1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc.c
4  *
5  * High-level RPC service routines
6  *
7  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8  *
9  * Multiple threads pools and NUMAisation
10  * Copyright (c) 2006 Silicon Graphics, Inc.
11  * by Greg Banks <gnb@melbourne.sgi.com>
12  */
13 
14 #include <linux/linkage.h>
15 #include <linux/sched/signal.h>
16 #include <linux/errno.h>
17 #include <linux/net.h>
18 #include <linux/in.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/kthread.h>
23 #include <linux/slab.h>
24 
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31 
32 #include <trace/events/sunrpc.h>
33 
34 #include "fail.h"
35 #include "sunrpc.h"
36 
37 #define RPCDBG_FACILITY	RPCDBG_SVCDSP
38 
39 static void svc_unregister(const struct svc_serv *serv, struct net *net);
40 
41 #define SVC_POOL_DEFAULT	SVC_POOL_GLOBAL
42 
43 /*
44  * Mode for mapping cpus to pools.
45  */
46 enum {
47 	SVC_POOL_AUTO = -1,	/* choose one of the others */
48 	SVC_POOL_GLOBAL,	/* no mapping, just a single global pool
49 				 * (legacy & UP mode) */
50 	SVC_POOL_PERCPU,	/* one pool per cpu */
51 	SVC_POOL_PERNODE	/* one pool per numa node */
52 };
53 
54 /*
55  * Structure for mapping cpus to pools and vice versa.
56  * Setup once during sunrpc initialisation.
57  */
58 
59 struct svc_pool_map {
60 	int count;			/* How many svc_servs use us */
61 	int mode;			/* Note: int not enum to avoid
62 					 * warnings about "enumeration value
63 					 * not handled in switch" */
64 	unsigned int npools;
65 	unsigned int *pool_to;		/* maps pool id to cpu or node */
66 	unsigned int *to_pool;		/* maps cpu or node to pool id */
67 };
68 
69 static struct svc_pool_map svc_pool_map = {
70 	.mode = SVC_POOL_DEFAULT
71 };
72 
73 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
74 
75 static int
__param_set_pool_mode(const char * val,struct svc_pool_map * m)76 __param_set_pool_mode(const char *val, struct svc_pool_map *m)
77 {
78 	int err, mode;
79 
80 	mutex_lock(&svc_pool_map_mutex);
81 
82 	err = 0;
83 	if (!strncmp(val, "auto", 4))
84 		mode = SVC_POOL_AUTO;
85 	else if (!strncmp(val, "global", 6))
86 		mode = SVC_POOL_GLOBAL;
87 	else if (!strncmp(val, "percpu", 6))
88 		mode = SVC_POOL_PERCPU;
89 	else if (!strncmp(val, "pernode", 7))
90 		mode = SVC_POOL_PERNODE;
91 	else
92 		err = -EINVAL;
93 
94 	if (err)
95 		goto out;
96 
97 	if (m->count == 0)
98 		m->mode = mode;
99 	else if (mode != m->mode)
100 		err = -EBUSY;
101 out:
102 	mutex_unlock(&svc_pool_map_mutex);
103 	return err;
104 }
105 
106 static int
param_set_pool_mode(const char * val,const struct kernel_param * kp)107 param_set_pool_mode(const char *val, const struct kernel_param *kp)
108 {
109 	struct svc_pool_map *m = kp->arg;
110 
111 	return __param_set_pool_mode(val, m);
112 }
113 
sunrpc_set_pool_mode(const char * val)114 int sunrpc_set_pool_mode(const char *val)
115 {
116 	return __param_set_pool_mode(val, &svc_pool_map);
117 }
118 EXPORT_SYMBOL(sunrpc_set_pool_mode);
119 
120 /**
121  * sunrpc_get_pool_mode - get the current pool_mode for the host
122  * @buf: where to write the current pool_mode
123  * @size: size of @buf
124  *
125  * Grab the current pool_mode from the svc_pool_map and write
126  * the resulting string to @buf. Returns the number of characters
127  * written to @buf (a'la snprintf()).
128  */
129 int
sunrpc_get_pool_mode(char * buf,size_t size)130 sunrpc_get_pool_mode(char *buf, size_t size)
131 {
132 	struct svc_pool_map *m = &svc_pool_map;
133 
134 	switch (m->mode)
135 	{
136 	case SVC_POOL_AUTO:
137 		return snprintf(buf, size, "auto");
138 	case SVC_POOL_GLOBAL:
139 		return snprintf(buf, size, "global");
140 	case SVC_POOL_PERCPU:
141 		return snprintf(buf, size, "percpu");
142 	case SVC_POOL_PERNODE:
143 		return snprintf(buf, size, "pernode");
144 	default:
145 		return snprintf(buf, size, "%d", m->mode);
146 	}
147 }
148 EXPORT_SYMBOL(sunrpc_get_pool_mode);
149 
150 static int
param_get_pool_mode(char * buf,const struct kernel_param * kp)151 param_get_pool_mode(char *buf, const struct kernel_param *kp)
152 {
153 	char str[16];
154 	int len;
155 
156 	len = sunrpc_get_pool_mode(str, ARRAY_SIZE(str));
157 
158 	/* Ensure we have room for newline and NUL */
159 	len = min_t(int, len, ARRAY_SIZE(str) - 2);
160 
161 	/* tack on the newline */
162 	str[len] = '\n';
163 	str[len + 1] = '\0';
164 
165 	return sysfs_emit(buf, "%s", str);
166 }
167 
168 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
169 		  &svc_pool_map, 0644);
170 
171 /*
172  * Detect best pool mapping mode heuristically,
173  * according to the machine's topology.
174  */
175 static int
svc_pool_map_choose_mode(void)176 svc_pool_map_choose_mode(void)
177 {
178 	unsigned int node;
179 
180 	if (nr_online_nodes > 1) {
181 		/*
182 		 * Actually have multiple NUMA nodes,
183 		 * so split pools on NUMA node boundaries
184 		 */
185 		return SVC_POOL_PERNODE;
186 	}
187 
188 	node = first_online_node;
189 	if (nr_cpus_node(node) > 2) {
190 		/*
191 		 * Non-trivial SMP, or CONFIG_NUMA on
192 		 * non-NUMA hardware, e.g. with a generic
193 		 * x86_64 kernel on Xeons.  In this case we
194 		 * want to divide the pools on cpu boundaries.
195 		 */
196 		return SVC_POOL_PERCPU;
197 	}
198 
199 	/* default: one global pool */
200 	return SVC_POOL_GLOBAL;
201 }
202 
203 /*
204  * Allocate the to_pool[] and pool_to[] arrays.
205  * Returns 0 on success or an errno.
206  */
207 static int
svc_pool_map_alloc_arrays(struct svc_pool_map * m,unsigned int maxpools)208 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
209 {
210 	m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
211 	if (!m->to_pool)
212 		goto fail;
213 	m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
214 	if (!m->pool_to)
215 		goto fail_free;
216 
217 	return 0;
218 
219 fail_free:
220 	kfree(m->to_pool);
221 	m->to_pool = NULL;
222 fail:
223 	return -ENOMEM;
224 }
225 
226 /*
227  * Initialise the pool map for SVC_POOL_PERCPU mode.
228  * Returns number of pools or <0 on error.
229  */
230 static int
svc_pool_map_init_percpu(struct svc_pool_map * m)231 svc_pool_map_init_percpu(struct svc_pool_map *m)
232 {
233 	unsigned int maxpools = nr_cpu_ids;
234 	unsigned int pidx = 0;
235 	unsigned int cpu;
236 	int err;
237 
238 	err = svc_pool_map_alloc_arrays(m, maxpools);
239 	if (err)
240 		return err;
241 
242 	for_each_online_cpu(cpu) {
243 		BUG_ON(pidx >= maxpools);
244 		m->to_pool[cpu] = pidx;
245 		m->pool_to[pidx] = cpu;
246 		pidx++;
247 	}
248 	/* cpus brought online later all get mapped to pool0, sorry */
249 
250 	return pidx;
251 };
252 
253 
254 /*
255  * Initialise the pool map for SVC_POOL_PERNODE mode.
256  * Returns number of pools or <0 on error.
257  */
258 static int
svc_pool_map_init_pernode(struct svc_pool_map * m)259 svc_pool_map_init_pernode(struct svc_pool_map *m)
260 {
261 	unsigned int maxpools = nr_node_ids;
262 	unsigned int pidx = 0;
263 	unsigned int node;
264 	int err;
265 
266 	err = svc_pool_map_alloc_arrays(m, maxpools);
267 	if (err)
268 		return err;
269 
270 	for_each_node_with_cpus(node) {
271 		/* some architectures (e.g. SN2) have cpuless nodes */
272 		BUG_ON(pidx > maxpools);
273 		m->to_pool[node] = pidx;
274 		m->pool_to[pidx] = node;
275 		pidx++;
276 	}
277 	/* nodes brought online later all get mapped to pool0, sorry */
278 
279 	return pidx;
280 }
281 
282 
283 /*
284  * Add a reference to the global map of cpus to pools (and
285  * vice versa) if pools are in use.
286  * Initialise the map if we're the first user.
287  * Returns the number of pools. If this is '1', no reference
288  * was taken.
289  */
290 static unsigned int
svc_pool_map_get(void)291 svc_pool_map_get(void)
292 {
293 	struct svc_pool_map *m = &svc_pool_map;
294 	int npools = -1;
295 
296 	mutex_lock(&svc_pool_map_mutex);
297 	if (m->count++) {
298 		mutex_unlock(&svc_pool_map_mutex);
299 		return m->npools;
300 	}
301 
302 	if (m->mode == SVC_POOL_AUTO)
303 		m->mode = svc_pool_map_choose_mode();
304 
305 	switch (m->mode) {
306 	case SVC_POOL_PERCPU:
307 		npools = svc_pool_map_init_percpu(m);
308 		break;
309 	case SVC_POOL_PERNODE:
310 		npools = svc_pool_map_init_pernode(m);
311 		break;
312 	}
313 
314 	if (npools <= 0) {
315 		/* default, or memory allocation failure */
316 		npools = 1;
317 		m->mode = SVC_POOL_GLOBAL;
318 	}
319 	m->npools = npools;
320 	mutex_unlock(&svc_pool_map_mutex);
321 	return npools;
322 }
323 
324 /*
325  * Drop a reference to the global map of cpus to pools.
326  * When the last reference is dropped, the map data is
327  * freed; this allows the sysadmin to change the pool.
328  */
329 static void
svc_pool_map_put(void)330 svc_pool_map_put(void)
331 {
332 	struct svc_pool_map *m = &svc_pool_map;
333 
334 	mutex_lock(&svc_pool_map_mutex);
335 	if (!--m->count) {
336 		kfree(m->to_pool);
337 		m->to_pool = NULL;
338 		kfree(m->pool_to);
339 		m->pool_to = NULL;
340 		m->npools = 0;
341 	}
342 	mutex_unlock(&svc_pool_map_mutex);
343 }
344 
svc_pool_map_get_node(unsigned int pidx)345 static int svc_pool_map_get_node(unsigned int pidx)
346 {
347 	const struct svc_pool_map *m = &svc_pool_map;
348 
349 	if (m->count) {
350 		if (m->mode == SVC_POOL_PERCPU)
351 			return cpu_to_node(m->pool_to[pidx]);
352 		if (m->mode == SVC_POOL_PERNODE)
353 			return m->pool_to[pidx];
354 	}
355 	return NUMA_NO_NODE;
356 }
357 /*
358  * Set the given thread's cpus_allowed mask so that it
359  * will only run on cpus in the given pool.
360  */
361 static inline void
svc_pool_map_set_cpumask(struct task_struct * task,unsigned int pidx)362 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
363 {
364 	struct svc_pool_map *m = &svc_pool_map;
365 	unsigned int node = m->pool_to[pidx];
366 
367 	/*
368 	 * The caller checks for sv_nrpools > 1, which
369 	 * implies that we've been initialized.
370 	 */
371 	WARN_ON_ONCE(m->count == 0);
372 	if (m->count == 0)
373 		return;
374 
375 	switch (m->mode) {
376 	case SVC_POOL_PERCPU:
377 	{
378 		set_cpus_allowed_ptr(task, cpumask_of(node));
379 		break;
380 	}
381 	case SVC_POOL_PERNODE:
382 	{
383 		set_cpus_allowed_ptr(task, cpumask_of_node(node));
384 		break;
385 	}
386 	}
387 }
388 
389 /**
390  * svc_pool_for_cpu - Select pool to run a thread on this cpu
391  * @serv: An RPC service
392  *
393  * Use the active CPU and the svc_pool_map's mode setting to
394  * select the svc thread pool to use. Once initialized, the
395  * svc_pool_map does not change.
396  *
397  * Return value:
398  *   A pointer to an svc_pool
399  */
svc_pool_for_cpu(struct svc_serv * serv)400 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
401 {
402 	struct svc_pool_map *m = &svc_pool_map;
403 	int cpu = raw_smp_processor_id();
404 	unsigned int pidx = 0;
405 
406 	if (serv->sv_nrpools <= 1)
407 		return serv->sv_pools;
408 
409 	switch (m->mode) {
410 	case SVC_POOL_PERCPU:
411 		pidx = m->to_pool[cpu];
412 		break;
413 	case SVC_POOL_PERNODE:
414 		pidx = m->to_pool[cpu_to_node(cpu)];
415 		break;
416 	}
417 
418 	return &serv->sv_pools[pidx % serv->sv_nrpools];
419 }
420 
svc_rpcb_setup(struct svc_serv * serv,struct net * net)421 static int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
422 {
423 	int err;
424 
425 	err = rpcb_create_local(net);
426 	if (err)
427 		return err;
428 
429 	/* Remove any stale portmap registrations */
430 	svc_unregister(serv, net);
431 	return 0;
432 }
433 
svc_rpcb_cleanup(struct svc_serv * serv,struct net * net)434 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
435 {
436 	svc_unregister(serv, net);
437 	rpcb_put_local(net);
438 }
439 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
440 
svc_uses_rpcbind(struct svc_serv * serv)441 static int svc_uses_rpcbind(struct svc_serv *serv)
442 {
443 	unsigned int		p, i;
444 
445 	for (p = 0; p < serv->sv_nprogs; p++) {
446 		struct svc_program *progp = &serv->sv_programs[p];
447 
448 		for (i = 0; i < progp->pg_nvers; i++) {
449 			if (progp->pg_vers[i] == NULL)
450 				continue;
451 			if (!progp->pg_vers[i]->vs_hidden)
452 				return 1;
453 		}
454 	}
455 
456 	return 0;
457 }
458 
svc_bind(struct svc_serv * serv,struct net * net)459 int svc_bind(struct svc_serv *serv, struct net *net)
460 {
461 	if (!svc_uses_rpcbind(serv))
462 		return 0;
463 	return svc_rpcb_setup(serv, net);
464 }
465 EXPORT_SYMBOL_GPL(svc_bind);
466 
467 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
468 static void
__svc_init_bc(struct svc_serv * serv)469 __svc_init_bc(struct svc_serv *serv)
470 {
471 	lwq_init(&serv->sv_cb_list);
472 }
473 #else
474 static void
__svc_init_bc(struct svc_serv * serv)475 __svc_init_bc(struct svc_serv *serv)
476 {
477 }
478 #endif
479 
480 /*
481  * Create an RPC service
482  */
483 static struct svc_serv *
__svc_create(struct svc_program * prog,int nprogs,struct svc_stat * stats,unsigned int bufsize,int npools,int (* threadfn)(void * data))484 __svc_create(struct svc_program *prog, int nprogs, struct svc_stat *stats,
485 	     unsigned int bufsize, int npools, int (*threadfn)(void *data))
486 {
487 	struct svc_serv	*serv;
488 	unsigned int vers;
489 	unsigned int xdrsize;
490 	unsigned int i;
491 
492 	if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
493 		return NULL;
494 	serv->sv_name      = prog->pg_name;
495 	serv->sv_programs  = prog;
496 	serv->sv_nprogs    = nprogs;
497 	serv->sv_stats     = stats;
498 	if (bufsize > RPCSVC_MAXPAYLOAD)
499 		bufsize = RPCSVC_MAXPAYLOAD;
500 	serv->sv_max_payload = bufsize? bufsize : 4096;
501 	serv->sv_max_mesg  = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
502 	serv->sv_threadfn = threadfn;
503 	xdrsize = 0;
504 	for (i = 0; i < nprogs; i++) {
505 		struct svc_program *progp = &prog[i];
506 
507 		progp->pg_lovers = progp->pg_nvers-1;
508 		for (vers = 0; vers < progp->pg_nvers ; vers++)
509 			if (progp->pg_vers[vers]) {
510 				progp->pg_hivers = vers;
511 				if (progp->pg_lovers > vers)
512 					progp->pg_lovers = vers;
513 				if (progp->pg_vers[vers]->vs_xdrsize > xdrsize)
514 					xdrsize = progp->pg_vers[vers]->vs_xdrsize;
515 			}
516 	}
517 	serv->sv_xdrsize   = xdrsize;
518 	INIT_LIST_HEAD(&serv->sv_tempsocks);
519 	INIT_LIST_HEAD(&serv->sv_permsocks);
520 	timer_setup(&serv->sv_temptimer, NULL, 0);
521 	spin_lock_init(&serv->sv_lock);
522 
523 	__svc_init_bc(serv);
524 
525 	serv->sv_nrpools = npools;
526 	serv->sv_pools =
527 		kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
528 			GFP_KERNEL);
529 	if (!serv->sv_pools) {
530 		kfree(serv);
531 		return NULL;
532 	}
533 
534 	for (i = 0; i < serv->sv_nrpools; i++) {
535 		struct svc_pool *pool = &serv->sv_pools[i];
536 
537 		dprintk("svc: initialising pool %u for %s\n",
538 				i, serv->sv_name);
539 
540 		pool->sp_id = i;
541 		lwq_init(&pool->sp_xprts);
542 		INIT_LIST_HEAD(&pool->sp_all_threads);
543 		init_llist_head(&pool->sp_idle_threads);
544 
545 		percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL);
546 		percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
547 		percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
548 	}
549 
550 	return serv;
551 }
552 
553 /**
554  * svc_create - Create an RPC service
555  * @prog: the RPC program the new service will handle
556  * @bufsize: maximum message size for @prog
557  * @threadfn: a function to service RPC requests for @prog
558  *
559  * Returns an instantiated struct svc_serv object or NULL.
560  */
svc_create(struct svc_program * prog,unsigned int bufsize,int (* threadfn)(void * data))561 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
562 			    int (*threadfn)(void *data))
563 {
564 	return __svc_create(prog, 1, NULL, bufsize, 1, threadfn);
565 }
566 EXPORT_SYMBOL_GPL(svc_create);
567 
568 /**
569  * svc_create_pooled - Create an RPC service with pooled threads
570  * @prog:  Array of RPC programs the new service will handle
571  * @nprogs: Number of programs in the array
572  * @stats: the stats struct if desired
573  * @bufsize: maximum message size for @prog
574  * @threadfn: a function to service RPC requests for @prog
575  *
576  * Returns an instantiated struct svc_serv object or NULL.
577  */
svc_create_pooled(struct svc_program * prog,unsigned int nprogs,struct svc_stat * stats,unsigned int bufsize,int (* threadfn)(void * data))578 struct svc_serv *svc_create_pooled(struct svc_program *prog,
579 				   unsigned int nprogs,
580 				   struct svc_stat *stats,
581 				   unsigned int bufsize,
582 				   int (*threadfn)(void *data))
583 {
584 	struct svc_serv *serv;
585 	unsigned int npools = svc_pool_map_get();
586 
587 	serv = __svc_create(prog, nprogs, stats, bufsize, npools, threadfn);
588 	if (!serv)
589 		goto out_err;
590 	serv->sv_is_pooled = true;
591 	return serv;
592 out_err:
593 	svc_pool_map_put();
594 	return NULL;
595 }
596 EXPORT_SYMBOL_GPL(svc_create_pooled);
597 
598 /*
599  * Destroy an RPC service. Should be called with appropriate locking to
600  * protect sv_permsocks and sv_tempsocks.
601  */
602 void
svc_destroy(struct svc_serv ** servp)603 svc_destroy(struct svc_serv **servp)
604 {
605 	struct svc_serv *serv = *servp;
606 	unsigned int i;
607 
608 	*servp = NULL;
609 
610 	dprintk("svc: svc_destroy(%s)\n", serv->sv_programs->pg_name);
611 	timer_shutdown_sync(&serv->sv_temptimer);
612 
613 	/*
614 	 * Remaining transports at this point are not expected.
615 	 */
616 	WARN_ONCE(!list_empty(&serv->sv_permsocks),
617 		  "SVC: permsocks remain for %s\n", serv->sv_programs->pg_name);
618 	WARN_ONCE(!list_empty(&serv->sv_tempsocks),
619 		  "SVC: tempsocks remain for %s\n", serv->sv_programs->pg_name);
620 
621 	cache_clean_deferred(serv);
622 
623 	if (serv->sv_is_pooled)
624 		svc_pool_map_put();
625 
626 	for (i = 0; i < serv->sv_nrpools; i++) {
627 		struct svc_pool *pool = &serv->sv_pools[i];
628 
629 		percpu_counter_destroy(&pool->sp_messages_arrived);
630 		percpu_counter_destroy(&pool->sp_sockets_queued);
631 		percpu_counter_destroy(&pool->sp_threads_woken);
632 	}
633 	kfree(serv->sv_pools);
634 	kfree(serv);
635 }
636 EXPORT_SYMBOL_GPL(svc_destroy);
637 
638 static bool
svc_init_buffer(struct svc_rqst * rqstp,unsigned int size,int node)639 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
640 {
641 	unsigned long pages, ret;
642 
643 	/* bc_xprt uses fore channel allocated buffers */
644 	if (svc_is_backchannel(rqstp))
645 		return true;
646 
647 	pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
648 				       * We assume one is at most one page
649 				       */
650 	WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
651 	if (pages > RPCSVC_MAXPAGES)
652 		pages = RPCSVC_MAXPAGES;
653 
654 	ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages,
655 					  rqstp->rq_pages);
656 	return ret == pages;
657 }
658 
659 /*
660  * Release an RPC server buffer
661  */
662 static void
svc_release_buffer(struct svc_rqst * rqstp)663 svc_release_buffer(struct svc_rqst *rqstp)
664 {
665 	unsigned int i;
666 
667 	for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
668 		if (rqstp->rq_pages[i])
669 			put_page(rqstp->rq_pages[i]);
670 }
671 
672 static void
svc_rqst_free(struct svc_rqst * rqstp)673 svc_rqst_free(struct svc_rqst *rqstp)
674 {
675 	folio_batch_release(&rqstp->rq_fbatch);
676 	svc_release_buffer(rqstp);
677 	if (rqstp->rq_scratch_page)
678 		put_page(rqstp->rq_scratch_page);
679 	kfree(rqstp->rq_resp);
680 	kfree(rqstp->rq_argp);
681 	kfree(rqstp->rq_auth_data);
682 	kfree_rcu(rqstp, rq_rcu_head);
683 }
684 
685 static struct svc_rqst *
svc_prepare_thread(struct svc_serv * serv,struct svc_pool * pool,int node)686 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
687 {
688 	struct svc_rqst	*rqstp;
689 
690 	rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
691 	if (!rqstp)
692 		return rqstp;
693 
694 	folio_batch_init(&rqstp->rq_fbatch);
695 
696 	rqstp->rq_server = serv;
697 	rqstp->rq_pool = pool;
698 
699 	rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
700 	if (!rqstp->rq_scratch_page)
701 		goto out_enomem;
702 
703 	rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
704 	if (!rqstp->rq_argp)
705 		goto out_enomem;
706 
707 	rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
708 	if (!rqstp->rq_resp)
709 		goto out_enomem;
710 
711 	if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
712 		goto out_enomem;
713 
714 	rqstp->rq_err = -EAGAIN; /* No error yet */
715 
716 	serv->sv_nrthreads += 1;
717 	pool->sp_nrthreads += 1;
718 
719 	/* Protected by whatever lock the service uses when calling
720 	 * svc_set_num_threads()
721 	 */
722 	list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
723 
724 	return rqstp;
725 
726 out_enomem:
727 	svc_rqst_free(rqstp);
728 	return NULL;
729 }
730 
731 /**
732  * svc_pool_wake_idle_thread - Awaken an idle thread in @pool
733  * @pool: service thread pool
734  *
735  * Can be called from soft IRQ or process context. Finding an idle
736  * service thread and marking it BUSY is atomic with respect to
737  * other calls to svc_pool_wake_idle_thread().
738  *
739  */
svc_pool_wake_idle_thread(struct svc_pool * pool)740 void svc_pool_wake_idle_thread(struct svc_pool *pool)
741 {
742 	struct svc_rqst	*rqstp;
743 	struct llist_node *ln;
744 
745 	rcu_read_lock();
746 	ln = READ_ONCE(pool->sp_idle_threads.first);
747 	if (ln) {
748 		rqstp = llist_entry(ln, struct svc_rqst, rq_idle);
749 		WRITE_ONCE(rqstp->rq_qtime, ktime_get());
750 		if (!task_is_running(rqstp->rq_task)) {
751 			wake_up_process(rqstp->rq_task);
752 			trace_svc_wake_up(rqstp->rq_task->pid);
753 			percpu_counter_inc(&pool->sp_threads_woken);
754 		}
755 		rcu_read_unlock();
756 		return;
757 	}
758 	rcu_read_unlock();
759 
760 }
761 EXPORT_SYMBOL_GPL(svc_pool_wake_idle_thread);
762 
763 static struct svc_pool *
svc_pool_next(struct svc_serv * serv,struct svc_pool * pool,unsigned int * state)764 svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
765 {
766 	return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools];
767 }
768 
769 static struct svc_pool *
svc_pool_victim(struct svc_serv * serv,struct svc_pool * target_pool,unsigned int * state)770 svc_pool_victim(struct svc_serv *serv, struct svc_pool *target_pool,
771 		unsigned int *state)
772 {
773 	struct svc_pool *pool;
774 	unsigned int i;
775 
776 	pool = target_pool;
777 
778 	if (!pool) {
779 		for (i = 0; i < serv->sv_nrpools; i++) {
780 			pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
781 			if (pool->sp_nrthreads)
782 				break;
783 		}
784 	}
785 
786 	if (pool && pool->sp_nrthreads) {
787 		set_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
788 		set_bit(SP_NEED_VICTIM, &pool->sp_flags);
789 		return pool;
790 	}
791 	return NULL;
792 }
793 
794 static int
svc_start_kthreads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)795 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
796 {
797 	struct svc_rqst	*rqstp;
798 	struct task_struct *task;
799 	struct svc_pool *chosen_pool;
800 	unsigned int state = serv->sv_nrthreads-1;
801 	int node;
802 	int err;
803 
804 	do {
805 		nrservs--;
806 		chosen_pool = svc_pool_next(serv, pool, &state);
807 		node = svc_pool_map_get_node(chosen_pool->sp_id);
808 
809 		rqstp = svc_prepare_thread(serv, chosen_pool, node);
810 		if (!rqstp)
811 			return -ENOMEM;
812 		task = kthread_create_on_node(serv->sv_threadfn, rqstp,
813 					      node, "%s", serv->sv_name);
814 		if (IS_ERR(task)) {
815 			svc_exit_thread(rqstp);
816 			return PTR_ERR(task);
817 		}
818 
819 		rqstp->rq_task = task;
820 		if (serv->sv_nrpools > 1)
821 			svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
822 
823 		svc_sock_update_bufs(serv);
824 		wake_up_process(task);
825 
826 		wait_var_event(&rqstp->rq_err, rqstp->rq_err != -EAGAIN);
827 		err = rqstp->rq_err;
828 		if (err) {
829 			svc_exit_thread(rqstp);
830 			return err;
831 		}
832 	} while (nrservs > 0);
833 
834 	return 0;
835 }
836 
837 static int
svc_stop_kthreads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)838 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
839 {
840 	unsigned int state = serv->sv_nrthreads-1;
841 	struct svc_pool *victim;
842 
843 	do {
844 		victim = svc_pool_victim(serv, pool, &state);
845 		if (!victim)
846 			break;
847 		svc_pool_wake_idle_thread(victim);
848 		wait_on_bit(&victim->sp_flags, SP_VICTIM_REMAINS,
849 			    TASK_IDLE);
850 		nrservs++;
851 	} while (nrservs < 0);
852 	return 0;
853 }
854 
855 /**
856  * svc_set_num_threads - adjust number of threads per RPC service
857  * @serv: RPC service to adjust
858  * @pool: Specific pool from which to choose threads, or NULL
859  * @nrservs: New number of threads for @serv (0 or less means kill all threads)
860  *
861  * Create or destroy threads to make the number of threads for @serv the
862  * given number. If @pool is non-NULL, change only threads in that pool;
863  * otherwise, round-robin between all pools for @serv. @serv's
864  * sv_nrthreads is adjusted for each thread created or destroyed.
865  *
866  * Caller must ensure mutual exclusion between this and server startup or
867  * shutdown.
868  *
869  * Returns zero on success or a negative errno if an error occurred while
870  * starting a thread.
871  */
872 int
svc_set_num_threads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)873 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
874 {
875 	if (!pool)
876 		nrservs -= serv->sv_nrthreads;
877 	else
878 		nrservs -= pool->sp_nrthreads;
879 
880 	if (nrservs > 0)
881 		return svc_start_kthreads(serv, pool, nrservs);
882 	if (nrservs < 0)
883 		return svc_stop_kthreads(serv, pool, nrservs);
884 	return 0;
885 }
886 EXPORT_SYMBOL_GPL(svc_set_num_threads);
887 
888 /**
889  * svc_rqst_replace_page - Replace one page in rq_pages[]
890  * @rqstp: svc_rqst with pages to replace
891  * @page: replacement page
892  *
893  * When replacing a page in rq_pages, batch the release of the
894  * replaced pages to avoid hammering the page allocator.
895  *
896  * Return values:
897  *   %true: page replaced
898  *   %false: array bounds checking failed
899  */
svc_rqst_replace_page(struct svc_rqst * rqstp,struct page * page)900 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
901 {
902 	struct page **begin = rqstp->rq_pages;
903 	struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES];
904 
905 	if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
906 		trace_svc_replace_page_err(rqstp);
907 		return false;
908 	}
909 
910 	if (*rqstp->rq_next_page) {
911 		if (!folio_batch_add(&rqstp->rq_fbatch,
912 				page_folio(*rqstp->rq_next_page)))
913 			__folio_batch_release(&rqstp->rq_fbatch);
914 	}
915 
916 	get_page(page);
917 	*(rqstp->rq_next_page++) = page;
918 	return true;
919 }
920 EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
921 
922 /**
923  * svc_rqst_release_pages - Release Reply buffer pages
924  * @rqstp: RPC transaction context
925  *
926  * Release response pages that might still be in flight after
927  * svc_send, and any spliced filesystem-owned pages.
928  */
svc_rqst_release_pages(struct svc_rqst * rqstp)929 void svc_rqst_release_pages(struct svc_rqst *rqstp)
930 {
931 	int i, count = rqstp->rq_next_page - rqstp->rq_respages;
932 
933 	if (count) {
934 		release_pages(rqstp->rq_respages, count);
935 		for (i = 0; i < count; i++)
936 			rqstp->rq_respages[i] = NULL;
937 	}
938 }
939 
940 /**
941  * svc_exit_thread - finalise the termination of a sunrpc server thread
942  * @rqstp: the svc_rqst which represents the thread.
943  *
944  * When a thread started with svc_new_thread() exits it must call
945  * svc_exit_thread() as its last act.  This must be done with the
946  * service mutex held.  Normally this is held by a DIFFERENT thread, the
947  * one that is calling svc_set_num_threads() and which will wait for
948  * SP_VICTIM_REMAINS to be cleared before dropping the mutex.  If the
949  * thread exits for any reason other than svc_thread_should_stop()
950  * returning %true (which indicated that svc_set_num_threads() is
951  * waiting for it to exit), then it must take the service mutex itself,
952  * which can only safely be done using mutex_try_lock().
953  */
954 void
svc_exit_thread(struct svc_rqst * rqstp)955 svc_exit_thread(struct svc_rqst *rqstp)
956 {
957 	struct svc_serv	*serv = rqstp->rq_server;
958 	struct svc_pool	*pool = rqstp->rq_pool;
959 
960 	list_del_rcu(&rqstp->rq_all);
961 
962 	pool->sp_nrthreads -= 1;
963 	serv->sv_nrthreads -= 1;
964 	svc_sock_update_bufs(serv);
965 
966 	svc_rqst_free(rqstp);
967 
968 	clear_and_wake_up_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
969 }
970 EXPORT_SYMBOL_GPL(svc_exit_thread);
971 
972 /*
973  * Register an "inet" protocol family netid with the local
974  * rpcbind daemon via an rpcbind v4 SET request.
975  *
976  * No netconfig infrastructure is available in the kernel, so
977  * we map IP_ protocol numbers to netids by hand.
978  *
979  * Returns zero on success; a negative errno value is returned
980  * if any error occurs.
981  */
__svc_rpcb_register4(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)982 static int __svc_rpcb_register4(struct net *net, const u32 program,
983 				const u32 version,
984 				const unsigned short protocol,
985 				const unsigned short port)
986 {
987 	const struct sockaddr_in sin = {
988 		.sin_family		= AF_INET,
989 		.sin_addr.s_addr	= htonl(INADDR_ANY),
990 		.sin_port		= htons(port),
991 	};
992 	const char *netid;
993 	int error;
994 
995 	switch (protocol) {
996 	case IPPROTO_UDP:
997 		netid = RPCBIND_NETID_UDP;
998 		break;
999 	case IPPROTO_TCP:
1000 		netid = RPCBIND_NETID_TCP;
1001 		break;
1002 	default:
1003 		return -ENOPROTOOPT;
1004 	}
1005 
1006 	error = rpcb_v4_register(net, program, version,
1007 					(const struct sockaddr *)&sin, netid);
1008 
1009 	/*
1010 	 * User space didn't support rpcbind v4, so retry this
1011 	 * registration request with the legacy rpcbind v2 protocol.
1012 	 */
1013 	if (error == -EPROTONOSUPPORT)
1014 		error = rpcb_register(net, program, version, protocol, port);
1015 
1016 	return error;
1017 }
1018 
1019 #if IS_ENABLED(CONFIG_IPV6)
1020 /*
1021  * Register an "inet6" protocol family netid with the local
1022  * rpcbind daemon via an rpcbind v4 SET request.
1023  *
1024  * No netconfig infrastructure is available in the kernel, so
1025  * we map IP_ protocol numbers to netids by hand.
1026  *
1027  * Returns zero on success; a negative errno value is returned
1028  * if any error occurs.
1029  */
__svc_rpcb_register6(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)1030 static int __svc_rpcb_register6(struct net *net, const u32 program,
1031 				const u32 version,
1032 				const unsigned short protocol,
1033 				const unsigned short port)
1034 {
1035 	const struct sockaddr_in6 sin6 = {
1036 		.sin6_family		= AF_INET6,
1037 		.sin6_addr		= IN6ADDR_ANY_INIT,
1038 		.sin6_port		= htons(port),
1039 	};
1040 	const char *netid;
1041 	int error;
1042 
1043 	switch (protocol) {
1044 	case IPPROTO_UDP:
1045 		netid = RPCBIND_NETID_UDP6;
1046 		break;
1047 	case IPPROTO_TCP:
1048 		netid = RPCBIND_NETID_TCP6;
1049 		break;
1050 	default:
1051 		return -ENOPROTOOPT;
1052 	}
1053 
1054 	error = rpcb_v4_register(net, program, version,
1055 					(const struct sockaddr *)&sin6, netid);
1056 
1057 	/*
1058 	 * User space didn't support rpcbind version 4, so we won't
1059 	 * use a PF_INET6 listener.
1060 	 */
1061 	if (error == -EPROTONOSUPPORT)
1062 		error = -EAFNOSUPPORT;
1063 
1064 	return error;
1065 }
1066 #endif	/* IS_ENABLED(CONFIG_IPV6) */
1067 
1068 /*
1069  * Register a kernel RPC service via rpcbind version 4.
1070  *
1071  * Returns zero on success; a negative errno value is returned
1072  * if any error occurs.
1073  */
__svc_register(struct net * net,const char * progname,const u32 program,const u32 version,const int family,const unsigned short protocol,const unsigned short port)1074 static int __svc_register(struct net *net, const char *progname,
1075 			  const u32 program, const u32 version,
1076 			  const int family,
1077 			  const unsigned short protocol,
1078 			  const unsigned short port)
1079 {
1080 	int error = -EAFNOSUPPORT;
1081 
1082 	switch (family) {
1083 	case PF_INET:
1084 		error = __svc_rpcb_register4(net, program, version,
1085 						protocol, port);
1086 		break;
1087 #if IS_ENABLED(CONFIG_IPV6)
1088 	case PF_INET6:
1089 		error = __svc_rpcb_register6(net, program, version,
1090 						protocol, port);
1091 #endif
1092 	}
1093 
1094 	trace_svc_register(progname, version, family, protocol, port, error);
1095 	return error;
1096 }
1097 
1098 static
svc_rpcbind_set_version(struct net * net,const struct svc_program * progp,u32 version,int family,unsigned short proto,unsigned short port)1099 int svc_rpcbind_set_version(struct net *net,
1100 			    const struct svc_program *progp,
1101 			    u32 version, int family,
1102 			    unsigned short proto,
1103 			    unsigned short port)
1104 {
1105 	return __svc_register(net, progp->pg_name, progp->pg_prog,
1106 				version, family, proto, port);
1107 
1108 }
1109 
svc_generic_rpcbind_set(struct net * net,const struct svc_program * progp,u32 version,int family,unsigned short proto,unsigned short port)1110 int svc_generic_rpcbind_set(struct net *net,
1111 			    const struct svc_program *progp,
1112 			    u32 version, int family,
1113 			    unsigned short proto,
1114 			    unsigned short port)
1115 {
1116 	const struct svc_version *vers = progp->pg_vers[version];
1117 	int error;
1118 
1119 	if (vers == NULL)
1120 		return 0;
1121 
1122 	if (vers->vs_hidden) {
1123 		trace_svc_noregister(progp->pg_name, version, proto,
1124 				     port, family, 0);
1125 		return 0;
1126 	}
1127 
1128 	/*
1129 	 * Don't register a UDP port if we need congestion
1130 	 * control.
1131 	 */
1132 	if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1133 		return 0;
1134 
1135 	error = svc_rpcbind_set_version(net, progp, version,
1136 					family, proto, port);
1137 
1138 	return (vers->vs_rpcb_optnl) ? 0 : error;
1139 }
1140 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1141 
1142 /**
1143  * svc_register - register an RPC service with the local portmapper
1144  * @serv: svc_serv struct for the service to register
1145  * @net: net namespace for the service to register
1146  * @family: protocol family of service's listener socket
1147  * @proto: transport protocol number to advertise
1148  * @port: port to advertise
1149  *
1150  * Service is registered for any address in the passed-in protocol family
1151  */
svc_register(const struct svc_serv * serv,struct net * net,const int family,const unsigned short proto,const unsigned short port)1152 int svc_register(const struct svc_serv *serv, struct net *net,
1153 		 const int family, const unsigned short proto,
1154 		 const unsigned short port)
1155 {
1156 	unsigned int		p, i;
1157 	int			error = 0;
1158 
1159 	WARN_ON_ONCE(proto == 0 && port == 0);
1160 	if (proto == 0 && port == 0)
1161 		return -EINVAL;
1162 
1163 	for (p = 0; p < serv->sv_nprogs; p++) {
1164 		struct svc_program *progp = &serv->sv_programs[p];
1165 
1166 		for (i = 0; i < progp->pg_nvers; i++) {
1167 
1168 			error = progp->pg_rpcbind_set(net, progp, i,
1169 					family, proto, port);
1170 			if (error < 0) {
1171 				printk(KERN_WARNING "svc: failed to register "
1172 					"%sv%u RPC service (errno %d).\n",
1173 					progp->pg_name, i, -error);
1174 				break;
1175 			}
1176 		}
1177 	}
1178 
1179 	return error;
1180 }
1181 
1182 /*
1183  * If user space is running rpcbind, it should take the v4 UNSET
1184  * and clear everything for this [program, version].  If user space
1185  * is running portmap, it will reject the v4 UNSET, but won't have
1186  * any "inet6" entries anyway.  So a PMAP_UNSET should be sufficient
1187  * in this case to clear all existing entries for [program, version].
1188  */
__svc_unregister(struct net * net,const u32 program,const u32 version,const char * progname)1189 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1190 			     const char *progname)
1191 {
1192 	int error;
1193 
1194 	error = rpcb_v4_register(net, program, version, NULL, "");
1195 
1196 	/*
1197 	 * User space didn't support rpcbind v4, so retry this
1198 	 * request with the legacy rpcbind v2 protocol.
1199 	 */
1200 	if (error == -EPROTONOSUPPORT)
1201 		error = rpcb_register(net, program, version, 0, 0);
1202 
1203 	trace_svc_unregister(progname, version, error);
1204 }
1205 
1206 /*
1207  * All netids, bind addresses and ports registered for [program, version]
1208  * are removed from the local rpcbind database (if the service is not
1209  * hidden) to make way for a new instance of the service.
1210  *
1211  * The result of unregistration is reported via dprintk for those who want
1212  * verification of the result, but is otherwise not important.
1213  */
svc_unregister(const struct svc_serv * serv,struct net * net)1214 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1215 {
1216 	struct sighand_struct *sighand;
1217 	unsigned long flags;
1218 	unsigned int p, i;
1219 
1220 	clear_thread_flag(TIF_SIGPENDING);
1221 
1222 	for (p = 0; p < serv->sv_nprogs; p++) {
1223 		struct svc_program *progp = &serv->sv_programs[p];
1224 
1225 		for (i = 0; i < progp->pg_nvers; i++) {
1226 			if (progp->pg_vers[i] == NULL)
1227 				continue;
1228 			if (progp->pg_vers[i]->vs_hidden)
1229 				continue;
1230 			__svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1231 		}
1232 	}
1233 
1234 	rcu_read_lock();
1235 	sighand = rcu_dereference(current->sighand);
1236 	spin_lock_irqsave(&sighand->siglock, flags);
1237 	recalc_sigpending();
1238 	spin_unlock_irqrestore(&sighand->siglock, flags);
1239 	rcu_read_unlock();
1240 }
1241 
1242 /*
1243  * dprintk the given error with the address of the client that caused it.
1244  */
1245 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1246 static __printf(2, 3)
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1247 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1248 {
1249 	struct va_format vaf;
1250 	va_list args;
1251 	char 	buf[RPC_MAX_ADDRBUFLEN];
1252 
1253 	va_start(args, fmt);
1254 
1255 	vaf.fmt = fmt;
1256 	vaf.va = &args;
1257 
1258 	dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1259 
1260 	va_end(args);
1261 }
1262 #else
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1263 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1264 #endif
1265 
1266 __be32
svc_generic_init_request(struct svc_rqst * rqstp,const struct svc_program * progp,struct svc_process_info * ret)1267 svc_generic_init_request(struct svc_rqst *rqstp,
1268 		const struct svc_program *progp,
1269 		struct svc_process_info *ret)
1270 {
1271 	const struct svc_version *versp = NULL;	/* compiler food */
1272 	const struct svc_procedure *procp = NULL;
1273 
1274 	if (rqstp->rq_vers >= progp->pg_nvers )
1275 		goto err_bad_vers;
1276 	versp = progp->pg_vers[rqstp->rq_vers];
1277 	if (!versp)
1278 		goto err_bad_vers;
1279 
1280 	/*
1281 	 * Some protocol versions (namely NFSv4) require some form of
1282 	 * congestion control.  (See RFC 7530 section 3.1 paragraph 2)
1283 	 * In other words, UDP is not allowed. We mark those when setting
1284 	 * up the svc_xprt, and verify that here.
1285 	 *
1286 	 * The spec is not very clear about what error should be returned
1287 	 * when someone tries to access a server that is listening on UDP
1288 	 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1289 	 * fit.
1290 	 */
1291 	if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1292 	    !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1293 		goto err_bad_vers;
1294 
1295 	if (rqstp->rq_proc >= versp->vs_nproc)
1296 		goto err_bad_proc;
1297 	rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1298 
1299 	/* Initialize storage for argp and resp */
1300 	memset(rqstp->rq_argp, 0, procp->pc_argzero);
1301 	memset(rqstp->rq_resp, 0, procp->pc_ressize);
1302 
1303 	/* Bump per-procedure stats counter */
1304 	this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1305 
1306 	ret->dispatch = versp->vs_dispatch;
1307 	return rpc_success;
1308 err_bad_vers:
1309 	ret->mismatch.lovers = progp->pg_lovers;
1310 	ret->mismatch.hivers = progp->pg_hivers;
1311 	return rpc_prog_mismatch;
1312 err_bad_proc:
1313 	return rpc_proc_unavail;
1314 }
1315 EXPORT_SYMBOL_GPL(svc_generic_init_request);
1316 
1317 /*
1318  * Common routine for processing the RPC request.
1319  */
1320 static int
svc_process_common(struct svc_rqst * rqstp)1321 svc_process_common(struct svc_rqst *rqstp)
1322 {
1323 	struct xdr_stream	*xdr = &rqstp->rq_res_stream;
1324 	struct svc_program	*progp = NULL;
1325 	const struct svc_procedure *procp = NULL;
1326 	struct svc_serv		*serv = rqstp->rq_server;
1327 	struct svc_process_info process;
1328 	enum svc_auth_status	auth_res;
1329 	unsigned int		aoffset;
1330 	int			pr, rc;
1331 	__be32			*p;
1332 
1333 	/* Will be turned off only when NFSv4 Sessions are used */
1334 	set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1335 	clear_bit(RQ_DROPME, &rqstp->rq_flags);
1336 
1337 	/* Construct the first words of the reply: */
1338 	svcxdr_init_encode(rqstp);
1339 	xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1340 	xdr_stream_encode_be32(xdr, rpc_reply);
1341 
1342 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1343 	if (unlikely(!p))
1344 		goto err_short_len;
1345 	if (*p++ != cpu_to_be32(RPC_VERSION))
1346 		goto err_bad_rpc;
1347 
1348 	xdr_stream_encode_be32(xdr, rpc_msg_accepted);
1349 
1350 	rqstp->rq_prog = be32_to_cpup(p++);
1351 	rqstp->rq_vers = be32_to_cpup(p++);
1352 	rqstp->rq_proc = be32_to_cpup(p);
1353 
1354 	for (pr = 0; pr < serv->sv_nprogs; pr++)
1355 		if (rqstp->rq_prog == serv->sv_programs[pr].pg_prog)
1356 			progp = &serv->sv_programs[pr];
1357 
1358 	/*
1359 	 * Decode auth data, and add verifier to reply buffer.
1360 	 * We do this before anything else in order to get a decent
1361 	 * auth verifier.
1362 	 */
1363 	auth_res = svc_authenticate(rqstp);
1364 	/* Also give the program a chance to reject this call: */
1365 	if (auth_res == SVC_OK && progp)
1366 		auth_res = progp->pg_authenticate(rqstp);
1367 	trace_svc_authenticate(rqstp, auth_res);
1368 	switch (auth_res) {
1369 	case SVC_OK:
1370 		break;
1371 	case SVC_GARBAGE:
1372 		goto err_garbage_args;
1373 	case SVC_SYSERR:
1374 		goto err_system_err;
1375 	case SVC_DENIED:
1376 		goto err_bad_auth;
1377 	case SVC_CLOSE:
1378 		goto close;
1379 	case SVC_DROP:
1380 		goto dropit;
1381 	case SVC_COMPLETE:
1382 		goto sendit;
1383 	default:
1384 		pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res);
1385 		goto err_system_err;
1386 	}
1387 
1388 	if (progp == NULL)
1389 		goto err_bad_prog;
1390 
1391 	switch (progp->pg_init_request(rqstp, progp, &process)) {
1392 	case rpc_success:
1393 		break;
1394 	case rpc_prog_unavail:
1395 		goto err_bad_prog;
1396 	case rpc_prog_mismatch:
1397 		goto err_bad_vers;
1398 	case rpc_proc_unavail:
1399 		goto err_bad_proc;
1400 	}
1401 
1402 	procp = rqstp->rq_procinfo;
1403 	/* Should this check go into the dispatcher? */
1404 	if (!procp || !procp->pc_func)
1405 		goto err_bad_proc;
1406 
1407 	/* Syntactic check complete */
1408 	if (serv->sv_stats)
1409 		serv->sv_stats->rpccnt++;
1410 	trace_svc_process(rqstp, progp->pg_name);
1411 
1412 	aoffset = xdr_stream_pos(xdr);
1413 
1414 	/* un-reserve some of the out-queue now that we have a
1415 	 * better idea of reply size
1416 	 */
1417 	if (procp->pc_xdrressize)
1418 		svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1419 
1420 	/* Call the function that processes the request. */
1421 	rc = process.dispatch(rqstp);
1422 	if (procp->pc_release)
1423 		procp->pc_release(rqstp);
1424 	xdr_finish_decode(xdr);
1425 
1426 	if (!rc)
1427 		goto dropit;
1428 	if (rqstp->rq_auth_stat != rpc_auth_ok)
1429 		goto err_bad_auth;
1430 
1431 	if (*rqstp->rq_accept_statp != rpc_success)
1432 		xdr_truncate_encode(xdr, aoffset);
1433 
1434 	if (procp->pc_encode == NULL)
1435 		goto dropit;
1436 
1437  sendit:
1438 	if (svc_authorise(rqstp))
1439 		goto close_xprt;
1440 	return 1;		/* Caller can now send it */
1441 
1442  dropit:
1443 	svc_authorise(rqstp);	/* doesn't hurt to call this twice */
1444 	dprintk("svc: svc_process dropit\n");
1445 	return 0;
1446 
1447  close:
1448 	svc_authorise(rqstp);
1449 close_xprt:
1450 	if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1451 		svc_xprt_close(rqstp->rq_xprt);
1452 	dprintk("svc: svc_process close\n");
1453 	return 0;
1454 
1455 err_short_len:
1456 	svc_printk(rqstp, "short len %u, dropping request\n",
1457 		   rqstp->rq_arg.len);
1458 	goto close_xprt;
1459 
1460 err_bad_rpc:
1461 	if (serv->sv_stats)
1462 		serv->sv_stats->rpcbadfmt++;
1463 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1464 	xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1465 	/* Only RPCv2 supported */
1466 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1467 	xdr_stream_encode_u32(xdr, RPC_VERSION);
1468 	return 1;	/* don't wrap */
1469 
1470 err_bad_auth:
1471 	dprintk("svc: authentication failed (%d)\n",
1472 		be32_to_cpu(rqstp->rq_auth_stat));
1473 	if (serv->sv_stats)
1474 		serv->sv_stats->rpcbadauth++;
1475 	/* Restore write pointer to location of reply status: */
1476 	xdr_truncate_encode(xdr, XDR_UNIT * 2);
1477 	xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1478 	xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1479 	xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1480 	goto sendit;
1481 
1482 err_bad_prog:
1483 	dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1484 	if (serv->sv_stats)
1485 		serv->sv_stats->rpcbadfmt++;
1486 	*rqstp->rq_accept_statp = rpc_prog_unavail;
1487 	goto sendit;
1488 
1489 err_bad_vers:
1490 	svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1491 		       rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1492 
1493 	if (serv->sv_stats)
1494 		serv->sv_stats->rpcbadfmt++;
1495 	*rqstp->rq_accept_statp = rpc_prog_mismatch;
1496 
1497 	/*
1498 	 * svc_authenticate() has already added the verifier and
1499 	 * advanced the stream just past rq_accept_statp.
1500 	 */
1501 	xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1502 	xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1503 	goto sendit;
1504 
1505 err_bad_proc:
1506 	svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1507 
1508 	if (serv->sv_stats)
1509 		serv->sv_stats->rpcbadfmt++;
1510 	*rqstp->rq_accept_statp = rpc_proc_unavail;
1511 	goto sendit;
1512 
1513 err_garbage_args:
1514 	svc_printk(rqstp, "failed to decode RPC header\n");
1515 
1516 	if (serv->sv_stats)
1517 		serv->sv_stats->rpcbadfmt++;
1518 	*rqstp->rq_accept_statp = rpc_garbage_args;
1519 	goto sendit;
1520 
1521 err_system_err:
1522 	if (serv->sv_stats)
1523 		serv->sv_stats->rpcbadfmt++;
1524 	*rqstp->rq_accept_statp = rpc_system_err;
1525 	goto sendit;
1526 }
1527 
1528 /*
1529  * Drop request
1530  */
svc_drop(struct svc_rqst * rqstp)1531 static void svc_drop(struct svc_rqst *rqstp)
1532 {
1533 	trace_svc_drop(rqstp);
1534 }
1535 
1536 /**
1537  * svc_process - Execute one RPC transaction
1538  * @rqstp: RPC transaction context
1539  *
1540  */
svc_process(struct svc_rqst * rqstp)1541 void svc_process(struct svc_rqst *rqstp)
1542 {
1543 	struct kvec		*resv = &rqstp->rq_res.head[0];
1544 	__be32 *p;
1545 
1546 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1547 	if (!fail_sunrpc.ignore_server_disconnect &&
1548 	    should_fail(&fail_sunrpc.attr, 1))
1549 		svc_xprt_deferred_close(rqstp->rq_xprt);
1550 #endif
1551 
1552 	/*
1553 	 * Setup response xdr_buf.
1554 	 * Initially it has just one page
1555 	 */
1556 	rqstp->rq_next_page = &rqstp->rq_respages[1];
1557 	resv->iov_base = page_address(rqstp->rq_respages[0]);
1558 	resv->iov_len = 0;
1559 	rqstp->rq_res.pages = rqstp->rq_next_page;
1560 	rqstp->rq_res.len = 0;
1561 	rqstp->rq_res.page_base = 0;
1562 	rqstp->rq_res.page_len = 0;
1563 	rqstp->rq_res.buflen = PAGE_SIZE;
1564 	rqstp->rq_res.tail[0].iov_base = NULL;
1565 	rqstp->rq_res.tail[0].iov_len = 0;
1566 
1567 	svcxdr_init_decode(rqstp);
1568 	p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1569 	if (unlikely(!p))
1570 		goto out_drop;
1571 	rqstp->rq_xid = *p++;
1572 	if (unlikely(*p != rpc_call))
1573 		goto out_baddir;
1574 
1575 	if (!svc_process_common(rqstp))
1576 		goto out_drop;
1577 	svc_send(rqstp);
1578 	return;
1579 
1580 out_baddir:
1581 	svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1582 		   be32_to_cpu(*p));
1583 	if (rqstp->rq_server->sv_stats)
1584 		rqstp->rq_server->sv_stats->rpcbadfmt++;
1585 out_drop:
1586 	svc_drop(rqstp);
1587 }
1588 
1589 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1590 /**
1591  * svc_process_bc - process a reverse-direction RPC request
1592  * @req: RPC request to be used for client-side processing
1593  * @rqstp: server-side execution context
1594  *
1595  */
svc_process_bc(struct rpc_rqst * req,struct svc_rqst * rqstp)1596 void svc_process_bc(struct rpc_rqst *req, struct svc_rqst *rqstp)
1597 {
1598 	struct rpc_timeout timeout = {
1599 		.to_increment		= 0,
1600 	};
1601 	struct rpc_task *task;
1602 	int proc_error;
1603 
1604 	/* Build the svc_rqst used by the common processing routine */
1605 	rqstp->rq_xid = req->rq_xid;
1606 	rqstp->rq_prot = req->rq_xprt->prot;
1607 	rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1608 
1609 	rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1610 	memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1611 	memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1612 	memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1613 
1614 	/* Adjust the argument buffer length */
1615 	rqstp->rq_arg.len = req->rq_private_buf.len;
1616 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1617 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1618 		rqstp->rq_arg.page_len = 0;
1619 	} else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1620 			rqstp->rq_arg.page_len)
1621 		rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1622 			rqstp->rq_arg.head[0].iov_len;
1623 	else
1624 		rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1625 			rqstp->rq_arg.page_len;
1626 
1627 	/* Reset the response buffer */
1628 	rqstp->rq_res.head[0].iov_len = 0;
1629 
1630 	/*
1631 	 * Skip the XID and calldir fields because they've already
1632 	 * been processed by the caller.
1633 	 */
1634 	svcxdr_init_decode(rqstp);
1635 	if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2))
1636 		return;
1637 
1638 	/* Parse and execute the bc call */
1639 	proc_error = svc_process_common(rqstp);
1640 
1641 	atomic_dec(&req->rq_xprt->bc_slot_count);
1642 	if (!proc_error) {
1643 		/* Processing error: drop the request */
1644 		xprt_free_bc_request(req);
1645 		return;
1646 	}
1647 	/* Finally, send the reply synchronously */
1648 	if (rqstp->bc_to_initval > 0) {
1649 		timeout.to_initval = rqstp->bc_to_initval;
1650 		timeout.to_retries = rqstp->bc_to_retries;
1651 	} else {
1652 		timeout.to_initval = req->rq_xprt->timeout->to_initval;
1653 		timeout.to_retries = req->rq_xprt->timeout->to_retries;
1654 	}
1655 	timeout.to_maxval = timeout.to_initval;
1656 	memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1657 	task = rpc_run_bc_task(req, &timeout);
1658 
1659 	if (IS_ERR(task))
1660 		return;
1661 
1662 	WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1663 	rpc_put_task(task);
1664 }
1665 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1666 
1667 /**
1668  * svc_max_payload - Return transport-specific limit on the RPC payload
1669  * @rqstp: RPC transaction context
1670  *
1671  * Returns the maximum number of payload bytes the current transport
1672  * allows.
1673  */
svc_max_payload(const struct svc_rqst * rqstp)1674 u32 svc_max_payload(const struct svc_rqst *rqstp)
1675 {
1676 	u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1677 
1678 	if (rqstp->rq_server->sv_max_payload < max)
1679 		max = rqstp->rq_server->sv_max_payload;
1680 	return max;
1681 }
1682 EXPORT_SYMBOL_GPL(svc_max_payload);
1683 
1684 /**
1685  * svc_proc_name - Return RPC procedure name in string form
1686  * @rqstp: svc_rqst to operate on
1687  *
1688  * Return value:
1689  *   Pointer to a NUL-terminated string
1690  */
svc_proc_name(const struct svc_rqst * rqstp)1691 const char *svc_proc_name(const struct svc_rqst *rqstp)
1692 {
1693 	if (rqstp && rqstp->rq_procinfo)
1694 		return rqstp->rq_procinfo->pc_name;
1695 	return "unknown";
1696 }
1697 
1698 
1699 /**
1700  * svc_encode_result_payload - mark a range of bytes as a result payload
1701  * @rqstp: svc_rqst to operate on
1702  * @offset: payload's byte offset in rqstp->rq_res
1703  * @length: size of payload, in bytes
1704  *
1705  * Returns zero on success, or a negative errno if a permanent
1706  * error occurred.
1707  */
svc_encode_result_payload(struct svc_rqst * rqstp,unsigned int offset,unsigned int length)1708 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1709 			      unsigned int length)
1710 {
1711 	return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1712 							   length);
1713 }
1714 EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1715 
1716 /**
1717  * svc_fill_write_vector - Construct data argument for VFS write call
1718  * @rqstp: svc_rqst to operate on
1719  * @payload: xdr_buf containing only the write data payload
1720  *
1721  * Fills in rqstp::rq_vec, and returns the number of elements.
1722  */
svc_fill_write_vector(struct svc_rqst * rqstp,struct xdr_buf * payload)1723 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1724 				   struct xdr_buf *payload)
1725 {
1726 	struct page **pages = payload->pages;
1727 	struct kvec *first = payload->head;
1728 	struct kvec *vec = rqstp->rq_vec;
1729 	size_t total = payload->len;
1730 	unsigned int i;
1731 
1732 	/* Some types of transport can present the write payload
1733 	 * entirely in rq_arg.pages. In this case, @first is empty.
1734 	 */
1735 	i = 0;
1736 	if (first->iov_len) {
1737 		vec[i].iov_base = first->iov_base;
1738 		vec[i].iov_len = min_t(size_t, total, first->iov_len);
1739 		total -= vec[i].iov_len;
1740 		++i;
1741 	}
1742 
1743 	while (total) {
1744 		vec[i].iov_base = page_address(*pages);
1745 		vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1746 		total -= vec[i].iov_len;
1747 		++i;
1748 		++pages;
1749 	}
1750 
1751 	WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1752 	return i;
1753 }
1754 EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1755 
1756 /**
1757  * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1758  * @rqstp: svc_rqst to operate on
1759  * @first: buffer containing first section of pathname
1760  * @p: buffer containing remaining section of pathname
1761  * @total: total length of the pathname argument
1762  *
1763  * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1764  * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1765  * the returned string.
1766  */
svc_fill_symlink_pathname(struct svc_rqst * rqstp,struct kvec * first,void * p,size_t total)1767 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1768 				void *p, size_t total)
1769 {
1770 	size_t len, remaining;
1771 	char *result, *dst;
1772 
1773 	result = kmalloc(total + 1, GFP_KERNEL);
1774 	if (!result)
1775 		return ERR_PTR(-ESERVERFAULT);
1776 
1777 	dst = result;
1778 	remaining = total;
1779 
1780 	len = min_t(size_t, total, first->iov_len);
1781 	if (len) {
1782 		memcpy(dst, first->iov_base, len);
1783 		dst += len;
1784 		remaining -= len;
1785 	}
1786 
1787 	if (remaining) {
1788 		len = min_t(size_t, remaining, PAGE_SIZE);
1789 		memcpy(dst, p, len);
1790 		dst += len;
1791 	}
1792 
1793 	*dst = '\0';
1794 
1795 	/* Sanity check: Linux doesn't allow the pathname argument to
1796 	 * contain a NUL byte.
1797 	 */
1798 	if (strlen(result) != total) {
1799 		kfree(result);
1800 		return ERR_PTR(-EINVAL);
1801 	}
1802 	return result;
1803 }
1804 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1805