1  /*
2   * This file is part of the Chelsio T4 Ethernet driver for Linux.
3   *
4   * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5   *
6   * This software is available to you under a choice of one of two
7   * licenses.  You may choose to be licensed under the terms of the GNU
8   * General Public License (GPL) Version 2, available from the file
9   * COPYING in the main directory of this source tree, or the
10   * OpenIB.org BSD license below:
11   *
12   *     Redistribution and use in source and binary forms, with or
13   *     without modification, are permitted provided that the following
14   *     conditions are met:
15   *
16   *      - Redistributions of source code must retain the above
17   *        copyright notice, this list of conditions and the following
18   *        disclaimer.
19   *
20   *      - Redistributions in binary form must reproduce the above
21   *        copyright notice, this list of conditions and the following
22   *        disclaimer in the documentation and/or other materials
23   *        provided with the distribution.
24   *
25   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32   * SOFTWARE.
33   */
34  
35  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36  
37  #include <linux/bitmap.h>
38  #include <linux/crc32.h>
39  #include <linux/ctype.h>
40  #include <linux/debugfs.h>
41  #include <linux/err.h>
42  #include <linux/etherdevice.h>
43  #include <linux/firmware.h>
44  #include <linux/if.h>
45  #include <linux/if_vlan.h>
46  #include <linux/init.h>
47  #include <linux/log2.h>
48  #include <linux/mdio.h>
49  #include <linux/module.h>
50  #include <linux/moduleparam.h>
51  #include <linux/mutex.h>
52  #include <linux/netdevice.h>
53  #include <linux/pci.h>
54  #include <linux/rtnetlink.h>
55  #include <linux/sched.h>
56  #include <linux/seq_file.h>
57  #include <linux/sockios.h>
58  #include <linux/vmalloc.h>
59  #include <linux/workqueue.h>
60  #include <net/neighbour.h>
61  #include <net/netevent.h>
62  #include <net/addrconf.h>
63  #include <net/bonding.h>
64  #include <linux/uaccess.h>
65  #include <linux/crash_dump.h>
66  #include <net/udp_tunnel.h>
67  #include <net/xfrm.h>
68  #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
69  #include <net/tls.h>
70  #endif
71  
72  #include "cxgb4.h"
73  #include "cxgb4_filter.h"
74  #include "t4_regs.h"
75  #include "t4_values.h"
76  #include "t4_msg.h"
77  #include "t4fw_api.h"
78  #include "t4fw_version.h"
79  #include "cxgb4_dcb.h"
80  #include "srq.h"
81  #include "cxgb4_debugfs.h"
82  #include "clip_tbl.h"
83  #include "l2t.h"
84  #include "smt.h"
85  #include "sched.h"
86  #include "cxgb4_tc_u32.h"
87  #include "cxgb4_tc_flower.h"
88  #include "cxgb4_tc_mqprio.h"
89  #include "cxgb4_tc_matchall.h"
90  #include "cxgb4_ptp.h"
91  #include "cxgb4_cudbg.h"
92  
93  char cxgb4_driver_name[] = KBUILD_MODNAME;
94  
95  #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96  
97  #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98  			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99  			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100  
101  /* Macros needed to support the PCI Device ID Table ...
102   */
103  #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104  	static const struct pci_device_id cxgb4_pci_tbl[] = {
105  #define CXGB4_UNIFIED_PF 0x4
106  
107  #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108  
109  /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110   * called for both.
111   */
112  #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113  
114  #define CH_PCI_ID_TABLE_ENTRY(devid) \
115  		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116  
117  #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118  		{ 0, } \
119  	}
120  
121  #include "t4_pci_id_tbl.h"
122  
123  #define FW4_FNAME "cxgb4/t4fw.bin"
124  #define FW5_FNAME "cxgb4/t5fw.bin"
125  #define FW6_FNAME "cxgb4/t6fw.bin"
126  #define FW4_CFNAME "cxgb4/t4-config.txt"
127  #define FW5_CFNAME "cxgb4/t5-config.txt"
128  #define FW6_CFNAME "cxgb4/t6-config.txt"
129  #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130  #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131  #define PHY_AQ1202_DEVICEID 0x4409
132  #define PHY_BCM84834_DEVICEID 0x4486
133  
134  MODULE_DESCRIPTION(DRV_DESC);
135  MODULE_AUTHOR("Chelsio Communications");
136  MODULE_LICENSE("Dual BSD/GPL");
137  MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
138  MODULE_FIRMWARE(FW4_FNAME);
139  MODULE_FIRMWARE(FW5_FNAME);
140  MODULE_FIRMWARE(FW6_FNAME);
141  
142  /*
143   * The driver uses the best interrupt scheme available on a platform in the
144   * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
145   * of these schemes the driver may consider as follows:
146   *
147   * msi = 2: choose from among all three options
148   * msi = 1: only consider MSI and INTx interrupts
149   * msi = 0: force INTx interrupts
150   */
151  static int msi = 2;
152  
153  module_param(msi, int, 0644);
154  MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
155  
156  /*
157   * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
158   * offset by 2 bytes in order to have the IP headers line up on 4-byte
159   * boundaries.  This is a requirement for many architectures which will throw
160   * a machine check fault if an attempt is made to access one of the 4-byte IP
161   * header fields on a non-4-byte boundary.  And it's a major performance issue
162   * even on some architectures which allow it like some implementations of the
163   * x86 ISA.  However, some architectures don't mind this and for some very
164   * edge-case performance sensitive applications (like forwarding large volumes
165   * of small packets), setting this DMA offset to 0 will decrease the number of
166   * PCI-E Bus transfers enough to measurably affect performance.
167   */
168  static int rx_dma_offset = 2;
169  
170  /* TX Queue select used to determine what algorithm to use for selecting TX
171   * queue. Select between the kernel provided function (select_queue=0) or user
172   * cxgb_select_queue function (select_queue=1)
173   *
174   * Default: select_queue=0
175   */
176  static int select_queue;
177  module_param(select_queue, int, 0644);
178  MODULE_PARM_DESC(select_queue,
179  		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
180  
181  static struct dentry *cxgb4_debugfs_root;
182  
183  LIST_HEAD(adapter_list);
184  DEFINE_MUTEX(uld_mutex);
185  LIST_HEAD(uld_list);
186  
187  static int cfg_queues(struct adapter *adap);
188  
link_report(struct net_device * dev)189  static void link_report(struct net_device *dev)
190  {
191  	if (!netif_carrier_ok(dev))
192  		netdev_info(dev, "link down\n");
193  	else {
194  		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195  
196  		const char *s;
197  		const struct port_info *p = netdev_priv(dev);
198  
199  		switch (p->link_cfg.speed) {
200  		case 100:
201  			s = "100Mbps";
202  			break;
203  		case 1000:
204  			s = "1Gbps";
205  			break;
206  		case 10000:
207  			s = "10Gbps";
208  			break;
209  		case 25000:
210  			s = "25Gbps";
211  			break;
212  		case 40000:
213  			s = "40Gbps";
214  			break;
215  		case 50000:
216  			s = "50Gbps";
217  			break;
218  		case 100000:
219  			s = "100Gbps";
220  			break;
221  		default:
222  			pr_info("%s: unsupported speed: %d\n",
223  				dev->name, p->link_cfg.speed);
224  			return;
225  		}
226  
227  		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
228  			    fc[p->link_cfg.fc]);
229  	}
230  }
231  
232  #ifdef CONFIG_CHELSIO_T4_DCB
233  /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)234  static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
235  {
236  	struct port_info *pi = netdev_priv(dev);
237  	struct adapter *adap = pi->adapter;
238  	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239  	int i;
240  
241  	/* We use a simple mapping of Port TX Queue Index to DCB
242  	 * Priority when we're enabling DCB.
243  	 */
244  	for (i = 0; i < pi->nqsets; i++, txq++) {
245  		u32 name, value;
246  		int err;
247  
248  		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
249  			FW_PARAMS_PARAM_X_V(
250  				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
251  			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
252  		value = enable ? i : 0xffffffff;
253  
254  		/* Since we can be called while atomic (from "interrupt
255  		 * level") we need to issue the Set Parameters Commannd
256  		 * without sleeping (timeout < 0).
257  		 */
258  		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
259  					    &name, &value,
260  					    -FW_CMD_MAX_TIMEOUT);
261  
262  		if (err)
263  			dev_err(adap->pdev_dev,
264  				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
265  				enable ? "set" : "unset", pi->port_id, i, -err);
266  		else
267  			txq->dcb_prio = enable ? value : 0;
268  	}
269  }
270  
cxgb4_dcb_enabled(const struct net_device * dev)271  int cxgb4_dcb_enabled(const struct net_device *dev)
272  {
273  	struct port_info *pi = netdev_priv(dev);
274  
275  	if (!pi->dcb.enabled)
276  		return 0;
277  
278  	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
279  		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
280  }
281  #endif /* CONFIG_CHELSIO_T4_DCB */
282  
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)283  void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
284  {
285  	struct net_device *dev = adapter->port[port_id];
286  
287  	/* Skip changes from disabled ports. */
288  	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
289  		if (link_stat)
290  			netif_carrier_on(dev);
291  		else {
292  #ifdef CONFIG_CHELSIO_T4_DCB
293  			if (cxgb4_dcb_enabled(dev)) {
294  				cxgb4_dcb_reset(dev);
295  				dcb_tx_queue_prio_enable(dev, false);
296  			}
297  #endif /* CONFIG_CHELSIO_T4_DCB */
298  			netif_carrier_off(dev);
299  		}
300  
301  		link_report(dev);
302  	}
303  }
304  
t4_os_portmod_changed(struct adapter * adap,int port_id)305  void t4_os_portmod_changed(struct adapter *adap, int port_id)
306  {
307  	static const char *mod_str[] = {
308  		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309  	};
310  
311  	struct net_device *dev = adap->port[port_id];
312  	struct port_info *pi = netdev_priv(dev);
313  
314  	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
315  		netdev_info(dev, "port module unplugged\n");
316  	else if (pi->mod_type < ARRAY_SIZE(mod_str))
317  		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
318  	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
319  		netdev_info(dev, "%s: unsupported port module inserted\n",
320  			    dev->name);
321  	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
322  		netdev_info(dev, "%s: unknown port module inserted\n",
323  			    dev->name);
324  	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
325  		netdev_info(dev, "%s: transceiver module error\n", dev->name);
326  	else
327  		netdev_info(dev, "%s: unknown module type %d inserted\n",
328  			    dev->name, pi->mod_type);
329  
330  	/* If the interface is running, then we'll need any "sticky" Link
331  	 * Parameters redone with a new Transceiver Module.
332  	 */
333  	pi->link_cfg.redo_l1cfg = netif_running(dev);
334  }
335  
336  int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
337  module_param(dbfifo_int_thresh, int, 0644);
338  MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339  
340  /*
341   * usecs to sleep while draining the dbfifo
342   */
343  static int dbfifo_drain_delay = 1000;
344  module_param(dbfifo_drain_delay, int, 0644);
345  MODULE_PARM_DESC(dbfifo_drain_delay,
346  		 "usecs to sleep while draining the dbfifo");
347  
cxgb4_set_addr_hash(struct port_info * pi)348  static inline int cxgb4_set_addr_hash(struct port_info *pi)
349  {
350  	struct adapter *adap = pi->adapter;
351  	u64 vec = 0;
352  	bool ucast = false;
353  	struct hash_mac_addr *entry;
354  
355  	/* Calculate the hash vector for the updated list and program it */
356  	list_for_each_entry(entry, &adap->mac_hlist, list) {
357  		ucast |= is_unicast_ether_addr(entry->addr);
358  		vec |= (1ULL << hash_mac_addr(entry->addr));
359  	}
360  	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
361  				vec, false);
362  }
363  
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)364  static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
365  {
366  	struct port_info *pi = netdev_priv(netdev);
367  	struct adapter *adap = pi->adapter;
368  	int ret;
369  	u64 mhash = 0;
370  	u64 uhash = 0;
371  	/* idx stores the index of allocated filters,
372  	 * its size should be modified based on the number of
373  	 * MAC addresses that we allocate filters for
374  	 */
375  
376  	u16 idx[1] = {};
377  	bool free = false;
378  	bool ucast = is_unicast_ether_addr(mac_addr);
379  	const u8 *maclist[1] = {mac_addr};
380  	struct hash_mac_addr *new_entry;
381  
382  	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
383  				   idx, ucast ? &uhash : &mhash, false);
384  	if (ret < 0)
385  		goto out;
386  	/* if hash != 0, then add the addr to hash addr list
387  	 * so on the end we will calculate the hash for the
388  	 * list and program it
389  	 */
390  	if (uhash || mhash) {
391  		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
392  		if (!new_entry)
393  			return -ENOMEM;
394  		ether_addr_copy(new_entry->addr, mac_addr);
395  		list_add_tail(&new_entry->list, &adap->mac_hlist);
396  		ret = cxgb4_set_addr_hash(pi);
397  	}
398  out:
399  	return ret < 0 ? ret : 0;
400  }
401  
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)402  static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
403  {
404  	struct port_info *pi = netdev_priv(netdev);
405  	struct adapter *adap = pi->adapter;
406  	int ret;
407  	const u8 *maclist[1] = {mac_addr};
408  	struct hash_mac_addr *entry, *tmp;
409  
410  	/* If the MAC address to be removed is in the hash addr
411  	 * list, delete it from the list and update hash vector
412  	 */
413  	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
414  		if (ether_addr_equal(entry->addr, mac_addr)) {
415  			list_del(&entry->list);
416  			kfree(entry);
417  			return cxgb4_set_addr_hash(pi);
418  		}
419  	}
420  
421  	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
422  	return ret < 0 ? -EINVAL : 0;
423  }
424  
425  /*
426   * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
427   * If @mtu is -1 it is left unchanged.
428   */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)429  static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
430  {
431  	struct port_info *pi = netdev_priv(dev);
432  	struct adapter *adapter = pi->adapter;
433  
434  	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435  	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436  
437  	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
438  			     mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
439  			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
440  			     sleep_ok);
441  }
442  
443  /**
444   *	cxgb4_change_mac - Update match filter for a MAC address.
445   *	@pi: the port_info
446   *	@viid: the VI id
447   *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
448   *		   or -1
449   *	@addr: the new MAC address value
450   *	@persist: whether a new MAC allocation should be persistent
451   *	@smt_idx: the destination to store the new SMT index.
452   *
453   *	Modifies an MPS filter and sets it to the new MAC address if
454   *	@tcam_idx >= 0, or adds the MAC address to a new filter if
455   *	@tcam_idx < 0. In the latter case the address is added persistently
456   *	if @persist is %true.
457   *	Addresses are programmed to hash region, if tcam runs out of entries.
458   *
459   */
cxgb4_change_mac(struct port_info * pi,unsigned int viid,int * tcam_idx,const u8 * addr,bool persist,u8 * smt_idx)460  int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
461  		     int *tcam_idx, const u8 *addr, bool persist,
462  		     u8 *smt_idx)
463  {
464  	struct adapter *adapter = pi->adapter;
465  	struct hash_mac_addr *entry, *new_entry;
466  	int ret;
467  
468  	ret = t4_change_mac(adapter, adapter->mbox, viid,
469  			    *tcam_idx, addr, persist, smt_idx);
470  	/* We ran out of TCAM entries. try programming hash region. */
471  	if (ret == -ENOMEM) {
472  		/* If the MAC address to be updated is in the hash addr
473  		 * list, update it from the list
474  		 */
475  		list_for_each_entry(entry, &adapter->mac_hlist, list) {
476  			if (entry->iface_mac) {
477  				ether_addr_copy(entry->addr, addr);
478  				goto set_hash;
479  			}
480  		}
481  		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
482  		if (!new_entry)
483  			return -ENOMEM;
484  		ether_addr_copy(new_entry->addr, addr);
485  		new_entry->iface_mac = true;
486  		list_add_tail(&new_entry->list, &adapter->mac_hlist);
487  set_hash:
488  		ret = cxgb4_set_addr_hash(pi);
489  	} else if (ret >= 0) {
490  		*tcam_idx = ret;
491  		ret = 0;
492  	}
493  
494  	return ret;
495  }
496  
497  /*
498   *	link_start - enable a port
499   *	@dev: the port to enable
500   *
501   *	Performs the MAC and PHY actions needed to enable a port.
502   */
link_start(struct net_device * dev)503  static int link_start(struct net_device *dev)
504  {
505  	struct port_info *pi = netdev_priv(dev);
506  	unsigned int mb = pi->adapter->mbox;
507  	int ret;
508  
509  	/*
510  	 * We do not set address filters and promiscuity here, the stack does
511  	 * that step explicitly.
512  	 */
513  	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
514  			    dev->mtu, -1, -1, -1,
515  			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516  	if (ret == 0)
517  		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518  					    dev->dev_addr, true, &pi->smt_idx);
519  	if (ret == 0)
520  		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521  				    &pi->link_cfg);
522  	if (ret == 0) {
523  		local_bh_disable();
524  		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525  					  true, CXGB4_DCB_ENABLED);
526  		local_bh_enable();
527  	}
528  
529  	return ret;
530  }
531  
532  #ifdef CONFIG_CHELSIO_T4_DCB
533  /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)534  static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535  {
536  	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537  	struct net_device *dev = adap->port[adap->chan_map[port]];
538  	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539  	int new_dcb_enabled;
540  
541  	cxgb4_dcb_handle_fw_update(adap, pcmd);
542  	new_dcb_enabled = cxgb4_dcb_enabled(dev);
543  
544  	/* If the DCB has become enabled or disabled on the port then we're
545  	 * going to need to set up/tear down DCB Priority parameters for the
546  	 * TX Queues associated with the port.
547  	 */
548  	if (new_dcb_enabled != old_dcb_enabled)
549  		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550  }
551  #endif /* CONFIG_CHELSIO_T4_DCB */
552  
553  /* Response queue handler for the FW event queue.
554   */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)555  static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556  			  const struct pkt_gl *gl)
557  {
558  	u8 opcode = ((const struct rss_header *)rsp)->opcode;
559  
560  	rsp++;                                          /* skip RSS header */
561  
562  	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563  	 */
564  	if (unlikely(opcode == CPL_FW4_MSG &&
565  	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566  		rsp++;
567  		opcode = ((const struct rss_header *)rsp)->opcode;
568  		rsp++;
569  		if (opcode != CPL_SGE_EGR_UPDATE) {
570  			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571  				, opcode);
572  			goto out;
573  		}
574  	}
575  
576  	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577  		const struct cpl_sge_egr_update *p = (void *)rsp;
578  		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579  		struct sge_txq *txq;
580  
581  		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582  		txq->restarts++;
583  		if (txq->q_type == CXGB4_TXQ_ETH) {
584  			struct sge_eth_txq *eq;
585  
586  			eq = container_of(txq, struct sge_eth_txq, q);
587  			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588  		} else {
589  			struct sge_uld_txq *oq;
590  
591  			oq = container_of(txq, struct sge_uld_txq, q);
592  			tasklet_schedule(&oq->qresume_tsk);
593  		}
594  	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595  		const struct cpl_fw6_msg *p = (void *)rsp;
596  
597  #ifdef CONFIG_CHELSIO_T4_DCB
598  		const struct fw_port_cmd *pcmd = (const void *)p->data;
599  		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600  		unsigned int action =
601  			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602  
603  		if (cmd == FW_PORT_CMD &&
604  		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
605  		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606  			int port = FW_PORT_CMD_PORTID_G(
607  					be32_to_cpu(pcmd->op_to_portid));
608  			struct net_device *dev;
609  			int dcbxdis, state_input;
610  
611  			dev = q->adap->port[q->adap->chan_map[port]];
612  			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613  			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614  			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615  			       & FW_PORT_CMD_DCBXDIS32_F));
616  			state_input = (dcbxdis
617  				       ? CXGB4_DCB_INPUT_FW_DISABLED
618  				       : CXGB4_DCB_INPUT_FW_ENABLED);
619  
620  			cxgb4_dcb_state_fsm(dev, state_input);
621  		}
622  
623  		if (cmd == FW_PORT_CMD &&
624  		    action == FW_PORT_ACTION_L2_DCB_CFG)
625  			dcb_rpl(q->adap, pcmd);
626  		else
627  #endif
628  			if (p->type == 0)
629  				t4_handle_fw_rpl(q->adap, p->data);
630  	} else if (opcode == CPL_L2T_WRITE_RPL) {
631  		const struct cpl_l2t_write_rpl *p = (void *)rsp;
632  
633  		do_l2t_write_rpl(q->adap, p);
634  	} else if (opcode == CPL_SMT_WRITE_RPL) {
635  		const struct cpl_smt_write_rpl *p = (void *)rsp;
636  
637  		do_smt_write_rpl(q->adap, p);
638  	} else if (opcode == CPL_SET_TCB_RPL) {
639  		const struct cpl_set_tcb_rpl *p = (void *)rsp;
640  
641  		filter_rpl(q->adap, p);
642  	} else if (opcode == CPL_ACT_OPEN_RPL) {
643  		const struct cpl_act_open_rpl *p = (void *)rsp;
644  
645  		hash_filter_rpl(q->adap, p);
646  	} else if (opcode == CPL_ABORT_RPL_RSS) {
647  		const struct cpl_abort_rpl_rss *p = (void *)rsp;
648  
649  		hash_del_filter_rpl(q->adap, p);
650  	} else if (opcode == CPL_SRQ_TABLE_RPL) {
651  		const struct cpl_srq_table_rpl *p = (void *)rsp;
652  
653  		do_srq_table_rpl(q->adap, p);
654  	} else
655  		dev_err(q->adap->pdev_dev,
656  			"unexpected CPL %#x on FW event queue\n", opcode);
657  out:
658  	return 0;
659  }
660  
disable_msi(struct adapter * adapter)661  static void disable_msi(struct adapter *adapter)
662  {
663  	if (adapter->flags & CXGB4_USING_MSIX) {
664  		pci_disable_msix(adapter->pdev);
665  		adapter->flags &= ~CXGB4_USING_MSIX;
666  	} else if (adapter->flags & CXGB4_USING_MSI) {
667  		pci_disable_msi(adapter->pdev);
668  		adapter->flags &= ~CXGB4_USING_MSI;
669  	}
670  }
671  
672  /*
673   * Interrupt handler for non-data events used with MSI-X.
674   */
t4_nondata_intr(int irq,void * cookie)675  static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676  {
677  	struct adapter *adap = cookie;
678  	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679  
680  	if (v & PFSW_F) {
681  		adap->swintr = 1;
682  		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683  	}
684  	if (adap->flags & CXGB4_MASTER_PF)
685  		t4_slow_intr_handler(adap);
686  	return IRQ_HANDLED;
687  }
688  
cxgb4_set_msix_aff(struct adapter * adap,unsigned short vec,cpumask_var_t * aff_mask,int idx)689  int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690  		       cpumask_var_t *aff_mask, int idx)
691  {
692  	int rv;
693  
694  	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695  		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696  		return -ENOMEM;
697  	}
698  
699  	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700  			*aff_mask);
701  
702  	rv = irq_set_affinity_hint(vec, *aff_mask);
703  	if (rv)
704  		dev_warn(adap->pdev_dev,
705  			 "irq_set_affinity_hint %u failed %d\n",
706  			 vec, rv);
707  
708  	return 0;
709  }
710  
cxgb4_clear_msix_aff(unsigned short vec,cpumask_var_t aff_mask)711  void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712  {
713  	irq_set_affinity_hint(vec, NULL);
714  	free_cpumask_var(aff_mask);
715  }
716  
request_msix_queue_irqs(struct adapter * adap)717  static int request_msix_queue_irqs(struct adapter *adap)
718  {
719  	struct sge *s = &adap->sge;
720  	struct msix_info *minfo;
721  	int err, ethqidx;
722  
723  	if (s->fwevtq_msix_idx < 0)
724  		return -ENOMEM;
725  
726  	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727  			  t4_sge_intr_msix, 0,
728  			  adap->msix_info[s->fwevtq_msix_idx].desc,
729  			  &s->fw_evtq);
730  	if (err)
731  		return err;
732  
733  	for_each_ethrxq(s, ethqidx) {
734  		minfo = s->ethrxq[ethqidx].msix;
735  		err = request_irq(minfo->vec,
736  				  t4_sge_intr_msix, 0,
737  				  minfo->desc,
738  				  &s->ethrxq[ethqidx].rspq);
739  		if (err)
740  			goto unwind;
741  
742  		cxgb4_set_msix_aff(adap, minfo->vec,
743  				   &minfo->aff_mask, ethqidx);
744  	}
745  	return 0;
746  
747  unwind:
748  	while (--ethqidx >= 0) {
749  		minfo = s->ethrxq[ethqidx].msix;
750  		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751  		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752  	}
753  	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754  	return err;
755  }
756  
free_msix_queue_irqs(struct adapter * adap)757  static void free_msix_queue_irqs(struct adapter *adap)
758  {
759  	struct sge *s = &adap->sge;
760  	struct msix_info *minfo;
761  	int i;
762  
763  	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764  	for_each_ethrxq(s, i) {
765  		minfo = s->ethrxq[i].msix;
766  		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767  		free_irq(minfo->vec, &s->ethrxq[i].rspq);
768  	}
769  }
770  
setup_ppod_edram(struct adapter * adap)771  static int setup_ppod_edram(struct adapter *adap)
772  {
773  	unsigned int param, val;
774  	int ret;
775  
776  	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777  	 * if firmware supports ppod edram feature or not. If firmware
778  	 * returns 1, then driver can enable this feature by sending
779  	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780  	 * enable ppod edram feature.
781  	 */
782  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783  		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784  
785  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
786  	if (ret < 0) {
787  		dev_warn(adap->pdev_dev,
788  			 "querying PPOD_EDRAM support failed: %d\n",
789  			 ret);
790  		return -1;
791  	}
792  
793  	if (val != 1)
794  		return -1;
795  
796  	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
797  	if (ret < 0) {
798  		dev_err(adap->pdev_dev,
799  			"setting PPOD_EDRAM failed: %d\n", ret);
800  		return -1;
801  	}
802  	return 0;
803  }
804  
adap_config_hpfilter(struct adapter * adapter)805  static void adap_config_hpfilter(struct adapter *adapter)
806  {
807  	u32 param, val = 0;
808  	int ret;
809  
810  	/* Enable HP filter region. Older fw will fail this request and
811  	 * it is fine.
812  	 */
813  	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814  	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815  			    1, &param, &val);
816  
817  	/* An error means FW doesn't know about HP filter support,
818  	 * it's not a problem, don't return an error.
819  	 */
820  	if (ret < 0)
821  		dev_err(adapter->pdev_dev,
822  			"HP filter region isn't supported by FW\n");
823  }
824  
cxgb4_config_rss(const struct port_info * pi,u16 * rss,u16 rss_size,u16 viid)825  static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
826  			    u16 rss_size, u16 viid)
827  {
828  	struct adapter *adap = pi->adapter;
829  	int ret;
830  
831  	ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
832  				  rss_size);
833  	if (ret)
834  		return ret;
835  
836  	/* If Tunnel All Lookup isn't specified in the global RSS
837  	 * Configuration, then we need to specify a default Ingress
838  	 * Queue for any ingress packets which aren't hashed.  We'll
839  	 * use our first ingress queue ...
840  	 */
841  	return t4_config_vi_rss(adap, adap->mbox, viid,
842  				FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
843  				FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
844  				FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
845  				FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
846  				FW_RSS_VI_CONFIG_CMD_UDPEN_F,
847  				rss[0]);
848  }
849  
850  /**
851   *	cxgb4_write_rss - write the RSS table for a given port
852   *	@pi: the port
853   *	@queues: array of queue indices for RSS
854   *
855   *	Sets up the portion of the HW RSS table for the port's VI to distribute
856   *	packets to the Rx queues in @queues.
857   *	Should never be called before setting up sge eth rx queues
858   */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)859  int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860  {
861  	struct adapter *adapter = pi->adapter;
862  	const struct sge_eth_rxq *rxq;
863  	int i, err;
864  	u16 *rss;
865  
866  	rxq = &adapter->sge.ethrxq[pi->first_qset];
867  	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
868  	if (!rss)
869  		return -ENOMEM;
870  
871  	/* map the queue indices to queue ids */
872  	for (i = 0; i < pi->rss_size; i++, queues++)
873  		rss[i] = rxq[*queues].rspq.abs_id;
874  
875  	err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
876  	kfree(rss);
877  	return err;
878  }
879  
880  /**
881   *	setup_rss - configure RSS
882   *	@adap: the adapter
883   *
884   *	Sets up RSS for each port.
885   */
setup_rss(struct adapter * adap)886  static int setup_rss(struct adapter *adap)
887  {
888  	int i, j, err;
889  
890  	for_each_port(adap, i) {
891  		const struct port_info *pi = adap2pinfo(adap, i);
892  
893  		/* Fill default values with equal distribution */
894  		for (j = 0; j < pi->rss_size; j++)
895  			pi->rss[j] = j % pi->nqsets;
896  
897  		err = cxgb4_write_rss(pi, pi->rss);
898  		if (err)
899  			return err;
900  	}
901  	return 0;
902  }
903  
904  /*
905   * Return the channel of the ingress queue with the given qid.
906   */
rxq_to_chan(const struct sge * p,unsigned int qid)907  static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
908  {
909  	qid -= p->ingr_start;
910  	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
911  }
912  
cxgb4_quiesce_rx(struct sge_rspq * q)913  void cxgb4_quiesce_rx(struct sge_rspq *q)
914  {
915  	if (q->handler)
916  		napi_disable(&q->napi);
917  }
918  
919  /*
920   * Wait until all NAPI handlers are descheduled.
921   */
quiesce_rx(struct adapter * adap)922  static void quiesce_rx(struct adapter *adap)
923  {
924  	int i;
925  
926  	for (i = 0; i < adap->sge.ingr_sz; i++) {
927  		struct sge_rspq *q = adap->sge.ingr_map[i];
928  
929  		if (!q)
930  			continue;
931  
932  		cxgb4_quiesce_rx(q);
933  	}
934  }
935  
936  /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)937  static void disable_interrupts(struct adapter *adap)
938  {
939  	struct sge *s = &adap->sge;
940  
941  	if (adap->flags & CXGB4_FULL_INIT_DONE) {
942  		t4_intr_disable(adap);
943  		if (adap->flags & CXGB4_USING_MSIX) {
944  			free_msix_queue_irqs(adap);
945  			free_irq(adap->msix_info[s->nd_msix_idx].vec,
946  				 adap);
947  		} else {
948  			free_irq(adap->pdev->irq, adap);
949  		}
950  		quiesce_rx(adap);
951  	}
952  }
953  
cxgb4_enable_rx(struct adapter * adap,struct sge_rspq * q)954  void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
955  {
956  	if (q->handler)
957  		napi_enable(&q->napi);
958  
959  	/* 0-increment GTS to start the timer and enable interrupts */
960  	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
961  		     SEINTARM_V(q->intr_params) |
962  		     INGRESSQID_V(q->cntxt_id));
963  }
964  
965  /*
966   * Enable NAPI scheduling and interrupt generation for all Rx queues.
967   */
enable_rx(struct adapter * adap)968  static void enable_rx(struct adapter *adap)
969  {
970  	int i;
971  
972  	for (i = 0; i < adap->sge.ingr_sz; i++) {
973  		struct sge_rspq *q = adap->sge.ingr_map[i];
974  
975  		if (!q)
976  			continue;
977  
978  		cxgb4_enable_rx(adap, q);
979  	}
980  }
981  
setup_non_data_intr(struct adapter * adap)982  static int setup_non_data_intr(struct adapter *adap)
983  {
984  	int msix;
985  
986  	adap->sge.nd_msix_idx = -1;
987  	if (!(adap->flags & CXGB4_USING_MSIX))
988  		return 0;
989  
990  	/* Request MSI-X vector for non-data interrupt */
991  	msix = cxgb4_get_msix_idx_from_bmap(adap);
992  	if (msix < 0)
993  		return -ENOMEM;
994  
995  	snprintf(adap->msix_info[msix].desc,
996  		 sizeof(adap->msix_info[msix].desc),
997  		 "%s", adap->port[0]->name);
998  
999  	adap->sge.nd_msix_idx = msix;
1000  	return 0;
1001  }
1002  
setup_fw_sge_queues(struct adapter * adap)1003  static int setup_fw_sge_queues(struct adapter *adap)
1004  {
1005  	struct sge *s = &adap->sge;
1006  	int msix, err = 0;
1007  
1008  	bitmap_zero(s->starving_fl, s->egr_sz);
1009  	bitmap_zero(s->txq_maperr, s->egr_sz);
1010  
1011  	if (adap->flags & CXGB4_USING_MSIX) {
1012  		s->fwevtq_msix_idx = -1;
1013  		msix = cxgb4_get_msix_idx_from_bmap(adap);
1014  		if (msix < 0)
1015  			return -ENOMEM;
1016  
1017  		snprintf(adap->msix_info[msix].desc,
1018  			 sizeof(adap->msix_info[msix].desc),
1019  			 "%s-FWeventq", adap->port[0]->name);
1020  	} else {
1021  		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022  				       NULL, NULL, NULL, -1);
1023  		if (err)
1024  			return err;
1025  		msix = -((int)s->intrq.abs_id + 1);
1026  	}
1027  
1028  	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029  			       msix, NULL, fwevtq_handler, NULL, -1);
1030  	if (err && msix >= 0)
1031  		cxgb4_free_msix_idx_in_bmap(adap, msix);
1032  
1033  	s->fwevtq_msix_idx = msix;
1034  	return err;
1035  }
1036  
1037  /**
1038   *	setup_sge_queues - configure SGE Tx/Rx/response queues
1039   *	@adap: the adapter
1040   *
1041   *	Determines how many sets of SGE queues to use and initializes them.
1042   *	We support multiple queue sets per port if we have MSI-X, otherwise
1043   *	just one queue set per port.
1044   */
setup_sge_queues(struct adapter * adap)1045  static int setup_sge_queues(struct adapter *adap)
1046  {
1047  	struct sge_uld_rxq_info *rxq_info = NULL;
1048  	struct sge *s = &adap->sge;
1049  	unsigned int cmplqid = 0;
1050  	int err, i, j, msix = 0;
1051  
1052  	if (is_uld(adap))
1053  		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1054  
1055  	if (!(adap->flags & CXGB4_USING_MSIX))
1056  		msix = -((int)s->intrq.abs_id + 1);
1057  
1058  	for_each_port(adap, i) {
1059  		struct net_device *dev = adap->port[i];
1060  		struct port_info *pi = netdev_priv(dev);
1061  		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1062  		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1063  
1064  		for (j = 0; j < pi->nqsets; j++, q++) {
1065  			if (msix >= 0) {
1066  				msix = cxgb4_get_msix_idx_from_bmap(adap);
1067  				if (msix < 0) {
1068  					err = msix;
1069  					goto freeout;
1070  				}
1071  
1072  				snprintf(adap->msix_info[msix].desc,
1073  					 sizeof(adap->msix_info[msix].desc),
1074  					 "%s-Rx%d", dev->name, j);
1075  				q->msix = &adap->msix_info[msix];
1076  			}
1077  
1078  			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079  					       msix, &q->fl,
1080  					       t4_ethrx_handler,
1081  					       NULL,
1082  					       t4_get_tp_ch_map(adap,
1083  								pi->tx_chan));
1084  			if (err)
1085  				goto freeout;
1086  			q->rspq.idx = j;
1087  			memset(&q->stats, 0, sizeof(q->stats));
1088  		}
1089  
1090  		q = &s->ethrxq[pi->first_qset];
1091  		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1092  			err = t4_sge_alloc_eth_txq(adap, t, dev,
1093  					netdev_get_tx_queue(dev, j),
1094  					q->rspq.cntxt_id,
1095  					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1096  			if (err)
1097  				goto freeout;
1098  		}
1099  	}
1100  
1101  	for_each_port(adap, i) {
1102  		/* Note that cmplqid below is 0 if we don't
1103  		 * have RDMA queues, and that's the right value.
1104  		 */
1105  		if (rxq_info)
1106  			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1107  
1108  		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1109  					    s->fw_evtq.cntxt_id, cmplqid);
1110  		if (err)
1111  			goto freeout;
1112  	}
1113  
1114  	if (!is_t4(adap->params.chip)) {
1115  		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1116  					   netdev_get_tx_queue(adap->port[0], 0)
1117  					   , s->fw_evtq.cntxt_id, false);
1118  		if (err)
1119  			goto freeout;
1120  	}
1121  
1122  	t4_write_reg(adap, is_t4(adap->params.chip) ?
1123  				MPS_TRC_RSS_CONTROL_A :
1124  				MPS_T5_TRC_RSS_CONTROL_A,
1125  		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1126  		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1127  	return 0;
1128  freeout:
1129  	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1130  	t4_free_sge_resources(adap);
1131  	return err;
1132  }
1133  
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1134  static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1135  			     struct net_device *sb_dev)
1136  {
1137  	int txq;
1138  
1139  #ifdef CONFIG_CHELSIO_T4_DCB
1140  	/* If a Data Center Bridging has been successfully negotiated on this
1141  	 * link then we'll use the skb's priority to map it to a TX Queue.
1142  	 * The skb's priority is determined via the VLAN Tag Priority Code
1143  	 * Point field.
1144  	 */
1145  	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1146  		u16 vlan_tci;
1147  		int err;
1148  
1149  		err = vlan_get_tag(skb, &vlan_tci);
1150  		if (unlikely(err)) {
1151  			if (net_ratelimit())
1152  				netdev_warn(dev,
1153  					    "TX Packet without VLAN Tag on DCB Link\n");
1154  			txq = 0;
1155  		} else {
1156  			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1157  #ifdef CONFIG_CHELSIO_T4_FCOE
1158  			if (skb->protocol == htons(ETH_P_FCOE))
1159  				txq = skb->priority & 0x7;
1160  #endif /* CONFIG_CHELSIO_T4_FCOE */
1161  		}
1162  		return txq;
1163  	}
1164  #endif /* CONFIG_CHELSIO_T4_DCB */
1165  
1166  	if (dev->num_tc) {
1167  		struct port_info *pi = netdev2pinfo(dev);
1168  		u8 ver, proto;
1169  
1170  		ver = ip_hdr(skb)->version;
1171  		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1172  				     ip_hdr(skb)->protocol;
1173  
1174  		/* Send unsupported traffic pattern to normal NIC queues. */
1175  		txq = netdev_pick_tx(dev, skb, sb_dev);
1176  		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1177  		    skb->encapsulation ||
1178  		    tls_is_skb_tx_device_offloaded(skb) ||
1179  		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180  			txq = txq % pi->nqsets;
1181  
1182  		return txq;
1183  	}
1184  
1185  	if (select_queue) {
1186  		txq = (skb_rx_queue_recorded(skb)
1187  			? skb_get_rx_queue(skb)
1188  			: smp_processor_id());
1189  
1190  		while (unlikely(txq >= dev->real_num_tx_queues))
1191  			txq -= dev->real_num_tx_queues;
1192  
1193  		return txq;
1194  	}
1195  
1196  	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197  }
1198  
closest_timer(const struct sge * s,int time)1199  static int closest_timer(const struct sge *s, int time)
1200  {
1201  	int i, delta, match = 0, min_delta = INT_MAX;
1202  
1203  	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204  		delta = time - s->timer_val[i];
1205  		if (delta < 0)
1206  			delta = -delta;
1207  		if (delta < min_delta) {
1208  			min_delta = delta;
1209  			match = i;
1210  		}
1211  	}
1212  	return match;
1213  }
1214  
closest_thres(const struct sge * s,int thres)1215  static int closest_thres(const struct sge *s, int thres)
1216  {
1217  	int i, delta, match = 0, min_delta = INT_MAX;
1218  
1219  	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220  		delta = thres - s->counter_val[i];
1221  		if (delta < 0)
1222  			delta = -delta;
1223  		if (delta < min_delta) {
1224  			min_delta = delta;
1225  			match = i;
1226  		}
1227  	}
1228  	return match;
1229  }
1230  
1231  /**
1232   *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233   *	@q: the Rx queue
1234   *	@us: the hold-off time in us, or 0 to disable timer
1235   *	@cnt: the hold-off packet count, or 0 to disable counter
1236   *
1237   *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1238   *	one of the two needs to be enabled for the queue to generate interrupts.
1239   */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1240  int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241  			       unsigned int us, unsigned int cnt)
1242  {
1243  	struct adapter *adap = q->adap;
1244  
1245  	if ((us | cnt) == 0)
1246  		cnt = 1;
1247  
1248  	if (cnt) {
1249  		int err;
1250  		u32 v, new_idx;
1251  
1252  		new_idx = closest_thres(&adap->sge, cnt);
1253  		if (q->desc && q->pktcnt_idx != new_idx) {
1254  			/* the queue has already been created, update it */
1255  			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256  			    FW_PARAMS_PARAM_X_V(
1257  					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258  			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259  			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260  					    &v, &new_idx);
1261  			if (err)
1262  				return err;
1263  		}
1264  		q->pktcnt_idx = new_idx;
1265  	}
1266  
1267  	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268  	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269  	return 0;
1270  }
1271  
cxgb_set_features(struct net_device * dev,netdev_features_t features)1272  static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273  {
1274  	netdev_features_t changed = dev->features ^ features;
1275  	const struct port_info *pi = netdev_priv(dev);
1276  	int err;
1277  
1278  	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279  		return 0;
1280  
1281  	err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282  			    pi->viid_mirror, -1, -1, -1, -1,
1283  			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284  	if (unlikely(err))
1285  		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286  	return err;
1287  }
1288  
setup_debugfs(struct adapter * adap)1289  static int setup_debugfs(struct adapter *adap)
1290  {
1291  	if (IS_ERR_OR_NULL(adap->debugfs_root))
1292  		return -1;
1293  
1294  #ifdef CONFIG_DEBUG_FS
1295  	t4_setup_debugfs(adap);
1296  #endif
1297  	return 0;
1298  }
1299  
cxgb4_port_mirror_free_rxq(struct adapter * adap,struct sge_eth_rxq * mirror_rxq)1300  static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301  				       struct sge_eth_rxq *mirror_rxq)
1302  {
1303  	if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304  	    !(adap->flags & CXGB4_SHUTTING_DOWN))
1305  		cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306  
1307  	if (adap->flags & CXGB4_USING_MSIX) {
1308  		cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309  				     mirror_rxq->msix->aff_mask);
1310  		free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311  		cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312  	}
1313  
1314  	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315  }
1316  
cxgb4_port_mirror_alloc_queues(struct net_device * dev)1317  static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318  {
1319  	struct port_info *pi = netdev2pinfo(dev);
1320  	struct adapter *adap = netdev2adap(dev);
1321  	struct sge_eth_rxq *mirror_rxq;
1322  	struct sge *s = &adap->sge;
1323  	int ret = 0, msix = 0;
1324  	u16 i, rxqid;
1325  	u16 *rss;
1326  
1327  	if (!pi->vi_mirror_count)
1328  		return 0;
1329  
1330  	if (s->mirror_rxq[pi->port_id])
1331  		return 0;
1332  
1333  	mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334  	if (!mirror_rxq)
1335  		return -ENOMEM;
1336  
1337  	s->mirror_rxq[pi->port_id] = mirror_rxq;
1338  
1339  	if (!(adap->flags & CXGB4_USING_MSIX))
1340  		msix = -((int)adap->sge.intrq.abs_id + 1);
1341  
1342  	for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343  		mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344  
1345  		/* Allocate Mirror Rxqs */
1346  		if (msix >= 0) {
1347  			msix = cxgb4_get_msix_idx_from_bmap(adap);
1348  			if (msix < 0) {
1349  				ret = msix;
1350  				goto out_free_queues;
1351  			}
1352  
1353  			mirror_rxq->msix = &adap->msix_info[msix];
1354  			snprintf(mirror_rxq->msix->desc,
1355  				 sizeof(mirror_rxq->msix->desc),
1356  				 "%s-mirrorrxq%d", dev->name, i);
1357  		}
1358  
1359  		init_rspq(adap, &mirror_rxq->rspq,
1360  			  CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361  			  CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362  			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363  			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364  
1365  		mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366  
1367  		ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368  				       dev, msix, &mirror_rxq->fl,
1369  				       t4_ethrx_handler, NULL, 0);
1370  		if (ret)
1371  			goto out_free_msix_idx;
1372  
1373  		/* Setup MSI-X vectors for Mirror Rxqs */
1374  		if (adap->flags & CXGB4_USING_MSIX) {
1375  			ret = request_irq(mirror_rxq->msix->vec,
1376  					  t4_sge_intr_msix, 0,
1377  					  mirror_rxq->msix->desc,
1378  					  &mirror_rxq->rspq);
1379  			if (ret)
1380  				goto out_free_rxq;
1381  
1382  			cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383  					   &mirror_rxq->msix->aff_mask, i);
1384  		}
1385  
1386  		/* Start NAPI for Mirror Rxqs */
1387  		cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388  	}
1389  
1390  	/* Setup RSS for Mirror Rxqs */
1391  	rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392  	if (!rss) {
1393  		ret = -ENOMEM;
1394  		goto out_free_queues;
1395  	}
1396  
1397  	mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398  	for (i = 0; i < pi->rss_size; i++)
1399  		rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400  
1401  	ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402  	kfree(rss);
1403  	if (ret)
1404  		goto out_free_queues;
1405  
1406  	return 0;
1407  
1408  out_free_rxq:
1409  	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410  
1411  out_free_msix_idx:
1412  	cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413  
1414  out_free_queues:
1415  	while (rxqid-- > 0)
1416  		cxgb4_port_mirror_free_rxq(adap,
1417  					   &s->mirror_rxq[pi->port_id][rxqid]);
1418  
1419  	kfree(s->mirror_rxq[pi->port_id]);
1420  	s->mirror_rxq[pi->port_id] = NULL;
1421  	return ret;
1422  }
1423  
cxgb4_port_mirror_free_queues(struct net_device * dev)1424  static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425  {
1426  	struct port_info *pi = netdev2pinfo(dev);
1427  	struct adapter *adap = netdev2adap(dev);
1428  	struct sge *s = &adap->sge;
1429  	u16 i;
1430  
1431  	if (!pi->vi_mirror_count)
1432  		return;
1433  
1434  	if (!s->mirror_rxq[pi->port_id])
1435  		return;
1436  
1437  	for (i = 0; i < pi->nmirrorqsets; i++)
1438  		cxgb4_port_mirror_free_rxq(adap,
1439  					   &s->mirror_rxq[pi->port_id][i]);
1440  
1441  	kfree(s->mirror_rxq[pi->port_id]);
1442  	s->mirror_rxq[pi->port_id] = NULL;
1443  }
1444  
cxgb4_port_mirror_start(struct net_device * dev)1445  static int cxgb4_port_mirror_start(struct net_device *dev)
1446  {
1447  	struct port_info *pi = netdev2pinfo(dev);
1448  	struct adapter *adap = netdev2adap(dev);
1449  	int ret, idx = -1;
1450  
1451  	if (!pi->vi_mirror_count)
1452  		return 0;
1453  
1454  	/* Mirror VIs can be created dynamically after stack had
1455  	 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456  	 * on main VI. So, parse what the stack had setup on the
1457  	 * main VI and update the same on the mirror VI.
1458  	 */
1459  	ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460  			    dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461  			    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462  			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463  	if (ret) {
1464  		dev_err(adap->pdev_dev,
1465  			"Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466  			pi->viid_mirror, ret);
1467  		return ret;
1468  	}
1469  
1470  	/* Enable replication bit for the device's MAC address
1471  	 * in MPS TCAM, so that the packets for the main VI are
1472  	 * replicated to mirror VI.
1473  	 */
1474  	ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475  				    dev->dev_addr, true, NULL);
1476  	if (ret) {
1477  		dev_err(adap->pdev_dev,
1478  			"Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479  			pi->viid_mirror, ret);
1480  		return ret;
1481  	}
1482  
1483  	/* Enabling a Virtual Interface can result in an interrupt
1484  	 * during the processing of the VI Enable command and, in some
1485  	 * paths, result in an attempt to issue another command in the
1486  	 * interrupt context. Thus, we disable interrupts during the
1487  	 * course of the VI Enable command ...
1488  	 */
1489  	local_bh_disable();
1490  	ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491  				  false);
1492  	local_bh_enable();
1493  	if (ret)
1494  		dev_err(adap->pdev_dev,
1495  			"Failed starting Mirror VI 0x%x, ret: %d\n",
1496  			pi->viid_mirror, ret);
1497  
1498  	return ret;
1499  }
1500  
cxgb4_port_mirror_stop(struct net_device * dev)1501  static void cxgb4_port_mirror_stop(struct net_device *dev)
1502  {
1503  	struct port_info *pi = netdev2pinfo(dev);
1504  	struct adapter *adap = netdev2adap(dev);
1505  
1506  	if (!pi->vi_mirror_count)
1507  		return;
1508  
1509  	t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510  			    false);
1511  }
1512  
cxgb4_port_mirror_alloc(struct net_device * dev)1513  int cxgb4_port_mirror_alloc(struct net_device *dev)
1514  {
1515  	struct port_info *pi = netdev2pinfo(dev);
1516  	struct adapter *adap = netdev2adap(dev);
1517  	int ret = 0;
1518  
1519  	if (!pi->nmirrorqsets)
1520  		return -EOPNOTSUPP;
1521  
1522  	mutex_lock(&pi->vi_mirror_mutex);
1523  	if (pi->viid_mirror) {
1524  		pi->vi_mirror_count++;
1525  		goto out_unlock;
1526  	}
1527  
1528  	ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529  				  &pi->viid_mirror);
1530  	if (ret)
1531  		goto out_unlock;
1532  
1533  	pi->vi_mirror_count = 1;
1534  
1535  	if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536  		ret = cxgb4_port_mirror_alloc_queues(dev);
1537  		if (ret)
1538  			goto out_free_vi;
1539  
1540  		ret = cxgb4_port_mirror_start(dev);
1541  		if (ret)
1542  			goto out_free_queues;
1543  	}
1544  
1545  	mutex_unlock(&pi->vi_mirror_mutex);
1546  	return 0;
1547  
1548  out_free_queues:
1549  	cxgb4_port_mirror_free_queues(dev);
1550  
1551  out_free_vi:
1552  	pi->vi_mirror_count = 0;
1553  	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554  	pi->viid_mirror = 0;
1555  
1556  out_unlock:
1557  	mutex_unlock(&pi->vi_mirror_mutex);
1558  	return ret;
1559  }
1560  
cxgb4_port_mirror_free(struct net_device * dev)1561  void cxgb4_port_mirror_free(struct net_device *dev)
1562  {
1563  	struct port_info *pi = netdev2pinfo(dev);
1564  	struct adapter *adap = netdev2adap(dev);
1565  
1566  	mutex_lock(&pi->vi_mirror_mutex);
1567  	if (!pi->viid_mirror)
1568  		goto out_unlock;
1569  
1570  	if (pi->vi_mirror_count > 1) {
1571  		pi->vi_mirror_count--;
1572  		goto out_unlock;
1573  	}
1574  
1575  	cxgb4_port_mirror_stop(dev);
1576  	cxgb4_port_mirror_free_queues(dev);
1577  
1578  	pi->vi_mirror_count = 0;
1579  	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580  	pi->viid_mirror = 0;
1581  
1582  out_unlock:
1583  	mutex_unlock(&pi->vi_mirror_mutex);
1584  }
1585  
1586  /*
1587   * upper-layer driver support
1588   */
1589  
1590  /*
1591   * Allocate an active-open TID and set it to the supplied value.
1592   */
cxgb4_alloc_atid(struct tid_info * t,void * data)1593  int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594  {
1595  	int atid = -1;
1596  
1597  	spin_lock_bh(&t->atid_lock);
1598  	if (t->afree) {
1599  		union aopen_entry *p = t->afree;
1600  
1601  		atid = (p - t->atid_tab) + t->atid_base;
1602  		t->afree = p->next;
1603  		p->data = data;
1604  		t->atids_in_use++;
1605  	}
1606  	spin_unlock_bh(&t->atid_lock);
1607  	return atid;
1608  }
1609  EXPORT_SYMBOL(cxgb4_alloc_atid);
1610  
1611  /*
1612   * Release an active-open TID.
1613   */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1614  void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615  {
1616  	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617  
1618  	spin_lock_bh(&t->atid_lock);
1619  	p->next = t->afree;
1620  	t->afree = p;
1621  	t->atids_in_use--;
1622  	spin_unlock_bh(&t->atid_lock);
1623  }
1624  EXPORT_SYMBOL(cxgb4_free_atid);
1625  
1626  /*
1627   * Allocate a server TID and set it to the supplied value.
1628   */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1629  int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630  {
1631  	int stid;
1632  
1633  	spin_lock_bh(&t->stid_lock);
1634  	if (family == PF_INET) {
1635  		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636  		if (stid < t->nstids)
1637  			__set_bit(stid, t->stid_bmap);
1638  		else
1639  			stid = -1;
1640  	} else {
1641  		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642  		if (stid < 0)
1643  			stid = -1;
1644  	}
1645  	if (stid >= 0) {
1646  		t->stid_tab[stid].data = data;
1647  		stid += t->stid_base;
1648  		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1649  		 * This is equivalent to 4 TIDs. With CLIP enabled it
1650  		 * needs 2 TIDs.
1651  		 */
1652  		if (family == PF_INET6) {
1653  			t->stids_in_use += 2;
1654  			t->v6_stids_in_use += 2;
1655  		} else {
1656  			t->stids_in_use++;
1657  		}
1658  	}
1659  	spin_unlock_bh(&t->stid_lock);
1660  	return stid;
1661  }
1662  EXPORT_SYMBOL(cxgb4_alloc_stid);
1663  
1664  /* Allocate a server filter TID and set it to the supplied value.
1665   */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1666  int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667  {
1668  	int stid;
1669  
1670  	spin_lock_bh(&t->stid_lock);
1671  	if (family == PF_INET) {
1672  		stid = find_next_zero_bit(t->stid_bmap,
1673  				t->nstids + t->nsftids, t->nstids);
1674  		if (stid < (t->nstids + t->nsftids))
1675  			__set_bit(stid, t->stid_bmap);
1676  		else
1677  			stid = -1;
1678  	} else {
1679  		stid = -1;
1680  	}
1681  	if (stid >= 0) {
1682  		t->stid_tab[stid].data = data;
1683  		stid -= t->nstids;
1684  		stid += t->sftid_base;
1685  		t->sftids_in_use++;
1686  	}
1687  	spin_unlock_bh(&t->stid_lock);
1688  	return stid;
1689  }
1690  EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691  
1692  /* Release a server TID.
1693   */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1694  void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695  {
1696  	/* Is it a server filter TID? */
1697  	if (t->nsftids && (stid >= t->sftid_base)) {
1698  		stid -= t->sftid_base;
1699  		stid += t->nstids;
1700  	} else {
1701  		stid -= t->stid_base;
1702  	}
1703  
1704  	spin_lock_bh(&t->stid_lock);
1705  	if (family == PF_INET)
1706  		__clear_bit(stid, t->stid_bmap);
1707  	else
1708  		bitmap_release_region(t->stid_bmap, stid, 1);
1709  	t->stid_tab[stid].data = NULL;
1710  	if (stid < t->nstids) {
1711  		if (family == PF_INET6) {
1712  			t->stids_in_use -= 2;
1713  			t->v6_stids_in_use -= 2;
1714  		} else {
1715  			t->stids_in_use--;
1716  		}
1717  	} else {
1718  		t->sftids_in_use--;
1719  	}
1720  
1721  	spin_unlock_bh(&t->stid_lock);
1722  }
1723  EXPORT_SYMBOL(cxgb4_free_stid);
1724  
1725  /*
1726   * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1727   */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1728  static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729  			   unsigned int tid)
1730  {
1731  	struct cpl_tid_release *req;
1732  
1733  	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734  	req = __skb_put(skb, sizeof(*req));
1735  	INIT_TP_WR(req, tid);
1736  	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737  }
1738  
1739  /*
1740   * Queue a TID release request and if necessary schedule a work queue to
1741   * process it.
1742   */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1743  static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744  				    unsigned int tid)
1745  {
1746  	struct adapter *adap = container_of(t, struct adapter, tids);
1747  	void **p = &t->tid_tab[tid - t->tid_base];
1748  
1749  	spin_lock_bh(&adap->tid_release_lock);
1750  	*p = adap->tid_release_head;
1751  	/* Low 2 bits encode the Tx channel number */
1752  	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753  	if (!adap->tid_release_task_busy) {
1754  		adap->tid_release_task_busy = true;
1755  		queue_work(adap->workq, &adap->tid_release_task);
1756  	}
1757  	spin_unlock_bh(&adap->tid_release_lock);
1758  }
1759  
1760  /*
1761   * Process the list of pending TID release requests.
1762   */
process_tid_release_list(struct work_struct * work)1763  static void process_tid_release_list(struct work_struct *work)
1764  {
1765  	struct sk_buff *skb;
1766  	struct adapter *adap;
1767  
1768  	adap = container_of(work, struct adapter, tid_release_task);
1769  
1770  	spin_lock_bh(&adap->tid_release_lock);
1771  	while (adap->tid_release_head) {
1772  		void **p = adap->tid_release_head;
1773  		unsigned int chan = (uintptr_t)p & 3;
1774  		p = (void *)p - chan;
1775  
1776  		adap->tid_release_head = *p;
1777  		*p = NULL;
1778  		spin_unlock_bh(&adap->tid_release_lock);
1779  
1780  		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781  					 GFP_KERNEL)))
1782  			schedule_timeout_uninterruptible(1);
1783  
1784  		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785  		t4_ofld_send(adap, skb);
1786  		spin_lock_bh(&adap->tid_release_lock);
1787  	}
1788  	adap->tid_release_task_busy = false;
1789  	spin_unlock_bh(&adap->tid_release_lock);
1790  }
1791  
1792  /*
1793   * Release a TID and inform HW.  If we are unable to allocate the release
1794   * message we defer to a work queue.
1795   */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1796  void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797  		      unsigned short family)
1798  {
1799  	struct adapter *adap = container_of(t, struct adapter, tids);
1800  	struct sk_buff *skb;
1801  
1802  	WARN_ON(tid_out_of_range(&adap->tids, tid));
1803  
1804  	if (t->tid_tab[tid - adap->tids.tid_base]) {
1805  		t->tid_tab[tid - adap->tids.tid_base] = NULL;
1806  		atomic_dec(&t->conns_in_use);
1807  		if (t->hash_base && (tid >= t->hash_base)) {
1808  			if (family == AF_INET6)
1809  				atomic_sub(2, &t->hash_tids_in_use);
1810  			else
1811  				atomic_dec(&t->hash_tids_in_use);
1812  		} else {
1813  			if (family == AF_INET6)
1814  				atomic_sub(2, &t->tids_in_use);
1815  			else
1816  				atomic_dec(&t->tids_in_use);
1817  		}
1818  	}
1819  
1820  	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1821  	if (likely(skb)) {
1822  		mk_tid_release(skb, chan, tid);
1823  		t4_ofld_send(adap, skb);
1824  	} else
1825  		cxgb4_queue_tid_release(t, chan, tid);
1826  }
1827  EXPORT_SYMBOL(cxgb4_remove_tid);
1828  
1829  /*
1830   * Allocate and initialize the TID tables.  Returns 0 on success.
1831   */
tid_init(struct tid_info * t)1832  static int tid_init(struct tid_info *t)
1833  {
1834  	struct adapter *adap = container_of(t, struct adapter, tids);
1835  	unsigned int max_ftids = t->nftids + t->nsftids;
1836  	unsigned int natids = t->natids;
1837  	unsigned int hpftid_bmap_size;
1838  	unsigned int eotid_bmap_size;
1839  	unsigned int stid_bmap_size;
1840  	unsigned int ftid_bmap_size;
1841  	size_t size;
1842  
1843  	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1844  	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1845  	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1846  	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1847  	size = t->ntids * sizeof(*t->tid_tab) +
1848  	       natids * sizeof(*t->atid_tab) +
1849  	       t->nstids * sizeof(*t->stid_tab) +
1850  	       t->nsftids * sizeof(*t->stid_tab) +
1851  	       stid_bmap_size * sizeof(long) +
1852  	       t->nhpftids * sizeof(*t->hpftid_tab) +
1853  	       hpftid_bmap_size * sizeof(long) +
1854  	       max_ftids * sizeof(*t->ftid_tab) +
1855  	       ftid_bmap_size * sizeof(long) +
1856  	       t->neotids * sizeof(*t->eotid_tab) +
1857  	       eotid_bmap_size * sizeof(long);
1858  
1859  	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1860  	if (!t->tid_tab)
1861  		return -ENOMEM;
1862  
1863  	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1864  	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1865  	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1866  	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1867  	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1868  	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1869  	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1870  	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1871  	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1872  	spin_lock_init(&t->stid_lock);
1873  	spin_lock_init(&t->atid_lock);
1874  	spin_lock_init(&t->ftid_lock);
1875  
1876  	t->stids_in_use = 0;
1877  	t->v6_stids_in_use = 0;
1878  	t->sftids_in_use = 0;
1879  	t->afree = NULL;
1880  	t->atids_in_use = 0;
1881  	atomic_set(&t->tids_in_use, 0);
1882  	atomic_set(&t->conns_in_use, 0);
1883  	atomic_set(&t->hash_tids_in_use, 0);
1884  	atomic_set(&t->eotids_in_use, 0);
1885  
1886  	/* Setup the free list for atid_tab and clear the stid bitmap. */
1887  	if (natids) {
1888  		while (--natids)
1889  			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1890  		t->afree = t->atid_tab;
1891  	}
1892  
1893  	if (is_offload(adap)) {
1894  		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1895  		/* Reserve stid 0 for T4/T5 adapters */
1896  		if (!t->stid_base &&
1897  		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1898  			__set_bit(0, t->stid_bmap);
1899  
1900  		if (t->neotids)
1901  			bitmap_zero(t->eotid_bmap, t->neotids);
1902  	}
1903  
1904  	if (t->nhpftids)
1905  		bitmap_zero(t->hpftid_bmap, t->nhpftids);
1906  	bitmap_zero(t->ftid_bmap, t->nftids);
1907  	return 0;
1908  }
1909  
1910  /**
1911   *	cxgb4_create_server - create an IP server
1912   *	@dev: the device
1913   *	@stid: the server TID
1914   *	@sip: local IP address to bind server to
1915   *	@sport: the server's TCP port
1916   *	@vlan: the VLAN header information
1917   *	@queue: queue to direct messages from this server to
1918   *
1919   *	Create an IP server for the given port and address.
1920   *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1921   */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1922  int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1923  			__be32 sip, __be16 sport, __be16 vlan,
1924  			unsigned int queue)
1925  {
1926  	unsigned int chan;
1927  	struct sk_buff *skb;
1928  	struct adapter *adap;
1929  	struct cpl_pass_open_req *req;
1930  	int ret;
1931  
1932  	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1933  	if (!skb)
1934  		return -ENOMEM;
1935  
1936  	adap = netdev2adap(dev);
1937  	req = __skb_put(skb, sizeof(*req));
1938  	INIT_TP_WR(req, 0);
1939  	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1940  	req->local_port = sport;
1941  	req->peer_port = htons(0);
1942  	req->local_ip = sip;
1943  	req->peer_ip = htonl(0);
1944  	chan = rxq_to_chan(&adap->sge, queue);
1945  	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1946  	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1947  				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1948  	ret = t4_mgmt_tx(adap, skb);
1949  	return net_xmit_eval(ret);
1950  }
1951  EXPORT_SYMBOL(cxgb4_create_server);
1952  
1953  /*	cxgb4_create_server6 - create an IPv6 server
1954   *	@dev: the device
1955   *	@stid: the server TID
1956   *	@sip: local IPv6 address to bind server to
1957   *	@sport: the server's TCP port
1958   *	@queue: queue to direct messages from this server to
1959   *
1960   *	Create an IPv6 server for the given port and address.
1961   *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1962   */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1963  int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1964  			 const struct in6_addr *sip, __be16 sport,
1965  			 unsigned int queue)
1966  {
1967  	unsigned int chan;
1968  	struct sk_buff *skb;
1969  	struct adapter *adap;
1970  	struct cpl_pass_open_req6 *req;
1971  	int ret;
1972  
1973  	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1974  	if (!skb)
1975  		return -ENOMEM;
1976  
1977  	adap = netdev2adap(dev);
1978  	req = __skb_put(skb, sizeof(*req));
1979  	INIT_TP_WR(req, 0);
1980  	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1981  	req->local_port = sport;
1982  	req->peer_port = htons(0);
1983  	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1984  	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1985  	req->peer_ip_hi = cpu_to_be64(0);
1986  	req->peer_ip_lo = cpu_to_be64(0);
1987  	chan = rxq_to_chan(&adap->sge, queue);
1988  	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1989  	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1990  				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1991  	ret = t4_mgmt_tx(adap, skb);
1992  	return net_xmit_eval(ret);
1993  }
1994  EXPORT_SYMBOL(cxgb4_create_server6);
1995  
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1996  int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1997  			unsigned int queue, bool ipv6)
1998  {
1999  	struct sk_buff *skb;
2000  	struct adapter *adap;
2001  	struct cpl_close_listsvr_req *req;
2002  	int ret;
2003  
2004  	adap = netdev2adap(dev);
2005  
2006  	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2007  	if (!skb)
2008  		return -ENOMEM;
2009  
2010  	req = __skb_put(skb, sizeof(*req));
2011  	INIT_TP_WR(req, 0);
2012  	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2013  	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2014  				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2015  	ret = t4_mgmt_tx(adap, skb);
2016  	return net_xmit_eval(ret);
2017  }
2018  EXPORT_SYMBOL(cxgb4_remove_server);
2019  
2020  /**
2021   *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2022   *	@mtus: the HW MTU table
2023   *	@mtu: the target MTU
2024   *	@idx: index of selected entry in the MTU table
2025   *
2026   *	Returns the index and the value in the HW MTU table that is closest to
2027   *	but does not exceed @mtu, unless @mtu is smaller than any value in the
2028   *	table, in which case that smallest available value is selected.
2029   */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)2030  unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2031  			    unsigned int *idx)
2032  {
2033  	unsigned int i = 0;
2034  
2035  	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2036  		++i;
2037  	if (idx)
2038  		*idx = i;
2039  	return mtus[i];
2040  }
2041  EXPORT_SYMBOL(cxgb4_best_mtu);
2042  
2043  /**
2044   *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2045   *     @mtus: the HW MTU table
2046   *     @header_size: Header Size
2047   *     @data_size_max: maximum Data Segment Size
2048   *     @data_size_align: desired Data Segment Size Alignment (2^N)
2049   *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2050   *
2051   *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2052   *     MTU Table based solely on a Maximum MTU parameter, we break that
2053   *     parameter up into a Header Size and Maximum Data Segment Size, and
2054   *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2055   *     the Hardware MTU Table which will result in a Data Segment Size with
2056   *     the requested alignment _and_ that MTU isn't "too far" from the
2057   *     closest MTU, then we'll return that rather than the closest MTU.
2058   */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)2059  unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2060  				    unsigned short header_size,
2061  				    unsigned short data_size_max,
2062  				    unsigned short data_size_align,
2063  				    unsigned int *mtu_idxp)
2064  {
2065  	unsigned short max_mtu = header_size + data_size_max;
2066  	unsigned short data_size_align_mask = data_size_align - 1;
2067  	int mtu_idx, aligned_mtu_idx;
2068  
2069  	/* Scan the MTU Table till we find an MTU which is larger than our
2070  	 * Maximum MTU or we reach the end of the table.  Along the way,
2071  	 * record the last MTU found, if any, which will result in a Data
2072  	 * Segment Length matching the requested alignment.
2073  	 */
2074  	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2075  		unsigned short data_size = mtus[mtu_idx] - header_size;
2076  
2077  		/* If this MTU minus the Header Size would result in a
2078  		 * Data Segment Size of the desired alignment, remember it.
2079  		 */
2080  		if ((data_size & data_size_align_mask) == 0)
2081  			aligned_mtu_idx = mtu_idx;
2082  
2083  		/* If we're not at the end of the Hardware MTU Table and the
2084  		 * next element is larger than our Maximum MTU, drop out of
2085  		 * the loop.
2086  		 */
2087  		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2088  			break;
2089  	}
2090  
2091  	/* If we fell out of the loop because we ran to the end of the table,
2092  	 * then we just have to use the last [largest] entry.
2093  	 */
2094  	if (mtu_idx == NMTUS)
2095  		mtu_idx--;
2096  
2097  	/* If we found an MTU which resulted in the requested Data Segment
2098  	 * Length alignment and that's "not far" from the largest MTU which is
2099  	 * less than or equal to the maximum MTU, then use that.
2100  	 */
2101  	if (aligned_mtu_idx >= 0 &&
2102  	    mtu_idx - aligned_mtu_idx <= 1)
2103  		mtu_idx = aligned_mtu_idx;
2104  
2105  	/* If the caller has passed in an MTU Index pointer, pass the
2106  	 * MTU Index back.  Return the MTU value.
2107  	 */
2108  	if (mtu_idxp)
2109  		*mtu_idxp = mtu_idx;
2110  	return mtus[mtu_idx];
2111  }
2112  EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2113  
2114  /**
2115   *	cxgb4_port_chan - get the HW channel of a port
2116   *	@dev: the net device for the port
2117   *
2118   *	Return the HW Tx channel of the given port.
2119   */
cxgb4_port_chan(const struct net_device * dev)2120  unsigned int cxgb4_port_chan(const struct net_device *dev)
2121  {
2122  	return netdev2pinfo(dev)->tx_chan;
2123  }
2124  EXPORT_SYMBOL(cxgb4_port_chan);
2125  
2126  /**
2127   *      cxgb4_port_e2cchan - get the HW c-channel of a port
2128   *      @dev: the net device for the port
2129   *
2130   *      Return the HW RX c-channel of the given port.
2131   */
cxgb4_port_e2cchan(const struct net_device * dev)2132  unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2133  {
2134  	return netdev2pinfo(dev)->rx_cchan;
2135  }
2136  EXPORT_SYMBOL(cxgb4_port_e2cchan);
2137  
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)2138  unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2139  {
2140  	struct adapter *adap = netdev2adap(dev);
2141  	u32 v1, v2, lp_count, hp_count;
2142  
2143  	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2144  	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2145  	if (is_t4(adap->params.chip)) {
2146  		lp_count = LP_COUNT_G(v1);
2147  		hp_count = HP_COUNT_G(v1);
2148  	} else {
2149  		lp_count = LP_COUNT_T5_G(v1);
2150  		hp_count = HP_COUNT_T5_G(v2);
2151  	}
2152  	return lpfifo ? lp_count : hp_count;
2153  }
2154  EXPORT_SYMBOL(cxgb4_dbfifo_count);
2155  
2156  /**
2157   *	cxgb4_port_viid - get the VI id of a port
2158   *	@dev: the net device for the port
2159   *
2160   *	Return the VI id of the given port.
2161   */
cxgb4_port_viid(const struct net_device * dev)2162  unsigned int cxgb4_port_viid(const struct net_device *dev)
2163  {
2164  	return netdev2pinfo(dev)->viid;
2165  }
2166  EXPORT_SYMBOL(cxgb4_port_viid);
2167  
2168  /**
2169   *	cxgb4_port_idx - get the index of a port
2170   *	@dev: the net device for the port
2171   *
2172   *	Return the index of the given port.
2173   */
cxgb4_port_idx(const struct net_device * dev)2174  unsigned int cxgb4_port_idx(const struct net_device *dev)
2175  {
2176  	return netdev2pinfo(dev)->port_id;
2177  }
2178  EXPORT_SYMBOL(cxgb4_port_idx);
2179  
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)2180  void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2181  			 struct tp_tcp_stats *v6)
2182  {
2183  	struct adapter *adap = pci_get_drvdata(pdev);
2184  
2185  	spin_lock(&adap->stats_lock);
2186  	t4_tp_get_tcp_stats(adap, v4, v6, false);
2187  	spin_unlock(&adap->stats_lock);
2188  }
2189  EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2190  
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)2191  void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2192  		      const unsigned int *pgsz_order)
2193  {
2194  	struct adapter *adap = netdev2adap(dev);
2195  
2196  	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2197  	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2198  		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2199  		     HPZ3_V(pgsz_order[3]));
2200  }
2201  EXPORT_SYMBOL(cxgb4_iscsi_init);
2202  
cxgb4_flush_eq_cache(struct net_device * dev)2203  int cxgb4_flush_eq_cache(struct net_device *dev)
2204  {
2205  	struct adapter *adap = netdev2adap(dev);
2206  
2207  	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2208  }
2209  EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2210  
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)2211  static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2212  {
2213  	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2214  	__be64 indices;
2215  	int ret;
2216  
2217  	spin_lock(&adap->win0_lock);
2218  	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2219  			   sizeof(indices), (__be32 *)&indices,
2220  			   T4_MEMORY_READ);
2221  	spin_unlock(&adap->win0_lock);
2222  	if (!ret) {
2223  		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2224  		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2225  	}
2226  	return ret;
2227  }
2228  
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)2229  int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2230  			u16 size)
2231  {
2232  	struct adapter *adap = netdev2adap(dev);
2233  	u16 hw_pidx, hw_cidx;
2234  	int ret;
2235  
2236  	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2237  	if (ret)
2238  		goto out;
2239  
2240  	if (pidx != hw_pidx) {
2241  		u16 delta;
2242  		u32 val;
2243  
2244  		if (pidx >= hw_pidx)
2245  			delta = pidx - hw_pidx;
2246  		else
2247  			delta = size - hw_pidx + pidx;
2248  
2249  		if (is_t4(adap->params.chip))
2250  			val = PIDX_V(delta);
2251  		else
2252  			val = PIDX_T5_V(delta);
2253  		wmb();
2254  		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2255  			     QID_V(qid) | val);
2256  	}
2257  out:
2258  	return ret;
2259  }
2260  EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2261  
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)2262  int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2263  {
2264  	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2265  	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2266  	u32 offset, memtype, memaddr;
2267  	struct adapter *adap;
2268  	u32 hma_size = 0;
2269  	int ret;
2270  
2271  	adap = netdev2adap(dev);
2272  
2273  	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2274  
2275  	/* Figure out where the offset lands in the Memory Type/Address scheme.
2276  	 * This code assumes that the memory is laid out starting at offset 0
2277  	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2278  	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2279  	 * MC0, and some have both MC0 and MC1.
2280  	 */
2281  	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2282  	edc0_size = EDRAM0_SIZE_G(size) << 20;
2283  	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2284  	edc1_size = EDRAM1_SIZE_G(size) << 20;
2285  	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2286  	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2287  
2288  	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2289  		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2290  		hma_size = EXT_MEM1_SIZE_G(size) << 20;
2291  	}
2292  	edc0_end = edc0_size;
2293  	edc1_end = edc0_end + edc1_size;
2294  	mc0_end = edc1_end + mc0_size;
2295  
2296  	if (offset < edc0_end) {
2297  		memtype = MEM_EDC0;
2298  		memaddr = offset;
2299  	} else if (offset < edc1_end) {
2300  		memtype = MEM_EDC1;
2301  		memaddr = offset - edc0_end;
2302  	} else {
2303  		if (hma_size && (offset < (edc1_end + hma_size))) {
2304  			memtype = MEM_HMA;
2305  			memaddr = offset - edc1_end;
2306  		} else if (offset < mc0_end) {
2307  			memtype = MEM_MC0;
2308  			memaddr = offset - edc1_end;
2309  		} else if (is_t5(adap->params.chip)) {
2310  			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2311  			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2312  			mc1_end = mc0_end + mc1_size;
2313  			if (offset < mc1_end) {
2314  				memtype = MEM_MC1;
2315  				memaddr = offset - mc0_end;
2316  			} else {
2317  				/* offset beyond the end of any memory */
2318  				goto err;
2319  			}
2320  		} else {
2321  			/* T4/T6 only has a single memory channel */
2322  			goto err;
2323  		}
2324  	}
2325  
2326  	spin_lock(&adap->win0_lock);
2327  	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2328  	spin_unlock(&adap->win0_lock);
2329  	return ret;
2330  
2331  err:
2332  	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2333  		stag, offset);
2334  	return -EINVAL;
2335  }
2336  EXPORT_SYMBOL(cxgb4_read_tpte);
2337  
cxgb4_read_sge_timestamp(struct net_device * dev)2338  u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2339  {
2340  	u32 hi, lo;
2341  	struct adapter *adap;
2342  
2343  	adap = netdev2adap(dev);
2344  	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2345  	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2346  
2347  	return ((u64)hi << 32) | (u64)lo;
2348  }
2349  EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2350  
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)2351  int cxgb4_bar2_sge_qregs(struct net_device *dev,
2352  			 unsigned int qid,
2353  			 enum cxgb4_bar2_qtype qtype,
2354  			 int user,
2355  			 u64 *pbar2_qoffset,
2356  			 unsigned int *pbar2_qid)
2357  {
2358  	return t4_bar2_sge_qregs(netdev2adap(dev),
2359  				 qid,
2360  				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2361  				  ? T4_BAR2_QTYPE_EGRESS
2362  				  : T4_BAR2_QTYPE_INGRESS),
2363  				 user,
2364  				 pbar2_qoffset,
2365  				 pbar2_qid);
2366  }
2367  EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2368  
2369  static struct pci_driver cxgb4_driver;
2370  
check_neigh_update(struct neighbour * neigh)2371  static void check_neigh_update(struct neighbour *neigh)
2372  {
2373  	const struct device *parent;
2374  	const struct net_device *netdev = neigh->dev;
2375  
2376  	if (is_vlan_dev(netdev))
2377  		netdev = vlan_dev_real_dev(netdev);
2378  	parent = netdev->dev.parent;
2379  	if (parent && parent->driver == &cxgb4_driver.driver)
2380  		t4_l2t_update(dev_get_drvdata(parent), neigh);
2381  }
2382  
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)2383  static int netevent_cb(struct notifier_block *nb, unsigned long event,
2384  		       void *data)
2385  {
2386  	switch (event) {
2387  	case NETEVENT_NEIGH_UPDATE:
2388  		check_neigh_update(data);
2389  		break;
2390  	case NETEVENT_REDIRECT:
2391  	default:
2392  		break;
2393  	}
2394  	return 0;
2395  }
2396  
2397  static bool netevent_registered;
2398  static struct notifier_block cxgb4_netevent_nb = {
2399  	.notifier_call = netevent_cb
2400  };
2401  
drain_db_fifo(struct adapter * adap,int usecs)2402  static void drain_db_fifo(struct adapter *adap, int usecs)
2403  {
2404  	u32 v1, v2, lp_count, hp_count;
2405  
2406  	do {
2407  		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2408  		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2409  		if (is_t4(adap->params.chip)) {
2410  			lp_count = LP_COUNT_G(v1);
2411  			hp_count = HP_COUNT_G(v1);
2412  		} else {
2413  			lp_count = LP_COUNT_T5_G(v1);
2414  			hp_count = HP_COUNT_T5_G(v2);
2415  		}
2416  
2417  		if (lp_count == 0 && hp_count == 0)
2418  			break;
2419  		set_current_state(TASK_UNINTERRUPTIBLE);
2420  		schedule_timeout(usecs_to_jiffies(usecs));
2421  	} while (1);
2422  }
2423  
disable_txq_db(struct sge_txq * q)2424  static void disable_txq_db(struct sge_txq *q)
2425  {
2426  	unsigned long flags;
2427  
2428  	spin_lock_irqsave(&q->db_lock, flags);
2429  	q->db_disabled = 1;
2430  	spin_unlock_irqrestore(&q->db_lock, flags);
2431  }
2432  
enable_txq_db(struct adapter * adap,struct sge_txq * q)2433  static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2434  {
2435  	spin_lock_irq(&q->db_lock);
2436  	if (q->db_pidx_inc) {
2437  		/* Make sure that all writes to the TX descriptors
2438  		 * are committed before we tell HW about them.
2439  		 */
2440  		wmb();
2441  		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2442  			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2443  		q->db_pidx_inc = 0;
2444  	}
2445  	q->db_disabled = 0;
2446  	spin_unlock_irq(&q->db_lock);
2447  }
2448  
disable_dbs(struct adapter * adap)2449  static void disable_dbs(struct adapter *adap)
2450  {
2451  	int i;
2452  
2453  	for_each_ethrxq(&adap->sge, i)
2454  		disable_txq_db(&adap->sge.ethtxq[i].q);
2455  	if (is_offload(adap)) {
2456  		struct sge_uld_txq_info *txq_info =
2457  			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2458  
2459  		if (txq_info) {
2460  			for_each_ofldtxq(&adap->sge, i) {
2461  				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2462  
2463  				disable_txq_db(&txq->q);
2464  			}
2465  		}
2466  	}
2467  	for_each_port(adap, i)
2468  		disable_txq_db(&adap->sge.ctrlq[i].q);
2469  }
2470  
enable_dbs(struct adapter * adap)2471  static void enable_dbs(struct adapter *adap)
2472  {
2473  	int i;
2474  
2475  	for_each_ethrxq(&adap->sge, i)
2476  		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2477  	if (is_offload(adap)) {
2478  		struct sge_uld_txq_info *txq_info =
2479  			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2480  
2481  		if (txq_info) {
2482  			for_each_ofldtxq(&adap->sge, i) {
2483  				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2484  
2485  				enable_txq_db(adap, &txq->q);
2486  			}
2487  		}
2488  	}
2489  	for_each_port(adap, i)
2490  		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2491  }
2492  
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)2493  static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2494  {
2495  	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2496  
2497  	if (adap->uld && adap->uld[type].handle)
2498  		adap->uld[type].control(adap->uld[type].handle, cmd);
2499  }
2500  
process_db_full(struct work_struct * work)2501  static void process_db_full(struct work_struct *work)
2502  {
2503  	struct adapter *adap;
2504  
2505  	adap = container_of(work, struct adapter, db_full_task);
2506  
2507  	drain_db_fifo(adap, dbfifo_drain_delay);
2508  	enable_dbs(adap);
2509  	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2510  	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2511  		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2512  				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2513  				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2514  	else
2515  		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2516  				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2517  }
2518  
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2519  static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2520  {
2521  	u16 hw_pidx, hw_cidx;
2522  	int ret;
2523  
2524  	spin_lock_irq(&q->db_lock);
2525  	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2526  	if (ret)
2527  		goto out;
2528  	if (q->db_pidx != hw_pidx) {
2529  		u16 delta;
2530  		u32 val;
2531  
2532  		if (q->db_pidx >= hw_pidx)
2533  			delta = q->db_pidx - hw_pidx;
2534  		else
2535  			delta = q->size - hw_pidx + q->db_pidx;
2536  
2537  		if (is_t4(adap->params.chip))
2538  			val = PIDX_V(delta);
2539  		else
2540  			val = PIDX_T5_V(delta);
2541  		wmb();
2542  		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2543  			     QID_V(q->cntxt_id) | val);
2544  	}
2545  out:
2546  	q->db_disabled = 0;
2547  	q->db_pidx_inc = 0;
2548  	spin_unlock_irq(&q->db_lock);
2549  	if (ret)
2550  		CH_WARN(adap, "DB drop recovery failed.\n");
2551  }
2552  
recover_all_queues(struct adapter * adap)2553  static void recover_all_queues(struct adapter *adap)
2554  {
2555  	int i;
2556  
2557  	for_each_ethrxq(&adap->sge, i)
2558  		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2559  	if (is_offload(adap)) {
2560  		struct sge_uld_txq_info *txq_info =
2561  			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2562  		if (txq_info) {
2563  			for_each_ofldtxq(&adap->sge, i) {
2564  				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2565  
2566  				sync_txq_pidx(adap, &txq->q);
2567  			}
2568  		}
2569  	}
2570  	for_each_port(adap, i)
2571  		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2572  }
2573  
process_db_drop(struct work_struct * work)2574  static void process_db_drop(struct work_struct *work)
2575  {
2576  	struct adapter *adap;
2577  
2578  	adap = container_of(work, struct adapter, db_drop_task);
2579  
2580  	if (is_t4(adap->params.chip)) {
2581  		drain_db_fifo(adap, dbfifo_drain_delay);
2582  		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2583  		drain_db_fifo(adap, dbfifo_drain_delay);
2584  		recover_all_queues(adap);
2585  		drain_db_fifo(adap, dbfifo_drain_delay);
2586  		enable_dbs(adap);
2587  		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2588  	} else if (is_t5(adap->params.chip)) {
2589  		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2590  		u16 qid = (dropped_db >> 15) & 0x1ffff;
2591  		u16 pidx_inc = dropped_db & 0x1fff;
2592  		u64 bar2_qoffset;
2593  		unsigned int bar2_qid;
2594  		int ret;
2595  
2596  		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2597  					0, &bar2_qoffset, &bar2_qid);
2598  		if (ret)
2599  			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2600  				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2601  		else
2602  			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2603  			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2604  
2605  		/* Re-enable BAR2 WC */
2606  		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2607  	}
2608  
2609  	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2610  		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2611  }
2612  
t4_db_full(struct adapter * adap)2613  void t4_db_full(struct adapter *adap)
2614  {
2615  	if (is_t4(adap->params.chip)) {
2616  		disable_dbs(adap);
2617  		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2618  		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2619  				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2620  		queue_work(adap->workq, &adap->db_full_task);
2621  	}
2622  }
2623  
t4_db_dropped(struct adapter * adap)2624  void t4_db_dropped(struct adapter *adap)
2625  {
2626  	if (is_t4(adap->params.chip)) {
2627  		disable_dbs(adap);
2628  		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2629  	}
2630  	queue_work(adap->workq, &adap->db_drop_task);
2631  }
2632  
t4_register_netevent_notifier(void)2633  void t4_register_netevent_notifier(void)
2634  {
2635  	if (!netevent_registered) {
2636  		register_netevent_notifier(&cxgb4_netevent_nb);
2637  		netevent_registered = true;
2638  	}
2639  }
2640  
detach_ulds(struct adapter * adap)2641  static void detach_ulds(struct adapter *adap)
2642  {
2643  	unsigned int i;
2644  
2645  	if (!is_uld(adap))
2646  		return;
2647  
2648  	mutex_lock(&uld_mutex);
2649  	list_del(&adap->list_node);
2650  
2651  	for (i = 0; i < CXGB4_ULD_MAX; i++)
2652  		if (adap->uld && adap->uld[i].handle)
2653  			adap->uld[i].state_change(adap->uld[i].handle,
2654  					     CXGB4_STATE_DETACH);
2655  
2656  	if (netevent_registered && list_empty(&adapter_list)) {
2657  		unregister_netevent_notifier(&cxgb4_netevent_nb);
2658  		netevent_registered = false;
2659  	}
2660  	mutex_unlock(&uld_mutex);
2661  }
2662  
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2663  static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2664  {
2665  	unsigned int i;
2666  
2667  	mutex_lock(&uld_mutex);
2668  	for (i = 0; i < CXGB4_ULD_MAX; i++)
2669  		if (adap->uld && adap->uld[i].handle)
2670  			adap->uld[i].state_change(adap->uld[i].handle,
2671  						  new_state);
2672  	mutex_unlock(&uld_mutex);
2673  }
2674  
2675  #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2676  static int cxgb4_inet6addr_handler(struct notifier_block *this,
2677  				   unsigned long event, void *data)
2678  {
2679  	struct inet6_ifaddr *ifa = data;
2680  	struct net_device *event_dev = ifa->idev->dev;
2681  	const struct device *parent = NULL;
2682  #if IS_ENABLED(CONFIG_BONDING)
2683  	struct adapter *adap;
2684  #endif
2685  	if (is_vlan_dev(event_dev))
2686  		event_dev = vlan_dev_real_dev(event_dev);
2687  #if IS_ENABLED(CONFIG_BONDING)
2688  	if (event_dev->flags & IFF_MASTER) {
2689  		list_for_each_entry(adap, &adapter_list, list_node) {
2690  			switch (event) {
2691  			case NETDEV_UP:
2692  				cxgb4_clip_get(adap->port[0],
2693  					       (const u32 *)ifa, 1);
2694  				break;
2695  			case NETDEV_DOWN:
2696  				cxgb4_clip_release(adap->port[0],
2697  						   (const u32 *)ifa, 1);
2698  				break;
2699  			default:
2700  				break;
2701  			}
2702  		}
2703  		return NOTIFY_OK;
2704  	}
2705  #endif
2706  
2707  	if (event_dev)
2708  		parent = event_dev->dev.parent;
2709  
2710  	if (parent && parent->driver == &cxgb4_driver.driver) {
2711  		switch (event) {
2712  		case NETDEV_UP:
2713  			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2714  			break;
2715  		case NETDEV_DOWN:
2716  			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2717  			break;
2718  		default:
2719  			break;
2720  		}
2721  	}
2722  	return NOTIFY_OK;
2723  }
2724  
2725  static bool inet6addr_registered;
2726  static struct notifier_block cxgb4_inet6addr_notifier = {
2727  	.notifier_call = cxgb4_inet6addr_handler
2728  };
2729  
update_clip(const struct adapter * adap)2730  static void update_clip(const struct adapter *adap)
2731  {
2732  	int i;
2733  	struct net_device *dev;
2734  	int ret;
2735  
2736  	rcu_read_lock();
2737  
2738  	for (i = 0; i < MAX_NPORTS; i++) {
2739  		dev = adap->port[i];
2740  		ret = 0;
2741  
2742  		if (dev)
2743  			ret = cxgb4_update_root_dev_clip(dev);
2744  
2745  		if (ret < 0)
2746  			break;
2747  	}
2748  	rcu_read_unlock();
2749  }
2750  #endif /* IS_ENABLED(CONFIG_IPV6) */
2751  
2752  /**
2753   *	cxgb_up - enable the adapter
2754   *	@adap: adapter being enabled
2755   *
2756   *	Called when the first port is enabled, this function performs the
2757   *	actions necessary to make an adapter operational, such as completing
2758   *	the initialization of HW modules, and enabling interrupts.
2759   *
2760   *	Must be called with the rtnl lock held.
2761   */
cxgb_up(struct adapter * adap)2762  static int cxgb_up(struct adapter *adap)
2763  {
2764  	struct sge *s = &adap->sge;
2765  	int err;
2766  
2767  	mutex_lock(&uld_mutex);
2768  	err = setup_sge_queues(adap);
2769  	if (err)
2770  		goto rel_lock;
2771  	err = setup_rss(adap);
2772  	if (err)
2773  		goto freeq;
2774  
2775  	if (adap->flags & CXGB4_USING_MSIX) {
2776  		if (s->nd_msix_idx < 0) {
2777  			err = -ENOMEM;
2778  			goto irq_err;
2779  		}
2780  
2781  		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2782  				  t4_nondata_intr, 0,
2783  				  adap->msix_info[s->nd_msix_idx].desc, adap);
2784  		if (err)
2785  			goto irq_err;
2786  
2787  		err = request_msix_queue_irqs(adap);
2788  		if (err)
2789  			goto irq_err_free_nd_msix;
2790  	} else {
2791  		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2792  				  (adap->flags & CXGB4_USING_MSI) ? 0
2793  								  : IRQF_SHARED,
2794  				  adap->port[0]->name, adap);
2795  		if (err)
2796  			goto irq_err;
2797  	}
2798  
2799  	enable_rx(adap);
2800  	t4_sge_start(adap);
2801  	t4_intr_enable(adap);
2802  	adap->flags |= CXGB4_FULL_INIT_DONE;
2803  	mutex_unlock(&uld_mutex);
2804  
2805  	notify_ulds(adap, CXGB4_STATE_UP);
2806  #if IS_ENABLED(CONFIG_IPV6)
2807  	update_clip(adap);
2808  #endif
2809  	return err;
2810  
2811  irq_err_free_nd_msix:
2812  	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2813  irq_err:
2814  	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2815  freeq:
2816  	t4_free_sge_resources(adap);
2817  rel_lock:
2818  	mutex_unlock(&uld_mutex);
2819  	return err;
2820  }
2821  
cxgb_down(struct adapter * adapter)2822  static void cxgb_down(struct adapter *adapter)
2823  {
2824  	cancel_work_sync(&adapter->tid_release_task);
2825  	cancel_work_sync(&adapter->db_full_task);
2826  	cancel_work_sync(&adapter->db_drop_task);
2827  	adapter->tid_release_task_busy = false;
2828  	adapter->tid_release_head = NULL;
2829  
2830  	t4_sge_stop(adapter);
2831  	t4_free_sge_resources(adapter);
2832  
2833  	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2834  }
2835  
2836  /*
2837   * net_device operations
2838   */
cxgb_open(struct net_device * dev)2839  static int cxgb_open(struct net_device *dev)
2840  {
2841  	struct port_info *pi = netdev_priv(dev);
2842  	struct adapter *adapter = pi->adapter;
2843  	int err;
2844  
2845  	netif_carrier_off(dev);
2846  
2847  	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2848  		err = cxgb_up(adapter);
2849  		if (err < 0)
2850  			return err;
2851  	}
2852  
2853  	/* It's possible that the basic port information could have
2854  	 * changed since we first read it.
2855  	 */
2856  	err = t4_update_port_info(pi);
2857  	if (err < 0)
2858  		return err;
2859  
2860  	err = link_start(dev);
2861  	if (err)
2862  		return err;
2863  
2864  	if (pi->nmirrorqsets) {
2865  		mutex_lock(&pi->vi_mirror_mutex);
2866  		err = cxgb4_port_mirror_alloc_queues(dev);
2867  		if (err)
2868  			goto out_unlock;
2869  
2870  		err = cxgb4_port_mirror_start(dev);
2871  		if (err)
2872  			goto out_free_queues;
2873  		mutex_unlock(&pi->vi_mirror_mutex);
2874  	}
2875  
2876  	netif_tx_start_all_queues(dev);
2877  	return 0;
2878  
2879  out_free_queues:
2880  	cxgb4_port_mirror_free_queues(dev);
2881  
2882  out_unlock:
2883  	mutex_unlock(&pi->vi_mirror_mutex);
2884  	return err;
2885  }
2886  
cxgb_close(struct net_device * dev)2887  static int cxgb_close(struct net_device *dev)
2888  {
2889  	struct port_info *pi = netdev_priv(dev);
2890  	struct adapter *adapter = pi->adapter;
2891  	int ret;
2892  
2893  	netif_tx_stop_all_queues(dev);
2894  	netif_carrier_off(dev);
2895  	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2896  				  false, false, false);
2897  #ifdef CONFIG_CHELSIO_T4_DCB
2898  	cxgb4_dcb_reset(dev);
2899  	dcb_tx_queue_prio_enable(dev, false);
2900  #endif
2901  	if (ret)
2902  		return ret;
2903  
2904  	if (pi->nmirrorqsets) {
2905  		mutex_lock(&pi->vi_mirror_mutex);
2906  		cxgb4_port_mirror_stop(dev);
2907  		cxgb4_port_mirror_free_queues(dev);
2908  		mutex_unlock(&pi->vi_mirror_mutex);
2909  	}
2910  
2911  	return 0;
2912  }
2913  
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2914  int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2915  		__be32 sip, __be16 sport, __be16 vlan,
2916  		unsigned int queue, unsigned char port, unsigned char mask)
2917  {
2918  	int ret;
2919  	struct filter_entry *f;
2920  	struct adapter *adap;
2921  	int i;
2922  	u8 *val;
2923  
2924  	adap = netdev2adap(dev);
2925  
2926  	/* Adjust stid to correct filter index */
2927  	stid -= adap->tids.sftid_base;
2928  	stid += adap->tids.nftids;
2929  
2930  	/* Check to make sure the filter requested is writable ...
2931  	 */
2932  	f = &adap->tids.ftid_tab[stid];
2933  	ret = writable_filter(f);
2934  	if (ret)
2935  		return ret;
2936  
2937  	/* Clear out any old resources being used by the filter before
2938  	 * we start constructing the new filter.
2939  	 */
2940  	if (f->valid)
2941  		clear_filter(adap, f);
2942  
2943  	/* Clear out filter specifications */
2944  	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2945  	f->fs.val.lport = be16_to_cpu(sport);
2946  	f->fs.mask.lport  = ~0;
2947  	val = (u8 *)&sip;
2948  	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2949  		for (i = 0; i < 4; i++) {
2950  			f->fs.val.lip[i] = val[i];
2951  			f->fs.mask.lip[i] = ~0;
2952  		}
2953  		if (adap->params.tp.vlan_pri_map & PORT_F) {
2954  			f->fs.val.iport = port;
2955  			f->fs.mask.iport = mask;
2956  		}
2957  	}
2958  
2959  	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2960  		f->fs.val.proto = IPPROTO_TCP;
2961  		f->fs.mask.proto = ~0;
2962  	}
2963  
2964  	f->fs.dirsteer = 1;
2965  	f->fs.iq = queue;
2966  	/* Mark filter as locked */
2967  	f->locked = 1;
2968  	f->fs.rpttid = 1;
2969  
2970  	/* Save the actual tid. We need this to get the corresponding
2971  	 * filter entry structure in filter_rpl.
2972  	 */
2973  	f->tid = stid + adap->tids.ftid_base;
2974  	ret = set_filter_wr(adap, stid);
2975  	if (ret) {
2976  		clear_filter(adap, f);
2977  		return ret;
2978  	}
2979  
2980  	return 0;
2981  }
2982  EXPORT_SYMBOL(cxgb4_create_server_filter);
2983  
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2984  int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2985  		unsigned int queue, bool ipv6)
2986  {
2987  	struct filter_entry *f;
2988  	struct adapter *adap;
2989  
2990  	adap = netdev2adap(dev);
2991  
2992  	/* Adjust stid to correct filter index */
2993  	stid -= adap->tids.sftid_base;
2994  	stid += adap->tids.nftids;
2995  
2996  	f = &adap->tids.ftid_tab[stid];
2997  	/* Unlock the filter */
2998  	f->locked = 0;
2999  
3000  	return delete_filter(adap, stid);
3001  }
3002  EXPORT_SYMBOL(cxgb4_remove_server_filter);
3003  
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)3004  static void cxgb_get_stats(struct net_device *dev,
3005  			   struct rtnl_link_stats64 *ns)
3006  {
3007  	struct port_stats stats;
3008  	struct port_info *p = netdev_priv(dev);
3009  	struct adapter *adapter = p->adapter;
3010  
3011  	/* Block retrieving statistics during EEH error
3012  	 * recovery. Otherwise, the recovery might fail
3013  	 * and the PCI device will be removed permanently
3014  	 */
3015  	spin_lock(&adapter->stats_lock);
3016  	if (!netif_device_present(dev)) {
3017  		spin_unlock(&adapter->stats_lock);
3018  		return;
3019  	}
3020  	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3021  				 &p->stats_base);
3022  	spin_unlock(&adapter->stats_lock);
3023  
3024  	ns->tx_bytes   = stats.tx_octets;
3025  	ns->tx_packets = stats.tx_frames;
3026  	ns->rx_bytes   = stats.rx_octets;
3027  	ns->rx_packets = stats.rx_frames;
3028  	ns->multicast  = stats.rx_mcast_frames;
3029  
3030  	/* detailed rx_errors */
3031  	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3032  			       stats.rx_runt;
3033  	ns->rx_over_errors   = 0;
3034  	ns->rx_crc_errors    = stats.rx_fcs_err;
3035  	ns->rx_frame_errors  = stats.rx_symbol_err;
3036  	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
3037  			       stats.rx_ovflow2 + stats.rx_ovflow3 +
3038  			       stats.rx_trunc0 + stats.rx_trunc1 +
3039  			       stats.rx_trunc2 + stats.rx_trunc3;
3040  	ns->rx_missed_errors = 0;
3041  
3042  	/* detailed tx_errors */
3043  	ns->tx_aborted_errors   = 0;
3044  	ns->tx_carrier_errors   = 0;
3045  	ns->tx_fifo_errors      = 0;
3046  	ns->tx_heartbeat_errors = 0;
3047  	ns->tx_window_errors    = 0;
3048  
3049  	ns->tx_errors = stats.tx_error_frames;
3050  	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3051  		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3052  }
3053  
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)3054  static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3055  {
3056  	unsigned int mbox;
3057  	int ret = 0, prtad, devad;
3058  	struct port_info *pi = netdev_priv(dev);
3059  	struct adapter *adapter = pi->adapter;
3060  	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3061  
3062  	switch (cmd) {
3063  	case SIOCGMIIPHY:
3064  		if (pi->mdio_addr < 0)
3065  			return -EOPNOTSUPP;
3066  		data->phy_id = pi->mdio_addr;
3067  		break;
3068  	case SIOCGMIIREG:
3069  	case SIOCSMIIREG:
3070  		if (mdio_phy_id_is_c45(data->phy_id)) {
3071  			prtad = mdio_phy_id_prtad(data->phy_id);
3072  			devad = mdio_phy_id_devad(data->phy_id);
3073  		} else if (data->phy_id < 32) {
3074  			prtad = data->phy_id;
3075  			devad = 0;
3076  			data->reg_num &= 0x1f;
3077  		} else
3078  			return -EINVAL;
3079  
3080  		mbox = pi->adapter->pf;
3081  		if (cmd == SIOCGMIIREG)
3082  			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3083  					 data->reg_num, &data->val_out);
3084  		else
3085  			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3086  					 data->reg_num, data->val_in);
3087  		break;
3088  	case SIOCGHWTSTAMP:
3089  		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3090  				    sizeof(pi->tstamp_config)) ?
3091  			-EFAULT : 0;
3092  	case SIOCSHWTSTAMP:
3093  		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3094  				   sizeof(pi->tstamp_config)))
3095  			return -EFAULT;
3096  
3097  		if (!is_t4(adapter->params.chip)) {
3098  			switch (pi->tstamp_config.tx_type) {
3099  			case HWTSTAMP_TX_OFF:
3100  			case HWTSTAMP_TX_ON:
3101  				break;
3102  			default:
3103  				return -ERANGE;
3104  			}
3105  
3106  			switch (pi->tstamp_config.rx_filter) {
3107  			case HWTSTAMP_FILTER_NONE:
3108  				pi->rxtstamp = false;
3109  				break;
3110  			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3111  			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3112  				cxgb4_ptprx_timestamping(pi, pi->port_id,
3113  							 PTP_TS_L4);
3114  				break;
3115  			case HWTSTAMP_FILTER_PTP_V2_EVENT:
3116  				cxgb4_ptprx_timestamping(pi, pi->port_id,
3117  							 PTP_TS_L2_L4);
3118  				break;
3119  			case HWTSTAMP_FILTER_ALL:
3120  			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3121  			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3122  			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3123  			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3124  				pi->rxtstamp = true;
3125  				break;
3126  			default:
3127  				pi->tstamp_config.rx_filter =
3128  					HWTSTAMP_FILTER_NONE;
3129  				return -ERANGE;
3130  			}
3131  
3132  			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3133  			    (pi->tstamp_config.rx_filter ==
3134  				HWTSTAMP_FILTER_NONE)) {
3135  				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3136  					pi->ptp_enable = false;
3137  			}
3138  
3139  			if (pi->tstamp_config.rx_filter !=
3140  				HWTSTAMP_FILTER_NONE) {
3141  				if (cxgb4_ptp_redirect_rx_packet(adapter,
3142  								 pi) >= 0)
3143  					pi->ptp_enable = true;
3144  			}
3145  		} else {
3146  			/* For T4 Adapters */
3147  			switch (pi->tstamp_config.rx_filter) {
3148  			case HWTSTAMP_FILTER_NONE:
3149  			pi->rxtstamp = false;
3150  			break;
3151  			case HWTSTAMP_FILTER_ALL:
3152  			pi->rxtstamp = true;
3153  			break;
3154  			default:
3155  			pi->tstamp_config.rx_filter =
3156  			HWTSTAMP_FILTER_NONE;
3157  			return -ERANGE;
3158  			}
3159  		}
3160  		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3161  				    sizeof(pi->tstamp_config)) ?
3162  			-EFAULT : 0;
3163  	default:
3164  		return -EOPNOTSUPP;
3165  	}
3166  	return ret;
3167  }
3168  
cxgb_set_rxmode(struct net_device * dev)3169  static void cxgb_set_rxmode(struct net_device *dev)
3170  {
3171  	/* unfortunately we can't return errors to the stack */
3172  	set_rxmode(dev, -1, false);
3173  }
3174  
cxgb_change_mtu(struct net_device * dev,int new_mtu)3175  static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3176  {
3177  	struct port_info *pi = netdev_priv(dev);
3178  	int ret;
3179  
3180  	ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3181  			    pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3182  	if (!ret)
3183  		WRITE_ONCE(dev->mtu, new_mtu);
3184  	return ret;
3185  }
3186  
3187  #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)3188  static int cxgb4_mgmt_open(struct net_device *dev)
3189  {
3190  	/* Turn carrier off since we don't have to transmit anything on this
3191  	 * interface.
3192  	 */
3193  	netif_carrier_off(dev);
3194  	return 0;
3195  }
3196  
3197  /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)3198  static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3199  {
3200  	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3201  	unsigned int i, vf, nvfs;
3202  	u16 a, b;
3203  	int err;
3204  	u8 *na;
3205  
3206  	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3207  	if (err)
3208  		return;
3209  
3210  	na = adap->params.vpd.na;
3211  	for (i = 0; i < ETH_ALEN; i++)
3212  		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3213  			      hex2val(na[2 * i + 1]));
3214  
3215  	a = (hw_addr[0] << 8) | hw_addr[1];
3216  	b = (hw_addr[1] << 8) | hw_addr[2];
3217  	a ^= b;
3218  	a |= 0x0200;    /* locally assigned Ethernet MAC address */
3219  	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3220  	macaddr[0] = a >> 8;
3221  	macaddr[1] = a & 0xff;
3222  
3223  	for (i = 2; i < 5; i++)
3224  		macaddr[i] = hw_addr[i + 1];
3225  
3226  	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3227  		vf < nvfs; vf++) {
3228  		macaddr[5] = adap->pf * nvfs + vf;
3229  		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3230  	}
3231  }
3232  
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)3233  static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3234  {
3235  	struct port_info *pi = netdev_priv(dev);
3236  	struct adapter *adap = pi->adapter;
3237  	int ret;
3238  
3239  	/* verify MAC addr is valid */
3240  	if (!is_valid_ether_addr(mac)) {
3241  		dev_err(pi->adapter->pdev_dev,
3242  			"Invalid Ethernet address %pM for VF %d\n",
3243  			mac, vf);
3244  		return -EINVAL;
3245  	}
3246  
3247  	dev_info(pi->adapter->pdev_dev,
3248  		 "Setting MAC %pM on VF %d\n", mac, vf);
3249  	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3250  	if (!ret)
3251  		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3252  	return ret;
3253  }
3254  
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)3255  static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3256  				    int vf, struct ifla_vf_info *ivi)
3257  {
3258  	struct port_info *pi = netdev_priv(dev);
3259  	struct adapter *adap = pi->adapter;
3260  	struct vf_info *vfinfo;
3261  
3262  	if (vf >= adap->num_vfs)
3263  		return -EINVAL;
3264  	vfinfo = &adap->vfinfo[vf];
3265  
3266  	ivi->vf = vf;
3267  	ivi->max_tx_rate = vfinfo->tx_rate;
3268  	ivi->min_tx_rate = 0;
3269  	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3270  	ivi->vlan = vfinfo->vlan;
3271  	ivi->linkstate = vfinfo->link_state;
3272  	return 0;
3273  }
3274  
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)3275  static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3276  				       struct netdev_phys_item_id *ppid)
3277  {
3278  	struct port_info *pi = netdev_priv(dev);
3279  	unsigned int phy_port_id;
3280  
3281  	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3282  	ppid->id_len = sizeof(phy_port_id);
3283  	memcpy(ppid->id, &phy_port_id, ppid->id_len);
3284  	return 0;
3285  }
3286  
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)3287  static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3288  				  int min_tx_rate, int max_tx_rate)
3289  {
3290  	struct port_info *pi = netdev_priv(dev);
3291  	struct adapter *adap = pi->adapter;
3292  	unsigned int link_ok, speed, mtu;
3293  	u32 fw_pfvf, fw_class;
3294  	int class_id = vf;
3295  	int ret;
3296  	u16 pktsize;
3297  
3298  	if (vf >= adap->num_vfs)
3299  		return -EINVAL;
3300  
3301  	if (min_tx_rate) {
3302  		dev_err(adap->pdev_dev,
3303  			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3304  			min_tx_rate, vf);
3305  		return -EINVAL;
3306  	}
3307  
3308  	if (max_tx_rate == 0) {
3309  		/* unbind VF to to any Traffic Class */
3310  		fw_pfvf =
3311  		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3312  		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3313  		fw_class = 0xffffffff;
3314  		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3315  				    &fw_pfvf, &fw_class);
3316  		if (ret) {
3317  			dev_err(adap->pdev_dev,
3318  				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3319  				ret, adap->pf, vf);
3320  			return -EINVAL;
3321  		}
3322  		dev_info(adap->pdev_dev,
3323  			 "PF %d VF %d is unbound from TX Rate Limiting\n",
3324  			 adap->pf, vf);
3325  		adap->vfinfo[vf].tx_rate = 0;
3326  		return 0;
3327  	}
3328  
3329  	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3330  	if (ret != FW_SUCCESS) {
3331  		dev_err(adap->pdev_dev,
3332  			"Failed to get link information for VF %d\n", vf);
3333  		return -EINVAL;
3334  	}
3335  
3336  	if (!link_ok) {
3337  		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3338  		return -EINVAL;
3339  	}
3340  
3341  	if (max_tx_rate > speed) {
3342  		dev_err(adap->pdev_dev,
3343  			"Max tx rate %d for VF %d can't be > link-speed %u",
3344  			max_tx_rate, vf, speed);
3345  		return -EINVAL;
3346  	}
3347  
3348  	pktsize = mtu;
3349  	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3350  	pktsize = pktsize - sizeof(struct ethhdr) - 4;
3351  	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3352  	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3353  	/* configure Traffic Class for rate-limiting */
3354  	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3355  			      SCHED_CLASS_LEVEL_CL_RL,
3356  			      SCHED_CLASS_MODE_CLASS,
3357  			      SCHED_CLASS_RATEUNIT_BITS,
3358  			      SCHED_CLASS_RATEMODE_ABS,
3359  			      pi->tx_chan, class_id, 0,
3360  			      max_tx_rate * 1000, 0, pktsize, 0);
3361  	if (ret) {
3362  		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3363  			ret);
3364  		return -EINVAL;
3365  	}
3366  	dev_info(adap->pdev_dev,
3367  		 "Class %d with MSS %u configured with rate %u\n",
3368  		 class_id, pktsize, max_tx_rate);
3369  
3370  	/* bind VF to configured Traffic Class */
3371  	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3372  		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3373  	fw_class = class_id;
3374  	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3375  			    &fw_class);
3376  	if (ret) {
3377  		dev_err(adap->pdev_dev,
3378  			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3379  			ret, adap->pf, vf, class_id);
3380  		return -EINVAL;
3381  	}
3382  	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3383  		 adap->pf, vf, class_id);
3384  	adap->vfinfo[vf].tx_rate = max_tx_rate;
3385  	return 0;
3386  }
3387  
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)3388  static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3389  				  u16 vlan, u8 qos, __be16 vlan_proto)
3390  {
3391  	struct port_info *pi = netdev_priv(dev);
3392  	struct adapter *adap = pi->adapter;
3393  	int ret;
3394  
3395  	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3396  		return -EINVAL;
3397  
3398  	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3399  		return -EPROTONOSUPPORT;
3400  
3401  	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3402  	if (!ret) {
3403  		adap->vfinfo[vf].vlan = vlan;
3404  		return 0;
3405  	}
3406  
3407  	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3408  		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3409  	return ret;
3410  }
3411  
cxgb4_mgmt_set_vf_link_state(struct net_device * dev,int vf,int link)3412  static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3413  					int link)
3414  {
3415  	struct port_info *pi = netdev_priv(dev);
3416  	struct adapter *adap = pi->adapter;
3417  	u32 param, val;
3418  	int ret = 0;
3419  
3420  	if (vf >= adap->num_vfs)
3421  		return -EINVAL;
3422  
3423  	switch (link) {
3424  	case IFLA_VF_LINK_STATE_AUTO:
3425  		val = FW_VF_LINK_STATE_AUTO;
3426  		break;
3427  
3428  	case IFLA_VF_LINK_STATE_ENABLE:
3429  		val = FW_VF_LINK_STATE_ENABLE;
3430  		break;
3431  
3432  	case IFLA_VF_LINK_STATE_DISABLE:
3433  		val = FW_VF_LINK_STATE_DISABLE;
3434  		break;
3435  
3436  	default:
3437  		return -EINVAL;
3438  	}
3439  
3440  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3441  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3442  	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3443  			    &param, &val);
3444  	if (ret) {
3445  		dev_err(adap->pdev_dev,
3446  			"Error %d in setting PF %d VF %d link state\n",
3447  			ret, adap->pf, vf);
3448  		return -EINVAL;
3449  	}
3450  
3451  	adap->vfinfo[vf].link_state = link;
3452  	return ret;
3453  }
3454  #endif /* CONFIG_PCI_IOV */
3455  
cxgb_set_mac_addr(struct net_device * dev,void * p)3456  static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3457  {
3458  	int ret;
3459  	struct sockaddr *addr = p;
3460  	struct port_info *pi = netdev_priv(dev);
3461  
3462  	if (!is_valid_ether_addr(addr->sa_data))
3463  		return -EADDRNOTAVAIL;
3464  
3465  	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3466  				    addr->sa_data, true, &pi->smt_idx);
3467  	if (ret < 0)
3468  		return ret;
3469  
3470  	eth_hw_addr_set(dev, addr->sa_data);
3471  	return 0;
3472  }
3473  
3474  #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)3475  static void cxgb_netpoll(struct net_device *dev)
3476  {
3477  	struct port_info *pi = netdev_priv(dev);
3478  	struct adapter *adap = pi->adapter;
3479  
3480  	if (adap->flags & CXGB4_USING_MSIX) {
3481  		int i;
3482  		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3483  
3484  		for (i = pi->nqsets; i; i--, rx++)
3485  			t4_sge_intr_msix(0, &rx->rspq);
3486  	} else
3487  		t4_intr_handler(adap)(0, adap);
3488  }
3489  #endif
3490  
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)3491  static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3492  {
3493  	struct port_info *pi = netdev_priv(dev);
3494  	struct adapter *adap = pi->adapter;
3495  	struct ch_sched_queue qe = { 0 };
3496  	struct ch_sched_params p = { 0 };
3497  	struct sched_class *e;
3498  	u32 req_rate;
3499  	int err = 0;
3500  
3501  	if (!can_sched(dev))
3502  		return -ENOTSUPP;
3503  
3504  	if (index < 0 || index > pi->nqsets - 1)
3505  		return -EINVAL;
3506  
3507  	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3508  		dev_err(adap->pdev_dev,
3509  			"Failed to rate limit on queue %d. Link Down?\n",
3510  			index);
3511  		return -EINVAL;
3512  	}
3513  
3514  	qe.queue = index;
3515  	e = cxgb4_sched_queue_lookup(dev, &qe);
3516  	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3517  		dev_err(adap->pdev_dev,
3518  			"Queue %u already bound to class %u of type: %u\n",
3519  			index, e->idx, e->info.u.params.level);
3520  		return -EBUSY;
3521  	}
3522  
3523  	/* Convert from Mbps to Kbps */
3524  	req_rate = rate * 1000;
3525  
3526  	/* Max rate is 100 Gbps */
3527  	if (req_rate > SCHED_MAX_RATE_KBPS) {
3528  		dev_err(adap->pdev_dev,
3529  			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3530  			rate, SCHED_MAX_RATE_KBPS / 1000);
3531  		return -ERANGE;
3532  	}
3533  
3534  	/* First unbind the queue from any existing class */
3535  	memset(&qe, 0, sizeof(qe));
3536  	qe.queue = index;
3537  	qe.class = SCHED_CLS_NONE;
3538  
3539  	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3540  	if (err) {
3541  		dev_err(adap->pdev_dev,
3542  			"Unbinding Queue %d on port %d fail. Err: %d\n",
3543  			index, pi->port_id, err);
3544  		return err;
3545  	}
3546  
3547  	/* Queue already unbound */
3548  	if (!req_rate)
3549  		return 0;
3550  
3551  	/* Fetch any available unused or matching scheduling class */
3552  	p.type = SCHED_CLASS_TYPE_PACKET;
3553  	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3554  	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3555  	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3556  	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3557  	p.u.params.channel  = pi->tx_chan;
3558  	p.u.params.class    = SCHED_CLS_NONE;
3559  	p.u.params.minrate  = 0;
3560  	p.u.params.maxrate  = req_rate;
3561  	p.u.params.weight   = 0;
3562  	p.u.params.pktsize  = dev->mtu;
3563  
3564  	e = cxgb4_sched_class_alloc(dev, &p);
3565  	if (!e)
3566  		return -ENOMEM;
3567  
3568  	/* Bind the queue to a scheduling class */
3569  	memset(&qe, 0, sizeof(qe));
3570  	qe.queue = index;
3571  	qe.class = e->idx;
3572  
3573  	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3574  	if (err)
3575  		dev_err(adap->pdev_dev,
3576  			"Queue rate limiting failed. Err: %d\n", err);
3577  	return err;
3578  }
3579  
cxgb_setup_tc_flower(struct net_device * dev,struct flow_cls_offload * cls_flower)3580  static int cxgb_setup_tc_flower(struct net_device *dev,
3581  				struct flow_cls_offload *cls_flower)
3582  {
3583  	switch (cls_flower->command) {
3584  	case FLOW_CLS_REPLACE:
3585  		return cxgb4_tc_flower_replace(dev, cls_flower);
3586  	case FLOW_CLS_DESTROY:
3587  		return cxgb4_tc_flower_destroy(dev, cls_flower);
3588  	case FLOW_CLS_STATS:
3589  		return cxgb4_tc_flower_stats(dev, cls_flower);
3590  	default:
3591  		return -EOPNOTSUPP;
3592  	}
3593  }
3594  
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)3595  static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3596  				 struct tc_cls_u32_offload *cls_u32)
3597  {
3598  	switch (cls_u32->command) {
3599  	case TC_CLSU32_NEW_KNODE:
3600  	case TC_CLSU32_REPLACE_KNODE:
3601  		return cxgb4_config_knode(dev, cls_u32);
3602  	case TC_CLSU32_DELETE_KNODE:
3603  		return cxgb4_delete_knode(dev, cls_u32);
3604  	default:
3605  		return -EOPNOTSUPP;
3606  	}
3607  }
3608  
cxgb_setup_tc_matchall(struct net_device * dev,struct tc_cls_matchall_offload * cls_matchall,bool ingress)3609  static int cxgb_setup_tc_matchall(struct net_device *dev,
3610  				  struct tc_cls_matchall_offload *cls_matchall,
3611  				  bool ingress)
3612  {
3613  	struct adapter *adap = netdev2adap(dev);
3614  
3615  	if (!adap->tc_matchall)
3616  		return -ENOMEM;
3617  
3618  	switch (cls_matchall->command) {
3619  	case TC_CLSMATCHALL_REPLACE:
3620  		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3621  	case TC_CLSMATCHALL_DESTROY:
3622  		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3623  	case TC_CLSMATCHALL_STATS:
3624  		if (ingress)
3625  			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3626  		break;
3627  	default:
3628  		break;
3629  	}
3630  
3631  	return -EOPNOTSUPP;
3632  }
3633  
cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3634  static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3635  					  void *type_data, void *cb_priv)
3636  {
3637  	struct net_device *dev = cb_priv;
3638  	struct port_info *pi = netdev2pinfo(dev);
3639  	struct adapter *adap = netdev2adap(dev);
3640  
3641  	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3642  		dev_err(adap->pdev_dev,
3643  			"Failed to setup tc on port %d. Link Down?\n",
3644  			pi->port_id);
3645  		return -EINVAL;
3646  	}
3647  
3648  	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3649  		return -EOPNOTSUPP;
3650  
3651  	switch (type) {
3652  	case TC_SETUP_CLSU32:
3653  		return cxgb_setup_tc_cls_u32(dev, type_data);
3654  	case TC_SETUP_CLSFLOWER:
3655  		return cxgb_setup_tc_flower(dev, type_data);
3656  	case TC_SETUP_CLSMATCHALL:
3657  		return cxgb_setup_tc_matchall(dev, type_data, true);
3658  	default:
3659  		return -EOPNOTSUPP;
3660  	}
3661  }
3662  
cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3663  static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3664  					 void *type_data, void *cb_priv)
3665  {
3666  	struct net_device *dev = cb_priv;
3667  	struct port_info *pi = netdev2pinfo(dev);
3668  	struct adapter *adap = netdev2adap(dev);
3669  
3670  	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3671  		dev_err(adap->pdev_dev,
3672  			"Failed to setup tc on port %d. Link Down?\n",
3673  			pi->port_id);
3674  		return -EINVAL;
3675  	}
3676  
3677  	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3678  		return -EOPNOTSUPP;
3679  
3680  	switch (type) {
3681  	case TC_SETUP_CLSMATCHALL:
3682  		return cxgb_setup_tc_matchall(dev, type_data, false);
3683  	default:
3684  		break;
3685  	}
3686  
3687  	return -EOPNOTSUPP;
3688  }
3689  
cxgb_setup_tc_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)3690  static int cxgb_setup_tc_mqprio(struct net_device *dev,
3691  				struct tc_mqprio_qopt_offload *mqprio)
3692  {
3693  	struct adapter *adap = netdev2adap(dev);
3694  
3695  	if (!is_ethofld(adap) || !adap->tc_mqprio)
3696  		return -ENOMEM;
3697  
3698  	return cxgb4_setup_tc_mqprio(dev, mqprio);
3699  }
3700  
3701  static LIST_HEAD(cxgb_block_cb_list);
3702  
cxgb_setup_tc_block(struct net_device * dev,struct flow_block_offload * f)3703  static int cxgb_setup_tc_block(struct net_device *dev,
3704  			       struct flow_block_offload *f)
3705  {
3706  	struct port_info *pi = netdev_priv(dev);
3707  	flow_setup_cb_t *cb;
3708  	bool ingress_only;
3709  
3710  	pi->tc_block_shared = f->block_shared;
3711  	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3712  		cb = cxgb_setup_tc_block_egress_cb;
3713  		ingress_only = false;
3714  	} else {
3715  		cb = cxgb_setup_tc_block_ingress_cb;
3716  		ingress_only = true;
3717  	}
3718  
3719  	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3720  					  cb, pi, dev, ingress_only);
3721  }
3722  
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3723  static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3724  			 void *type_data)
3725  {
3726  	switch (type) {
3727  	case TC_SETUP_QDISC_MQPRIO:
3728  		return cxgb_setup_tc_mqprio(dev, type_data);
3729  	case TC_SETUP_BLOCK:
3730  		return cxgb_setup_tc_block(dev, type_data);
3731  	default:
3732  		return -EOPNOTSUPP;
3733  	}
3734  }
3735  
cxgb_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3736  static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3737  				      unsigned int table, unsigned int entry,
3738  				      struct udp_tunnel_info *ti)
3739  {
3740  	struct port_info *pi = netdev_priv(netdev);
3741  	struct adapter *adapter = pi->adapter;
3742  	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3743  	int ret = 0, i;
3744  
3745  	switch (ti->type) {
3746  	case UDP_TUNNEL_TYPE_VXLAN:
3747  		adapter->vxlan_port = 0;
3748  		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3749  		break;
3750  	case UDP_TUNNEL_TYPE_GENEVE:
3751  		adapter->geneve_port = 0;
3752  		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3753  		break;
3754  	default:
3755  		return -EINVAL;
3756  	}
3757  
3758  	/* Matchall mac entries can be deleted only after all tunnel ports
3759  	 * are brought down or removed.
3760  	 */
3761  	if (!adapter->rawf_cnt)
3762  		return 0;
3763  	for_each_port(adapter, i) {
3764  		pi = adap2pinfo(adapter, i);
3765  		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3766  					   match_all_mac, match_all_mac,
3767  					   adapter->rawf_start + pi->port_id,
3768  					   1, pi->port_id, false);
3769  		if (ret < 0) {
3770  			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3771  				    i);
3772  			return ret;
3773  		}
3774  	}
3775  
3776  	return 0;
3777  }
3778  
cxgb_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3779  static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3780  				    unsigned int table, unsigned int entry,
3781  				    struct udp_tunnel_info *ti)
3782  {
3783  	struct port_info *pi = netdev_priv(netdev);
3784  	struct adapter *adapter = pi->adapter;
3785  	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3786  	int i, ret;
3787  
3788  	switch (ti->type) {
3789  	case UDP_TUNNEL_TYPE_VXLAN:
3790  		adapter->vxlan_port = ti->port;
3791  		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3792  			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3793  		break;
3794  	case UDP_TUNNEL_TYPE_GENEVE:
3795  		adapter->geneve_port = ti->port;
3796  		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3797  			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3798  		break;
3799  	default:
3800  		return -EINVAL;
3801  	}
3802  
3803  	/* Create a 'match all' mac filter entry for inner mac,
3804  	 * if raw mac interface is supported. Once the linux kernel provides
3805  	 * driver entry points for adding/deleting the inner mac addresses,
3806  	 * we will remove this 'match all' entry and fallback to adding
3807  	 * exact match filters.
3808  	 */
3809  	for_each_port(adapter, i) {
3810  		pi = adap2pinfo(adapter, i);
3811  
3812  		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3813  					    match_all_mac,
3814  					    match_all_mac,
3815  					    adapter->rawf_start + pi->port_id,
3816  					    1, pi->port_id, false);
3817  		if (ret < 0) {
3818  			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3819  				    be16_to_cpu(ti->port));
3820  			return ret;
3821  		}
3822  	}
3823  
3824  	return 0;
3825  }
3826  
3827  static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3828  	.set_port	= cxgb_udp_tunnel_set_port,
3829  	.unset_port	= cxgb_udp_tunnel_unset_port,
3830  	.tables		= {
3831  		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3832  		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3833  	},
3834  };
3835  
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3836  static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3837  					     struct net_device *dev,
3838  					     netdev_features_t features)
3839  {
3840  	struct port_info *pi = netdev_priv(dev);
3841  	struct adapter *adapter = pi->adapter;
3842  
3843  	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3844  		return features;
3845  
3846  	/* Check if hw supports offload for this packet */
3847  	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3848  		return features;
3849  
3850  	/* Offload is not supported for this encapsulated packet */
3851  	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3852  }
3853  
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3854  static netdev_features_t cxgb_fix_features(struct net_device *dev,
3855  					   netdev_features_t features)
3856  {
3857  	/* Disable GRO, if RX_CSUM is disabled */
3858  	if (!(features & NETIF_F_RXCSUM))
3859  		features &= ~NETIF_F_GRO;
3860  
3861  	return features;
3862  }
3863  
3864  static const struct net_device_ops cxgb4_netdev_ops = {
3865  	.ndo_open             = cxgb_open,
3866  	.ndo_stop             = cxgb_close,
3867  	.ndo_start_xmit       = t4_start_xmit,
3868  	.ndo_select_queue     =	cxgb_select_queue,
3869  	.ndo_get_stats64      = cxgb_get_stats,
3870  	.ndo_set_rx_mode      = cxgb_set_rxmode,
3871  	.ndo_set_mac_address  = cxgb_set_mac_addr,
3872  	.ndo_set_features     = cxgb_set_features,
3873  	.ndo_validate_addr    = eth_validate_addr,
3874  	.ndo_eth_ioctl         = cxgb_ioctl,
3875  	.ndo_change_mtu       = cxgb_change_mtu,
3876  #ifdef CONFIG_NET_POLL_CONTROLLER
3877  	.ndo_poll_controller  = cxgb_netpoll,
3878  #endif
3879  #ifdef CONFIG_CHELSIO_T4_FCOE
3880  	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3881  	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3882  #endif /* CONFIG_CHELSIO_T4_FCOE */
3883  	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3884  	.ndo_setup_tc         = cxgb_setup_tc,
3885  	.ndo_features_check   = cxgb_features_check,
3886  	.ndo_fix_features     = cxgb_fix_features,
3887  };
3888  
3889  #ifdef CONFIG_PCI_IOV
3890  static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3891  	.ndo_open               = cxgb4_mgmt_open,
3892  	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3893  	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3894  	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3895  	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3896  	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3897  	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3898  };
3899  
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3900  static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3901  				   struct ethtool_drvinfo *info)
3902  {
3903  	struct adapter *adapter = netdev2adap(dev);
3904  
3905  	strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3906  	strscpy(info->bus_info, pci_name(adapter->pdev),
3907  		sizeof(info->bus_info));
3908  }
3909  
3910  static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3911  	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3912  };
3913  #endif
3914  
notify_fatal_err(struct work_struct * work)3915  static void notify_fatal_err(struct work_struct *work)
3916  {
3917  	struct adapter *adap;
3918  
3919  	adap = container_of(work, struct adapter, fatal_err_notify_task);
3920  	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3921  }
3922  
t4_fatal_err(struct adapter * adap)3923  void t4_fatal_err(struct adapter *adap)
3924  {
3925  	int port;
3926  
3927  	if (pci_channel_offline(adap->pdev))
3928  		return;
3929  
3930  	/* Disable the SGE since ULDs are going to free resources that
3931  	 * could be exposed to the adapter.  RDMA MWs for example...
3932  	 */
3933  	t4_shutdown_adapter(adap);
3934  	for_each_port(adap, port) {
3935  		struct net_device *dev = adap->port[port];
3936  
3937  		/* If we get here in very early initialization the network
3938  		 * devices may not have been set up yet.
3939  		 */
3940  		if (!dev)
3941  			continue;
3942  
3943  		netif_tx_stop_all_queues(dev);
3944  		netif_carrier_off(dev);
3945  	}
3946  	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3947  	queue_work(adap->workq, &adap->fatal_err_notify_task);
3948  }
3949  
setup_memwin(struct adapter * adap)3950  static void setup_memwin(struct adapter *adap)
3951  {
3952  	u32 nic_win_base = t4_get_util_window(adap);
3953  
3954  	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3955  }
3956  
setup_memwin_rdma(struct adapter * adap)3957  static void setup_memwin_rdma(struct adapter *adap)
3958  {
3959  	if (adap->vres.ocq.size) {
3960  		u32 start;
3961  		unsigned int sz_kb;
3962  
3963  		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3964  		start &= PCI_BASE_ADDRESS_MEM_MASK;
3965  		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3966  		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3967  		t4_write_reg(adap,
3968  			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3969  			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3970  		t4_write_reg(adap,
3971  			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3972  			     adap->vres.ocq.start);
3973  		t4_read_reg(adap,
3974  			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3975  	}
3976  }
3977  
3978  /* HMA Definitions */
3979  
3980  /* The maximum number of address that can be send in a single FW cmd */
3981  #define HMA_MAX_ADDR_IN_CMD	5
3982  
3983  #define HMA_PAGE_SIZE		PAGE_SIZE
3984  
3985  #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3986  
3987  #define HMA_PAGE_ORDER					\
3988  	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3989  	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3990  
3991  /* The minimum and maximum possible HMA sizes that can be specified in the FW
3992   * configuration(in units of MB).
3993   */
3994  #define HMA_MIN_TOTAL_SIZE	1
3995  #define HMA_MAX_TOTAL_SIZE				\
3996  	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3997  	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3998  
adap_free_hma_mem(struct adapter * adapter)3999  static void adap_free_hma_mem(struct adapter *adapter)
4000  {
4001  	struct scatterlist *iter;
4002  	struct page *page;
4003  	int i;
4004  
4005  	if (!adapter->hma.sgt)
4006  		return;
4007  
4008  	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4009  		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4010  			     adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
4011  		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4012  	}
4013  
4014  	for_each_sg(adapter->hma.sgt->sgl, iter,
4015  		    adapter->hma.sgt->orig_nents, i) {
4016  		page = sg_page(iter);
4017  		if (page)
4018  			__free_pages(page, HMA_PAGE_ORDER);
4019  	}
4020  
4021  	kfree(adapter->hma.phy_addr);
4022  	sg_free_table(adapter->hma.sgt);
4023  	kfree(adapter->hma.sgt);
4024  	adapter->hma.sgt = NULL;
4025  }
4026  
adap_config_hma(struct adapter * adapter)4027  static int adap_config_hma(struct adapter *adapter)
4028  {
4029  	struct scatterlist *sgl, *iter;
4030  	struct sg_table *sgt;
4031  	struct page *newpage;
4032  	unsigned int i, j, k;
4033  	u32 param, hma_size;
4034  	unsigned int ncmds;
4035  	size_t page_size;
4036  	u32 page_order;
4037  	int node, ret;
4038  
4039  	/* HMA is supported only for T6+ cards.
4040  	 * Avoid initializing HMA in kdump kernels.
4041  	 */
4042  	if (is_kdump_kernel() ||
4043  	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4044  		return 0;
4045  
4046  	/* Get the HMA region size required by fw */
4047  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4048  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4049  	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4050  			      1, &param, &hma_size);
4051  	/* An error means card has its own memory or HMA is not supported by
4052  	 * the firmware. Return without any errors.
4053  	 */
4054  	if (ret || !hma_size)
4055  		return 0;
4056  
4057  	if (hma_size < HMA_MIN_TOTAL_SIZE ||
4058  	    hma_size > HMA_MAX_TOTAL_SIZE) {
4059  		dev_err(adapter->pdev_dev,
4060  			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
4061  			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4062  		return -EINVAL;
4063  	}
4064  
4065  	page_size = HMA_PAGE_SIZE;
4066  	page_order = HMA_PAGE_ORDER;
4067  	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4068  	if (unlikely(!adapter->hma.sgt)) {
4069  		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4070  		return -ENOMEM;
4071  	}
4072  	sgt = adapter->hma.sgt;
4073  	/* FW returned value will be in MB's
4074  	 */
4075  	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4076  	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4077  		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4078  		kfree(adapter->hma.sgt);
4079  		adapter->hma.sgt = NULL;
4080  		return -ENOMEM;
4081  	}
4082  
4083  	sgl = adapter->hma.sgt->sgl;
4084  	node = dev_to_node(adapter->pdev_dev);
4085  	for_each_sg(sgl, iter, sgt->orig_nents, i) {
4086  		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4087  					   __GFP_ZERO, page_order);
4088  		if (!newpage) {
4089  			dev_err(adapter->pdev_dev,
4090  				"Not enough memory for HMA page allocation\n");
4091  			ret = -ENOMEM;
4092  			goto free_hma;
4093  		}
4094  		sg_set_page(iter, newpage, page_size << page_order, 0);
4095  	}
4096  
4097  	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4098  				DMA_BIDIRECTIONAL);
4099  	if (!sgt->nents) {
4100  		dev_err(adapter->pdev_dev,
4101  			"Not enough memory for HMA DMA mapping");
4102  		ret = -ENOMEM;
4103  		goto free_hma;
4104  	}
4105  	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4106  
4107  	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4108  					GFP_KERNEL);
4109  	if (unlikely(!adapter->hma.phy_addr))
4110  		goto free_hma;
4111  
4112  	for_each_sg(sgl, iter, sgt->nents, i) {
4113  		newpage = sg_page(iter);
4114  		adapter->hma.phy_addr[i] = sg_dma_address(iter);
4115  	}
4116  
4117  	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4118  	/* Pass on the addresses to firmware */
4119  	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4120  		struct fw_hma_cmd hma_cmd;
4121  		u8 naddr = HMA_MAX_ADDR_IN_CMD;
4122  		u8 soc = 0, eoc = 0;
4123  		u8 hma_mode = 1; /* Presently we support only Page table mode */
4124  
4125  		soc = (i == 0) ? 1 : 0;
4126  		eoc = (i == ncmds - 1) ? 1 : 0;
4127  
4128  		/* For last cmd, set naddr corresponding to remaining
4129  		 * addresses
4130  		 */
4131  		if (i == ncmds - 1) {
4132  			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4133  			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4134  		}
4135  		memset(&hma_cmd, 0, sizeof(hma_cmd));
4136  		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4137  				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4138  		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4139  
4140  		hma_cmd.mode_to_pcie_params =
4141  			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4142  			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4143  
4144  		/* HMA cmd size specified in MB's */
4145  		hma_cmd.naddr_size =
4146  			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4147  			      FW_HMA_CMD_NADDR_V(naddr));
4148  
4149  		/* Total Page size specified in units of 4K */
4150  		hma_cmd.addr_size_pkd =
4151  			htonl(FW_HMA_CMD_ADDR_SIZE_V
4152  				((page_size << page_order) >> 12));
4153  
4154  		/* Fill the 5 addresses */
4155  		for (j = 0; j < naddr; j++) {
4156  			hma_cmd.phy_address[j] =
4157  				cpu_to_be64(adapter->hma.phy_addr[j + k]);
4158  		}
4159  		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4160  				 sizeof(hma_cmd), &hma_cmd);
4161  		if (ret) {
4162  			dev_err(adapter->pdev_dev,
4163  				"HMA FW command failed with err %d\n", ret);
4164  			goto free_hma;
4165  		}
4166  	}
4167  
4168  	if (!ret)
4169  		dev_info(adapter->pdev_dev,
4170  			 "Reserved %uMB host memory for HMA\n", hma_size);
4171  	return ret;
4172  
4173  free_hma:
4174  	adap_free_hma_mem(adapter);
4175  	return ret;
4176  }
4177  
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)4178  static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4179  {
4180  	u32 v;
4181  	int ret;
4182  
4183  	/* Now that we've successfully configured and initialized the adapter
4184  	 * can ask the Firmware what resources it has provisioned for us.
4185  	 */
4186  	ret = t4_get_pfres(adap);
4187  	if (ret) {
4188  		dev_err(adap->pdev_dev,
4189  			"Unable to retrieve resource provisioning information\n");
4190  		return ret;
4191  	}
4192  
4193  	/* get device capabilities */
4194  	memset(c, 0, sizeof(*c));
4195  	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4196  			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
4197  	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4198  	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4199  	if (ret < 0)
4200  		return ret;
4201  
4202  	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4203  			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4204  	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4205  	if (ret < 0)
4206  		return ret;
4207  
4208  	ret = t4_config_glbl_rss(adap, adap->pf,
4209  				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4210  				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4211  				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4212  	if (ret < 0)
4213  		return ret;
4214  
4215  	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4216  			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4217  			  FW_CMD_CAP_PF);
4218  	if (ret < 0)
4219  		return ret;
4220  
4221  	t4_sge_init(adap);
4222  
4223  	/* tweak some settings */
4224  	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4225  	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4226  	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4227  	v = t4_read_reg(adap, TP_PIO_DATA_A);
4228  	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4229  
4230  	/* first 4 Tx modulation queues point to consecutive Tx channels */
4231  	adap->params.tp.tx_modq_map = 0xE4;
4232  	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4233  		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4234  
4235  	/* associate each Tx modulation queue with consecutive Tx channels */
4236  	v = 0x84218421;
4237  	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4238  			  &v, 1, TP_TX_SCHED_HDR_A);
4239  	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4240  			  &v, 1, TP_TX_SCHED_FIFO_A);
4241  	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4242  			  &v, 1, TP_TX_SCHED_PCMD_A);
4243  
4244  #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4245  	if (is_offload(adap)) {
4246  		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4247  			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4248  			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4249  			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250  			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4251  		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4252  			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253  			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254  			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255  			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4256  	}
4257  
4258  	/* get basic stuff going */
4259  	return t4_early_init(adap, adap->pf);
4260  }
4261  
4262  /*
4263   * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4264   */
4265  #define MAX_ATIDS 8192U
4266  
4267  /*
4268   * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4269   *
4270   * If the firmware we're dealing with has Configuration File support, then
4271   * we use that to perform all configuration
4272   */
4273  
4274  /*
4275   * Tweak configuration based on module parameters, etc.  Most of these have
4276   * defaults assigned to them by Firmware Configuration Files (if we're using
4277   * them) but need to be explicitly set if we're using hard-coded
4278   * initialization.  But even in the case of using Firmware Configuration
4279   * Files, we'd like to expose the ability to change these via module
4280   * parameters so these are essentially common tweaks/settings for
4281   * Configuration Files and hard-coded initialization ...
4282   */
adap_init0_tweaks(struct adapter * adapter)4283  static int adap_init0_tweaks(struct adapter *adapter)
4284  {
4285  	/*
4286  	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4287  	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4288  	 * 64B Cache Line Size ...
4289  	 */
4290  	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4291  
4292  	/*
4293  	 * Process module parameters which affect early initialization.
4294  	 */
4295  	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4296  		dev_err(&adapter->pdev->dev,
4297  			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4298  			rx_dma_offset);
4299  		rx_dma_offset = 2;
4300  	}
4301  	t4_set_reg_field(adapter, SGE_CONTROL_A,
4302  			 PKTSHIFT_V(PKTSHIFT_M),
4303  			 PKTSHIFT_V(rx_dma_offset));
4304  
4305  	/*
4306  	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4307  	 * adds the pseudo header itself.
4308  	 */
4309  	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4310  			       CSUM_HAS_PSEUDO_HDR_F, 0);
4311  
4312  	return 0;
4313  }
4314  
4315  /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4316   * unto themselves and they contain their own firmware to perform their
4317   * tasks ...
4318   */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)4319  static int phy_aq1202_version(const u8 *phy_fw_data,
4320  			      size_t phy_fw_size)
4321  {
4322  	int offset;
4323  
4324  	/* At offset 0x8 you're looking for the primary image's
4325  	 * starting offset which is 3 Bytes wide
4326  	 *
4327  	 * At offset 0xa of the primary image, you look for the offset
4328  	 * of the DRAM segment which is 3 Bytes wide.
4329  	 *
4330  	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4331  	 * wide
4332  	 */
4333  	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4334  	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4335  	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4336  
4337  	offset = le24(phy_fw_data + 0x8) << 12;
4338  	offset = le24(phy_fw_data + offset + 0xa);
4339  	return be16(phy_fw_data + offset + 0x27e);
4340  
4341  	#undef be16
4342  	#undef le16
4343  	#undef le24
4344  }
4345  
4346  static struct info_10gbt_phy_fw {
4347  	unsigned int phy_fw_id;		/* PCI Device ID */
4348  	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4349  	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4350  	int phy_flash;			/* Has FLASH for PHY Firmware */
4351  } phy_info_array[] = {
4352  	{
4353  		PHY_AQ1202_DEVICEID,
4354  		PHY_AQ1202_FIRMWARE,
4355  		phy_aq1202_version,
4356  		1,
4357  	},
4358  	{
4359  		PHY_BCM84834_DEVICEID,
4360  		PHY_BCM84834_FIRMWARE,
4361  		NULL,
4362  		0,
4363  	},
4364  	{ 0, NULL, NULL },
4365  };
4366  
find_phy_info(int devid)4367  static struct info_10gbt_phy_fw *find_phy_info(int devid)
4368  {
4369  	int i;
4370  
4371  	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4372  		if (phy_info_array[i].phy_fw_id == devid)
4373  			return &phy_info_array[i];
4374  	}
4375  	return NULL;
4376  }
4377  
4378  /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4379   * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4380   * we return a negative error number.  If we transfer new firmware we return 1
4381   * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4382   */
adap_init0_phy(struct adapter * adap)4383  static int adap_init0_phy(struct adapter *adap)
4384  {
4385  	const struct firmware *phyf;
4386  	int ret;
4387  	struct info_10gbt_phy_fw *phy_info;
4388  
4389  	/* Use the device ID to determine which PHY file to flash.
4390  	 */
4391  	phy_info = find_phy_info(adap->pdev->device);
4392  	if (!phy_info) {
4393  		dev_warn(adap->pdev_dev,
4394  			 "No PHY Firmware file found for this PHY\n");
4395  		return -EOPNOTSUPP;
4396  	}
4397  
4398  	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4399  	 * use that. The adapter firmware provides us with a memory buffer
4400  	 * where we can load a PHY firmware file from the host if we want to
4401  	 * override the PHY firmware File in flash.
4402  	 */
4403  	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4404  				      adap->pdev_dev);
4405  	if (ret < 0) {
4406  		/* For adapters without FLASH attached to PHY for their
4407  		 * firmware, it's obviously a fatal error if we can't get the
4408  		 * firmware to the adapter.  For adapters with PHY firmware
4409  		 * FLASH storage, it's worth a warning if we can't find the
4410  		 * PHY Firmware but we'll neuter the error ...
4411  		 */
4412  		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4413  			"/lib/firmware/%s, error %d\n",
4414  			phy_info->phy_fw_file, -ret);
4415  		if (phy_info->phy_flash) {
4416  			int cur_phy_fw_ver = 0;
4417  
4418  			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4419  			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4420  				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4421  			ret = 0;
4422  		}
4423  
4424  		return ret;
4425  	}
4426  
4427  	/* Load PHY Firmware onto adapter.
4428  	 */
4429  	ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4430  			     (u8 *)phyf->data, phyf->size);
4431  	if (ret < 0)
4432  		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4433  			-ret);
4434  	else if (ret > 0) {
4435  		int new_phy_fw_ver = 0;
4436  
4437  		if (phy_info->phy_fw_version)
4438  			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4439  								  phyf->size);
4440  		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4441  			 "Firmware /lib/firmware/%s, version %#x\n",
4442  			 phy_info->phy_fw_file, new_phy_fw_ver);
4443  	}
4444  
4445  	release_firmware(phyf);
4446  
4447  	return ret;
4448  }
4449  
4450  /*
4451   * Attempt to initialize the adapter via a Firmware Configuration File.
4452   */
adap_init0_config(struct adapter * adapter,int reset)4453  static int adap_init0_config(struct adapter *adapter, int reset)
4454  {
4455  	char *fw_config_file, fw_config_file_path[256];
4456  	u32 finiver, finicsum, cfcsum, param, val;
4457  	struct fw_caps_config_cmd caps_cmd;
4458  	unsigned long mtype = 0, maddr = 0;
4459  	const struct firmware *cf;
4460  	char *config_name = NULL;
4461  	int config_issued = 0;
4462  	int ret;
4463  
4464  	/*
4465  	 * Reset device if necessary.
4466  	 */
4467  	if (reset) {
4468  		ret = t4_fw_reset(adapter, adapter->mbox,
4469  				  PIORSTMODE_F | PIORST_F);
4470  		if (ret < 0)
4471  			goto bye;
4472  	}
4473  
4474  	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4475  	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4476  	 * to be performed after any global adapter RESET above since some
4477  	 * PHYs only have local RAM copies of the PHY firmware.
4478  	 */
4479  	if (is_10gbt_device(adapter->pdev->device)) {
4480  		ret = adap_init0_phy(adapter);
4481  		if (ret < 0)
4482  			goto bye;
4483  	}
4484  	/*
4485  	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4486  	 * then use that.  Otherwise, use the configuration file stored
4487  	 * in the adapter flash ...
4488  	 */
4489  	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4490  	case CHELSIO_T4:
4491  		fw_config_file = FW4_CFNAME;
4492  		break;
4493  	case CHELSIO_T5:
4494  		fw_config_file = FW5_CFNAME;
4495  		break;
4496  	case CHELSIO_T6:
4497  		fw_config_file = FW6_CFNAME;
4498  		break;
4499  	default:
4500  		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4501  		       adapter->pdev->device);
4502  		ret = -EINVAL;
4503  		goto bye;
4504  	}
4505  
4506  	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4507  	if (ret < 0) {
4508  		config_name = "On FLASH";
4509  		mtype = FW_MEMTYPE_CF_FLASH;
4510  		maddr = t4_flash_cfg_addr(adapter);
4511  	} else {
4512  		u32 params[7], val[7];
4513  
4514  		sprintf(fw_config_file_path,
4515  			"/lib/firmware/%s", fw_config_file);
4516  		config_name = fw_config_file_path;
4517  
4518  		if (cf->size >= FLASH_CFG_MAX_SIZE)
4519  			ret = -ENOMEM;
4520  		else {
4521  			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4522  			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4523  			ret = t4_query_params(adapter, adapter->mbox,
4524  					      adapter->pf, 0, 1, params, val);
4525  			if (ret == 0) {
4526  				/*
4527  				 * For t4_memory_rw() below addresses and
4528  				 * sizes have to be in terms of multiples of 4
4529  				 * bytes.  So, if the Configuration File isn't
4530  				 * a multiple of 4 bytes in length we'll have
4531  				 * to write that out separately since we can't
4532  				 * guarantee that the bytes following the
4533  				 * residual byte in the buffer returned by
4534  				 * request_firmware() are zeroed out ...
4535  				 */
4536  				size_t resid = cf->size & 0x3;
4537  				size_t size = cf->size & ~0x3;
4538  				__be32 *data = (__be32 *)cf->data;
4539  
4540  				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4541  				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4542  
4543  				spin_lock(&adapter->win0_lock);
4544  				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4545  						   size, data, T4_MEMORY_WRITE);
4546  				if (ret == 0 && resid != 0) {
4547  					union {
4548  						__be32 word;
4549  						char buf[4];
4550  					} last;
4551  					int i;
4552  
4553  					last.word = data[size >> 2];
4554  					for (i = resid; i < 4; i++)
4555  						last.buf[i] = 0;
4556  					ret = t4_memory_rw(adapter, 0, mtype,
4557  							   maddr + size,
4558  							   4, &last.word,
4559  							   T4_MEMORY_WRITE);
4560  				}
4561  				spin_unlock(&adapter->win0_lock);
4562  			}
4563  		}
4564  
4565  		release_firmware(cf);
4566  		if (ret)
4567  			goto bye;
4568  	}
4569  
4570  	val = 0;
4571  
4572  	/* Ofld + Hash filter is supported. Older fw will fail this request and
4573  	 * it is fine.
4574  	 */
4575  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4576  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4577  	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4578  			    1, &param, &val);
4579  
4580  	/* FW doesn't know about Hash filter + ofld support,
4581  	 * it's not a problem, don't return an error.
4582  	 */
4583  	if (ret < 0) {
4584  		dev_warn(adapter->pdev_dev,
4585  			 "Hash filter with ofld is not supported by FW\n");
4586  	}
4587  
4588  	/*
4589  	 * Issue a Capability Configuration command to the firmware to get it
4590  	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4591  	 * because we want the ability to modify various features after we've
4592  	 * processed the configuration file ...
4593  	 */
4594  	memset(&caps_cmd, 0, sizeof(caps_cmd));
4595  	caps_cmd.op_to_write =
4596  		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4597  		      FW_CMD_REQUEST_F |
4598  		      FW_CMD_READ_F);
4599  	caps_cmd.cfvalid_to_len16 =
4600  		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4601  		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4602  		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4603  		      FW_LEN16(caps_cmd));
4604  	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4605  			 &caps_cmd);
4606  
4607  	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4608  	 * Configuration File in FLASH), our last gasp effort is to use the
4609  	 * Firmware Configuration File which is embedded in the firmware.  A
4610  	 * very few early versions of the firmware didn't have one embedded
4611  	 * but we can ignore those.
4612  	 */
4613  	if (ret == -ENOENT) {
4614  		memset(&caps_cmd, 0, sizeof(caps_cmd));
4615  		caps_cmd.op_to_write =
4616  			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4617  					FW_CMD_REQUEST_F |
4618  					FW_CMD_READ_F);
4619  		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4620  		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4621  				sizeof(caps_cmd), &caps_cmd);
4622  		config_name = "Firmware Default";
4623  	}
4624  
4625  	config_issued = 1;
4626  	if (ret < 0)
4627  		goto bye;
4628  
4629  	finiver = ntohl(caps_cmd.finiver);
4630  	finicsum = ntohl(caps_cmd.finicsum);
4631  	cfcsum = ntohl(caps_cmd.cfcsum);
4632  	if (finicsum != cfcsum)
4633  		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4634  			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4635  			 finicsum, cfcsum);
4636  
4637  	/*
4638  	 * And now tell the firmware to use the configuration we just loaded.
4639  	 */
4640  	caps_cmd.op_to_write =
4641  		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4642  		      FW_CMD_REQUEST_F |
4643  		      FW_CMD_WRITE_F);
4644  	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4645  	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4646  			 NULL);
4647  	if (ret < 0)
4648  		goto bye;
4649  
4650  	/*
4651  	 * Tweak configuration based on system architecture, module
4652  	 * parameters, etc.
4653  	 */
4654  	ret = adap_init0_tweaks(adapter);
4655  	if (ret < 0)
4656  		goto bye;
4657  
4658  	/* We will proceed even if HMA init fails. */
4659  	ret = adap_config_hma(adapter);
4660  	if (ret)
4661  		dev_err(adapter->pdev_dev,
4662  			"HMA configuration failed with error %d\n", ret);
4663  
4664  	if (is_t6(adapter->params.chip)) {
4665  		adap_config_hpfilter(adapter);
4666  		ret = setup_ppod_edram(adapter);
4667  		if (!ret)
4668  			dev_info(adapter->pdev_dev, "Successfully enabled "
4669  				 "ppod edram feature\n");
4670  	}
4671  
4672  	/*
4673  	 * And finally tell the firmware to initialize itself using the
4674  	 * parameters from the Configuration File.
4675  	 */
4676  	ret = t4_fw_initialize(adapter, adapter->mbox);
4677  	if (ret < 0)
4678  		goto bye;
4679  
4680  	/* Emit Firmware Configuration File information and return
4681  	 * successfully.
4682  	 */
4683  	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4684  		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4685  		 config_name, finiver, cfcsum);
4686  	return 0;
4687  
4688  	/*
4689  	 * Something bad happened.  Return the error ...  (If the "error"
4690  	 * is that there's no Configuration File on the adapter we don't
4691  	 * want to issue a warning since this is fairly common.)
4692  	 */
4693  bye:
4694  	if (config_issued && ret != -ENOENT)
4695  		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4696  			 config_name, -ret);
4697  	return ret;
4698  }
4699  
4700  static struct fw_info fw_info_array[] = {
4701  	{
4702  		.chip = CHELSIO_T4,
4703  		.fs_name = FW4_CFNAME,
4704  		.fw_mod_name = FW4_FNAME,
4705  		.fw_hdr = {
4706  			.chip = FW_HDR_CHIP_T4,
4707  			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4708  			.intfver_nic = FW_INTFVER(T4, NIC),
4709  			.intfver_vnic = FW_INTFVER(T4, VNIC),
4710  			.intfver_ri = FW_INTFVER(T4, RI),
4711  			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4712  			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4713  		},
4714  	}, {
4715  		.chip = CHELSIO_T5,
4716  		.fs_name = FW5_CFNAME,
4717  		.fw_mod_name = FW5_FNAME,
4718  		.fw_hdr = {
4719  			.chip = FW_HDR_CHIP_T5,
4720  			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4721  			.intfver_nic = FW_INTFVER(T5, NIC),
4722  			.intfver_vnic = FW_INTFVER(T5, VNIC),
4723  			.intfver_ri = FW_INTFVER(T5, RI),
4724  			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4725  			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4726  		},
4727  	}, {
4728  		.chip = CHELSIO_T6,
4729  		.fs_name = FW6_CFNAME,
4730  		.fw_mod_name = FW6_FNAME,
4731  		.fw_hdr = {
4732  			.chip = FW_HDR_CHIP_T6,
4733  			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4734  			.intfver_nic = FW_INTFVER(T6, NIC),
4735  			.intfver_vnic = FW_INTFVER(T6, VNIC),
4736  			.intfver_ofld = FW_INTFVER(T6, OFLD),
4737  			.intfver_ri = FW_INTFVER(T6, RI),
4738  			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4739  			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4740  			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4741  			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4742  		},
4743  	}
4744  
4745  };
4746  
find_fw_info(int chip)4747  static struct fw_info *find_fw_info(int chip)
4748  {
4749  	int i;
4750  
4751  	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4752  		if (fw_info_array[i].chip == chip)
4753  			return &fw_info_array[i];
4754  	}
4755  	return NULL;
4756  }
4757  
4758  /*
4759   * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4760   */
adap_init0(struct adapter * adap,int vpd_skip)4761  static int adap_init0(struct adapter *adap, int vpd_skip)
4762  {
4763  	struct fw_caps_config_cmd caps_cmd;
4764  	u32 params[7], val[7];
4765  	enum dev_state state;
4766  	u32 v, port_vec;
4767  	int reset = 1;
4768  	int ret;
4769  
4770  	/* Grab Firmware Device Log parameters as early as possible so we have
4771  	 * access to it for debugging, etc.
4772  	 */
4773  	ret = t4_init_devlog_params(adap);
4774  	if (ret < 0)
4775  		return ret;
4776  
4777  	/* Contact FW, advertising Master capability */
4778  	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4779  			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4780  	if (ret < 0) {
4781  		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4782  			ret);
4783  		return ret;
4784  	}
4785  	if (ret == adap->mbox)
4786  		adap->flags |= CXGB4_MASTER_PF;
4787  
4788  	/*
4789  	 * If we're the Master PF Driver and the device is uninitialized,
4790  	 * then let's consider upgrading the firmware ...  (We always want
4791  	 * to check the firmware version number in order to A. get it for
4792  	 * later reporting and B. to warn if the currently loaded firmware
4793  	 * is excessively mismatched relative to the driver.)
4794  	 */
4795  
4796  	t4_get_version_info(adap);
4797  	ret = t4_check_fw_version(adap);
4798  	/* If firmware is too old (not supported by driver) force an update. */
4799  	if (ret)
4800  		state = DEV_STATE_UNINIT;
4801  	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4802  		struct fw_info *fw_info;
4803  		struct fw_hdr *card_fw;
4804  		const struct firmware *fw;
4805  		const u8 *fw_data = NULL;
4806  		unsigned int fw_size = 0;
4807  
4808  		/* This is the firmware whose headers the driver was compiled
4809  		 * against
4810  		 */
4811  		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4812  		if (fw_info == NULL) {
4813  			dev_err(adap->pdev_dev,
4814  				"unable to get firmware info for chip %d.\n",
4815  				CHELSIO_CHIP_VERSION(adap->params.chip));
4816  			return -EINVAL;
4817  		}
4818  
4819  		/* allocate memory to read the header of the firmware on the
4820  		 * card
4821  		 */
4822  		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4823  		if (!card_fw) {
4824  			ret = -ENOMEM;
4825  			goto bye;
4826  		}
4827  
4828  		/* Get FW from from /lib/firmware/ */
4829  		ret = request_firmware(&fw, fw_info->fw_mod_name,
4830  				       adap->pdev_dev);
4831  		if (ret < 0) {
4832  			dev_err(adap->pdev_dev,
4833  				"unable to load firmware image %s, error %d\n",
4834  				fw_info->fw_mod_name, ret);
4835  		} else {
4836  			fw_data = fw->data;
4837  			fw_size = fw->size;
4838  		}
4839  
4840  		/* upgrade FW logic */
4841  		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4842  				 state, &reset);
4843  
4844  		/* Cleaning up */
4845  		release_firmware(fw);
4846  		kvfree(card_fw);
4847  
4848  		if (ret < 0)
4849  			goto bye;
4850  	}
4851  
4852  	/* If the firmware is initialized already, emit a simply note to that
4853  	 * effect. Otherwise, it's time to try initializing the adapter.
4854  	 */
4855  	if (state == DEV_STATE_INIT) {
4856  		ret = adap_config_hma(adap);
4857  		if (ret)
4858  			dev_err(adap->pdev_dev,
4859  				"HMA configuration failed with error %d\n",
4860  				ret);
4861  		dev_info(adap->pdev_dev, "Coming up as %s: "\
4862  			 "Adapter already initialized\n",
4863  			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4864  	} else {
4865  		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4866  			 "Initializing adapter\n");
4867  
4868  		/* Find out whether we're dealing with a version of the
4869  		 * firmware which has configuration file support.
4870  		 */
4871  		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4872  			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4873  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4874  				      params, val);
4875  
4876  		/* If the firmware doesn't support Configuration Files,
4877  		 * return an error.
4878  		 */
4879  		if (ret < 0) {
4880  			dev_err(adap->pdev_dev, "firmware doesn't support "
4881  				"Firmware Configuration Files\n");
4882  			goto bye;
4883  		}
4884  
4885  		/* The firmware provides us with a memory buffer where we can
4886  		 * load a Configuration File from the host if we want to
4887  		 * override the Configuration File in flash.
4888  		 */
4889  		ret = adap_init0_config(adap, reset);
4890  		if (ret == -ENOENT) {
4891  			dev_err(adap->pdev_dev, "no Configuration File "
4892  				"present on adapter.\n");
4893  			goto bye;
4894  		}
4895  		if (ret < 0) {
4896  			dev_err(adap->pdev_dev, "could not initialize "
4897  				"adapter, error %d\n", -ret);
4898  			goto bye;
4899  		}
4900  	}
4901  
4902  	/* Now that we've successfully configured and initialized the adapter
4903  	 * (or found it already initialized), we can ask the Firmware what
4904  	 * resources it has provisioned for us.
4905  	 */
4906  	ret = t4_get_pfres(adap);
4907  	if (ret) {
4908  		dev_err(adap->pdev_dev,
4909  			"Unable to retrieve resource provisioning information\n");
4910  		goto bye;
4911  	}
4912  
4913  	/* Grab VPD parameters.  This should be done after we establish a
4914  	 * connection to the firmware since some of the VPD parameters
4915  	 * (notably the Core Clock frequency) are retrieved via requests to
4916  	 * the firmware.  On the other hand, we need these fairly early on
4917  	 * so we do this right after getting ahold of the firmware.
4918  	 *
4919  	 * We need to do this after initializing the adapter because someone
4920  	 * could have FLASHed a new VPD which won't be read by the firmware
4921  	 * until we do the RESET ...
4922  	 */
4923  	if (!vpd_skip) {
4924  		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4925  		if (ret < 0)
4926  			goto bye;
4927  	}
4928  
4929  	/* Find out what ports are available to us.  Note that we need to do
4930  	 * this before calling adap_init0_no_config() since it needs nports
4931  	 * and portvec ...
4932  	 */
4933  	v =
4934  	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4935  	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4936  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4937  	if (ret < 0)
4938  		goto bye;
4939  
4940  	adap->params.nports = hweight32(port_vec);
4941  	adap->params.portvec = port_vec;
4942  
4943  	/* Give the SGE code a chance to pull in anything that it needs ...
4944  	 * Note that this must be called after we retrieve our VPD parameters
4945  	 * in order to know how to convert core ticks to seconds, etc.
4946  	 */
4947  	ret = t4_sge_init(adap);
4948  	if (ret < 0)
4949  		goto bye;
4950  
4951  	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4952  	 * indicates that the Firmware and Hardware support this.
4953  	 */
4954  	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4955  		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4956  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4957  			      1, params, val);
4958  
4959  	if (!ret) {
4960  		adap->sge.dbqtimer_tick = val[0];
4961  		ret = t4_read_sge_dbqtimers(adap,
4962  					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4963  					    adap->sge.dbqtimer_val);
4964  	}
4965  
4966  	if (!ret)
4967  		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4968  
4969  	if (is_bypass_device(adap->pdev->device))
4970  		adap->params.bypass = 1;
4971  
4972  	/*
4973  	 * Grab some of our basic fundamental operating parameters.
4974  	 */
4975  	params[0] = FW_PARAM_PFVF(EQ_START);
4976  	params[1] = FW_PARAM_PFVF(L2T_START);
4977  	params[2] = FW_PARAM_PFVF(L2T_END);
4978  	params[3] = FW_PARAM_PFVF(FILTER_START);
4979  	params[4] = FW_PARAM_PFVF(FILTER_END);
4980  	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4981  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4982  	if (ret < 0)
4983  		goto bye;
4984  	adap->sge.egr_start = val[0];
4985  	adap->l2t_start = val[1];
4986  	adap->l2t_end = val[2];
4987  	adap->tids.ftid_base = val[3];
4988  	adap->tids.nftids = val[4] - val[3] + 1;
4989  	adap->sge.ingr_start = val[5];
4990  
4991  	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4992  		params[0] = FW_PARAM_PFVF(HPFILTER_START);
4993  		params[1] = FW_PARAM_PFVF(HPFILTER_END);
4994  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4995  				      params, val);
4996  		if (ret < 0)
4997  			goto bye;
4998  
4999  		adap->tids.hpftid_base = val[0];
5000  		adap->tids.nhpftids = val[1] - val[0] + 1;
5001  
5002  		/* Read the raw mps entries. In T6, the last 2 tcam entries
5003  		 * are reserved for raw mac addresses (rawf = 2, one per port).
5004  		 */
5005  		params[0] = FW_PARAM_PFVF(RAWF_START);
5006  		params[1] = FW_PARAM_PFVF(RAWF_END);
5007  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5008  				      params, val);
5009  		if (ret == 0) {
5010  			adap->rawf_start = val[0];
5011  			adap->rawf_cnt = val[1] - val[0] + 1;
5012  		}
5013  
5014  		adap->tids.tid_base =
5015  			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5016  	}
5017  
5018  	/* qids (ingress/egress) returned from firmware can be anywhere
5019  	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5020  	 * Hence driver needs to allocate memory for this range to
5021  	 * store the queue info. Get the highest IQFLINT/EQ index returned
5022  	 * in FW_EQ_*_CMD.alloc command.
5023  	 */
5024  	params[0] = FW_PARAM_PFVF(EQ_END);
5025  	params[1] = FW_PARAM_PFVF(IQFLINT_END);
5026  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5027  	if (ret < 0)
5028  		goto bye;
5029  	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5030  	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5031  
5032  	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5033  				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
5034  	if (!adap->sge.egr_map) {
5035  		ret = -ENOMEM;
5036  		goto bye;
5037  	}
5038  
5039  	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5040  				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5041  	if (!adap->sge.ingr_map) {
5042  		ret = -ENOMEM;
5043  		goto bye;
5044  	}
5045  
5046  	/* Allocate the memory for the vaious egress queue bitmaps
5047  	 * ie starving_fl, txq_maperr and blocked_fl.
5048  	 */
5049  	adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5050  	if (!adap->sge.starving_fl) {
5051  		ret = -ENOMEM;
5052  		goto bye;
5053  	}
5054  
5055  	adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5056  	if (!adap->sge.txq_maperr) {
5057  		ret = -ENOMEM;
5058  		goto bye;
5059  	}
5060  
5061  #ifdef CONFIG_DEBUG_FS
5062  	adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5063  	if (!adap->sge.blocked_fl) {
5064  		ret = -ENOMEM;
5065  		goto bye;
5066  	}
5067  #endif
5068  
5069  	params[0] = FW_PARAM_PFVF(CLIP_START);
5070  	params[1] = FW_PARAM_PFVF(CLIP_END);
5071  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5072  	if (ret < 0)
5073  		goto bye;
5074  	adap->clipt_start = val[0];
5075  	adap->clipt_end = val[1];
5076  
5077  	/* Get the supported number of traffic classes */
5078  	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5079  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5080  	if (ret < 0) {
5081  		/* We couldn't retrieve the number of Traffic Classes
5082  		 * supported by the hardware/firmware. So we hard
5083  		 * code it here.
5084  		 */
5085  		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5086  	} else {
5087  		adap->params.nsched_cls = val[0];
5088  	}
5089  
5090  	/* query params related to active filter region */
5091  	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5092  	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5093  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5094  	/* If Active filter size is set we enable establishing
5095  	 * offload connection through firmware work request
5096  	 */
5097  	if ((val[0] != val[1]) && (ret >= 0)) {
5098  		adap->flags |= CXGB4_FW_OFLD_CONN;
5099  		adap->tids.aftid_base = val[0];
5100  		adap->tids.aftid_end = val[1];
5101  	}
5102  
5103  	/* If we're running on newer firmware, let it know that we're
5104  	 * prepared to deal with encapsulated CPL messages.  Older
5105  	 * firmware won't understand this and we'll just get
5106  	 * unencapsulated messages ...
5107  	 */
5108  	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5109  	val[0] = 1;
5110  	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5111  
5112  	/*
5113  	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5114  	 * capability.  Earlier versions of the firmware didn't have the
5115  	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5116  	 * permission to use ULPTX MEMWRITE DSGL.
5117  	 */
5118  	if (is_t4(adap->params.chip)) {
5119  		adap->params.ulptx_memwrite_dsgl = false;
5120  	} else {
5121  		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5122  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5123  				      1, params, val);
5124  		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5125  	}
5126  
5127  	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5128  	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5129  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5130  			      1, params, val);
5131  	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5132  
5133  	/* See if FW supports FW_FILTER2 work request */
5134  	if (is_t4(adap->params.chip)) {
5135  		adap->params.filter2_wr_support = false;
5136  	} else {
5137  		params[0] = FW_PARAM_DEV(FILTER2_WR);
5138  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5139  				      1, params, val);
5140  		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5141  	}
5142  
5143  	/* Check if FW supports returning vin and smt index.
5144  	 * If this is not supported, driver will interpret
5145  	 * these values from viid.
5146  	 */
5147  	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5148  	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5149  			      1, params, val);
5150  	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5151  
5152  	/*
5153  	 * Get device capabilities so we can determine what resources we need
5154  	 * to manage.
5155  	 */
5156  	memset(&caps_cmd, 0, sizeof(caps_cmd));
5157  	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5158  				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
5159  	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5160  	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5161  			 &caps_cmd);
5162  	if (ret < 0)
5163  		goto bye;
5164  
5165  	/* hash filter has some mandatory register settings to be tested and for
5166  	 * that it needs to test whether offload is enabled or not, hence
5167  	 * checking and setting it here.
5168  	 */
5169  	if (caps_cmd.ofldcaps)
5170  		adap->params.offload = 1;
5171  
5172  	if (caps_cmd.ofldcaps ||
5173  	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5174  	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5175  		/* query offload-related parameters */
5176  		params[0] = FW_PARAM_DEV(NTID);
5177  		params[1] = FW_PARAM_PFVF(SERVER_START);
5178  		params[2] = FW_PARAM_PFVF(SERVER_END);
5179  		params[3] = FW_PARAM_PFVF(TDDP_START);
5180  		params[4] = FW_PARAM_PFVF(TDDP_END);
5181  		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5182  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5183  				      params, val);
5184  		if (ret < 0)
5185  			goto bye;
5186  		adap->tids.ntids = val[0];
5187  		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5188  		adap->tids.stid_base = val[1];
5189  		adap->tids.nstids = val[2] - val[1] + 1;
5190  		/*
5191  		 * Setup server filter region. Divide the available filter
5192  		 * region into two parts. Regular filters get 1/3rd and server
5193  		 * filters get 2/3rd part. This is only enabled if workarond
5194  		 * path is enabled.
5195  		 * 1. For regular filters.
5196  		 * 2. Server filter: This are special filters which are used
5197  		 * to redirect SYN packets to offload queue.
5198  		 */
5199  		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5200  			adap->tids.sftid_base = adap->tids.ftid_base +
5201  					DIV_ROUND_UP(adap->tids.nftids, 3);
5202  			adap->tids.nsftids = adap->tids.nftids -
5203  					 DIV_ROUND_UP(adap->tids.nftids, 3);
5204  			adap->tids.nftids = adap->tids.sftid_base -
5205  						adap->tids.ftid_base;
5206  		}
5207  		adap->vres.ddp.start = val[3];
5208  		adap->vres.ddp.size = val[4] - val[3] + 1;
5209  		adap->params.ofldq_wr_cred = val[5];
5210  
5211  		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5212  			init_hash_filter(adap);
5213  		} else {
5214  			adap->num_ofld_uld += 1;
5215  		}
5216  
5217  		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5218  			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5219  			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5220  			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5221  					      params, val);
5222  			if (!ret) {
5223  				adap->tids.eotid_base = val[0];
5224  				adap->tids.neotids = min_t(u32, MAX_ATIDS,
5225  							   val[1] - val[0] + 1);
5226  				adap->params.ethofld = 1;
5227  			}
5228  		}
5229  	}
5230  	if (caps_cmd.rdmacaps) {
5231  		params[0] = FW_PARAM_PFVF(STAG_START);
5232  		params[1] = FW_PARAM_PFVF(STAG_END);
5233  		params[2] = FW_PARAM_PFVF(RQ_START);
5234  		params[3] = FW_PARAM_PFVF(RQ_END);
5235  		params[4] = FW_PARAM_PFVF(PBL_START);
5236  		params[5] = FW_PARAM_PFVF(PBL_END);
5237  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5238  				      params, val);
5239  		if (ret < 0)
5240  			goto bye;
5241  		adap->vres.stag.start = val[0];
5242  		adap->vres.stag.size = val[1] - val[0] + 1;
5243  		adap->vres.rq.start = val[2];
5244  		adap->vres.rq.size = val[3] - val[2] + 1;
5245  		adap->vres.pbl.start = val[4];
5246  		adap->vres.pbl.size = val[5] - val[4] + 1;
5247  
5248  		params[0] = FW_PARAM_PFVF(SRQ_START);
5249  		params[1] = FW_PARAM_PFVF(SRQ_END);
5250  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5251  				      params, val);
5252  		if (!ret) {
5253  			adap->vres.srq.start = val[0];
5254  			adap->vres.srq.size = val[1] - val[0] + 1;
5255  		}
5256  		if (adap->vres.srq.size) {
5257  			adap->srq = t4_init_srq(adap->vres.srq.size);
5258  			if (!adap->srq)
5259  				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5260  		}
5261  
5262  		params[0] = FW_PARAM_PFVF(SQRQ_START);
5263  		params[1] = FW_PARAM_PFVF(SQRQ_END);
5264  		params[2] = FW_PARAM_PFVF(CQ_START);
5265  		params[3] = FW_PARAM_PFVF(CQ_END);
5266  		params[4] = FW_PARAM_PFVF(OCQ_START);
5267  		params[5] = FW_PARAM_PFVF(OCQ_END);
5268  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5269  				      val);
5270  		if (ret < 0)
5271  			goto bye;
5272  		adap->vres.qp.start = val[0];
5273  		adap->vres.qp.size = val[1] - val[0] + 1;
5274  		adap->vres.cq.start = val[2];
5275  		adap->vres.cq.size = val[3] - val[2] + 1;
5276  		adap->vres.ocq.start = val[4];
5277  		adap->vres.ocq.size = val[5] - val[4] + 1;
5278  
5279  		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5280  		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5281  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5282  				      val);
5283  		if (ret < 0) {
5284  			adap->params.max_ordird_qp = 8;
5285  			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5286  			ret = 0;
5287  		} else {
5288  			adap->params.max_ordird_qp = val[0];
5289  			adap->params.max_ird_adapter = val[1];
5290  		}
5291  		dev_info(adap->pdev_dev,
5292  			 "max_ordird_qp %d max_ird_adapter %d\n",
5293  			 adap->params.max_ordird_qp,
5294  			 adap->params.max_ird_adapter);
5295  
5296  		/* Enable write_with_immediate if FW supports it */
5297  		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5298  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5299  				      val);
5300  		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5301  
5302  		/* Enable write_cmpl if FW supports it */
5303  		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5304  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5305  				      val);
5306  		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5307  		adap->num_ofld_uld += 2;
5308  	}
5309  	if (caps_cmd.iscsicaps) {
5310  		params[0] = FW_PARAM_PFVF(ISCSI_START);
5311  		params[1] = FW_PARAM_PFVF(ISCSI_END);
5312  		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5313  				      params, val);
5314  		if (ret < 0)
5315  			goto bye;
5316  		adap->vres.iscsi.start = val[0];
5317  		adap->vres.iscsi.size = val[1] - val[0] + 1;
5318  		if (is_t6(adap->params.chip)) {
5319  			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5320  			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5321  			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5322  					      params, val);
5323  			if (!ret) {
5324  				adap->vres.ppod_edram.start = val[0];
5325  				adap->vres.ppod_edram.size =
5326  					val[1] - val[0] + 1;
5327  
5328  				dev_info(adap->pdev_dev,
5329  					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5330  					 val[0], val[1],
5331  					 adap->vres.ppod_edram.size);
5332  			}
5333  		}
5334  		/* LIO target and cxgb4i initiaitor */
5335  		adap->num_ofld_uld += 2;
5336  	}
5337  	if (caps_cmd.cryptocaps) {
5338  		if (ntohs(caps_cmd.cryptocaps) &
5339  		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5340  			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5341  			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5342  					      2, params, val);
5343  			if (ret < 0) {
5344  				if (ret != -EINVAL)
5345  					goto bye;
5346  			} else {
5347  				adap->vres.ncrypto_fc = val[0];
5348  			}
5349  			adap->num_ofld_uld += 1;
5350  		}
5351  		if (ntohs(caps_cmd.cryptocaps) &
5352  		    FW_CAPS_CONFIG_TLS_INLINE) {
5353  			params[0] = FW_PARAM_PFVF(TLS_START);
5354  			params[1] = FW_PARAM_PFVF(TLS_END);
5355  			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5356  					      2, params, val);
5357  			if (ret < 0)
5358  				goto bye;
5359  			adap->vres.key.start = val[0];
5360  			adap->vres.key.size = val[1] - val[0] + 1;
5361  			adap->num_uld += 1;
5362  		}
5363  		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5364  	}
5365  
5366  	/* The MTU/MSS Table is initialized by now, so load their values.  If
5367  	 * we're initializing the adapter, then we'll make any modifications
5368  	 * we want to the MTU/MSS Table and also initialize the congestion
5369  	 * parameters.
5370  	 */
5371  	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5372  	if (state != DEV_STATE_INIT) {
5373  		int i;
5374  
5375  		/* The default MTU Table contains values 1492 and 1500.
5376  		 * However, for TCP, it's better to have two values which are
5377  		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5378  		 * This allows us to have a TCP Data Payload which is a
5379  		 * multiple of 8 regardless of what combination of TCP Options
5380  		 * are in use (always a multiple of 4 bytes) which is
5381  		 * important for performance reasons.  For instance, if no
5382  		 * options are in use, then we have a 20-byte IP header and a
5383  		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5384  		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5385  		 * which is not a multiple of 8.  So using an MSS of 1488 in
5386  		 * this case results in a TCP Data Payload of 1448 bytes which
5387  		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5388  		 * Stamps have been negotiated, then an MTU of 1500 bytes
5389  		 * results in a TCP Data Payload of 1448 bytes which, as
5390  		 * above, is a multiple of 8 bytes ...
5391  		 */
5392  		for (i = 0; i < NMTUS; i++)
5393  			if (adap->params.mtus[i] == 1492) {
5394  				adap->params.mtus[i] = 1488;
5395  				break;
5396  			}
5397  
5398  		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5399  			     adap->params.b_wnd);
5400  	}
5401  	t4_init_sge_params(adap);
5402  	adap->flags |= CXGB4_FW_OK;
5403  	t4_init_tp_params(adap, true);
5404  	return 0;
5405  
5406  	/*
5407  	 * Something bad happened.  If a command timed out or failed with EIO
5408  	 * FW does not operate within its spec or something catastrophic
5409  	 * happened to HW/FW, stop issuing commands.
5410  	 */
5411  bye:
5412  	adap_free_hma_mem(adap);
5413  	kfree(adap->sge.egr_map);
5414  	kfree(adap->sge.ingr_map);
5415  	bitmap_free(adap->sge.starving_fl);
5416  	bitmap_free(adap->sge.txq_maperr);
5417  #ifdef CONFIG_DEBUG_FS
5418  	bitmap_free(adap->sge.blocked_fl);
5419  #endif
5420  	if (ret != -ETIMEDOUT && ret != -EIO)
5421  		t4_fw_bye(adap, adap->mbox);
5422  	return ret;
5423  }
5424  
5425  /* EEH callbacks */
5426  
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)5427  static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5428  					 pci_channel_state_t state)
5429  {
5430  	int i;
5431  	struct adapter *adap = pci_get_drvdata(pdev);
5432  
5433  	if (!adap)
5434  		goto out;
5435  
5436  	rtnl_lock();
5437  	adap->flags &= ~CXGB4_FW_OK;
5438  	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5439  	spin_lock(&adap->stats_lock);
5440  	for_each_port(adap, i) {
5441  		struct net_device *dev = adap->port[i];
5442  		if (dev) {
5443  			netif_device_detach(dev);
5444  			netif_carrier_off(dev);
5445  		}
5446  	}
5447  	spin_unlock(&adap->stats_lock);
5448  	disable_interrupts(adap);
5449  	if (adap->flags & CXGB4_FULL_INIT_DONE)
5450  		cxgb_down(adap);
5451  	rtnl_unlock();
5452  	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5453  		pci_disable_device(pdev);
5454  		adap->flags &= ~CXGB4_DEV_ENABLED;
5455  	}
5456  out:	return state == pci_channel_io_perm_failure ?
5457  		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5458  }
5459  
eeh_slot_reset(struct pci_dev * pdev)5460  static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5461  {
5462  	int i, ret;
5463  	struct fw_caps_config_cmd c;
5464  	struct adapter *adap = pci_get_drvdata(pdev);
5465  
5466  	if (!adap) {
5467  		pci_restore_state(pdev);
5468  		pci_save_state(pdev);
5469  		return PCI_ERS_RESULT_RECOVERED;
5470  	}
5471  
5472  	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5473  		if (pci_enable_device(pdev)) {
5474  			dev_err(&pdev->dev, "Cannot reenable PCI "
5475  					    "device after reset\n");
5476  			return PCI_ERS_RESULT_DISCONNECT;
5477  		}
5478  		adap->flags |= CXGB4_DEV_ENABLED;
5479  	}
5480  
5481  	pci_set_master(pdev);
5482  	pci_restore_state(pdev);
5483  	pci_save_state(pdev);
5484  
5485  	if (t4_wait_dev_ready(adap->regs) < 0)
5486  		return PCI_ERS_RESULT_DISCONNECT;
5487  	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5488  		return PCI_ERS_RESULT_DISCONNECT;
5489  	adap->flags |= CXGB4_FW_OK;
5490  	if (adap_init1(adap, &c))
5491  		return PCI_ERS_RESULT_DISCONNECT;
5492  
5493  	for_each_port(adap, i) {
5494  		struct port_info *pi = adap2pinfo(adap, i);
5495  		u8 vivld = 0, vin = 0;
5496  
5497  		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5498  				  NULL, NULL, &vivld, &vin);
5499  		if (ret < 0)
5500  			return PCI_ERS_RESULT_DISCONNECT;
5501  		pi->viid = ret;
5502  		pi->xact_addr_filt = -1;
5503  		/* If fw supports returning the VIN as part of FW_VI_CMD,
5504  		 * save the returned values.
5505  		 */
5506  		if (adap->params.viid_smt_extn_support) {
5507  			pi->vivld = vivld;
5508  			pi->vin = vin;
5509  		} else {
5510  			/* Retrieve the values from VIID */
5511  			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5512  			pi->vin = FW_VIID_VIN_G(pi->viid);
5513  		}
5514  	}
5515  
5516  	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5517  		     adap->params.b_wnd);
5518  	setup_memwin(adap);
5519  	if (cxgb_up(adap))
5520  		return PCI_ERS_RESULT_DISCONNECT;
5521  	return PCI_ERS_RESULT_RECOVERED;
5522  }
5523  
eeh_resume(struct pci_dev * pdev)5524  static void eeh_resume(struct pci_dev *pdev)
5525  {
5526  	int i;
5527  	struct adapter *adap = pci_get_drvdata(pdev);
5528  
5529  	if (!adap)
5530  		return;
5531  
5532  	rtnl_lock();
5533  	for_each_port(adap, i) {
5534  		struct net_device *dev = adap->port[i];
5535  		if (dev) {
5536  			if (netif_running(dev)) {
5537  				link_start(dev);
5538  				cxgb_set_rxmode(dev);
5539  			}
5540  			netif_device_attach(dev);
5541  		}
5542  	}
5543  	rtnl_unlock();
5544  }
5545  
eeh_reset_prepare(struct pci_dev * pdev)5546  static void eeh_reset_prepare(struct pci_dev *pdev)
5547  {
5548  	struct adapter *adapter = pci_get_drvdata(pdev);
5549  	int i;
5550  
5551  	if (adapter->pf != 4)
5552  		return;
5553  
5554  	adapter->flags &= ~CXGB4_FW_OK;
5555  
5556  	notify_ulds(adapter, CXGB4_STATE_DOWN);
5557  
5558  	for_each_port(adapter, i)
5559  		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5560  			cxgb_close(adapter->port[i]);
5561  
5562  	disable_interrupts(adapter);
5563  	cxgb4_free_mps_ref_entries(adapter);
5564  
5565  	adap_free_hma_mem(adapter);
5566  
5567  	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5568  		cxgb_down(adapter);
5569  }
5570  
eeh_reset_done(struct pci_dev * pdev)5571  static void eeh_reset_done(struct pci_dev *pdev)
5572  {
5573  	struct adapter *adapter = pci_get_drvdata(pdev);
5574  	int err, i;
5575  
5576  	if (adapter->pf != 4)
5577  		return;
5578  
5579  	err = t4_wait_dev_ready(adapter->regs);
5580  	if (err < 0) {
5581  		dev_err(adapter->pdev_dev,
5582  			"Device not ready, err %d", err);
5583  		return;
5584  	}
5585  
5586  	setup_memwin(adapter);
5587  
5588  	err = adap_init0(adapter, 1);
5589  	if (err) {
5590  		dev_err(adapter->pdev_dev,
5591  			"Adapter init failed, err %d", err);
5592  		return;
5593  	}
5594  
5595  	setup_memwin_rdma(adapter);
5596  
5597  	if (adapter->flags & CXGB4_FW_OK) {
5598  		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5599  		if (err) {
5600  			dev_err(adapter->pdev_dev,
5601  				"Port init failed, err %d", err);
5602  			return;
5603  		}
5604  	}
5605  
5606  	err = cfg_queues(adapter);
5607  	if (err) {
5608  		dev_err(adapter->pdev_dev,
5609  			"Config queues failed, err %d", err);
5610  		return;
5611  	}
5612  
5613  	cxgb4_init_mps_ref_entries(adapter);
5614  
5615  	err = setup_fw_sge_queues(adapter);
5616  	if (err) {
5617  		dev_err(adapter->pdev_dev,
5618  			"FW sge queue allocation failed, err %d", err);
5619  		return;
5620  	}
5621  
5622  	for_each_port(adapter, i)
5623  		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5624  			cxgb_open(adapter->port[i]);
5625  }
5626  
5627  static const struct pci_error_handlers cxgb4_eeh = {
5628  	.error_detected = eeh_err_detected,
5629  	.slot_reset     = eeh_slot_reset,
5630  	.resume         = eeh_resume,
5631  	.reset_prepare  = eeh_reset_prepare,
5632  	.reset_done     = eeh_reset_done,
5633  };
5634  
5635  /* Return true if the Link Configuration supports "High Speeds" (those greater
5636   * than 1Gb/s).
5637   */
is_x_10g_port(const struct link_config * lc)5638  static inline bool is_x_10g_port(const struct link_config *lc)
5639  {
5640  	unsigned int speeds, high_speeds;
5641  
5642  	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5643  	high_speeds = speeds &
5644  			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5645  
5646  	return high_speeds != 0;
5647  }
5648  
5649  /* Perform default configuration of DMA queues depending on the number and type
5650   * of ports we found and the number of available CPUs.  Most settings can be
5651   * modified by the admin prior to actual use.
5652   */
cfg_queues(struct adapter * adap)5653  static int cfg_queues(struct adapter *adap)
5654  {
5655  	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5656  	u32 ncpus = num_online_cpus();
5657  	u32 niqflint, neq, num_ulds;
5658  	struct sge *s = &adap->sge;
5659  	u32 i, n10g = 0, qidx = 0;
5660  	u32 q10g = 0, q1g;
5661  
5662  	/* Reduce memory usage in kdump environment, disable all offload. */
5663  	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5664  		adap->params.offload = 0;
5665  		adap->params.crypto = 0;
5666  		adap->params.ethofld = 0;
5667  	}
5668  
5669  	/* Calculate the number of Ethernet Queue Sets available based on
5670  	 * resources provisioned for us.  We always have an Asynchronous
5671  	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5672  	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5673  	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5674  	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5675  	 *
5676  	 * Note that we should also take into account all of the various
5677  	 * Offload Queues.  But, in any situation where we're operating in
5678  	 * a Resource Constrained Provisioning environment, doing any Offload
5679  	 * at all is problematic ...
5680  	 */
5681  	niqflint = adap->params.pfres.niqflint - 1;
5682  	if (!(adap->flags & CXGB4_USING_MSIX))
5683  		niqflint--;
5684  	neq = adap->params.pfres.neq / 2;
5685  	avail_qsets = min(niqflint, neq);
5686  
5687  	if (avail_qsets < adap->params.nports) {
5688  		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5689  			avail_qsets, adap->params.nports);
5690  		return -ENOMEM;
5691  	}
5692  
5693  	/* Count the number of 10Gb/s or better ports */
5694  	for_each_port(adap, i)
5695  		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5696  
5697  	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5698  
5699  	/* We default to 1 queue per non-10G port and up to # of cores queues
5700  	 * per 10G port.
5701  	 */
5702  	if (n10g)
5703  		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5704  
5705  #ifdef CONFIG_CHELSIO_T4_DCB
5706  	/* For Data Center Bridging support we need to be able to support up
5707  	 * to 8 Traffic Priorities; each of which will be assigned to its
5708  	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5709  	 */
5710  	q1g = 8;
5711  	if (adap->params.nports * 8 > avail_eth_qsets) {
5712  		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5713  			avail_eth_qsets, adap->params.nports * 8);
5714  		return -ENOMEM;
5715  	}
5716  
5717  	if (adap->params.nports * ncpus < avail_eth_qsets)
5718  		q10g = max(8U, ncpus);
5719  	else
5720  		q10g = max(8U, q10g);
5721  
5722  	while ((q10g * n10g) >
5723  	       (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5724  		q10g--;
5725  
5726  #else /* !CONFIG_CHELSIO_T4_DCB */
5727  	q1g = 1;
5728  	q10g = min(q10g, ncpus);
5729  #endif /* !CONFIG_CHELSIO_T4_DCB */
5730  	if (is_kdump_kernel()) {
5731  		q10g = 1;
5732  		q1g = 1;
5733  	}
5734  
5735  	for_each_port(adap, i) {
5736  		struct port_info *pi = adap2pinfo(adap, i);
5737  
5738  		pi->first_qset = qidx;
5739  		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5740  		qidx += pi->nqsets;
5741  	}
5742  
5743  	s->ethqsets = qidx;
5744  	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5745  	avail_qsets -= qidx;
5746  
5747  	if (is_uld(adap)) {
5748  		/* For offload we use 1 queue/channel if all ports are up to 1G,
5749  		 * otherwise we divide all available queues amongst the channels
5750  		 * capped by the number of available cores.
5751  		 */
5752  		num_ulds = adap->num_uld + adap->num_ofld_uld;
5753  		i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5754  		avail_uld_qsets = roundup(i, adap->params.nports);
5755  		if (avail_qsets < num_ulds * adap->params.nports) {
5756  			adap->params.offload = 0;
5757  			adap->params.crypto = 0;
5758  			s->ofldqsets = 0;
5759  		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5760  			s->ofldqsets = adap->params.nports;
5761  		} else {
5762  			s->ofldqsets = avail_uld_qsets;
5763  		}
5764  
5765  		avail_qsets -= num_ulds * s->ofldqsets;
5766  	}
5767  
5768  	/* ETHOFLD Queues used for QoS offload should follow same
5769  	 * allocation scheme as normal Ethernet Queues.
5770  	 */
5771  	if (is_ethofld(adap)) {
5772  		if (avail_qsets < s->max_ethqsets) {
5773  			adap->params.ethofld = 0;
5774  			s->eoqsets = 0;
5775  		} else {
5776  			s->eoqsets = s->max_ethqsets;
5777  		}
5778  		avail_qsets -= s->eoqsets;
5779  	}
5780  
5781  	/* Mirror queues must follow same scheme as normal Ethernet
5782  	 * Queues, when there are enough queues available. Otherwise,
5783  	 * allocate at least 1 queue per port. If even 1 queue is not
5784  	 * available, then disable mirror queues support.
5785  	 */
5786  	if (avail_qsets >= s->max_ethqsets)
5787  		s->mirrorqsets = s->max_ethqsets;
5788  	else if (avail_qsets >= adap->params.nports)
5789  		s->mirrorqsets = adap->params.nports;
5790  	else
5791  		s->mirrorqsets = 0;
5792  	avail_qsets -= s->mirrorqsets;
5793  
5794  	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5795  		struct sge_eth_rxq *r = &s->ethrxq[i];
5796  
5797  		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5798  		r->fl.size = 72;
5799  	}
5800  
5801  	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5802  		s->ethtxq[i].q.size = 1024;
5803  
5804  	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5805  		s->ctrlq[i].q.size = 512;
5806  
5807  	if (!is_t4(adap->params.chip))
5808  		s->ptptxq.q.size = 8;
5809  
5810  	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5811  	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5812  
5813  	return 0;
5814  }
5815  
5816  /*
5817   * Reduce the number of Ethernet queues across all ports to at most n.
5818   * n provides at least one queue per port.
5819   */
reduce_ethqs(struct adapter * adap,int n)5820  static void reduce_ethqs(struct adapter *adap, int n)
5821  {
5822  	int i;
5823  	struct port_info *pi;
5824  
5825  	while (n < adap->sge.ethqsets)
5826  		for_each_port(adap, i) {
5827  			pi = adap2pinfo(adap, i);
5828  			if (pi->nqsets > 1) {
5829  				pi->nqsets--;
5830  				adap->sge.ethqsets--;
5831  				if (adap->sge.ethqsets <= n)
5832  					break;
5833  			}
5834  		}
5835  
5836  	n = 0;
5837  	for_each_port(adap, i) {
5838  		pi = adap2pinfo(adap, i);
5839  		pi->first_qset = n;
5840  		n += pi->nqsets;
5841  	}
5842  }
5843  
alloc_msix_info(struct adapter * adap,u32 num_vec)5844  static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5845  {
5846  	struct msix_info *msix_info;
5847  
5848  	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5849  	if (!msix_info)
5850  		return -ENOMEM;
5851  
5852  	adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL);
5853  	if (!adap->msix_bmap.msix_bmap) {
5854  		kfree(msix_info);
5855  		return -ENOMEM;
5856  	}
5857  
5858  	spin_lock_init(&adap->msix_bmap.lock);
5859  	adap->msix_bmap.mapsize = num_vec;
5860  
5861  	adap->msix_info = msix_info;
5862  	return 0;
5863  }
5864  
free_msix_info(struct adapter * adap)5865  static void free_msix_info(struct adapter *adap)
5866  {
5867  	bitmap_free(adap->msix_bmap.msix_bmap);
5868  	kfree(adap->msix_info);
5869  }
5870  
cxgb4_get_msix_idx_from_bmap(struct adapter * adap)5871  int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5872  {
5873  	struct msix_bmap *bmap = &adap->msix_bmap;
5874  	unsigned int msix_idx;
5875  	unsigned long flags;
5876  
5877  	spin_lock_irqsave(&bmap->lock, flags);
5878  	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5879  	if (msix_idx < bmap->mapsize) {
5880  		__set_bit(msix_idx, bmap->msix_bmap);
5881  	} else {
5882  		spin_unlock_irqrestore(&bmap->lock, flags);
5883  		return -ENOSPC;
5884  	}
5885  
5886  	spin_unlock_irqrestore(&bmap->lock, flags);
5887  	return msix_idx;
5888  }
5889  
cxgb4_free_msix_idx_in_bmap(struct adapter * adap,unsigned int msix_idx)5890  void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5891  				 unsigned int msix_idx)
5892  {
5893  	struct msix_bmap *bmap = &adap->msix_bmap;
5894  	unsigned long flags;
5895  
5896  	spin_lock_irqsave(&bmap->lock, flags);
5897  	__clear_bit(msix_idx, bmap->msix_bmap);
5898  	spin_unlock_irqrestore(&bmap->lock, flags);
5899  }
5900  
5901  /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5902  #define EXTRA_VECS 2
5903  
enable_msix(struct adapter * adap)5904  static int enable_msix(struct adapter *adap)
5905  {
5906  	u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5907  	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5908  	u8 num_uld = 0, nchan = adap->params.nports;
5909  	u32 i, want, need, num_vec;
5910  	struct sge *s = &adap->sge;
5911  	struct msix_entry *entries;
5912  	struct port_info *pi;
5913  	int allocated, ret;
5914  
5915  	want = s->max_ethqsets;
5916  #ifdef CONFIG_CHELSIO_T4_DCB
5917  	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5918  	 * each port.
5919  	 */
5920  	need = 8 * nchan;
5921  #else
5922  	need = nchan;
5923  #endif
5924  	eth_need = need;
5925  	if (is_uld(adap)) {
5926  		num_uld = adap->num_ofld_uld + adap->num_uld;
5927  		want += num_uld * s->ofldqsets;
5928  		uld_need = num_uld * nchan;
5929  		need += uld_need;
5930  	}
5931  
5932  	if (is_ethofld(adap)) {
5933  		want += s->eoqsets;
5934  		ethofld_need = eth_need;
5935  		need += ethofld_need;
5936  	}
5937  
5938  	if (s->mirrorqsets) {
5939  		want += s->mirrorqsets;
5940  		mirror_need = nchan;
5941  		need += mirror_need;
5942  	}
5943  
5944  	want += EXTRA_VECS;
5945  	need += EXTRA_VECS;
5946  
5947  	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5948  	if (!entries)
5949  		return -ENOMEM;
5950  
5951  	for (i = 0; i < want; i++)
5952  		entries[i].entry = i;
5953  
5954  	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5955  	if (allocated < 0) {
5956  		/* Disable offload and attempt to get vectors for NIC
5957  		 * only mode.
5958  		 */
5959  		want = s->max_ethqsets + EXTRA_VECS;
5960  		need = eth_need + EXTRA_VECS;
5961  		allocated = pci_enable_msix_range(adap->pdev, entries,
5962  						  need, want);
5963  		if (allocated < 0) {
5964  			dev_info(adap->pdev_dev,
5965  				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5966  			ret = allocated;
5967  			goto out_free;
5968  		}
5969  
5970  		dev_info(adap->pdev_dev,
5971  			 "Disabling offload due to insufficient MSI-X vectors\n");
5972  		adap->params.offload = 0;
5973  		adap->params.crypto = 0;
5974  		adap->params.ethofld = 0;
5975  		s->ofldqsets = 0;
5976  		s->eoqsets = 0;
5977  		s->mirrorqsets = 0;
5978  		uld_need = 0;
5979  		ethofld_need = 0;
5980  		mirror_need = 0;
5981  	}
5982  
5983  	num_vec = allocated;
5984  	if (num_vec < want) {
5985  		/* Distribute available vectors to the various queue groups.
5986  		 * Every group gets its minimum requirement and NIC gets top
5987  		 * priority for leftovers.
5988  		 */
5989  		ethqsets = eth_need;
5990  		if (is_uld(adap))
5991  			ofldqsets = nchan;
5992  		if (is_ethofld(adap))
5993  			eoqsets = ethofld_need;
5994  		if (s->mirrorqsets)
5995  			mirrorqsets = mirror_need;
5996  
5997  		num_vec -= need;
5998  		while (num_vec) {
5999  			if (num_vec < eth_need + ethofld_need ||
6000  			    ethqsets > s->max_ethqsets)
6001  				break;
6002  
6003  			for_each_port(adap, i) {
6004  				pi = adap2pinfo(adap, i);
6005  				if (pi->nqsets < 2)
6006  					continue;
6007  
6008  				ethqsets++;
6009  				num_vec--;
6010  				if (ethofld_need) {
6011  					eoqsets++;
6012  					num_vec--;
6013  				}
6014  			}
6015  		}
6016  
6017  		if (is_uld(adap)) {
6018  			while (num_vec) {
6019  				if (num_vec < uld_need ||
6020  				    ofldqsets > s->ofldqsets)
6021  					break;
6022  
6023  				ofldqsets++;
6024  				num_vec -= uld_need;
6025  			}
6026  		}
6027  
6028  		if (s->mirrorqsets) {
6029  			while (num_vec) {
6030  				if (num_vec < mirror_need ||
6031  				    mirrorqsets > s->mirrorqsets)
6032  					break;
6033  
6034  				mirrorqsets++;
6035  				num_vec -= mirror_need;
6036  			}
6037  		}
6038  	} else {
6039  		ethqsets = s->max_ethqsets;
6040  		if (is_uld(adap))
6041  			ofldqsets = s->ofldqsets;
6042  		if (is_ethofld(adap))
6043  			eoqsets = s->eoqsets;
6044  		if (s->mirrorqsets)
6045  			mirrorqsets = s->mirrorqsets;
6046  	}
6047  
6048  	if (ethqsets < s->max_ethqsets) {
6049  		s->max_ethqsets = ethqsets;
6050  		reduce_ethqs(adap, ethqsets);
6051  	}
6052  
6053  	if (is_uld(adap)) {
6054  		s->ofldqsets = ofldqsets;
6055  		s->nqs_per_uld = s->ofldqsets;
6056  	}
6057  
6058  	if (is_ethofld(adap))
6059  		s->eoqsets = eoqsets;
6060  
6061  	if (s->mirrorqsets) {
6062  		s->mirrorqsets = mirrorqsets;
6063  		for_each_port(adap, i) {
6064  			pi = adap2pinfo(adap, i);
6065  			pi->nmirrorqsets = s->mirrorqsets / nchan;
6066  			mutex_init(&pi->vi_mirror_mutex);
6067  		}
6068  	}
6069  
6070  	/* map for msix */
6071  	ret = alloc_msix_info(adap, allocated);
6072  	if (ret)
6073  		goto out_disable_msix;
6074  
6075  	for (i = 0; i < allocated; i++) {
6076  		adap->msix_info[i].vec = entries[i].vector;
6077  		adap->msix_info[i].idx = i;
6078  	}
6079  
6080  	dev_info(adap->pdev_dev,
6081  		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6082  		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6083  		 s->mirrorqsets);
6084  
6085  	kfree(entries);
6086  	return 0;
6087  
6088  out_disable_msix:
6089  	pci_disable_msix(adap->pdev);
6090  
6091  out_free:
6092  	kfree(entries);
6093  	return ret;
6094  }
6095  
6096  #undef EXTRA_VECS
6097  
init_rss(struct adapter * adap)6098  static int init_rss(struct adapter *adap)
6099  {
6100  	unsigned int i;
6101  	int err;
6102  
6103  	err = t4_init_rss_mode(adap, adap->mbox);
6104  	if (err)
6105  		return err;
6106  
6107  	for_each_port(adap, i) {
6108  		struct port_info *pi = adap2pinfo(adap, i);
6109  
6110  		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6111  		if (!pi->rss)
6112  			return -ENOMEM;
6113  	}
6114  	return 0;
6115  }
6116  
6117  /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)6118  static void print_adapter_info(struct adapter *adapter)
6119  {
6120  	/* Hardware/Firmware/etc. Version/Revision IDs */
6121  	t4_dump_version_info(adapter);
6122  
6123  	/* Software/Hardware configuration */
6124  	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6125  		 is_offload(adapter) ? "R" : "",
6126  		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6127  		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6128  		 is_offload(adapter) ? "Offload" : "non-Offload");
6129  }
6130  
print_port_info(const struct net_device * dev)6131  static void print_port_info(const struct net_device *dev)
6132  {
6133  	char buf[80];
6134  	char *bufp = buf;
6135  	const struct port_info *pi = netdev_priv(dev);
6136  	const struct adapter *adap = pi->adapter;
6137  
6138  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6139  		bufp += sprintf(bufp, "100M/");
6140  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6141  		bufp += sprintf(bufp, "1G/");
6142  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6143  		bufp += sprintf(bufp, "10G/");
6144  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6145  		bufp += sprintf(bufp, "25G/");
6146  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6147  		bufp += sprintf(bufp, "40G/");
6148  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6149  		bufp += sprintf(bufp, "50G/");
6150  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6151  		bufp += sprintf(bufp, "100G/");
6152  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6153  		bufp += sprintf(bufp, "200G/");
6154  	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6155  		bufp += sprintf(bufp, "400G/");
6156  	if (bufp != buf)
6157  		--bufp;
6158  	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6159  
6160  	netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
6161  }
6162  
6163  /*
6164   * Free the following resources:
6165   * - memory used for tables
6166   * - MSI/MSI-X
6167   * - net devices
6168   * - resources FW is holding for us
6169   */
free_some_resources(struct adapter * adapter)6170  static void free_some_resources(struct adapter *adapter)
6171  {
6172  	unsigned int i;
6173  
6174  	kvfree(adapter->smt);
6175  	kvfree(adapter->l2t);
6176  	kvfree(adapter->srq);
6177  	t4_cleanup_sched(adapter);
6178  	kvfree(adapter->tids.tid_tab);
6179  	cxgb4_cleanup_tc_matchall(adapter);
6180  	cxgb4_cleanup_tc_mqprio(adapter);
6181  	cxgb4_cleanup_tc_flower(adapter);
6182  	cxgb4_cleanup_tc_u32(adapter);
6183  	cxgb4_cleanup_ethtool_filters(adapter);
6184  	kfree(adapter->sge.egr_map);
6185  	kfree(adapter->sge.ingr_map);
6186  	bitmap_free(adapter->sge.starving_fl);
6187  	bitmap_free(adapter->sge.txq_maperr);
6188  #ifdef CONFIG_DEBUG_FS
6189  	bitmap_free(adapter->sge.blocked_fl);
6190  #endif
6191  	disable_msi(adapter);
6192  
6193  	for_each_port(adapter, i)
6194  		if (adapter->port[i]) {
6195  			struct port_info *pi = adap2pinfo(adapter, i);
6196  
6197  			if (pi->viid != 0)
6198  				t4_free_vi(adapter, adapter->mbox, adapter->pf,
6199  					   0, pi->viid);
6200  			kfree(adap2pinfo(adapter, i)->rss);
6201  			free_netdev(adapter->port[i]);
6202  		}
6203  	if (adapter->flags & CXGB4_FW_OK)
6204  		t4_fw_bye(adapter, adapter->pf);
6205  }
6206  
6207  #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6208  		   NETIF_F_GSO_UDP_L4)
6209  #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6210  		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6211  #define SEGMENT_SIZE 128
6212  
t4_get_chip_type(struct adapter * adap,int ver)6213  static int t4_get_chip_type(struct adapter *adap, int ver)
6214  {
6215  	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6216  
6217  	switch (ver) {
6218  	case CHELSIO_T4:
6219  		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6220  	case CHELSIO_T5:
6221  		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6222  	case CHELSIO_T6:
6223  		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6224  	default:
6225  		break;
6226  	}
6227  	return -EINVAL;
6228  }
6229  
6230  #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)6231  static void cxgb4_mgmt_setup(struct net_device *dev)
6232  {
6233  	dev->type = ARPHRD_NONE;
6234  	dev->mtu = 0;
6235  	dev->hard_header_len = 0;
6236  	dev->addr_len = 0;
6237  	dev->tx_queue_len = 0;
6238  	dev->flags |= IFF_NOARP;
6239  	dev->priv_flags |= IFF_NO_QUEUE;
6240  
6241  	/* Initialize the device structure. */
6242  	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6243  	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6244  }
6245  
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)6246  static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6247  {
6248  	struct adapter *adap = pci_get_drvdata(pdev);
6249  	int err = 0;
6250  	int current_vfs = pci_num_vf(pdev);
6251  	u32 pcie_fw;
6252  
6253  	pcie_fw = readl(adap->regs + PCIE_FW_A);
6254  	/* Check if fw is initialized */
6255  	if (!(pcie_fw & PCIE_FW_INIT_F)) {
6256  		dev_warn(&pdev->dev, "Device not initialized\n");
6257  		return -EOPNOTSUPP;
6258  	}
6259  
6260  	/* If any of the VF's is already assigned to Guest OS, then
6261  	 * SRIOV for the same cannot be modified
6262  	 */
6263  	if (current_vfs && pci_vfs_assigned(pdev)) {
6264  		dev_err(&pdev->dev,
6265  			"Cannot modify SR-IOV while VFs are assigned\n");
6266  		return current_vfs;
6267  	}
6268  	/* Note that the upper-level code ensures that we're never called with
6269  	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
6270  	 * it never hurts to code defensively.
6271  	 */
6272  	if (num_vfs != 0 && current_vfs != 0)
6273  		return -EBUSY;
6274  
6275  	/* Nothing to do for no change. */
6276  	if (num_vfs == current_vfs)
6277  		return num_vfs;
6278  
6279  	/* Disable SRIOV when zero is passed. */
6280  	if (!num_vfs) {
6281  		pci_disable_sriov(pdev);
6282  		/* free VF Management Interface */
6283  		unregister_netdev(adap->port[0]);
6284  		free_netdev(adap->port[0]);
6285  		adap->port[0] = NULL;
6286  
6287  		/* free VF resources */
6288  		adap->num_vfs = 0;
6289  		kfree(adap->vfinfo);
6290  		adap->vfinfo = NULL;
6291  		return 0;
6292  	}
6293  
6294  	if (!current_vfs) {
6295  		struct fw_pfvf_cmd port_cmd, port_rpl;
6296  		struct net_device *netdev;
6297  		unsigned int pmask, port;
6298  		struct pci_dev *pbridge;
6299  		struct port_info *pi;
6300  		char name[IFNAMSIZ];
6301  		u32 devcap2;
6302  		u16 flags;
6303  
6304  		/* If we want to instantiate Virtual Functions, then our
6305  		 * parent bridge's PCI-E needs to support Alternative Routing
6306  		 * ID (ARI) because our VFs will show up at function offset 8
6307  		 * and above.
6308  		 */
6309  		pbridge = pdev->bus->self;
6310  		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6311  		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6312  
6313  		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6314  		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6315  			/* Our parent bridge does not support ARI so issue a
6316  			 * warning and skip instantiating the VFs.  They
6317  			 * won't be reachable.
6318  			 */
6319  			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6320  				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6321  				 PCI_FUNC(pbridge->devfn));
6322  			return -ENOTSUPP;
6323  		}
6324  		memset(&port_cmd, 0, sizeof(port_cmd));
6325  		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6326  						 FW_CMD_REQUEST_F |
6327  						 FW_CMD_READ_F |
6328  						 FW_PFVF_CMD_PFN_V(adap->pf) |
6329  						 FW_PFVF_CMD_VFN_V(0));
6330  		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6331  		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6332  				 &port_rpl);
6333  		if (err)
6334  			return err;
6335  		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6336  		port = ffs(pmask) - 1;
6337  		/* Allocate VF Management Interface. */
6338  		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6339  			 adap->pf);
6340  		netdev = alloc_netdev(sizeof(struct port_info),
6341  				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6342  		if (!netdev)
6343  			return -ENOMEM;
6344  
6345  		pi = netdev_priv(netdev);
6346  		pi->adapter = adap;
6347  		pi->lport = port;
6348  		pi->tx_chan = port;
6349  		SET_NETDEV_DEV(netdev, &pdev->dev);
6350  
6351  		adap->port[0] = netdev;
6352  		pi->port_id = 0;
6353  
6354  		err = register_netdev(adap->port[0]);
6355  		if (err) {
6356  			pr_info("Unable to register VF mgmt netdev %s\n", name);
6357  			free_netdev(adap->port[0]);
6358  			adap->port[0] = NULL;
6359  			return err;
6360  		}
6361  		/* Allocate and set up VF Information. */
6362  		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6363  				       sizeof(struct vf_info), GFP_KERNEL);
6364  		if (!adap->vfinfo) {
6365  			unregister_netdev(adap->port[0]);
6366  			free_netdev(adap->port[0]);
6367  			adap->port[0] = NULL;
6368  			return -ENOMEM;
6369  		}
6370  		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6371  	}
6372  	/* Instantiate the requested number of VFs. */
6373  	err = pci_enable_sriov(pdev, num_vfs);
6374  	if (err) {
6375  		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6376  		if (!current_vfs) {
6377  			unregister_netdev(adap->port[0]);
6378  			free_netdev(adap->port[0]);
6379  			adap->port[0] = NULL;
6380  			kfree(adap->vfinfo);
6381  			adap->vfinfo = NULL;
6382  		}
6383  		return err;
6384  	}
6385  
6386  	adap->num_vfs = num_vfs;
6387  	return num_vfs;
6388  }
6389  #endif /* CONFIG_PCI_IOV */
6390  
6391  #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6392  
chcr_offload_state(struct adapter * adap,enum cxgb4_netdev_tls_ops op_val)6393  static int chcr_offload_state(struct adapter *adap,
6394  			      enum cxgb4_netdev_tls_ops op_val)
6395  {
6396  	switch (op_val) {
6397  #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6398  	case CXGB4_TLSDEV_OPS:
6399  		if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6400  			dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6401  			return -EOPNOTSUPP;
6402  		}
6403  		if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6404  			dev_dbg(adap->pdev_dev,
6405  				"ch_ktls driver has no registered tlsdev_ops\n");
6406  			return -EOPNOTSUPP;
6407  		}
6408  		break;
6409  #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6410  #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6411  	case CXGB4_XFRMDEV_OPS:
6412  		if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6413  			dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6414  			return -EOPNOTSUPP;
6415  		}
6416  		if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6417  			dev_dbg(adap->pdev_dev,
6418  				"chipsec driver has no registered xfrmdev_ops\n");
6419  			return -EOPNOTSUPP;
6420  		}
6421  		break;
6422  #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6423  	default:
6424  		dev_dbg(adap->pdev_dev,
6425  			"driver has no support for offload %d\n", op_val);
6426  		return -EOPNOTSUPP;
6427  	}
6428  
6429  	return 0;
6430  }
6431  
6432  #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6433  
6434  #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6435  
cxgb4_ktls_dev_add(struct net_device * netdev,struct sock * sk,enum tls_offload_ctx_dir direction,struct tls_crypto_info * crypto_info,u32 tcp_sn)6436  static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6437  			      enum tls_offload_ctx_dir direction,
6438  			      struct tls_crypto_info *crypto_info,
6439  			      u32 tcp_sn)
6440  {
6441  	struct adapter *adap = netdev2adap(netdev);
6442  	int ret;
6443  
6444  	mutex_lock(&uld_mutex);
6445  	ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6446  	if (ret)
6447  		goto out_unlock;
6448  
6449  	ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6450  	if (ret)
6451  		goto out_unlock;
6452  
6453  	ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6454  								direction,
6455  								crypto_info,
6456  								tcp_sn);
6457  	/* if there is a failure, clear the refcount */
6458  	if (ret)
6459  		cxgb4_set_ktls_feature(adap,
6460  				       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6461  out_unlock:
6462  	mutex_unlock(&uld_mutex);
6463  	return ret;
6464  }
6465  
cxgb4_ktls_dev_del(struct net_device * netdev,struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)6466  static void cxgb4_ktls_dev_del(struct net_device *netdev,
6467  			       struct tls_context *tls_ctx,
6468  			       enum tls_offload_ctx_dir direction)
6469  {
6470  	struct adapter *adap = netdev2adap(netdev);
6471  
6472  	mutex_lock(&uld_mutex);
6473  	if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6474  		goto out_unlock;
6475  
6476  	adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6477  							  direction);
6478  
6479  out_unlock:
6480  	cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6481  	mutex_unlock(&uld_mutex);
6482  }
6483  
6484  static const struct tlsdev_ops cxgb4_ktls_ops = {
6485  	.tls_dev_add = cxgb4_ktls_dev_add,
6486  	.tls_dev_del = cxgb4_ktls_dev_del,
6487  };
6488  #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6489  
6490  #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6491  
cxgb4_xfrm_add_state(struct xfrm_state * x,struct netlink_ext_ack * extack)6492  static int cxgb4_xfrm_add_state(struct xfrm_state *x,
6493  				struct netlink_ext_ack *extack)
6494  {
6495  	struct adapter *adap = netdev2adap(x->xso.dev);
6496  	int ret;
6497  
6498  	if (!mutex_trylock(&uld_mutex)) {
6499  		NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use");
6500  		return -EBUSY;
6501  	}
6502  	ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6503  	if (ret)
6504  		goto out_unlock;
6505  
6506  	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack);
6507  
6508  out_unlock:
6509  	mutex_unlock(&uld_mutex);
6510  
6511  	return ret;
6512  }
6513  
cxgb4_xfrm_del_state(struct xfrm_state * x)6514  static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6515  {
6516  	struct adapter *adap = netdev2adap(x->xso.dev);
6517  
6518  	if (!mutex_trylock(&uld_mutex)) {
6519  		dev_dbg(adap->pdev_dev,
6520  			"crypto uld critical resource is under use\n");
6521  		return;
6522  	}
6523  	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6524  		goto out_unlock;
6525  
6526  	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6527  
6528  out_unlock:
6529  	mutex_unlock(&uld_mutex);
6530  }
6531  
cxgb4_xfrm_free_state(struct xfrm_state * x)6532  static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6533  {
6534  	struct adapter *adap = netdev2adap(x->xso.dev);
6535  
6536  	if (!mutex_trylock(&uld_mutex)) {
6537  		dev_dbg(adap->pdev_dev,
6538  			"crypto uld critical resource is under use\n");
6539  		return;
6540  	}
6541  	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6542  		goto out_unlock;
6543  
6544  	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6545  
6546  out_unlock:
6547  	mutex_unlock(&uld_mutex);
6548  }
6549  
cxgb4_ipsec_offload_ok(struct sk_buff * skb,struct xfrm_state * x)6550  static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6551  {
6552  	struct adapter *adap = netdev2adap(x->xso.dev);
6553  	bool ret = false;
6554  
6555  	if (!mutex_trylock(&uld_mutex)) {
6556  		dev_dbg(adap->pdev_dev,
6557  			"crypto uld critical resource is under use\n");
6558  		return ret;
6559  	}
6560  	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6561  		goto out_unlock;
6562  
6563  	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6564  
6565  out_unlock:
6566  	mutex_unlock(&uld_mutex);
6567  	return ret;
6568  }
6569  
cxgb4_advance_esn_state(struct xfrm_state * x)6570  static void cxgb4_advance_esn_state(struct xfrm_state *x)
6571  {
6572  	struct adapter *adap = netdev2adap(x->xso.dev);
6573  
6574  	if (!mutex_trylock(&uld_mutex)) {
6575  		dev_dbg(adap->pdev_dev,
6576  			"crypto uld critical resource is under use\n");
6577  		return;
6578  	}
6579  	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6580  		goto out_unlock;
6581  
6582  	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6583  
6584  out_unlock:
6585  	mutex_unlock(&uld_mutex);
6586  }
6587  
6588  static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6589  	.xdo_dev_state_add      = cxgb4_xfrm_add_state,
6590  	.xdo_dev_state_delete   = cxgb4_xfrm_del_state,
6591  	.xdo_dev_state_free     = cxgb4_xfrm_free_state,
6592  	.xdo_dev_offload_ok     = cxgb4_ipsec_offload_ok,
6593  	.xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6594  };
6595  
6596  #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6597  
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)6598  static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6599  {
6600  	struct net_device *netdev;
6601  	struct adapter *adapter;
6602  	static int adap_idx = 1;
6603  	int s_qpp, qpp, num_seg;
6604  	struct port_info *pi;
6605  	enum chip_type chip;
6606  	void __iomem *regs;
6607  	int func, chip_ver;
6608  	u16 device_id;
6609  	int i, err;
6610  	u32 whoami;
6611  
6612  	err = pci_request_regions(pdev, KBUILD_MODNAME);
6613  	if (err) {
6614  		/* Just info, some other driver may have claimed the device. */
6615  		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6616  		return err;
6617  	}
6618  
6619  	err = pci_enable_device(pdev);
6620  	if (err) {
6621  		dev_err(&pdev->dev, "cannot enable PCI device\n");
6622  		goto out_release_regions;
6623  	}
6624  
6625  	regs = pci_ioremap_bar(pdev, 0);
6626  	if (!regs) {
6627  		dev_err(&pdev->dev, "cannot map device registers\n");
6628  		err = -ENOMEM;
6629  		goto out_disable_device;
6630  	}
6631  
6632  	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6633  	if (!adapter) {
6634  		err = -ENOMEM;
6635  		goto out_unmap_bar0;
6636  	}
6637  
6638  	adapter->regs = regs;
6639  	err = t4_wait_dev_ready(regs);
6640  	if (err < 0)
6641  		goto out_free_adapter;
6642  
6643  	/* We control everything through one PF */
6644  	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6645  	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6646  	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6647  	if ((int)chip < 0) {
6648  		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6649  		err = chip;
6650  		goto out_free_adapter;
6651  	}
6652  	chip_ver = CHELSIO_CHIP_VERSION(chip);
6653  	func = chip_ver <= CHELSIO_T5 ?
6654  	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6655  
6656  	adapter->pdev = pdev;
6657  	adapter->pdev_dev = &pdev->dev;
6658  	adapter->name = pci_name(pdev);
6659  	adapter->mbox = func;
6660  	adapter->pf = func;
6661  	adapter->params.chip = chip;
6662  	adapter->adap_idx = adap_idx;
6663  	adapter->msg_enable = DFLT_MSG_ENABLE;
6664  	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6665  				    (sizeof(struct mbox_cmd) *
6666  				     T4_OS_LOG_MBOX_CMDS),
6667  				    GFP_KERNEL);
6668  	if (!adapter->mbox_log) {
6669  		err = -ENOMEM;
6670  		goto out_free_adapter;
6671  	}
6672  	spin_lock_init(&adapter->mbox_lock);
6673  	INIT_LIST_HEAD(&adapter->mlist.list);
6674  	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6675  	pci_set_drvdata(pdev, adapter);
6676  
6677  	if (func != ent->driver_data) {
6678  		pci_disable_device(pdev);
6679  		pci_save_state(pdev);        /* to restore SR-IOV later */
6680  		return 0;
6681  	}
6682  
6683  	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6684  	if (err) {
6685  		dev_err(&pdev->dev, "no usable DMA configuration\n");
6686  		goto out_free_adapter;
6687  	}
6688  
6689  	pci_set_master(pdev);
6690  	pci_save_state(pdev);
6691  	adap_idx++;
6692  	adapter->workq = create_singlethread_workqueue("cxgb4");
6693  	if (!adapter->workq) {
6694  		err = -ENOMEM;
6695  		goto out_free_adapter;
6696  	}
6697  
6698  	/* PCI device has been enabled */
6699  	adapter->flags |= CXGB4_DEV_ENABLED;
6700  	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6701  
6702  	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6703  	 * Ingress Packet Data to Free List Buffers in order to allow for
6704  	 * chipset performance optimizations between the Root Complex and
6705  	 * Memory Controllers.  (Messages to the associated Ingress Queue
6706  	 * notifying new Packet Placement in the Free Lists Buffers will be
6707  	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6708  	 * all preceding PCIe Transaction Layer Packets will be processed
6709  	 * first.)  But some Root Complexes have various issues with Upstream
6710  	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6711  	 * The PCIe devices which under the Root Complexes will be cleared the
6712  	 * Relaxed Ordering bit in the configuration space, So we check our
6713  	 * PCIe configuration space to see if it's flagged with advice against
6714  	 * using Relaxed Ordering.
6715  	 */
6716  	if (!pcie_relaxed_ordering_enabled(pdev))
6717  		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6718  
6719  	spin_lock_init(&adapter->stats_lock);
6720  	spin_lock_init(&adapter->tid_release_lock);
6721  	spin_lock_init(&adapter->win0_lock);
6722  
6723  	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6724  	INIT_WORK(&adapter->db_full_task, process_db_full);
6725  	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6726  	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6727  
6728  	err = t4_prep_adapter(adapter);
6729  	if (err)
6730  		goto out_free_adapter;
6731  
6732  	if (is_kdump_kernel()) {
6733  		/* Collect hardware state and append to /proc/vmcore */
6734  		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6735  		if (err) {
6736  			dev_warn(adapter->pdev_dev,
6737  				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6738  				 err);
6739  			err = 0;
6740  		}
6741  	}
6742  
6743  	if (!is_t4(adapter->params.chip)) {
6744  		s_qpp = (QUEUESPERPAGEPF0_S +
6745  			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6746  			adapter->pf);
6747  		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6748  		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6749  		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6750  
6751  		/* Each segment size is 128B. Write coalescing is enabled only
6752  		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6753  		 * queue is less no of segments that can be accommodated in
6754  		 * a page size.
6755  		 */
6756  		if (qpp > num_seg) {
6757  			dev_err(&pdev->dev,
6758  				"Incorrect number of egress queues per page\n");
6759  			err = -EINVAL;
6760  			goto out_free_adapter;
6761  		}
6762  		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6763  		pci_resource_len(pdev, 2));
6764  		if (!adapter->bar2) {
6765  			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6766  			err = -ENOMEM;
6767  			goto out_free_adapter;
6768  		}
6769  	}
6770  
6771  	setup_memwin(adapter);
6772  	err = adap_init0(adapter, 0);
6773  	if (err)
6774  		goto out_unmap_bar;
6775  
6776  	setup_memwin_rdma(adapter);
6777  
6778  	/* configure SGE_STAT_CFG_A to read WC stats */
6779  	if (!is_t4(adapter->params.chip))
6780  		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6781  			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6782  			      T6_STATMODE_V(0)));
6783  
6784  	/* Initialize hash mac addr list */
6785  	INIT_LIST_HEAD(&adapter->mac_hlist);
6786  
6787  	for_each_port(adapter, i) {
6788  		/* For supporting MQPRIO Offload, need some extra
6789  		 * queues for each ETHOFLD TIDs. Keep it equal to
6790  		 * MAX_ATIDs for now. Once we connect to firmware
6791  		 * later and query the EOTID params, we'll come to
6792  		 * know the actual # of EOTIDs supported.
6793  		 */
6794  		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6795  					   MAX_ETH_QSETS + MAX_ATIDS);
6796  		if (!netdev) {
6797  			err = -ENOMEM;
6798  			goto out_free_dev;
6799  		}
6800  
6801  		SET_NETDEV_DEV(netdev, &pdev->dev);
6802  
6803  		adapter->port[i] = netdev;
6804  		pi = netdev_priv(netdev);
6805  		pi->adapter = adapter;
6806  		pi->xact_addr_filt = -1;
6807  		pi->port_id = i;
6808  		netdev->irq = pdev->irq;
6809  
6810  		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6811  			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6812  			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6813  			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6814  			NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
6815  
6816  		if (chip_ver > CHELSIO_T5) {
6817  			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6818  						   NETIF_F_IPV6_CSUM |
6819  						   NETIF_F_RXCSUM |
6820  						   NETIF_F_GSO_UDP_TUNNEL |
6821  						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6822  						   NETIF_F_TSO | NETIF_F_TSO6;
6823  
6824  			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6825  					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6826  					       NETIF_F_HW_TLS_RECORD;
6827  
6828  			if (adapter->rawf_cnt)
6829  				netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6830  		}
6831  
6832  		netdev->features |= netdev->hw_features;
6833  		netdev->vlan_features = netdev->features & VLAN_FEAT;
6834  #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6835  		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6836  			netdev->hw_features |= NETIF_F_HW_TLS_TX;
6837  			netdev->tlsdev_ops = &cxgb4_ktls_ops;
6838  			/* initialize the refcount */
6839  			refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6840  		}
6841  #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6842  #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6843  		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6844  			netdev->hw_enc_features |= NETIF_F_HW_ESP;
6845  			netdev->features |= NETIF_F_HW_ESP;
6846  			netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6847  		}
6848  #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6849  
6850  		netdev->priv_flags |= IFF_UNICAST_FLT;
6851  
6852  		/* MTU range: 81 - 9600 */
6853  		netdev->min_mtu = 81;              /* accommodate SACK */
6854  		netdev->max_mtu = MAX_MTU;
6855  
6856  		netdev->netdev_ops = &cxgb4_netdev_ops;
6857  #ifdef CONFIG_CHELSIO_T4_DCB
6858  		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6859  		cxgb4_dcb_state_init(netdev);
6860  		cxgb4_dcb_version_init(netdev);
6861  #endif
6862  		cxgb4_set_ethtool_ops(netdev);
6863  	}
6864  
6865  	cxgb4_init_ethtool_dump(adapter);
6866  
6867  	pci_set_drvdata(pdev, adapter);
6868  
6869  	if (adapter->flags & CXGB4_FW_OK) {
6870  		err = t4_port_init(adapter, func, func, 0);
6871  		if (err)
6872  			goto out_free_dev;
6873  	} else if (adapter->params.nports == 1) {
6874  		/* If we don't have a connection to the firmware -- possibly
6875  		 * because of an error -- grab the raw VPD parameters so we
6876  		 * can set the proper MAC Address on the debug network
6877  		 * interface that we've created.
6878  		 */
6879  		u8 hw_addr[ETH_ALEN];
6880  		u8 *na = adapter->params.vpd.na;
6881  
6882  		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6883  		if (!err) {
6884  			for (i = 0; i < ETH_ALEN; i++)
6885  				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6886  					      hex2val(na[2 * i + 1]));
6887  			t4_set_hw_addr(adapter, 0, hw_addr);
6888  		}
6889  	}
6890  
6891  	if (!(adapter->flags & CXGB4_FW_OK))
6892  		goto fw_attach_fail;
6893  
6894  	/* Configure queues and allocate tables now, they can be needed as
6895  	 * soon as the first register_netdev completes.
6896  	 */
6897  	err = cfg_queues(adapter);
6898  	if (err)
6899  		goto out_free_dev;
6900  
6901  	adapter->smt = t4_init_smt();
6902  	if (!adapter->smt) {
6903  		/* We tolerate a lack of SMT, giving up some functionality */
6904  		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6905  	}
6906  
6907  	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6908  	if (!adapter->l2t) {
6909  		/* We tolerate a lack of L2T, giving up some functionality */
6910  		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6911  		adapter->params.offload = 0;
6912  	}
6913  
6914  #if IS_ENABLED(CONFIG_IPV6)
6915  	if (chip_ver <= CHELSIO_T5 &&
6916  	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6917  		/* CLIP functionality is not present in hardware,
6918  		 * hence disable all offload features
6919  		 */
6920  		dev_warn(&pdev->dev,
6921  			 "CLIP not enabled in hardware, continuing\n");
6922  		adapter->params.offload = 0;
6923  	} else {
6924  		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6925  						  adapter->clipt_end);
6926  		if (!adapter->clipt) {
6927  			/* We tolerate a lack of clip_table, giving up
6928  			 * some functionality
6929  			 */
6930  			dev_warn(&pdev->dev,
6931  				 "could not allocate Clip table, continuing\n");
6932  			adapter->params.offload = 0;
6933  		}
6934  	}
6935  #endif
6936  
6937  	for_each_port(adapter, i) {
6938  		pi = adap2pinfo(adapter, i);
6939  		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6940  		if (!pi->sched_tbl)
6941  			dev_warn(&pdev->dev,
6942  				 "could not activate scheduling on port %d\n",
6943  				 i);
6944  	}
6945  
6946  	if (is_offload(adapter) || is_hashfilter(adapter)) {
6947  		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6948  			u32 v;
6949  
6950  			v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6951  			if (chip_ver <= CHELSIO_T5) {
6952  				adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6953  				v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6954  				adapter->tids.hash_base = v / 4;
6955  			} else {
6956  				adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6957  				v = t4_read_reg(adapter,
6958  						T6_LE_DB_HASH_TID_BASE_A);
6959  				adapter->tids.hash_base = v;
6960  			}
6961  		}
6962  	}
6963  
6964  	if (tid_init(&adapter->tids) < 0) {
6965  		dev_warn(&pdev->dev, "could not allocate TID table, "
6966  			 "continuing\n");
6967  		adapter->params.offload = 0;
6968  	} else {
6969  		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6970  		if (!adapter->tc_u32)
6971  			dev_warn(&pdev->dev,
6972  				 "could not offload tc u32, continuing\n");
6973  
6974  		if (cxgb4_init_tc_flower(adapter))
6975  			dev_warn(&pdev->dev,
6976  				 "could not offload tc flower, continuing\n");
6977  
6978  		if (cxgb4_init_tc_mqprio(adapter))
6979  			dev_warn(&pdev->dev,
6980  				 "could not offload tc mqprio, continuing\n");
6981  
6982  		if (cxgb4_init_tc_matchall(adapter))
6983  			dev_warn(&pdev->dev,
6984  				 "could not offload tc matchall, continuing\n");
6985  		if (cxgb4_init_ethtool_filters(adapter))
6986  			dev_warn(&pdev->dev,
6987  				 "could not initialize ethtool filters, continuing\n");
6988  	}
6989  
6990  	/* See what interrupts we'll be using */
6991  	if (msi > 1 && enable_msix(adapter) == 0)
6992  		adapter->flags |= CXGB4_USING_MSIX;
6993  	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6994  		adapter->flags |= CXGB4_USING_MSI;
6995  		if (msi > 1)
6996  			free_msix_info(adapter);
6997  	}
6998  
6999  	/* check for PCI Express bandwidth capabiltites */
7000  	pcie_print_link_status(pdev);
7001  
7002  	cxgb4_init_mps_ref_entries(adapter);
7003  
7004  	err = init_rss(adapter);
7005  	if (err)
7006  		goto out_free_dev;
7007  
7008  	err = setup_non_data_intr(adapter);
7009  	if (err) {
7010  		dev_err(adapter->pdev_dev,
7011  			"Non Data interrupt allocation failed, err: %d\n", err);
7012  		goto out_free_dev;
7013  	}
7014  
7015  	err = setup_fw_sge_queues(adapter);
7016  	if (err) {
7017  		dev_err(adapter->pdev_dev,
7018  			"FW sge queue allocation failed, err %d", err);
7019  		goto out_free_dev;
7020  	}
7021  
7022  fw_attach_fail:
7023  	/*
7024  	 * The card is now ready to go.  If any errors occur during device
7025  	 * registration we do not fail the whole card but rather proceed only
7026  	 * with the ports we manage to register successfully.  However we must
7027  	 * register at least one net device.
7028  	 */
7029  	for_each_port(adapter, i) {
7030  		pi = adap2pinfo(adapter, i);
7031  		adapter->port[i]->dev_port = pi->lport;
7032  		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7033  		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7034  
7035  		netif_carrier_off(adapter->port[i]);
7036  
7037  		err = register_netdev(adapter->port[i]);
7038  		if (err)
7039  			break;
7040  		adapter->chan_map[pi->tx_chan] = i;
7041  		print_port_info(adapter->port[i]);
7042  	}
7043  	if (i == 0) {
7044  		dev_err(&pdev->dev, "could not register any net devices\n");
7045  		goto out_free_dev;
7046  	}
7047  	if (err) {
7048  		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7049  		err = 0;
7050  	}
7051  
7052  	if (cxgb4_debugfs_root) {
7053  		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7054  							   cxgb4_debugfs_root);
7055  		setup_debugfs(adapter);
7056  	}
7057  
7058  	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7059  	pdev->needs_freset = 1;
7060  
7061  	if (is_uld(adapter))
7062  		cxgb4_uld_enable(adapter);
7063  
7064  	if (!is_t4(adapter->params.chip))
7065  		cxgb4_ptp_init(adapter);
7066  
7067  	if (IS_REACHABLE(CONFIG_THERMAL) &&
7068  	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7069  		cxgb4_thermal_init(adapter);
7070  
7071  	print_adapter_info(adapter);
7072  	return 0;
7073  
7074   out_free_dev:
7075  	t4_free_sge_resources(adapter);
7076  	free_some_resources(adapter);
7077  	if (adapter->flags & CXGB4_USING_MSIX)
7078  		free_msix_info(adapter);
7079  	if (adapter->num_uld || adapter->num_ofld_uld)
7080  		t4_uld_mem_free(adapter);
7081   out_unmap_bar:
7082  	if (!is_t4(adapter->params.chip))
7083  		iounmap(adapter->bar2);
7084   out_free_adapter:
7085  	if (adapter->workq)
7086  		destroy_workqueue(adapter->workq);
7087  
7088  	kfree(adapter->mbox_log);
7089  	kfree(adapter);
7090   out_unmap_bar0:
7091  	iounmap(regs);
7092   out_disable_device:
7093  	pci_disable_device(pdev);
7094   out_release_regions:
7095  	pci_release_regions(pdev);
7096  	return err;
7097  }
7098  
remove_one(struct pci_dev * pdev)7099  static void remove_one(struct pci_dev *pdev)
7100  {
7101  	struct adapter *adapter = pci_get_drvdata(pdev);
7102  	struct hash_mac_addr *entry, *tmp;
7103  
7104  	if (!adapter) {
7105  		pci_release_regions(pdev);
7106  		return;
7107  	}
7108  
7109  	/* If we allocated filters, free up state associated with any
7110  	 * valid filters ...
7111  	 */
7112  	clear_all_filters(adapter);
7113  
7114  	adapter->flags |= CXGB4_SHUTTING_DOWN;
7115  
7116  	if (adapter->pf == 4) {
7117  		int i;
7118  
7119  		/* Tear down per-adapter Work Queue first since it can contain
7120  		 * references to our adapter data structure.
7121  		 */
7122  		destroy_workqueue(adapter->workq);
7123  
7124  		detach_ulds(adapter);
7125  
7126  		for_each_port(adapter, i)
7127  			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7128  				unregister_netdev(adapter->port[i]);
7129  
7130  		t4_uld_clean_up(adapter);
7131  
7132  		adap_free_hma_mem(adapter);
7133  
7134  		disable_interrupts(adapter);
7135  
7136  		cxgb4_free_mps_ref_entries(adapter);
7137  
7138  		debugfs_remove_recursive(adapter->debugfs_root);
7139  
7140  		if (!is_t4(adapter->params.chip))
7141  			cxgb4_ptp_stop(adapter);
7142  		if (IS_REACHABLE(CONFIG_THERMAL))
7143  			cxgb4_thermal_remove(adapter);
7144  
7145  		if (adapter->flags & CXGB4_FULL_INIT_DONE)
7146  			cxgb_down(adapter);
7147  
7148  		if (adapter->flags & CXGB4_USING_MSIX)
7149  			free_msix_info(adapter);
7150  		if (adapter->num_uld || adapter->num_ofld_uld)
7151  			t4_uld_mem_free(adapter);
7152  		free_some_resources(adapter);
7153  		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7154  					 list) {
7155  			list_del(&entry->list);
7156  			kfree(entry);
7157  		}
7158  
7159  #if IS_ENABLED(CONFIG_IPV6)
7160  		t4_cleanup_clip_tbl(adapter);
7161  #endif
7162  		if (!is_t4(adapter->params.chip))
7163  			iounmap(adapter->bar2);
7164  	}
7165  #ifdef CONFIG_PCI_IOV
7166  	else {
7167  		cxgb4_iov_configure(adapter->pdev, 0);
7168  	}
7169  #endif
7170  	iounmap(adapter->regs);
7171  	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7172  		pci_disable_device(pdev);
7173  		adapter->flags &= ~CXGB4_DEV_ENABLED;
7174  	}
7175  	pci_release_regions(pdev);
7176  	kfree(adapter->mbox_log);
7177  	synchronize_rcu();
7178  	kfree(adapter);
7179  }
7180  
7181  /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7182   * delivery.  This is essentially a stripped down version of the PCI remove()
7183   * function where we do the minimal amount of work necessary to shutdown any
7184   * further activity.
7185   */
shutdown_one(struct pci_dev * pdev)7186  static void shutdown_one(struct pci_dev *pdev)
7187  {
7188  	struct adapter *adapter = pci_get_drvdata(pdev);
7189  
7190  	/* As with remove_one() above (see extended comment), we only want do
7191  	 * do cleanup on PCI Devices which went all the way through init_one()
7192  	 * ...
7193  	 */
7194  	if (!adapter) {
7195  		pci_release_regions(pdev);
7196  		return;
7197  	}
7198  
7199  	adapter->flags |= CXGB4_SHUTTING_DOWN;
7200  
7201  	if (adapter->pf == 4) {
7202  		int i;
7203  
7204  		for_each_port(adapter, i)
7205  			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7206  				cxgb_close(adapter->port[i]);
7207  
7208  		rtnl_lock();
7209  		cxgb4_mqprio_stop_offload(adapter);
7210  		rtnl_unlock();
7211  
7212  		if (is_uld(adapter)) {
7213  			detach_ulds(adapter);
7214  			t4_uld_clean_up(adapter);
7215  		}
7216  
7217  		disable_interrupts(adapter);
7218  		disable_msi(adapter);
7219  
7220  		t4_sge_stop(adapter);
7221  		if (adapter->flags & CXGB4_FW_OK)
7222  			t4_fw_bye(adapter, adapter->mbox);
7223  	}
7224  }
7225  
7226  static struct pci_driver cxgb4_driver = {
7227  	.name     = KBUILD_MODNAME,
7228  	.id_table = cxgb4_pci_tbl,
7229  	.probe    = init_one,
7230  	.remove   = remove_one,
7231  	.shutdown = shutdown_one,
7232  #ifdef CONFIG_PCI_IOV
7233  	.sriov_configure = cxgb4_iov_configure,
7234  #endif
7235  	.err_handler = &cxgb4_eeh,
7236  };
7237  
cxgb4_init_module(void)7238  static int __init cxgb4_init_module(void)
7239  {
7240  	int ret;
7241  
7242  	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7243  
7244  	ret = pci_register_driver(&cxgb4_driver);
7245  	if (ret < 0)
7246  		goto err_pci;
7247  
7248  #if IS_ENABLED(CONFIG_IPV6)
7249  	if (!inet6addr_registered) {
7250  		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7251  		if (ret)
7252  			pci_unregister_driver(&cxgb4_driver);
7253  		else
7254  			inet6addr_registered = true;
7255  	}
7256  #endif
7257  
7258  	if (ret == 0)
7259  		return ret;
7260  
7261  err_pci:
7262  	debugfs_remove(cxgb4_debugfs_root);
7263  
7264  	return ret;
7265  }
7266  
cxgb4_cleanup_module(void)7267  static void __exit cxgb4_cleanup_module(void)
7268  {
7269  #if IS_ENABLED(CONFIG_IPV6)
7270  	if (inet6addr_registered) {
7271  		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7272  		inet6addr_registered = false;
7273  	}
7274  #endif
7275  	pci_unregister_driver(&cxgb4_driver);
7276  	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7277  }
7278  
7279  module_init(cxgb4_init_module);
7280  module_exit(cxgb4_cleanup_module);
7281