1  // SPDX-License-Identifier: GPL-2.0
2  #include <linux/kernel.h>
3  #include <linux/tcp.h>
4  #include <linux/rcupdate.h>
5  #include <net/tcp.h>
6  
tcp_fastopen_init_key_once(struct net * net)7  void tcp_fastopen_init_key_once(struct net *net)
8  {
9  	u8 key[TCP_FASTOPEN_KEY_LENGTH];
10  	struct tcp_fastopen_context *ctxt;
11  
12  	rcu_read_lock();
13  	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
14  	if (ctxt) {
15  		rcu_read_unlock();
16  		return;
17  	}
18  	rcu_read_unlock();
19  
20  	/* tcp_fastopen_reset_cipher publishes the new context
21  	 * atomically, so we allow this race happening here.
22  	 *
23  	 * All call sites of tcp_fastopen_cookie_gen also check
24  	 * for a valid cookie, so this is an acceptable risk.
25  	 */
26  	get_random_bytes(key, sizeof(key));
27  	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
28  }
29  
tcp_fastopen_ctx_free(struct rcu_head * head)30  static void tcp_fastopen_ctx_free(struct rcu_head *head)
31  {
32  	struct tcp_fastopen_context *ctx =
33  	    container_of(head, struct tcp_fastopen_context, rcu);
34  
35  	kfree_sensitive(ctx);
36  }
37  
tcp_fastopen_destroy_cipher(struct sock * sk)38  void tcp_fastopen_destroy_cipher(struct sock *sk)
39  {
40  	struct tcp_fastopen_context *ctx;
41  
42  	ctx = rcu_dereference_protected(
43  			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
44  	if (ctx)
45  		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
46  }
47  
tcp_fastopen_ctx_destroy(struct net * net)48  void tcp_fastopen_ctx_destroy(struct net *net)
49  {
50  	struct tcp_fastopen_context *ctxt;
51  
52  	ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL));
53  
54  	if (ctxt)
55  		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
56  }
57  
tcp_fastopen_reset_cipher(struct net * net,struct sock * sk,void * primary_key,void * backup_key)58  int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
59  			      void *primary_key, void *backup_key)
60  {
61  	struct tcp_fastopen_context *ctx, *octx;
62  	struct fastopen_queue *q;
63  	int err = 0;
64  
65  	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
66  	if (!ctx) {
67  		err = -ENOMEM;
68  		goto out;
69  	}
70  
71  	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
72  	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
73  	if (backup_key) {
74  		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
75  		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
76  		ctx->num = 2;
77  	} else {
78  		ctx->num = 1;
79  	}
80  
81  	if (sk) {
82  		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
83  		octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx)));
84  	} else {
85  		octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx,
86  					  RCU_INITIALIZER(ctx)));
87  	}
88  
89  	if (octx)
90  		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
91  out:
92  	return err;
93  }
94  
tcp_fastopen_get_cipher(struct net * net,struct inet_connection_sock * icsk,u64 * key)95  int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
96  			    u64 *key)
97  {
98  	struct tcp_fastopen_context *ctx;
99  	int n_keys = 0, i;
100  
101  	rcu_read_lock();
102  	if (icsk)
103  		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
104  	else
105  		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
106  	if (ctx) {
107  		n_keys = tcp_fastopen_context_len(ctx);
108  		for (i = 0; i < n_keys; i++) {
109  			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
110  			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
111  		}
112  	}
113  	rcu_read_unlock();
114  
115  	return n_keys;
116  }
117  
__tcp_fastopen_cookie_gen_cipher(struct request_sock * req,struct sk_buff * syn,const siphash_key_t * key,struct tcp_fastopen_cookie * foc)118  static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
119  					     struct sk_buff *syn,
120  					     const siphash_key_t *key,
121  					     struct tcp_fastopen_cookie *foc)
122  {
123  	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
124  
125  	if (req->rsk_ops->family == AF_INET) {
126  		const struct iphdr *iph = ip_hdr(syn);
127  
128  		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
129  					  sizeof(iph->saddr) +
130  					  sizeof(iph->daddr),
131  					  key));
132  		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
133  		return true;
134  	}
135  #if IS_ENABLED(CONFIG_IPV6)
136  	if (req->rsk_ops->family == AF_INET6) {
137  		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
138  
139  		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
140  					  sizeof(ip6h->saddr) +
141  					  sizeof(ip6h->daddr),
142  					  key));
143  		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
144  		return true;
145  	}
146  #endif
147  	return false;
148  }
149  
150  /* Generate the fastopen cookie by applying SipHash to both the source and
151   * destination addresses.
152   */
tcp_fastopen_cookie_gen(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * foc)153  static void tcp_fastopen_cookie_gen(struct sock *sk,
154  				    struct request_sock *req,
155  				    struct sk_buff *syn,
156  				    struct tcp_fastopen_cookie *foc)
157  {
158  	struct tcp_fastopen_context *ctx;
159  
160  	rcu_read_lock();
161  	ctx = tcp_fastopen_get_ctx(sk);
162  	if (ctx)
163  		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
164  	rcu_read_unlock();
165  }
166  
167  /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
168   * queue this additional data / FIN.
169   */
tcp_fastopen_add_skb(struct sock * sk,struct sk_buff * skb)170  void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
171  {
172  	struct tcp_sock *tp = tcp_sk(sk);
173  
174  	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
175  		return;
176  
177  	skb = skb_clone(skb, GFP_ATOMIC);
178  	if (!skb)
179  		return;
180  
181  	skb_dst_drop(skb);
182  	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
183  	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
184  	 * to avoid double counting.  Also, tcp_segs_in() expects
185  	 * skb->len to include the tcp_hdrlen.  Hence, it should
186  	 * be called before __skb_pull().
187  	 */
188  	tp->segs_in = 0;
189  	tcp_segs_in(tp, skb);
190  	__skb_pull(skb, tcp_hdrlen(skb));
191  	sk_forced_mem_schedule(sk, skb->truesize);
192  	skb_set_owner_r(skb, sk);
193  
194  	TCP_SKB_CB(skb)->seq++;
195  	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
196  
197  	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
198  	__skb_queue_tail(&sk->sk_receive_queue, skb);
199  	tp->syn_data_acked = 1;
200  
201  	/* u64_stats_update_begin(&tp->syncp) not needed here,
202  	 * as we certainly are not changing upper 32bit value (0)
203  	 */
204  	tp->bytes_received = skb->len;
205  
206  	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
207  		tcp_fin(sk);
208  }
209  
210  /* returns 0 - no key match, 1 for primary, 2 for backup */
tcp_fastopen_cookie_gen_check(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * orig,struct tcp_fastopen_cookie * valid_foc)211  static int tcp_fastopen_cookie_gen_check(struct sock *sk,
212  					 struct request_sock *req,
213  					 struct sk_buff *syn,
214  					 struct tcp_fastopen_cookie *orig,
215  					 struct tcp_fastopen_cookie *valid_foc)
216  {
217  	struct tcp_fastopen_cookie search_foc = { .len = -1 };
218  	struct tcp_fastopen_cookie *foc = valid_foc;
219  	struct tcp_fastopen_context *ctx;
220  	int i, ret = 0;
221  
222  	rcu_read_lock();
223  	ctx = tcp_fastopen_get_ctx(sk);
224  	if (!ctx)
225  		goto out;
226  	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
227  		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
228  		if (tcp_fastopen_cookie_match(foc, orig)) {
229  			ret = i + 1;
230  			goto out;
231  		}
232  		foc = &search_foc;
233  	}
234  out:
235  	rcu_read_unlock();
236  	return ret;
237  }
238  
tcp_fastopen_create_child(struct sock * sk,struct sk_buff * skb,struct request_sock * req)239  static struct sock *tcp_fastopen_create_child(struct sock *sk,
240  					      struct sk_buff *skb,
241  					      struct request_sock *req)
242  {
243  	struct tcp_sock *tp;
244  	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
245  	struct sock *child;
246  	bool own_req;
247  
248  	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
249  							 NULL, &own_req);
250  	if (!child)
251  		return NULL;
252  
253  	spin_lock(&queue->fastopenq.lock);
254  	queue->fastopenq.qlen++;
255  	spin_unlock(&queue->fastopenq.lock);
256  
257  	/* Initialize the child socket. Have to fix some values to take
258  	 * into account the child is a Fast Open socket and is created
259  	 * only out of the bits carried in the SYN packet.
260  	 */
261  	tp = tcp_sk(child);
262  
263  	rcu_assign_pointer(tp->fastopen_rsk, req);
264  	tcp_rsk(req)->tfo_listener = true;
265  
266  	/* RFC1323: The window in SYN & SYN/ACK segments is never
267  	 * scaled. So correct it appropriately.
268  	 */
269  	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
270  	tp->max_window = tp->snd_wnd;
271  
272  	/* Activate the retrans timer so that SYNACK can be retransmitted.
273  	 * The request socket is not added to the ehash
274  	 * because it's been added to the accept queue directly.
275  	 */
276  	req->timeout = tcp_timeout_init(child);
277  	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
278  				  req->timeout, TCP_RTO_MAX);
279  
280  	refcount_set(&req->rsk_refcnt, 2);
281  
282  	/* Now finish processing the fastopen child socket. */
283  	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
284  
285  	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
286  
287  	tcp_fastopen_add_skb(child, skb);
288  
289  	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
290  	tp->rcv_wup = tp->rcv_nxt;
291  	/* tcp_conn_request() is sending the SYNACK,
292  	 * and queues the child into listener accept queue.
293  	 */
294  	return child;
295  }
296  
tcp_fastopen_queue_check(struct sock * sk)297  static bool tcp_fastopen_queue_check(struct sock *sk)
298  {
299  	struct fastopen_queue *fastopenq;
300  	int max_qlen;
301  
302  	/* Make sure the listener has enabled fastopen, and we don't
303  	 * exceed the max # of pending TFO requests allowed before trying
304  	 * to validating the cookie in order to avoid burning CPU cycles
305  	 * unnecessarily.
306  	 *
307  	 * XXX (TFO) - The implication of checking the max_qlen before
308  	 * processing a cookie request is that clients can't differentiate
309  	 * between qlen overflow causing Fast Open to be disabled
310  	 * temporarily vs a server not supporting Fast Open at all.
311  	 */
312  	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
313  	max_qlen = READ_ONCE(fastopenq->max_qlen);
314  	if (max_qlen == 0)
315  		return false;
316  
317  	if (fastopenq->qlen >= max_qlen) {
318  		struct request_sock *req1;
319  		spin_lock(&fastopenq->lock);
320  		req1 = fastopenq->rskq_rst_head;
321  		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
322  			__NET_INC_STATS(sock_net(sk),
323  					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
324  			spin_unlock(&fastopenq->lock);
325  			return false;
326  		}
327  		fastopenq->rskq_rst_head = req1->dl_next;
328  		fastopenq->qlen--;
329  		spin_unlock(&fastopenq->lock);
330  		reqsk_put(req1);
331  	}
332  	return true;
333  }
334  
tcp_fastopen_no_cookie(const struct sock * sk,const struct dst_entry * dst,int flag)335  static bool tcp_fastopen_no_cookie(const struct sock *sk,
336  				   const struct dst_entry *dst,
337  				   int flag)
338  {
339  	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
340  	       tcp_sk(sk)->fastopen_no_cookie ||
341  	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
342  }
343  
344  /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
345   * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
346   * cookie request (foc->len == 0).
347   */
tcp_try_fastopen(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct tcp_fastopen_cookie * foc,const struct dst_entry * dst)348  struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
349  			      struct request_sock *req,
350  			      struct tcp_fastopen_cookie *foc,
351  			      const struct dst_entry *dst)
352  {
353  	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
354  	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
355  	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
356  	struct sock *child;
357  	int ret = 0;
358  
359  	if (foc->len == 0) /* Client requests a cookie */
360  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
361  
362  	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
363  	      (syn_data || foc->len >= 0) &&
364  	      tcp_fastopen_queue_check(sk))) {
365  		foc->len = -1;
366  		return NULL;
367  	}
368  
369  	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
370  		goto fastopen;
371  
372  	if (foc->len == 0) {
373  		/* Client requests a cookie. */
374  		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
375  	} else if (foc->len > 0) {
376  		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
377  						    &valid_foc);
378  		if (!ret) {
379  			NET_INC_STATS(sock_net(sk),
380  				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
381  		} else {
382  			/* Cookie is valid. Create a (full) child socket to
383  			 * accept the data in SYN before returning a SYN-ACK to
384  			 * ack the data. If we fail to create the socket, fall
385  			 * back and ack the ISN only but includes the same
386  			 * cookie.
387  			 *
388  			 * Note: Data-less SYN with valid cookie is allowed to
389  			 * send data in SYN_RECV state.
390  			 */
391  fastopen:
392  			child = tcp_fastopen_create_child(sk, skb, req);
393  			if (child) {
394  				if (ret == 2) {
395  					valid_foc.exp = foc->exp;
396  					*foc = valid_foc;
397  					NET_INC_STATS(sock_net(sk),
398  						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
399  				} else {
400  					foc->len = -1;
401  				}
402  				NET_INC_STATS(sock_net(sk),
403  					      LINUX_MIB_TCPFASTOPENPASSIVE);
404  				return child;
405  			}
406  			NET_INC_STATS(sock_net(sk),
407  				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
408  		}
409  	}
410  	valid_foc.exp = foc->exp;
411  	*foc = valid_foc;
412  	return NULL;
413  }
414  
tcp_fastopen_cookie_check(struct sock * sk,u16 * mss,struct tcp_fastopen_cookie * cookie)415  bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
416  			       struct tcp_fastopen_cookie *cookie)
417  {
418  	const struct dst_entry *dst;
419  
420  	tcp_fastopen_cache_get(sk, mss, cookie);
421  
422  	/* Firewall blackhole issue check */
423  	if (tcp_fastopen_active_should_disable(sk)) {
424  		cookie->len = -1;
425  		return false;
426  	}
427  
428  	dst = __sk_dst_get(sk);
429  
430  	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
431  		cookie->len = -1;
432  		return true;
433  	}
434  	if (cookie->len > 0)
435  		return true;
436  	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
437  	return false;
438  }
439  
440  /* This function checks if we want to defer sending SYN until the first
441   * write().  We defer under the following conditions:
442   * 1. fastopen_connect sockopt is set
443   * 2. we have a valid cookie
444   * Return value: return true if we want to defer until application writes data
445   *               return false if we want to send out SYN immediately
446   */
tcp_fastopen_defer_connect(struct sock * sk,int * err)447  bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
448  {
449  	struct tcp_fastopen_cookie cookie = { .len = 0 };
450  	struct tcp_sock *tp = tcp_sk(sk);
451  	u16 mss;
452  
453  	if (tp->fastopen_connect && !tp->fastopen_req) {
454  		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
455  			inet_set_bit(DEFER_CONNECT, sk);
456  			return true;
457  		}
458  
459  		/* Alloc fastopen_req in order for FO option to be included
460  		 * in SYN
461  		 */
462  		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
463  					   sk->sk_allocation);
464  		if (tp->fastopen_req)
465  			tp->fastopen_req->cookie = cookie;
466  		else
467  			*err = -ENOBUFS;
468  	}
469  	return false;
470  }
471  EXPORT_SYMBOL(tcp_fastopen_defer_connect);
472  
473  /*
474   * The following code block is to deal with middle box issues with TFO:
475   * Middlebox firewall issues can potentially cause server's data being
476   * blackholed after a successful 3WHS using TFO.
477   * The proposed solution is to disable active TFO globally under the
478   * following circumstances:
479   *   1. client side TFO socket receives out of order FIN
480   *   2. client side TFO socket receives out of order RST
481   *   3. client side TFO socket has timed out three times consecutively during
482   *      or after handshake
483   * We disable active side TFO globally for 1hr at first. Then if it
484   * happens again, we disable it for 2h, then 4h, 8h, ...
485   * And we reset the timeout back to 1hr when we see a successful active
486   * TFO connection with data exchanges.
487   */
488  
489  /* Disable active TFO and record current jiffies and
490   * tfo_active_disable_times
491   */
tcp_fastopen_active_disable(struct sock * sk)492  void tcp_fastopen_active_disable(struct sock *sk)
493  {
494  	struct net *net = sock_net(sk);
495  
496  	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
497  		return;
498  
499  	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
500  	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
501  
502  	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
503  	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
504  	 */
505  	smp_mb__before_atomic();
506  	atomic_inc(&net->ipv4.tfo_active_disable_times);
507  
508  	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
509  }
510  
511  /* Calculate timeout for tfo active disable
512   * Return true if we are still in the active TFO disable period
513   * Return false if timeout already expired and we should use active TFO
514   */
tcp_fastopen_active_should_disable(struct sock * sk)515  bool tcp_fastopen_active_should_disable(struct sock *sk)
516  {
517  	unsigned int tfo_bh_timeout =
518  		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
519  	unsigned long timeout;
520  	int tfo_da_times;
521  	int multiplier;
522  
523  	if (!tfo_bh_timeout)
524  		return false;
525  
526  	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
527  	if (!tfo_da_times)
528  		return false;
529  
530  	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
531  	smp_rmb();
532  
533  	/* Limit timeout to max: 2^6 * initial timeout */
534  	multiplier = 1 << min(tfo_da_times - 1, 6);
535  
536  	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
537  	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
538  		  multiplier * tfo_bh_timeout * HZ;
539  	if (time_before(jiffies, timeout))
540  		return true;
541  
542  	/* Mark check bit so we can check for successful active TFO
543  	 * condition and reset tfo_active_disable_times
544  	 */
545  	tcp_sk(sk)->syn_fastopen_ch = 1;
546  	return false;
547  }
548  
549  /* Disable active TFO if FIN is the only packet in the ofo queue
550   * and no data is received.
551   * Also check if we can reset tfo_active_disable_times if data is
552   * received successfully on a marked active TFO sockets opened on
553   * a non-loopback interface
554   */
tcp_fastopen_active_disable_ofo_check(struct sock * sk)555  void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
556  {
557  	struct tcp_sock *tp = tcp_sk(sk);
558  	struct dst_entry *dst;
559  	struct sk_buff *skb;
560  
561  	if (!tp->syn_fastopen)
562  		return;
563  
564  	if (!tp->data_segs_in) {
565  		skb = skb_rb_first(&tp->out_of_order_queue);
566  		if (skb && !skb_rb_next(skb)) {
567  			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
568  				tcp_fastopen_active_disable(sk);
569  				return;
570  			}
571  		}
572  	} else if (tp->syn_fastopen_ch &&
573  		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
574  		dst = sk_dst_get(sk);
575  		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
576  			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
577  		dst_release(dst);
578  	}
579  }
580  
tcp_fastopen_active_detect_blackhole(struct sock * sk,bool expired)581  void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
582  {
583  	u32 timeouts = inet_csk(sk)->icsk_retransmits;
584  	struct tcp_sock *tp = tcp_sk(sk);
585  
586  	/* Broken middle-boxes may black-hole Fast Open connection during or
587  	 * even after the handshake. Be extremely conservative and pause
588  	 * Fast Open globally after hitting the third consecutive timeout or
589  	 * exceeding the configured timeout limit.
590  	 */
591  	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
592  	    (timeouts == 2 || (timeouts < 2 && expired))) {
593  		tcp_fastopen_active_disable(sk);
594  		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
595  	}
596  }
597