   * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
345   * constants and so are computed at compile time.  SHIFT_HZ (computed in
346   * timex.h) adjusts the scaling for different HZ values.
347  
348   * Scaled math???  What is that?
349   *
350   * Scaled math is a way to do integer math on values that would,
351   * otherwise, either overflow, underflow, or cause undesired div
352   * instructions to appear in the execution path.  In short, we "scale"
353   * up the operands so they take more bits (more precision, less
354   * underflow), do the desired operation and then "scale" the result back
355   * by the same amount.  If we do the scaling by shifting we avoid the
356   * costly mpy and the dastardly div instructions.
357  
358   * Suppose, for example, we want to convert from seconds to jiffies
359   * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
360   * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
361   * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
362   * might calculate at compile time, however, the result will only have
363   * about 3-4 bits of precision (less for smaller values of HZ).
364   *
365   * So, we scale as follows:
366   * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
367   * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
368   * Then we make SCALE a power of two so:
369   * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
370   * Now we define:
371   * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
372   * jiff = (sec * SEC_CONV) >> SCALE;
373   *
374   * Often the math we use will expand beyond 32-bits so we tell C how to
375   * do this and pass the 64-bit result of the mpy through the ">> SCALE"
376   * which should take the result back to 32-bits.  We want this expansion
377   * to capture as much precision as possible.  At the same time we don't
378   * want to overflow so we pick the SCALE to avoid this.  In this file,
379   * that means using a different scale for each range of HZ values (as
380   * defined in timex.h).
381   *
382   * For those who want to know, gcc will give a 64-bit result from a "*"
383   * operator if the result is a long long AND at least one of the
384   * operands is cast to long long (usually just prior to the "*" so as
385   * not to confuse it into thinking it really has a 64-bit operand,
386   * which, buy the way, it can do, but it takes more code and at least 2
387   * mpys).
388  
389   * We also need to be aware that one second in nanoseconds is only a
390   * couple of bits away from overflowing a 32-bit word, so we MUST use
391   * 64-bits to get the full range time in nanoseconds.
392  
393   */
394  
395  /*
396   * Here are the scales we will use.  One for seconds, nanoseconds and
397   * microseconds.
398   *
399   * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
400   * check if the sign bit is set.  If not, we bump the shift count by 1.
401   * (Gets an extra bit of precision where we can use it.)
402   * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
403   * Haven't tested others.
404  
405   * Limits of cpp (for #if expressions) only long (no long long), but
406   * then we only need the most signicant bit.
407   */
408  
409  #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
410  #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
411  #undef SEC_JIFFIE_SC
412  #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
413  #endif
414  #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
415  #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
416                                  TICK_NSEC -1) / (u64)TICK_NSEC))
417  
418  #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
419                                          TICK_NSEC -1) / (u64)TICK_NSEC))
420  /*
421   * The maximum jiffy value is (MAX_INT >> 1).  Here we translate that
422   * into seconds.  The 64-bit case will overflow if we are not careful,
423   * so use the messy SH_DIV macro to do it.  Still all constants.
424   */
425  #if BITS_PER_LONG < 64
426  # define MAX_SEC_IN_JIFFIES \
427  	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
428  #else	/* take care of overflow on 64-bit machines */
429  # define MAX_SEC_IN_JIFFIES \
430  	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
431  
432  #endif
433  
434  /*
435   * Convert various time units to each other:
436   */
437  extern unsigned int jiffies_to_msecs(const unsigned long j);
438  extern unsigned int jiffies_to_usecs(const unsigned long j);
439  
440  /**
441   * jiffies_to_nsecs - Convert jiffies to nanoseconds
442   * @j: jiffies value
443   *
444   * Return: nanoseconds value
445   */
jiffies_to_nsecs(const unsigned long j)446  static inline u64 jiffies_to_nsecs(const unsigned long j)
447  {
448  	return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
449  }
450  
451  extern u64 jiffies64_to_nsecs(u64 j);
452  extern u64 jiffies64_to_msecs(u64 j);
453  
454  extern unsigned long __msecs_to_jiffies(const unsigned int m);
455  #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
456  /*
457   * HZ is equal to or smaller than 1000, and 1000 is a nice round
458   * multiple of HZ, divide with the factor between them, but round
459   * upwards:
460   */
_msecs_to_jiffies(const unsigned int m)461  static inline unsigned long _msecs_to_jiffies(const unsigned int m)
462  {
463  	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
464  }
465  #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
466  /*
467   * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
468   * simply multiply with the factor between them.
469   *
470   * But first make sure the multiplication result cannot overflow:
471   */
_msecs_to_jiffies(const unsigned int m)472  static inline unsigned long _msecs_to_jiffies(const unsigned int m)
473  {
474  	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
475  		return MAX_JIFFY_OFFSET;
476  	return m * (HZ / MSEC_PER_SEC);
477  }
478  #else
479  /*
480   * Generic case - multiply, round and divide. But first check that if
481   * we are doing a net multiplication, that we wouldn't overflow:
482   */
_msecs_to_jiffies(const unsigned int m)483  static inline unsigned long _msecs_to_jiffies(const unsigned int m)
484  {
485  	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
486  		return MAX_JIFFY_OFFSET;
487  
488  	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
489  }
490  #endif
491  /**
492   * msecs_to_jiffies: - convert milliseconds to jiffies
493   * @m:	time in milliseconds
494   *
495   * conversion is done as follows:
496   *
497   * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
498   *
499   * - 'too large' values [that would result in larger than
500   *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
501   *
502   * - all other values are converted to jiffies by either multiplying
503   *   the input value by a factor or dividing it with a factor and
504   *   handling any 32-bit overflows.
505   *   for the details see __msecs_to_jiffies()
506   *
507   * msecs_to_jiffies() checks for the passed in value being a constant
508   * via __builtin_constant_p() allowing gcc to eliminate most of the
509   * code. __msecs_to_jiffies() is called if the value passed does not
510   * allow constant folding and the actual conversion must be done at
511   * runtime.
512   * The HZ range specific helpers _msecs_to_jiffies() are called both
513   * directly here and from __msecs_to_jiffies() in the case where
514   * constant folding is not possible.
515   *
516   * Return: jiffies value
517   */
msecs_to_jiffies(const unsigned int m)518  static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
519  {
520  	if (__builtin_constant_p(m)) {
521  		if ((int)m < 0)
522  			return MAX_JIFFY_OFFSET;
523  		return _msecs_to_jiffies(m);
524  	} else {
525  		return __msecs_to_jiffies(m);
526  	}
527  }
528  
529  extern unsigned long __usecs_to_jiffies(const unsigned int u);
530  #if !(USEC_PER_SEC % HZ)
_usecs_to_jiffies(const unsigned int u)531  static inline unsigned long _usecs_to_jiffies(const unsigned int u)
532  {
533  	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
534  }
535  #else
_usecs_to_jiffies(const unsigned int u)536  static inline unsigned long _usecs_to_jiffies(const unsigned int u)
537  {
538  	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
539  		>> USEC_TO_HZ_SHR32;
540  }
541  #endif
542  
543  /**
544   * usecs_to_jiffies: - convert microseconds to jiffies
545   * @u:	time in microseconds
546   *
547   * conversion is done as follows:
548   *
549   * - 'too large' values [that would result in larger than
550   *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
551   *
552   * - all other values are converted to jiffies by either multiplying
553   *   the input value by a factor or dividing it with a factor and
554   *   handling any 32-bit overflows as for msecs_to_jiffies.
555   *
556   * usecs_to_jiffies() checks for the passed in value being a constant
557   * via __builtin_constant_p() allowing gcc to eliminate most of the
558   * code. __usecs_to_jiffies() is called if the value passed does not
559   * allow constant folding and the actual conversion must be done at
560   * runtime.
561   * The HZ range specific helpers _usecs_to_jiffies() are called both
562   * directly here and from __msecs_to_jiffies() in the case where
563   * constant folding is not possible.
564   *
565   * Return: jiffies value
566   */
usecs_to_jiffies(const unsigned int u)567  static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
568  {
569  	if (__builtin_constant_p(u)) {
570  		if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
571  			return MAX_JIFFY_OFFSET;
572  		return _usecs_to_jiffies(u);
573  	} else {
574  		return __usecs_to_jiffies(u);
575  	}
576  }
577  
578  extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
579  extern void jiffies_to_timespec64(const unsigned long jiffies,
580  				  struct timespec64 *value);
581  extern clock_t jiffies_to_clock_t(unsigned long x);
582  
jiffies_delta_to_clock_t(long delta)583  static inline clock_t jiffies_delta_to_clock_t(long delta)
584  {
585  	return jiffies_to_clock_t(max(0L, delta));
586  }
587  
jiffies_delta_to_msecs(long delta)588  static inline unsigned int jiffies_delta_to_msecs(long delta)
589  {
590  	return jiffies_to_msecs(max(0L, delta));
591  }
592  
593  extern unsigned long clock_t_to_jiffies(unsigned long x);
594  extern u64 jiffies_64_to_clock_t(u64 x);
595  extern u64 nsec_to_clock_t(u64 x);
596  extern u64 nsecs_to_jiffies64(u64 n);
597  extern unsigned long nsecs_to_jiffies(u64 n);
598  
599  #define TIMESTAMP_SIZE	30
600  
601  #endif
602