1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * kernel/stop_machine.c
4   *
5   * Copyright (C) 2008, 2005	IBM Corporation.
6   * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
7   * Copyright (C) 2010		SUSE Linux Products GmbH
8   * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
9   */
10  #include <linux/compiler.h>
11  #include <linux/completion.h>
12  #include <linux/cpu.h>
13  #include <linux/init.h>
14  #include <linux/kthread.h>
15  #include <linux/export.h>
16  #include <linux/percpu.h>
17  #include <linux/sched.h>
18  #include <linux/stop_machine.h>
19  #include <linux/interrupt.h>
20  #include <linux/kallsyms.h>
21  #include <linux/smpboot.h>
22  #include <linux/atomic.h>
23  #include <linux/nmi.h>
24  #include <linux/sched/wake_q.h>
25  
26  /*
27   * Structure to determine completion condition and record errors.  May
28   * be shared by works on different cpus.
29   */
30  struct cpu_stop_done {
31  	atomic_t		nr_todo;	/* nr left to execute */
32  	int			ret;		/* collected return value */
33  	struct completion	completion;	/* fired if nr_todo reaches 0 */
34  };
35  
36  /* the actual stopper, one per every possible cpu, enabled on online cpus */
37  struct cpu_stopper {
38  	struct task_struct	*thread;
39  
40  	raw_spinlock_t		lock;
41  	bool			enabled;	/* is this stopper enabled? */
42  	struct list_head	works;		/* list of pending works */
43  
44  	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45  	unsigned long		caller;
46  	cpu_stop_fn_t		fn;
47  };
48  
49  static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
50  static bool stop_machine_initialized = false;
51  
print_stop_info(const char * log_lvl,struct task_struct * task)52  void print_stop_info(const char *log_lvl, struct task_struct *task)
53  {
54  	/*
55  	 * If @task is a stopper task, it cannot migrate and task_cpu() is
56  	 * stable.
57  	 */
58  	struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task));
59  
60  	if (task != stopper->thread)
61  		return;
62  
63  	printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller);
64  }
65  
66  /* static data for stop_cpus */
67  static DEFINE_MUTEX(stop_cpus_mutex);
68  static bool stop_cpus_in_progress;
69  
cpu_stop_init_done(struct cpu_stop_done * done,unsigned int nr_todo)70  static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
71  {
72  	memset(done, 0, sizeof(*done));
73  	atomic_set(&done->nr_todo, nr_todo);
74  	init_completion(&done->completion);
75  }
76  
77  /* signal completion unless @done is NULL */
cpu_stop_signal_done(struct cpu_stop_done * done)78  static void cpu_stop_signal_done(struct cpu_stop_done *done)
79  {
80  	if (atomic_dec_and_test(&done->nr_todo))
81  		complete(&done->completion);
82  }
83  
__cpu_stop_queue_work(struct cpu_stopper * stopper,struct cpu_stop_work * work,struct wake_q_head * wakeq)84  static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
85  					struct cpu_stop_work *work,
86  					struct wake_q_head *wakeq)
87  {
88  	list_add_tail(&work->list, &stopper->works);
89  	wake_q_add(wakeq, stopper->thread);
90  }
91  
92  /* queue @work to @stopper.  if offline, @work is completed immediately */
cpu_stop_queue_work(unsigned int cpu,struct cpu_stop_work * work)93  static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
94  {
95  	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
96  	DEFINE_WAKE_Q(wakeq);
97  	unsigned long flags;
98  	bool enabled;
99  
100  	preempt_disable();
101  	raw_spin_lock_irqsave(&stopper->lock, flags);
102  	enabled = stopper->enabled;
103  	if (enabled)
104  		__cpu_stop_queue_work(stopper, work, &wakeq);
105  	else if (work->done)
106  		cpu_stop_signal_done(work->done);
107  	raw_spin_unlock_irqrestore(&stopper->lock, flags);
108  
109  	wake_up_q(&wakeq);
110  	preempt_enable();
111  
112  	return enabled;
113  }
114  
115  /**
116   * stop_one_cpu - stop a cpu
117   * @cpu: cpu to stop
118   * @fn: function to execute
119   * @arg: argument to @fn
120   *
121   * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
122   * the highest priority preempting any task on the cpu and
123   * monopolizing it.  This function returns after the execution is
124   * complete.
125   *
126   * This function doesn't guarantee @cpu stays online till @fn
127   * completes.  If @cpu goes down in the middle, execution may happen
128   * partially or fully on different cpus.  @fn should either be ready
129   * for that or the caller should ensure that @cpu stays online until
130   * this function completes.
131   *
132   * CONTEXT:
133   * Might sleep.
134   *
135   * RETURNS:
136   * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
137   * otherwise, the return value of @fn.
138   */
stop_one_cpu(unsigned int cpu,cpu_stop_fn_t fn,void * arg)139  int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
140  {
141  	struct cpu_stop_done done;
142  	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ };
143  
144  	cpu_stop_init_done(&done, 1);
145  	if (!cpu_stop_queue_work(cpu, &work))
146  		return -ENOENT;
147  	/*
148  	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
149  	 * cycle by doing a preemption:
150  	 */
151  	cond_resched();
152  	wait_for_completion(&done.completion);
153  	return done.ret;
154  }
155  
156  /* This controls the threads on each CPU. */
157  enum multi_stop_state {
158  	/* Dummy starting state for thread. */
159  	MULTI_STOP_NONE,
160  	/* Awaiting everyone to be scheduled. */
161  	MULTI_STOP_PREPARE,
162  	/* Disable interrupts. */
163  	MULTI_STOP_DISABLE_IRQ,
164  	/* Run the function */
165  	MULTI_STOP_RUN,
166  	/* Exit */
167  	MULTI_STOP_EXIT,
168  };
169  
170  struct multi_stop_data {
171  	cpu_stop_fn_t		fn;
172  	void			*data;
173  	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
174  	unsigned int		num_threads;
175  	const struct cpumask	*active_cpus;
176  
177  	enum multi_stop_state	state;
178  	atomic_t		thread_ack;
179  };
180  
set_state(struct multi_stop_data * msdata,enum multi_stop_state newstate)181  static void set_state(struct multi_stop_data *msdata,
182  		      enum multi_stop_state newstate)
183  {
184  	/* Reset ack counter. */
185  	atomic_set(&msdata->thread_ack, msdata->num_threads);
186  	smp_wmb();
187  	WRITE_ONCE(msdata->state, newstate);
188  }
189  
190  /* Last one to ack a state moves to the next state. */
ack_state(struct multi_stop_data * msdata)191  static void ack_state(struct multi_stop_data *msdata)
192  {
193  	if (atomic_dec_and_test(&msdata->thread_ack))
194  		set_state(msdata, msdata->state + 1);
195  }
196  
stop_machine_yield(const struct cpumask * cpumask)197  notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
198  {
199  	cpu_relax();
200  }
201  
202  /* This is the cpu_stop function which stops the CPU. */
multi_cpu_stop(void * data)203  static int multi_cpu_stop(void *data)
204  {
205  	struct multi_stop_data *msdata = data;
206  	enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
207  	int cpu = smp_processor_id(), err = 0;
208  	const struct cpumask *cpumask;
209  	unsigned long flags;
210  	bool is_active;
211  
212  	/*
213  	 * When called from stop_machine_from_inactive_cpu(), irq might
214  	 * already be disabled.  Save the state and restore it on exit.
215  	 */
216  	local_save_flags(flags);
217  
218  	if (!msdata->active_cpus) {
219  		cpumask = cpu_online_mask;
220  		is_active = cpu == cpumask_first(cpumask);
221  	} else {
222  		cpumask = msdata->active_cpus;
223  		is_active = cpumask_test_cpu(cpu, cpumask);
224  	}
225  
226  	/* Simple state machine */
227  	do {
228  		/* Chill out and ensure we re-read multi_stop_state. */
229  		stop_machine_yield(cpumask);
230  		newstate = READ_ONCE(msdata->state);
231  		if (newstate != curstate) {
232  			curstate = newstate;
233  			switch (curstate) {
234  			case MULTI_STOP_DISABLE_IRQ:
235  				local_irq_disable();
236  				hard_irq_disable();
237  				break;
238  			case MULTI_STOP_RUN:
239  				if (is_active)
240  					err = msdata->fn(msdata->data);
241  				break;
242  			default:
243  				break;
244  			}
245  			ack_state(msdata);
246  		} else if (curstate > MULTI_STOP_PREPARE) {
247  			/*
248  			 * At this stage all other CPUs we depend on must spin
249  			 * in the same loop. Any reason for hard-lockup should
250  			 * be detected and reported on their side.
251  			 */
252  			touch_nmi_watchdog();
253  		}
254  		rcu_momentary_eqs();
255  	} while (curstate != MULTI_STOP_EXIT);
256  
257  	local_irq_restore(flags);
258  	return err;
259  }
260  
cpu_stop_queue_two_works(int cpu1,struct cpu_stop_work * work1,int cpu2,struct cpu_stop_work * work2)261  static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
262  				    int cpu2, struct cpu_stop_work *work2)
263  {
264  	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
265  	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
266  	DEFINE_WAKE_Q(wakeq);
267  	int err;
268  
269  retry:
270  	/*
271  	 * The waking up of stopper threads has to happen in the same
272  	 * scheduling context as the queueing.  Otherwise, there is a
273  	 * possibility of one of the above stoppers being woken up by another
274  	 * CPU, and preempting us. This will cause us to not wake up the other
275  	 * stopper forever.
276  	 */
277  	preempt_disable();
278  	raw_spin_lock_irq(&stopper1->lock);
279  	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
280  
281  	if (!stopper1->enabled || !stopper2->enabled) {
282  		err = -ENOENT;
283  		goto unlock;
284  	}
285  
286  	/*
287  	 * Ensure that if we race with __stop_cpus() the stoppers won't get
288  	 * queued up in reverse order leading to system deadlock.
289  	 *
290  	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
291  	 * queued a work on cpu1 but not on cpu2, we hold both locks.
292  	 *
293  	 * It can be falsely true but it is safe to spin until it is cleared,
294  	 * queue_stop_cpus_work() does everything under preempt_disable().
295  	 */
296  	if (unlikely(stop_cpus_in_progress)) {
297  		err = -EDEADLK;
298  		goto unlock;
299  	}
300  
301  	err = 0;
302  	__cpu_stop_queue_work(stopper1, work1, &wakeq);
303  	__cpu_stop_queue_work(stopper2, work2, &wakeq);
304  
305  unlock:
306  	raw_spin_unlock(&stopper2->lock);
307  	raw_spin_unlock_irq(&stopper1->lock);
308  
309  	if (unlikely(err == -EDEADLK)) {
310  		preempt_enable();
311  
312  		while (stop_cpus_in_progress)
313  			cpu_relax();
314  
315  		goto retry;
316  	}
317  
318  	wake_up_q(&wakeq);
319  	preempt_enable();
320  
321  	return err;
322  }
323  /**
324   * stop_two_cpus - stops two cpus
325   * @cpu1: the cpu to stop
326   * @cpu2: the other cpu to stop
327   * @fn: function to execute
328   * @arg: argument to @fn
329   *
330   * Stops both the current and specified CPU and runs @fn on one of them.
331   *
332   * returns when both are completed.
333   */
stop_two_cpus(unsigned int cpu1,unsigned int cpu2,cpu_stop_fn_t fn,void * arg)334  int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
335  {
336  	struct cpu_stop_done done;
337  	struct cpu_stop_work work1, work2;
338  	struct multi_stop_data msdata;
339  
340  	msdata = (struct multi_stop_data){
341  		.fn = fn,
342  		.data = arg,
343  		.num_threads = 2,
344  		.active_cpus = cpumask_of(cpu1),
345  	};
346  
347  	work1 = work2 = (struct cpu_stop_work){
348  		.fn = multi_cpu_stop,
349  		.arg = &msdata,
350  		.done = &done,
351  		.caller = _RET_IP_,
352  	};
353  
354  	cpu_stop_init_done(&done, 2);
355  	set_state(&msdata, MULTI_STOP_PREPARE);
356  
357  	if (cpu1 > cpu2)
358  		swap(cpu1, cpu2);
359  	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
360  		return -ENOENT;
361  
362  	wait_for_completion(&done.completion);
363  	return done.ret;
364  }
365  
366  /**
367   * stop_one_cpu_nowait - stop a cpu but don't wait for completion
368   * @cpu: cpu to stop
369   * @fn: function to execute
370   * @arg: argument to @fn
371   * @work_buf: pointer to cpu_stop_work structure
372   *
373   * Similar to stop_one_cpu() but doesn't wait for completion.  The
374   * caller is responsible for ensuring @work_buf is currently unused
375   * and will remain untouched until stopper starts executing @fn.
376   *
377   * CONTEXT:
378   * Don't care.
379   *
380   * RETURNS:
381   * true if cpu_stop_work was queued successfully and @fn will be called,
382   * false otherwise.
383   */
stop_one_cpu_nowait(unsigned int cpu,cpu_stop_fn_t fn,void * arg,struct cpu_stop_work * work_buf)384  bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
385  			struct cpu_stop_work *work_buf)
386  {
387  	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, };
388  	return cpu_stop_queue_work(cpu, work_buf);
389  }
390  
queue_stop_cpus_work(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg,struct cpu_stop_done * done)391  static bool queue_stop_cpus_work(const struct cpumask *cpumask,
392  				 cpu_stop_fn_t fn, void *arg,
393  				 struct cpu_stop_done *done)
394  {
395  	struct cpu_stop_work *work;
396  	unsigned int cpu;
397  	bool queued = false;
398  
399  	/*
400  	 * Disable preemption while queueing to avoid getting
401  	 * preempted by a stopper which might wait for other stoppers
402  	 * to enter @fn which can lead to deadlock.
403  	 */
404  	preempt_disable();
405  	stop_cpus_in_progress = true;
406  	barrier();
407  	for_each_cpu(cpu, cpumask) {
408  		work = &per_cpu(cpu_stopper.stop_work, cpu);
409  		work->fn = fn;
410  		work->arg = arg;
411  		work->done = done;
412  		work->caller = _RET_IP_;
413  		if (cpu_stop_queue_work(cpu, work))
414  			queued = true;
415  	}
416  	barrier();
417  	stop_cpus_in_progress = false;
418  	preempt_enable();
419  
420  	return queued;
421  }
422  
__stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)423  static int __stop_cpus(const struct cpumask *cpumask,
424  		       cpu_stop_fn_t fn, void *arg)
425  {
426  	struct cpu_stop_done done;
427  
428  	cpu_stop_init_done(&done, cpumask_weight(cpumask));
429  	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
430  		return -ENOENT;
431  	wait_for_completion(&done.completion);
432  	return done.ret;
433  }
434  
435  /**
436   * stop_cpus - stop multiple cpus
437   * @cpumask: cpus to stop
438   * @fn: function to execute
439   * @arg: argument to @fn
440   *
441   * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
442   * @fn is run in a process context with the highest priority
443   * preempting any task on the cpu and monopolizing it.  This function
444   * returns after all executions are complete.
445   *
446   * This function doesn't guarantee the cpus in @cpumask stay online
447   * till @fn completes.  If some cpus go down in the middle, execution
448   * on the cpu may happen partially or fully on different cpus.  @fn
449   * should either be ready for that or the caller should ensure that
450   * the cpus stay online until this function completes.
451   *
452   * All stop_cpus() calls are serialized making it safe for @fn to wait
453   * for all cpus to start executing it.
454   *
455   * CONTEXT:
456   * Might sleep.
457   *
458   * RETURNS:
459   * -ENOENT if @fn(@arg) was not executed at all because all cpus in
460   * @cpumask were offline; otherwise, 0 if all executions of @fn
461   * returned 0, any non zero return value if any returned non zero.
462   */
stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)463  static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
464  {
465  	int ret;
466  
467  	/* static works are used, process one request at a time */
468  	mutex_lock(&stop_cpus_mutex);
469  	ret = __stop_cpus(cpumask, fn, arg);
470  	mutex_unlock(&stop_cpus_mutex);
471  	return ret;
472  }
473  
cpu_stop_should_run(unsigned int cpu)474  static int cpu_stop_should_run(unsigned int cpu)
475  {
476  	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
477  	unsigned long flags;
478  	int run;
479  
480  	raw_spin_lock_irqsave(&stopper->lock, flags);
481  	run = !list_empty(&stopper->works);
482  	raw_spin_unlock_irqrestore(&stopper->lock, flags);
483  	return run;
484  }
485  
cpu_stopper_thread(unsigned int cpu)486  static void cpu_stopper_thread(unsigned int cpu)
487  {
488  	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
489  	struct cpu_stop_work *work;
490  
491  repeat:
492  	work = NULL;
493  	raw_spin_lock_irq(&stopper->lock);
494  	if (!list_empty(&stopper->works)) {
495  		work = list_first_entry(&stopper->works,
496  					struct cpu_stop_work, list);
497  		list_del_init(&work->list);
498  	}
499  	raw_spin_unlock_irq(&stopper->lock);
500  
501  	if (work) {
502  		cpu_stop_fn_t fn = work->fn;
503  		void *arg = work->arg;
504  		struct cpu_stop_done *done = work->done;
505  		int ret;
506  
507  		/* cpu stop callbacks must not sleep, make in_atomic() == T */
508  		stopper->caller = work->caller;
509  		stopper->fn = fn;
510  		preempt_count_inc();
511  		ret = fn(arg);
512  		if (done) {
513  			if (ret)
514  				done->ret = ret;
515  			cpu_stop_signal_done(done);
516  		}
517  		preempt_count_dec();
518  		stopper->fn = NULL;
519  		stopper->caller = 0;
520  		WARN_ONCE(preempt_count(),
521  			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
522  		goto repeat;
523  	}
524  }
525  
stop_machine_park(int cpu)526  void stop_machine_park(int cpu)
527  {
528  	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
529  	/*
530  	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
531  	 * the pending works before it parks, until then it is fine to queue
532  	 * the new works.
533  	 */
534  	stopper->enabled = false;
535  	kthread_park(stopper->thread);
536  }
537  
cpu_stop_create(unsigned int cpu)538  static void cpu_stop_create(unsigned int cpu)
539  {
540  	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
541  }
542  
cpu_stop_park(unsigned int cpu)543  static void cpu_stop_park(unsigned int cpu)
544  {
545  	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
546  
547  	WARN_ON(!list_empty(&stopper->works));
548  }
549  
stop_machine_unpark(int cpu)550  void stop_machine_unpark(int cpu)
551  {
552  	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
553  
554  	stopper->enabled = true;
555  	kthread_unpark(stopper->thread);
556  }
557  
558  static struct smp_hotplug_thread cpu_stop_threads = {
559  	.store			= &cpu_stopper.thread,
560  	.thread_should_run	= cpu_stop_should_run,
561  	.thread_fn		= cpu_stopper_thread,
562  	.thread_comm		= "migration/%u",
563  	.create			= cpu_stop_create,
564  	.park			= cpu_stop_park,
565  	.selfparking		= true,
566  };
567  
cpu_stop_init(void)568  static int __init cpu_stop_init(void)
569  {
570  	unsigned int cpu;
571  
572  	for_each_possible_cpu(cpu) {
573  		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
574  
575  		raw_spin_lock_init(&stopper->lock);
576  		INIT_LIST_HEAD(&stopper->works);
577  	}
578  
579  	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
580  	stop_machine_unpark(raw_smp_processor_id());
581  	stop_machine_initialized = true;
582  	return 0;
583  }
584  early_initcall(cpu_stop_init);
585  
stop_machine_cpuslocked(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)586  int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
587  			    const struct cpumask *cpus)
588  {
589  	struct multi_stop_data msdata = {
590  		.fn = fn,
591  		.data = data,
592  		.num_threads = num_online_cpus(),
593  		.active_cpus = cpus,
594  	};
595  
596  	lockdep_assert_cpus_held();
597  
598  	if (!stop_machine_initialized) {
599  		/*
600  		 * Handle the case where stop_machine() is called
601  		 * early in boot before stop_machine() has been
602  		 * initialized.
603  		 */
604  		unsigned long flags;
605  		int ret;
606  
607  		WARN_ON_ONCE(msdata.num_threads != 1);
608  
609  		local_irq_save(flags);
610  		hard_irq_disable();
611  		ret = (*fn)(data);
612  		local_irq_restore(flags);
613  
614  		return ret;
615  	}
616  
617  	/* Set the initial state and stop all online cpus. */
618  	set_state(&msdata, MULTI_STOP_PREPARE);
619  	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
620  }
621  
stop_machine(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)622  int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
623  {
624  	int ret;
625  
626  	/* No CPUs can come up or down during this. */
627  	cpus_read_lock();
628  	ret = stop_machine_cpuslocked(fn, data, cpus);
629  	cpus_read_unlock();
630  	return ret;
631  }
632  EXPORT_SYMBOL_GPL(stop_machine);
633  
634  #ifdef CONFIG_SCHED_SMT
stop_core_cpuslocked(unsigned int cpu,cpu_stop_fn_t fn,void * data)635  int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data)
636  {
637  	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
638  
639  	struct multi_stop_data msdata = {
640  		.fn = fn,
641  		.data = data,
642  		.num_threads = cpumask_weight(smt_mask),
643  		.active_cpus = smt_mask,
644  	};
645  
646  	lockdep_assert_cpus_held();
647  
648  	/* Set the initial state and stop all online cpus. */
649  	set_state(&msdata, MULTI_STOP_PREPARE);
650  	return stop_cpus(smt_mask, multi_cpu_stop, &msdata);
651  }
652  EXPORT_SYMBOL_GPL(stop_core_cpuslocked);
653  #endif
654  
655  /**
656   * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
657   * @fn: the function to run
658   * @data: the data ptr for the @fn()
659   * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
660   *
661   * This is identical to stop_machine() but can be called from a CPU which
662   * is not active.  The local CPU is in the process of hotplug (so no other
663   * CPU hotplug can start) and not marked active and doesn't have enough
664   * context to sleep.
665   *
666   * This function provides stop_machine() functionality for such state by
667   * using busy-wait for synchronization and executing @fn directly for local
668   * CPU.
669   *
670   * CONTEXT:
671   * Local CPU is inactive.  Temporarily stops all active CPUs.
672   *
673   * RETURNS:
674   * 0 if all executions of @fn returned 0, any non zero return value if any
675   * returned non zero.
676   */
stop_machine_from_inactive_cpu(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)677  int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
678  				  const struct cpumask *cpus)
679  {
680  	struct multi_stop_data msdata = { .fn = fn, .data = data,
681  					    .active_cpus = cpus };
682  	struct cpu_stop_done done;
683  	int ret;
684  
685  	/* Local CPU must be inactive and CPU hotplug in progress. */
686  	BUG_ON(cpu_active(raw_smp_processor_id()));
687  	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
688  
689  	/* No proper task established and can't sleep - busy wait for lock. */
690  	while (!mutex_trylock(&stop_cpus_mutex))
691  		cpu_relax();
692  
693  	/* Schedule work on other CPUs and execute directly for local CPU */
694  	set_state(&msdata, MULTI_STOP_PREPARE);
695  	cpu_stop_init_done(&done, num_active_cpus());
696  	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
697  			     &done);
698  	ret = multi_cpu_stop(&msdata);
699  
700  	/* Busy wait for completion. */
701  	while (!completion_done(&done.completion))
702  		cpu_relax();
703  
704  	mutex_unlock(&stop_cpus_mutex);
705  	return ret ?: done.ret;
706  }
707