1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 /* Common definitions for all Efx net driver code */
9 
10 #ifndef EFX_NET_DRIVER_H
11 #define EFX_NET_DRIVER_H
12 
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/if_vlan.h>
17 #include <linux/timer.h>
18 #include <linux/mdio.h>
19 #include <linux/list.h>
20 #include <linux/pci.h>
21 #include <linux/device.h>
22 #include <linux/highmem.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/mtd/mtd.h>
28 #include <net/busy_poll.h>
29 #include <net/xdp.h>
30 
31 #include "enum.h"
32 #include "bitfield.h"
33 #include "filter.h"
34 
35 /**************************************************************************
36  *
37  * Build definitions
38  *
39  **************************************************************************/
40 
41 #ifdef DEBUG
42 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
43 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
44 #else
45 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
46 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
47 #endif
48 
49 /**************************************************************************
50  *
51  * Efx data structures
52  *
53  **************************************************************************/
54 
55 #define EFX_MAX_CHANNELS 32U
56 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
57 #define EFX_EXTRA_CHANNEL_IOV	0
58 #define EFX_EXTRA_CHANNEL_PTP	1
59 #define EFX_MAX_EXTRA_CHANNELS	2U
60 
61 /* Checksum generation is a per-queue option in hardware, so each
62  * queue visible to the networking core is backed by two hardware TX
63  * queues. */
64 #define EFX_MAX_TX_TC		2
65 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
66 #define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
67 #define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
68 #define EFX_TXQ_TYPE_HIGHPRI	4	/* High-priority (for TC) */
69 #define EFX_TXQ_TYPES		8
70 /* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
71 #define EFX_MAX_TXQ_PER_CHANNEL	4
72 #define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
73 
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76 
77 /* Minimum MTU, from RFC791 (IP) */
78 #define EFX_MIN_MTU 68
79 
80 /* Maximum total header length for TSOv2 */
81 #define EFX_TSO2_MAX_HDRLEN	208
82 
83 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
84  * and should be a multiple of the cache line size.
85  */
86 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
87 
88 /* If possible, we should ensure cache line alignment at start and end
89  * of every buffer.  Otherwise, we just need to ensure 4-byte
90  * alignment of the network header.
91  */
92 #if NET_IP_ALIGN == 0
93 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
94 #else
95 #define EFX_RX_BUF_ALIGNMENT	4
96 #endif
97 
98 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
99  * still fit two standard MTU size packets into a single 4K page.
100  */
101 #define EFX_XDP_HEADROOM	128
102 #define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
103 
104 /* Forward declare Precision Time Protocol (PTP) support structure. */
105 struct efx_ptp_data;
106 struct hwtstamp_config;
107 
108 struct efx_self_tests;
109 
110 /**
111  * struct efx_buffer - A general-purpose DMA buffer
112  * @addr: host base address of the buffer
113  * @dma_addr: DMA base address of the buffer
114  * @len: Buffer length, in bytes
115  *
116  * The NIC uses these buffers for its interrupt status registers and
117  * MAC stats dumps.
118  */
119 struct efx_buffer {
120 	void *addr;
121 	dma_addr_t dma_addr;
122 	unsigned int len;
123 };
124 
125 /**
126  * struct efx_special_buffer - DMA buffer entered into buffer table
127  * @buf: Standard &struct efx_buffer
128  * @index: Buffer index within controller;s buffer table
129  * @entries: Number of buffer table entries
130  *
131  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
132  * Event and descriptor rings are addressed via one or more buffer
133  * table entries (and so can be physically non-contiguous, although we
134  * currently do not take advantage of that).  On Falcon and Siena we
135  * have to take care of allocating and initialising the entries
136  * ourselves.  On later hardware this is managed by the firmware and
137  * @index and @entries are left as 0.
138  */
139 struct efx_special_buffer {
140 	struct efx_buffer buf;
141 	unsigned int index;
142 	unsigned int entries;
143 };
144 
145 /**
146  * struct efx_tx_buffer - buffer state for a TX descriptor
147  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
148  *	freed when descriptor completes
149  * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
150  *	member is the associated buffer to drop a page reference on.
151  * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
152  *	descriptor.
153  * @dma_addr: DMA address of the fragment.
154  * @flags: Flags for allocation and DMA mapping type
155  * @len: Length of this fragment.
156  *	This field is zero when the queue slot is empty.
157  * @unmap_len: Length of this fragment to unmap
158  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
159  * Only valid if @unmap_len != 0.
160  */
161 struct efx_tx_buffer {
162 	union {
163 		const struct sk_buff *skb;
164 		struct xdp_frame *xdpf;
165 	};
166 	union {
167 		efx_qword_t option;    /* EF10 */
168 		dma_addr_t dma_addr;
169 	};
170 	unsigned short flags;
171 	unsigned short len;
172 	unsigned short unmap_len;
173 	unsigned short dma_offset;
174 };
175 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
176 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
177 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
178 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
179 #define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
180 #define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
181 
182 /**
183  * struct efx_tx_queue - An Efx TX queue
184  *
185  * This is a ring buffer of TX fragments.
186  * Since the TX completion path always executes on the same
187  * CPU and the xmit path can operate on different CPUs,
188  * performance is increased by ensuring that the completion
189  * path and the xmit path operate on different cache lines.
190  * This is particularly important if the xmit path is always
191  * executing on one CPU which is different from the completion
192  * path.  There is also a cache line for members which are
193  * read but not written on the fast path.
194  *
195  * @efx: The associated Efx NIC
196  * @queue: DMA queue number
197  * @label: Label for TX completion events.
198  *	Is our index within @channel->tx_queue array.
199  * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
200  * @tso_version: Version of TSO in use for this queue.
201  * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
202  * @channel: The associated channel
203  * @core_txq: The networking core TX queue structure
204  * @buffer: The software buffer ring
205  * @cb_page: Array of pages of copy buffers.  Carved up according to
206  *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
207  * @txd: The hardware descriptor ring
208  * @ptr_mask: The size of the ring minus 1.
209  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
210  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
211  * @initialised: Has hardware queue been initialised?
212  * @timestamping: Is timestamping enabled for this channel?
213  * @xdp_tx: Is this an XDP tx queue?
214  * @read_count: Current read pointer.
215  *	This is the number of buffers that have been removed from both rings.
216  * @old_write_count: The value of @write_count when last checked.
217  *	This is here for performance reasons.  The xmit path will
218  *	only get the up-to-date value of @write_count if this
219  *	variable indicates that the queue is empty.  This is to
220  *	avoid cache-line ping-pong between the xmit path and the
221  *	completion path.
222  * @merge_events: Number of TX merged completion events
223  * @completed_timestamp_major: Top part of the most recent tx timestamp.
224  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
225  * @insert_count: Current insert pointer
226  *	This is the number of buffers that have been added to the
227  *	software ring.
228  * @write_count: Current write pointer
229  *	This is the number of buffers that have been added to the
230  *	hardware ring.
231  * @packet_write_count: Completable write pointer
232  *	This is the write pointer of the last packet written.
233  *	Normally this will equal @write_count, but as option descriptors
234  *	don't produce completion events, they won't update this.
235  *	Filled in iff @efx->type->option_descriptors; only used for PIO.
236  *	Thus, this is written and used on EF10, and neither on farch.
237  * @old_read_count: The value of read_count when last checked.
238  *	This is here for performance reasons.  The xmit path will
239  *	only get the up-to-date value of read_count if this
240  *	variable indicates that the queue is full.  This is to
241  *	avoid cache-line ping-pong between the xmit path and the
242  *	completion path.
243  * @tso_bursts: Number of times TSO xmit invoked by kernel
244  * @tso_long_headers: Number of packets with headers too long for standard
245  *	blocks
246  * @tso_packets: Number of packets via the TSO xmit path
247  * @tso_fallbacks: Number of times TSO fallback used
248  * @pushes: Number of times the TX push feature has been used
249  * @pio_packets: Number of times the TX PIO feature has been used
250  * @xmit_pending: Are any packets waiting to be pushed to the NIC
251  * @cb_packets: Number of times the TX copybreak feature has been used
252  * @notify_count: Count of notified descriptors to the NIC
253  * @empty_read_count: If the completion path has seen the queue as empty
254  *	and the transmission path has not yet checked this, the value of
255  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
256  */
257 struct efx_tx_queue {
258 	/* Members which don't change on the fast path */
259 	struct efx_nic *efx ____cacheline_aligned_in_smp;
260 	unsigned int queue;
261 	unsigned int label;
262 	unsigned int type;
263 	unsigned int tso_version;
264 	bool tso_encap;
265 	struct efx_channel *channel;
266 	struct netdev_queue *core_txq;
267 	struct efx_tx_buffer *buffer;
268 	struct efx_buffer *cb_page;
269 	struct efx_special_buffer txd;
270 	unsigned int ptr_mask;
271 	void __iomem *piobuf;
272 	unsigned int piobuf_offset;
273 	bool initialised;
274 	bool timestamping;
275 	bool xdp_tx;
276 
277 	/* Members used mainly on the completion path */
278 	unsigned int read_count ____cacheline_aligned_in_smp;
279 	unsigned int old_write_count;
280 	unsigned int merge_events;
281 	unsigned int bytes_compl;
282 	unsigned int pkts_compl;
283 	u32 completed_timestamp_major;
284 	u32 completed_timestamp_minor;
285 
286 	/* Members used only on the xmit path */
287 	unsigned int insert_count ____cacheline_aligned_in_smp;
288 	unsigned int write_count;
289 	unsigned int packet_write_count;
290 	unsigned int old_read_count;
291 	unsigned int tso_bursts;
292 	unsigned int tso_long_headers;
293 	unsigned int tso_packets;
294 	unsigned int tso_fallbacks;
295 	unsigned int pushes;
296 	unsigned int pio_packets;
297 	bool xmit_pending;
298 	unsigned int cb_packets;
299 	unsigned int notify_count;
300 	/* Statistics to supplement MAC stats */
301 	unsigned long tx_packets;
302 
303 	/* Members shared between paths and sometimes updated */
304 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
305 #define EFX_EMPTY_COUNT_VALID 0x80000000
306 	atomic_t flush_outstanding;
307 };
308 
309 #define EFX_TX_CB_ORDER	7
310 #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
311 
312 /**
313  * struct efx_rx_buffer - An Efx RX data buffer
314  * @dma_addr: DMA base address of the buffer
315  * @page: The associated page buffer.
316  *	Will be %NULL if the buffer slot is currently free.
317  * @page_offset: If pending: offset in @page of DMA base address.
318  *	If completed: offset in @page of Ethernet header.
319  * @len: If pending: length for DMA descriptor.
320  *	If completed: received length, excluding hash prefix.
321  * @flags: Flags for buffer and packet state.  These are only set on the
322  *	first buffer of a scattered packet.
323  */
324 struct efx_rx_buffer {
325 	dma_addr_t dma_addr;
326 	struct page *page;
327 	u16 page_offset;
328 	u16 len;
329 	u16 flags;
330 };
331 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
332 #define EFX_RX_PKT_CSUMMED	0x0002
333 #define EFX_RX_PKT_DISCARD	0x0004
334 #define EFX_RX_PKT_TCP		0x0040
335 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
336 #define EFX_RX_PKT_CSUM_LEVEL	0x0200
337 
338 /**
339  * struct efx_rx_page_state - Page-based rx buffer state
340  *
341  * Inserted at the start of every page allocated for receive buffers.
342  * Used to facilitate sharing dma mappings between recycled rx buffers
343  * and those passed up to the kernel.
344  *
345  * @dma_addr: The dma address of this page.
346  */
347 struct efx_rx_page_state {
348 	dma_addr_t dma_addr;
349 
350 	unsigned int __pad[] ____cacheline_aligned;
351 };
352 
353 /**
354  * struct efx_rx_queue - An Efx RX queue
355  * @efx: The associated Efx NIC
356  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
357  *	is associated with a real RX queue.
358  * @buffer: The software buffer ring
359  * @rxd: The hardware descriptor ring
360  * @ptr_mask: The size of the ring minus 1.
361  * @refill_enabled: Enable refill whenever fill level is low
362  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
363  *	@rxq_flush_pending.
364  * @added_count: Number of buffers added to the receive queue.
365  * @notified_count: Number of buffers given to NIC (<= @added_count).
366  * @removed_count: Number of buffers removed from the receive queue.
367  * @scatter_n: Used by NIC specific receive code.
368  * @scatter_len: Used by NIC specific receive code.
369  * @page_ring: The ring to store DMA mapped pages for reuse.
370  * @page_add: Counter to calculate the write pointer for the recycle ring.
371  * @page_remove: Counter to calculate the read pointer for the recycle ring.
372  * @page_recycle_count: The number of pages that have been recycled.
373  * @page_recycle_failed: The number of pages that couldn't be recycled because
374  *      the kernel still held a reference to them.
375  * @page_recycle_full: The number of pages that were released because the
376  *      recycle ring was full.
377  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
378  * @max_fill: RX descriptor maximum fill level (<= ring size)
379  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
380  *	(<= @max_fill)
381  * @min_fill: RX descriptor minimum non-zero fill level.
382  *	This records the minimum fill level observed when a ring
383  *	refill was triggered.
384  * @recycle_count: RX buffer recycle counter.
385  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
386  * @xdp_rxq_info: XDP specific RX queue information.
387  * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
388  */
389 struct efx_rx_queue {
390 	struct efx_nic *efx;
391 	int core_index;
392 	struct efx_rx_buffer *buffer;
393 	struct efx_special_buffer rxd;
394 	unsigned int ptr_mask;
395 	bool refill_enabled;
396 	bool flush_pending;
397 
398 	unsigned int added_count;
399 	unsigned int notified_count;
400 	unsigned int removed_count;
401 	unsigned int scatter_n;
402 	unsigned int scatter_len;
403 	struct page **page_ring;
404 	unsigned int page_add;
405 	unsigned int page_remove;
406 	unsigned int page_recycle_count;
407 	unsigned int page_recycle_failed;
408 	unsigned int page_recycle_full;
409 	unsigned int page_ptr_mask;
410 	unsigned int max_fill;
411 	unsigned int fast_fill_trigger;
412 	unsigned int min_fill;
413 	unsigned int min_overfill;
414 	unsigned int recycle_count;
415 	struct timer_list slow_fill;
416 	unsigned int slow_fill_count;
417 	/* Statistics to supplement MAC stats */
418 	unsigned long rx_packets;
419 	struct xdp_rxq_info xdp_rxq_info;
420 	bool xdp_rxq_info_valid;
421 };
422 
423 enum efx_sync_events_state {
424 	SYNC_EVENTS_DISABLED = 0,
425 	SYNC_EVENTS_QUIESCENT,
426 	SYNC_EVENTS_REQUESTED,
427 	SYNC_EVENTS_VALID,
428 };
429 
430 /**
431  * struct efx_channel - An Efx channel
432  *
433  * A channel comprises an event queue, at least one TX queue, at least
434  * one RX queue, and an associated tasklet for processing the event
435  * queue.
436  *
437  * @efx: Associated Efx NIC
438  * @channel: Channel instance number
439  * @type: Channel type definition
440  * @eventq_init: Event queue initialised flag
441  * @enabled: Channel enabled indicator
442  * @irq: IRQ number (MSI and MSI-X only)
443  * @irq_moderation_us: IRQ moderation value (in microseconds)
444  * @napi_dev: Net device used with NAPI
445  * @napi_str: NAPI control structure
446  * @state: state for NAPI vs busy polling
447  * @state_lock: lock protecting @state
448  * @eventq: Event queue buffer
449  * @eventq_mask: Event queue pointer mask
450  * @eventq_read_ptr: Event queue read pointer
451  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
452  * @irq_count: Number of IRQs since last adaptive moderation decision
453  * @irq_mod_score: IRQ moderation score
454  * @rfs_filter_count: number of accelerated RFS filters currently in place;
455  *	equals the count of @rps_flow_id slots filled
456  * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
457  *	were checked for expiry
458  * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
459  * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
460  * @n_rfs_failed: number of failed accelerated RFS filter insertions
461  * @filter_work: Work item for efx_filter_rfs_expire()
462  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
463  *      indexed by filter ID
464  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
465  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
466  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
467  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
468  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
469  * @n_rx_overlength: Count of RX_OVERLENGTH errors
470  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
471  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
472  *	lack of descriptors
473  * @n_rx_merge_events: Number of RX merged completion events
474  * @n_rx_merge_packets: Number of RX packets completed by merged events
475  * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
476  * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
477  * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
478  * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
479  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
480  *	__efx_siena_rx_packet(), or zero if there is none
481  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
482  *	by __efx_siena_rx_packet(), if @rx_pkt_n_frags != 0
483  * @rx_list: list of SKBs from current RX, awaiting processing
484  * @rx_queue: RX queue for this channel
485  * @tx_queue: TX queues for this channel
486  * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
487  * @sync_events_state: Current state of sync events on this channel
488  * @sync_timestamp_major: Major part of the last ptp sync event
489  * @sync_timestamp_minor: Minor part of the last ptp sync event
490  */
491 struct efx_channel {
492 	struct efx_nic *efx;
493 	int channel;
494 	const struct efx_channel_type *type;
495 	bool eventq_init;
496 	bool enabled;
497 	int irq;
498 	unsigned int irq_moderation_us;
499 	struct net_device *napi_dev;
500 	struct napi_struct napi_str;
501 #ifdef CONFIG_NET_RX_BUSY_POLL
502 	unsigned long busy_poll_state;
503 #endif
504 	struct efx_special_buffer eventq;
505 	unsigned int eventq_mask;
506 	unsigned int eventq_read_ptr;
507 	int event_test_cpu;
508 
509 	unsigned int irq_count;
510 	unsigned int irq_mod_score;
511 #ifdef CONFIG_RFS_ACCEL
512 	unsigned int rfs_filter_count;
513 	unsigned int rfs_last_expiry;
514 	unsigned int rfs_expire_index;
515 	unsigned int n_rfs_succeeded;
516 	unsigned int n_rfs_failed;
517 	struct delayed_work filter_work;
518 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
519 	u32 *rps_flow_id;
520 #endif
521 
522 	unsigned int n_rx_tobe_disc;
523 	unsigned int n_rx_ip_hdr_chksum_err;
524 	unsigned int n_rx_tcp_udp_chksum_err;
525 	unsigned int n_rx_outer_ip_hdr_chksum_err;
526 	unsigned int n_rx_outer_tcp_udp_chksum_err;
527 	unsigned int n_rx_inner_ip_hdr_chksum_err;
528 	unsigned int n_rx_inner_tcp_udp_chksum_err;
529 	unsigned int n_rx_eth_crc_err;
530 	unsigned int n_rx_mcast_mismatch;
531 	unsigned int n_rx_frm_trunc;
532 	unsigned int n_rx_overlength;
533 	unsigned int n_skbuff_leaks;
534 	unsigned int n_rx_nodesc_trunc;
535 	unsigned int n_rx_merge_events;
536 	unsigned int n_rx_merge_packets;
537 	unsigned int n_rx_xdp_drops;
538 	unsigned int n_rx_xdp_bad_drops;
539 	unsigned int n_rx_xdp_tx;
540 	unsigned int n_rx_xdp_redirect;
541 
542 	unsigned int rx_pkt_n_frags;
543 	unsigned int rx_pkt_index;
544 
545 	struct list_head *rx_list;
546 
547 	struct efx_rx_queue rx_queue;
548 	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
549 	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
550 
551 	enum efx_sync_events_state sync_events_state;
552 	u32 sync_timestamp_major;
553 	u32 sync_timestamp_minor;
554 };
555 
556 /**
557  * struct efx_msi_context - Context for each MSI
558  * @efx: The associated NIC
559  * @index: Index of the channel/IRQ
560  * @name: Name of the channel/IRQ
561  *
562  * Unlike &struct efx_channel, this is never reallocated and is always
563  * safe for the IRQ handler to access.
564  */
565 struct efx_msi_context {
566 	struct efx_nic *efx;
567 	unsigned int index;
568 	char name[IFNAMSIZ + 6];
569 };
570 
571 /**
572  * struct efx_channel_type - distinguishes traffic and extra channels
573  * @handle_no_channel: Handle failure to allocate an extra channel
574  * @pre_probe: Set up extra state prior to initialisation
575  * @post_remove: Tear down extra state after finalisation, if allocated.
576  *	May be called on channels that have not been probed.
577  * @get_name: Generate the channel's name (used for its IRQ handler)
578  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
579  *	reallocation is not supported.
580  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
581  * @want_txqs: Determine whether this channel should have TX queues
582  *	created.  If %NULL, TX queues are not created.
583  * @keep_eventq: Flag for whether event queue should be kept initialised
584  *	while the device is stopped
585  * @want_pio: Flag for whether PIO buffers should be linked to this
586  *	channel's TX queues.
587  */
588 struct efx_channel_type {
589 	void (*handle_no_channel)(struct efx_nic *);
590 	int (*pre_probe)(struct efx_channel *);
591 	void (*post_remove)(struct efx_channel *);
592 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
593 	struct efx_channel *(*copy)(const struct efx_channel *);
594 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
595 	bool (*want_txqs)(struct efx_channel *);
596 	bool keep_eventq;
597 	bool want_pio;
598 };
599 
600 enum efx_led_mode {
601 	EFX_LED_OFF	= 0,
602 	EFX_LED_ON	= 1,
603 	EFX_LED_DEFAULT	= 2
604 };
605 
606 #define STRING_TABLE_LOOKUP(val, member) \
607 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
608 
609 extern const char *const efx_siena_loopback_mode_names[];
610 extern const unsigned int efx_siena_loopback_mode_max;
611 #define LOOPBACK_MODE(efx) \
612 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_siena_loopback_mode)
613 
614 enum efx_int_mode {
615 	/* Be careful if altering to correct macro below */
616 	EFX_INT_MODE_MSIX = 0,
617 	EFX_INT_MODE_MSI = 1,
618 	EFX_INT_MODE_LEGACY = 2,
619 	EFX_INT_MODE_MAX	/* Insert any new items before this */
620 };
621 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
622 
623 enum nic_state {
624 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
625 	STATE_READY = 1,	/* hardware ready and netdev registered */
626 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
627 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
628 };
629 
630 /* Forward declaration */
631 struct efx_nic;
632 
633 /* Pseudo bit-mask flow control field */
634 #define EFX_FC_RX	FLOW_CTRL_RX
635 #define EFX_FC_TX	FLOW_CTRL_TX
636 #define EFX_FC_AUTO	4
637 
638 /**
639  * struct efx_link_state - Current state of the link
640  * @up: Link is up
641  * @fd: Link is full-duplex
642  * @fc: Actual flow control flags
643  * @speed: Link speed (Mbps)
644  */
645 struct efx_link_state {
646 	bool up;
647 	bool fd;
648 	u8 fc;
649 	unsigned int speed;
650 };
651 
efx_link_state_equal(const struct efx_link_state * left,const struct efx_link_state * right)652 static inline bool efx_link_state_equal(const struct efx_link_state *left,
653 					const struct efx_link_state *right)
654 {
655 	return left->up == right->up && left->fd == right->fd &&
656 		left->fc == right->fc && left->speed == right->speed;
657 }
658 
659 /**
660  * enum efx_phy_mode - PHY operating mode flags
661  * @PHY_MODE_NORMAL: on and should pass traffic
662  * @PHY_MODE_TX_DISABLED: on with TX disabled
663  * @PHY_MODE_LOW_POWER: set to low power through MDIO
664  * @PHY_MODE_OFF: switched off through external control
665  * @PHY_MODE_SPECIAL: on but will not pass traffic
666  */
667 enum efx_phy_mode {
668 	PHY_MODE_NORMAL		= 0,
669 	PHY_MODE_TX_DISABLED	= 1,
670 	PHY_MODE_LOW_POWER	= 2,
671 	PHY_MODE_OFF		= 4,
672 	PHY_MODE_SPECIAL	= 8,
673 };
674 
efx_phy_mode_disabled(enum efx_phy_mode mode)675 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
676 {
677 	return !!(mode & ~PHY_MODE_TX_DISABLED);
678 }
679 
680 /**
681  * struct efx_hw_stat_desc - Description of a hardware statistic
682  * @name: Name of the statistic as visible through ethtool, or %NULL if
683  *	it should not be exposed
684  * @dma_width: Width in bits (0 for non-DMA statistics)
685  * @offset: Offset within stats (ignored for non-DMA statistics)
686  */
687 struct efx_hw_stat_desc {
688 	const char *name;
689 	u16 dma_width;
690 	u16 offset;
691 };
692 
693 /* Number of bits used in a multicast filter hash address */
694 #define EFX_MCAST_HASH_BITS 8
695 
696 /* Number of (single-bit) entries in a multicast filter hash */
697 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
698 
699 /* An Efx multicast filter hash */
700 union efx_multicast_hash {
701 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
702 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
703 };
704 
705 struct vfdi_status;
706 
707 /* The reserved RSS context value */
708 #define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
709 /**
710  * struct efx_rss_context - An RSS context for filtering
711  * @context_id: 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
712  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
713  * @rx_hash_key: Toeplitz hash key for this RSS context
714  * @indir_table: Indirection table for this RSS context
715  */
716 struct efx_rss_context {
717 	u32 context_id;
718 	bool rx_hash_udp_4tuple;
719 	u8 rx_hash_key[40];
720 	u32 rx_indir_table[128];
721 };
722 
723 #ifdef CONFIG_RFS_ACCEL
724 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
725  * is used to test if filter does or will exist.
726  */
727 #define EFX_ARFS_FILTER_ID_PENDING	-1
728 #define EFX_ARFS_FILTER_ID_ERROR	-2
729 #define EFX_ARFS_FILTER_ID_REMOVING	-3
730 /**
731  * struct efx_arfs_rule - record of an ARFS filter and its IDs
732  * @node: linkage into hash table
733  * @spec: details of the filter (used as key for hash table).  Use efx->type to
734  *	determine which member to use.
735  * @rxq_index: channel to which the filter will steer traffic.
736  * @arfs_id: filter ID which was returned to ARFS
737  * @filter_id: index in software filter table.  May be
738  *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
739  *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
740  *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
741  */
742 struct efx_arfs_rule {
743 	struct hlist_node node;
744 	struct efx_filter_spec spec;
745 	u16 rxq_index;
746 	u16 arfs_id;
747 	s32 filter_id;
748 };
749 
750 /* Size chosen so that the table is one page (4kB) */
751 #define EFX_ARFS_HASH_TABLE_SIZE	512
752 
753 /**
754  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
755  * @net_dev: Reference to the netdevice
756  * @spec: The filter to insert
757  * @work: Workitem for this request
758  * @rxq_index: Identifies the channel for which this request was made
759  * @flow_id: Identifies the kernel-side flow for which this request was made
760  */
761 struct efx_async_filter_insertion {
762 	struct net_device *net_dev;
763 	struct efx_filter_spec spec;
764 	struct work_struct work;
765 	u16 rxq_index;
766 	u32 flow_id;
767 };
768 
769 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
770 #define EFX_RPS_MAX_IN_FLIGHT	8
771 #endif /* CONFIG_RFS_ACCEL */
772 
773 enum efx_xdp_tx_queues_mode {
774 	EFX_XDP_TX_QUEUES_DEDICATED,	/* one queue per core, locking not needed */
775 	EFX_XDP_TX_QUEUES_SHARED,	/* each queue used by more than 1 core */
776 	EFX_XDP_TX_QUEUES_BORROWED	/* queues borrowed from net stack */
777 };
778 
779 /**
780  * struct efx_nic - an Efx NIC
781  * @name: Device name (net device name or bus id before net device registered)
782  * @pci_dev: The PCI device
783  * @node: List node for maintaning primary/secondary function lists
784  * @primary: &struct efx_nic instance for the primary function of this
785  *	controller.  May be the same structure, and may be %NULL if no
786  *	primary function is bound.  Serialised by rtnl_lock.
787  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
788  *	functions of the controller, if this is for the primary function.
789  *	Serialised by rtnl_lock.
790  * @type: Controller type attributes
791  * @legacy_irq: IRQ number
792  * @workqueue: Workqueue for port reconfigures and the HW monitor.
793  *	Work items do not hold and must not acquire RTNL.
794  * @workqueue_name: Name of workqueue
795  * @reset_work: Scheduled reset workitem
796  * @membase_phys: Memory BAR value as physical address
797  * @membase: Memory BAR value
798  * @vi_stride: step between per-VI registers / memory regions
799  * @interrupt_mode: Interrupt mode
800  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
801  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
802  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
803  * @irqs_hooked: Channel interrupts are hooked
804  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
805  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
806  * @msg_enable: Log message enable flags
807  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
808  * @reset_pending: Bitmask for pending resets
809  * @tx_queue: TX DMA queues
810  * @rx_queue: RX DMA queues
811  * @channel: Channels
812  * @msi_context: Context for each MSI
813  * @extra_channel_types: Types of extra (non-traffic) channels that
814  *	should be allocated for this NIC
815  * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
816  * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
817  * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
818  * @rxq_entries: Size of receive queues requested by user.
819  * @txq_entries: Size of transmit queues requested by user.
820  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
821  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
822  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
823  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
824  * @sram_lim_qw: Qword address limit of SRAM
825  * @next_buffer_table: First available buffer table id
826  * @n_channels: Number of channels in use
827  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
828  * @n_tx_channels: Number of channels used for TX
829  * @n_extra_tx_channels: Number of extra channels with TX queues
830  * @tx_queues_per_channel: number of TX queues probed on each channel
831  * @n_xdp_channels: Number of channels used for XDP TX
832  * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
833  * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
834  * @rx_ip_align: RX DMA address offset to have IP header aligned in
835  *	accordance with NET_IP_ALIGN
836  * @rx_dma_len: Current maximum RX DMA length
837  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
838  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
839  *	for use in sk_buff::truesize
840  * @rx_prefix_size: Size of RX prefix before packet data
841  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
842  *	(valid only if @rx_prefix_size != 0; always negative)
843  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
844  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
845  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
846  *	(valid only if channel->sync_timestamps_enabled; always negative)
847  * @rx_scatter: Scatter mode enabled for receives
848  * @rss_context: Main RSS context
849  * @vport_id: The function's vport ID, only relevant for PFs
850  * @int_error_count: Number of internal errors seen recently
851  * @int_error_expire: Time at which error count will be expired
852  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
853  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
854  *	acknowledge but do nothing else.
855  * @irq_status: Interrupt status buffer
856  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
857  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
858  * @selftest_work: Work item for asynchronous self-test
859  * @mtd_list: List of MTDs attached to the NIC
860  * @nic_data: Hardware dependent state
861  * @mcdi: Management-Controller-to-Driver Interface state
862  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
863  *	efx_monitor() and efx_siena_reconfigure_port()
864  * @port_enabled: Port enabled indicator.
865  *	Serialises efx_siena_stop_all(), efx_siena_start_all(),
866  *	efx_monitor() and efx_mac_work() with kernel interfaces.
867  *	Safe to read under any one of the rtnl_lock, mac_lock, or netif_tx_lock,
868  *	but all three must be held to modify it.
869  * @port_initialized: Port initialized?
870  * @net_dev: Operating system network device. Consider holding the rtnl lock
871  * @fixed_features: Features which cannot be turned off
872  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
873  *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
874  * @stats_buffer: DMA buffer for statistics
875  * @phy_type: PHY type
876  * @phy_data: PHY private data (including PHY-specific stats)
877  * @mdio: PHY MDIO interface
878  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
879  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
880  * @link_advertising: Autonegotiation advertising flags
881  * @fec_config: Forward Error Correction configuration flags.  For bit positions
882  *	see &enum ethtool_fec_config_bits.
883  * @link_state: Current state of the link
884  * @n_link_state_changes: Number of times the link has changed state
885  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
886  *	Protected by @mac_lock.
887  * @multicast_hash: Multicast hash table for Falcon-arch.
888  *	Protected by @mac_lock.
889  * @wanted_fc: Wanted flow control flags
890  * @fc_disable: When non-zero flow control is disabled. Typically used to
891  *	ensure that network back pressure doesn't delay dma queue flushes.
892  *	Serialised by the rtnl lock.
893  * @mac_work: Work item for changing MAC promiscuity and multicast hash
894  * @loopback_mode: Loopback status
895  * @loopback_modes: Supported loopback mode bitmask
896  * @loopback_selftest: Offline self-test private state
897  * @xdp_prog: Current XDP programme for this interface
898  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
899  * @filter_state: Architecture-dependent filter table state
900  * @rps_mutex: Protects RPS state of all channels
901  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
902  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
903  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
904  *	@rps_next_id).
905  * @rps_hash_table: Mapping between ARFS filters and their various IDs
906  * @rps_next_id: next arfs_id for an ARFS filter
907  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
908  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
909  *	Decremented when the efx_flush_rx_queue() is called.
910  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
911  *	completed (either success or failure). Not used when MCDI is used to
912  *	flush receive queues.
913  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
914  * @vf_count: Number of VFs intended to be enabled.
915  * @vf_init_count: Number of VFs that have been fully initialised.
916  * @vi_scale: log2 number of vnics per VF.
917  * @ptp_data: PTP state data
918  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
919  * @vpd_sn: Serial number read from VPD
920  * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
921  *      xdp_rxq_info structures?
922  * @netdev_notifier: Netdevice notifier.
923  * @mem_bar: The BAR that is mapped into membase.
924  * @reg_base: Offset from the start of the bar to the function control window.
925  * @monitor_work: Hardware monitor workitem
926  * @biu_lock: BIU (bus interface unit) lock
927  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
928  *	field is used by efx_test_interrupts() to verify that an
929  *	interrupt has occurred.
930  * @stats_lock: Statistics update lock. Must be held when calling
931  *	efx_nic_type::{update,start,stop}_stats.
932  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
933  *
934  * This is stored in the private area of the &struct net_device.
935  */
936 struct efx_nic {
937 	/* The following fields should be written very rarely */
938 
939 	char name[IFNAMSIZ];
940 	struct list_head node;
941 	struct efx_nic *primary;
942 	struct list_head secondary_list;
943 	struct pci_dev *pci_dev;
944 	unsigned int port_num;
945 	const struct efx_nic_type *type;
946 	int legacy_irq;
947 	bool eeh_disabled_legacy_irq;
948 	struct workqueue_struct *workqueue;
949 	char workqueue_name[16];
950 	struct work_struct reset_work;
951 	resource_size_t membase_phys;
952 	void __iomem *membase;
953 
954 	unsigned int vi_stride;
955 
956 	enum efx_int_mode interrupt_mode;
957 	unsigned int timer_quantum_ns;
958 	unsigned int timer_max_ns;
959 	bool irq_rx_adaptive;
960 	bool irqs_hooked;
961 	unsigned int irq_mod_step_us;
962 	unsigned int irq_rx_moderation_us;
963 	u32 msg_enable;
964 
965 	enum nic_state state;
966 	unsigned long reset_pending;
967 
968 	struct efx_channel *channel[EFX_MAX_CHANNELS];
969 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
970 	const struct efx_channel_type *
971 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
972 
973 	unsigned int xdp_tx_queue_count;
974 	struct efx_tx_queue **xdp_tx_queues;
975 	enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
976 
977 	unsigned rxq_entries;
978 	unsigned txq_entries;
979 	unsigned int txq_stop_thresh;
980 	unsigned int txq_wake_thresh;
981 
982 	unsigned tx_dc_base;
983 	unsigned rx_dc_base;
984 	unsigned sram_lim_qw;
985 	unsigned next_buffer_table;
986 
987 	unsigned int max_channels;
988 	unsigned int max_vis;
989 	unsigned int max_tx_channels;
990 	unsigned n_channels;
991 	unsigned n_rx_channels;
992 	unsigned rss_spread;
993 	unsigned tx_channel_offset;
994 	unsigned n_tx_channels;
995 	unsigned n_extra_tx_channels;
996 	unsigned int tx_queues_per_channel;
997 	unsigned int n_xdp_channels;
998 	unsigned int xdp_channel_offset;
999 	unsigned int xdp_tx_per_channel;
1000 	unsigned int rx_ip_align;
1001 	unsigned int rx_dma_len;
1002 	unsigned int rx_buffer_order;
1003 	unsigned int rx_buffer_truesize;
1004 	unsigned int rx_page_buf_step;
1005 	unsigned int rx_bufs_per_page;
1006 	unsigned int rx_pages_per_batch;
1007 	unsigned int rx_prefix_size;
1008 	int rx_packet_hash_offset;
1009 	int rx_packet_len_offset;
1010 	int rx_packet_ts_offset;
1011 	bool rx_scatter;
1012 	struct efx_rss_context rss_context;
1013 	u32 vport_id;
1014 
1015 	unsigned int_error_count;
1016 	unsigned long int_error_expire;
1017 
1018 	bool must_realloc_vis;
1019 	bool irq_soft_enabled;
1020 	struct efx_buffer irq_status;
1021 	unsigned irq_zero_count;
1022 	unsigned irq_level;
1023 	struct delayed_work selftest_work;
1024 
1025 #ifdef CONFIG_SFC_SIENA_MTD
1026 	struct list_head mtd_list;
1027 #endif
1028 
1029 	void *nic_data;
1030 	struct efx_mcdi_data *mcdi;
1031 
1032 	struct mutex mac_lock;
1033 	struct work_struct mac_work;
1034 	bool port_enabled;
1035 
1036 	bool mc_bist_for_other_fn;
1037 	bool port_initialized;
1038 	struct net_device *net_dev;
1039 
1040 	netdev_features_t fixed_features;
1041 
1042 	u16 num_mac_stats;
1043 	struct efx_buffer stats_buffer;
1044 	u64 rx_nodesc_drops_total;
1045 	u64 rx_nodesc_drops_while_down;
1046 	bool rx_nodesc_drops_prev_state;
1047 
1048 	unsigned int phy_type;
1049 	void *phy_data;
1050 	struct mdio_if_info mdio;
1051 	unsigned int mdio_bus;
1052 	enum efx_phy_mode phy_mode;
1053 
1054 	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1055 	u32 fec_config;
1056 	struct efx_link_state link_state;
1057 	unsigned int n_link_state_changes;
1058 
1059 	bool unicast_filter;
1060 	union efx_multicast_hash multicast_hash;
1061 	u8 wanted_fc;
1062 	unsigned fc_disable;
1063 
1064 	atomic_t rx_reset;
1065 	enum efx_loopback_mode loopback_mode;
1066 	u64 loopback_modes;
1067 
1068 	void *loopback_selftest;
1069 	/* We access loopback_selftest immediately before running XDP,
1070 	 * so we want them next to each other.
1071 	 */
1072 	struct bpf_prog __rcu *xdp_prog;
1073 
1074 	struct rw_semaphore filter_sem;
1075 	void *filter_state;
1076 #ifdef CONFIG_RFS_ACCEL
1077 	struct mutex rps_mutex;
1078 	unsigned long rps_slot_map;
1079 	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1080 	spinlock_t rps_hash_lock;
1081 	struct hlist_head *rps_hash_table;
1082 	u32 rps_next_id;
1083 #endif
1084 
1085 	atomic_t active_queues;
1086 	atomic_t rxq_flush_pending;
1087 	atomic_t rxq_flush_outstanding;
1088 	wait_queue_head_t flush_wq;
1089 
1090 #ifdef CONFIG_SFC_SIENA_SRIOV
1091 	unsigned vf_count;
1092 	unsigned vf_init_count;
1093 	unsigned vi_scale;
1094 #endif
1095 
1096 	struct efx_ptp_data *ptp_data;
1097 	bool ptp_warned;
1098 
1099 	char *vpd_sn;
1100 	bool xdp_rxq_info_failed;
1101 
1102 	struct notifier_block netdev_notifier;
1103 
1104 	unsigned int mem_bar;
1105 	u32 reg_base;
1106 
1107 	/* The following fields may be written more often */
1108 
1109 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1110 	spinlock_t biu_lock;
1111 	int last_irq_cpu;
1112 	spinlock_t stats_lock;
1113 	atomic_t n_rx_noskb_drops;
1114 };
1115 
efx_dev_registered(struct efx_nic * efx)1116 static inline int efx_dev_registered(struct efx_nic *efx)
1117 {
1118 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1119 }
1120 
efx_port_num(struct efx_nic * efx)1121 static inline unsigned int efx_port_num(struct efx_nic *efx)
1122 {
1123 	return efx->port_num;
1124 }
1125 
1126 struct efx_mtd_partition {
1127 	struct list_head node;
1128 	struct mtd_info mtd;
1129 	const char *dev_type_name;
1130 	const char *type_name;
1131 	char name[IFNAMSIZ + 20];
1132 };
1133 
1134 struct efx_udp_tunnel {
1135 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1136 	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1137 	__be16 port;
1138 };
1139 
1140 /**
1141  * struct efx_nic_type - Efx device type definition
1142  * @mem_bar: Get the memory BAR
1143  * @mem_map_size: Get memory BAR mapped size
1144  * @probe: Probe the controller
1145  * @remove: Free resources allocated by probe()
1146  * @init: Initialise the controller
1147  * @dimension_resources: Dimension controller resources (buffer table,
1148  *	and VIs once the available interrupt resources are clear)
1149  * @fini: Shut down the controller
1150  * @monitor: Periodic function for polling link state and hardware monitor
1151  * @map_reset_reason: Map ethtool reset reason to a reset method
1152  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1153  * @reset: Reset the controller hardware and possibly the PHY.  This will
1154  *	be called while the controller is uninitialised.
1155  * @probe_port: Probe the MAC and PHY
1156  * @remove_port: Free resources allocated by probe_port()
1157  * @handle_global_event: Handle a "global" event (may be %NULL)
1158  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1159  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1160  *	(for Falcon architecture)
1161  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1162  *	architecture)
1163  * @prepare_flr: Prepare for an FLR
1164  * @finish_flr: Clean up after an FLR
1165  * @describe_stats: Describe statistics for ethtool
1166  * @update_stats: Update statistics not provided by event handling.
1167  *	Either argument may be %NULL.
1168  * @update_stats_atomic: Update statistics while in atomic context, if that
1169  *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1170  *	driver core will call @update_stats.
1171  * @start_stats: Start the regular fetching of statistics
1172  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1173  * @stop_stats: Stop the regular fetching of statistics
1174  * @push_irq_moderation: Apply interrupt moderation value
1175  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1176  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1177  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1178  *	to the hardware.  Serialised by the mac_lock.
1179  * @check_mac_fault: Check MAC fault state. True if fault present.
1180  * @get_wol: Get WoL configuration from driver state
1181  * @set_wol: Push WoL configuration to the NIC
1182  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1183  * @get_fec_stats: Get standard FEC statistics.
1184  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1185  *	expected to reset the NIC.
1186  * @test_nvram: Test validity of NVRAM contents
1187  * @mcdi_request: Send an MCDI request with the given header and SDU.
1188  *	The SDU length may be any value from 0 up to the protocol-
1189  *	defined maximum, but its buffer will be padded to a multiple
1190  *	of 4 bytes.
1191  * @mcdi_poll_response: Test whether an MCDI response is available.
1192  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1193  *	be a multiple of 4.  The length may not be, but the buffer
1194  *	will be padded so it is safe to round up.
1195  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1196  *	return an appropriate error code for aborting any current
1197  *	request; otherwise return 0.
1198  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1199  *	be separately enabled after this.
1200  * @irq_test_generate: Generate a test IRQ
1201  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1202  *	queue must be separately disabled before this.
1203  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1204  *	a pointer to the &struct efx_msi_context for the channel.
1205  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1206  *	is a pointer to the &struct efx_nic.
1207  * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1208  * @tx_init: Initialise TX queue on the NIC
1209  * @tx_remove: Free resources for TX queue
1210  * @tx_write: Write TX descriptors and doorbell
1211  * @tx_enqueue: Add an SKB to TX queue
1212  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1213  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1214  * @rx_probe: Allocate resources for RX queue
1215  * @rx_init: Initialise RX queue on the NIC
1216  * @rx_remove: Free resources for RX queue
1217  * @rx_write: Write RX descriptors and doorbell
1218  * @rx_defer_refill: Generate a refill reminder event
1219  * @rx_packet: Receive the queued RX buffer on a channel
1220  * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1221  * @ev_probe: Allocate resources for event queue
1222  * @ev_init: Initialise event queue on the NIC
1223  * @ev_fini: Deinitialise event queue on the NIC
1224  * @ev_remove: Free resources for event queue
1225  * @ev_process: Process events for a queue, up to the given NAPI quota
1226  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1227  * @ev_test_generate: Generate a test event
1228  * @filter_table_probe: Probe filter capabilities and set up filter software state
1229  * @filter_table_restore: Restore filters removed from hardware
1230  * @filter_table_remove: Remove filters from hardware and tear down software state
1231  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1232  * @filter_insert: add or replace a filter
1233  * @filter_remove_safe: remove a filter by ID, carefully
1234  * @filter_get_safe: retrieve a filter by ID, carefully
1235  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1236  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1237  * @filter_count_rx_used: Get the number of filters in use at a given priority
1238  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1239  * @filter_get_rx_ids: Get list of RX filters at a given priority
1240  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1241  *	This must check whether the specified table entry is used by RFS
1242  *	and that rps_may_expire_flow() returns true for it.
1243  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1244  *	 using efx_siena_mtd_add()
1245  * @mtd_rename: Set an MTD partition name using the net device name
1246  * @mtd_read: Read from an MTD partition
1247  * @mtd_erase: Erase part of an MTD partition
1248  * @mtd_write: Write to an MTD partition
1249  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1250  *	also notifies the driver that a writer has finished using this
1251  *	partition.
1252  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1253  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1254  *	timestamping, possibly only temporarily for the purposes of a reset.
1255  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1256  *	and tx_type will already have been validated but this operation
1257  *	must validate and update rx_filter.
1258  * @get_phys_port_id: Get the underlying physical port id.
1259  * @set_mac_address: Set the MAC address of the device
1260  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1261  *	If %NULL, then device does not support any TSO version.
1262  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1263  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1264  * @print_additional_fwver: Dump NIC-specific additional FW version info
1265  * @sensor_event: Handle a sensor event from MCDI
1266  * @rx_recycle_ring_size: Size of the RX recycle ring
1267  * @revision: Hardware architecture revision
1268  * @txd_ptr_tbl_base: TX descriptor ring base address
1269  * @rxd_ptr_tbl_base: RX descriptor ring base address
1270  * @buf_tbl_base: Buffer table base address
1271  * @evq_ptr_tbl_base: Event queue pointer table base address
1272  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1273  * @max_dma_mask: Maximum possible DMA mask
1274  * @rx_prefix_size: Size of RX prefix before packet data
1275  * @rx_hash_offset: Offset of RX flow hash within prefix
1276  * @rx_ts_offset: Offset of timestamp within prefix
1277  * @rx_buffer_padding: Size of padding at end of RX packet
1278  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1279  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1280  * @option_descriptors: NIC supports TX option descriptors
1281  * @min_interrupt_mode: Lowest capability interrupt mode supported
1282  *	from &enum efx_int_mode.
1283  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1284  * @offload_features: net_device feature flags for protocol offload
1285  *	features implemented in hardware
1286  * @mcdi_max_ver: Maximum MCDI version supported
1287  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1288  */
1289 struct efx_nic_type {
1290 	bool is_vf;
1291 	unsigned int (*mem_bar)(struct efx_nic *efx);
1292 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1293 	int (*probe)(struct efx_nic *efx);
1294 	void (*remove)(struct efx_nic *efx);
1295 	int (*init)(struct efx_nic *efx);
1296 	int (*dimension_resources)(struct efx_nic *efx);
1297 	void (*fini)(struct efx_nic *efx);
1298 	void (*monitor)(struct efx_nic *efx);
1299 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1300 	int (*map_reset_flags)(u32 *flags);
1301 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1302 	int (*probe_port)(struct efx_nic *efx);
1303 	void (*remove_port)(struct efx_nic *efx);
1304 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1305 	int (*fini_dmaq)(struct efx_nic *efx);
1306 	void (*prepare_flush)(struct efx_nic *efx);
1307 	void (*finish_flush)(struct efx_nic *efx);
1308 	void (*prepare_flr)(struct efx_nic *efx);
1309 	void (*finish_flr)(struct efx_nic *efx);
1310 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1311 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1312 			       struct rtnl_link_stats64 *core_stats);
1313 	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1314 				      struct rtnl_link_stats64 *core_stats);
1315 	void (*start_stats)(struct efx_nic *efx);
1316 	void (*pull_stats)(struct efx_nic *efx);
1317 	void (*stop_stats)(struct efx_nic *efx);
1318 	void (*push_irq_moderation)(struct efx_channel *channel);
1319 	int (*reconfigure_port)(struct efx_nic *efx);
1320 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1321 	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1322 	bool (*check_mac_fault)(struct efx_nic *efx);
1323 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1324 	int (*set_wol)(struct efx_nic *efx, u32 type);
1325 	void (*resume_wol)(struct efx_nic *efx);
1326 	void (*get_fec_stats)(struct efx_nic *efx,
1327 			      struct ethtool_fec_stats *fec_stats);
1328 	unsigned int (*check_caps)(const struct efx_nic *efx,
1329 				   u8 flag,
1330 				   u32 offset);
1331 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1332 	int (*test_nvram)(struct efx_nic *efx);
1333 	void (*mcdi_request)(struct efx_nic *efx,
1334 			     const efx_dword_t *hdr, size_t hdr_len,
1335 			     const efx_dword_t *sdu, size_t sdu_len);
1336 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1337 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1338 				   size_t pdu_offset, size_t pdu_len);
1339 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1340 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1341 	void (*irq_enable_master)(struct efx_nic *efx);
1342 	int (*irq_test_generate)(struct efx_nic *efx);
1343 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1344 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1345 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1346 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1347 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1348 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1349 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1350 	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1351 	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1352 				     dma_addr_t dma_addr, unsigned int len);
1353 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1354 				  const u32 *rx_indir_table, const u8 *key);
1355 	int (*rx_pull_rss_config)(struct efx_nic *efx);
1356 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1357 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1358 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1359 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1360 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1361 	void (*rx_packet)(struct efx_channel *channel);
1362 	bool (*rx_buf_hash_valid)(const u8 *prefix);
1363 	int (*ev_probe)(struct efx_channel *channel);
1364 	int (*ev_init)(struct efx_channel *channel);
1365 	void (*ev_fini)(struct efx_channel *channel);
1366 	void (*ev_remove)(struct efx_channel *channel);
1367 	int (*ev_process)(struct efx_channel *channel, int quota);
1368 	void (*ev_read_ack)(struct efx_channel *channel);
1369 	void (*ev_test_generate)(struct efx_channel *channel);
1370 	int (*filter_table_probe)(struct efx_nic *efx);
1371 	void (*filter_table_restore)(struct efx_nic *efx);
1372 	void (*filter_table_remove)(struct efx_nic *efx);
1373 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1374 	s32 (*filter_insert)(struct efx_nic *efx,
1375 			     struct efx_filter_spec *spec, bool replace);
1376 	int (*filter_remove_safe)(struct efx_nic *efx,
1377 				  enum efx_filter_priority priority,
1378 				  u32 filter_id);
1379 	int (*filter_get_safe)(struct efx_nic *efx,
1380 			       enum efx_filter_priority priority,
1381 			       u32 filter_id, struct efx_filter_spec *);
1382 	int (*filter_clear_rx)(struct efx_nic *efx,
1383 			       enum efx_filter_priority priority);
1384 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1385 				    enum efx_filter_priority priority);
1386 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1387 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1388 				 enum efx_filter_priority priority,
1389 				 u32 *buf, u32 size);
1390 #ifdef CONFIG_RFS_ACCEL
1391 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1392 				      unsigned int index);
1393 #endif
1394 #ifdef CONFIG_SFC_SIENA_MTD
1395 	int (*mtd_probe)(struct efx_nic *efx);
1396 	void (*mtd_rename)(struct efx_mtd_partition *part);
1397 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1398 			size_t *retlen, u8 *buffer);
1399 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1400 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1401 			 size_t *retlen, const u8 *buffer);
1402 	int (*mtd_sync)(struct mtd_info *mtd);
1403 #endif
1404 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1405 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1406 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1407 				 struct kernel_hwtstamp_config *init);
1408 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1409 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1410 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1411 	int (*get_phys_port_id)(struct efx_nic *efx,
1412 				struct netdev_phys_item_id *ppid);
1413 	int (*sriov_init)(struct efx_nic *efx);
1414 	void (*sriov_fini)(struct efx_nic *efx);
1415 	bool (*sriov_wanted)(struct efx_nic *efx);
1416 	void (*sriov_reset)(struct efx_nic *efx);
1417 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1418 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
1419 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1420 				 u8 qos);
1421 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1422 				     bool spoofchk);
1423 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1424 				   struct ifla_vf_info *ivi);
1425 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1426 				       int link_state);
1427 	int (*vswitching_probe)(struct efx_nic *efx);
1428 	int (*vswitching_restore)(struct efx_nic *efx);
1429 	void (*vswitching_remove)(struct efx_nic *efx);
1430 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1431 	int (*set_mac_address)(struct efx_nic *efx);
1432 	u32 (*tso_versions)(struct efx_nic *efx);
1433 	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1434 	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1435 	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1436 					 size_t len);
1437 	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1438 	unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1439 
1440 	int revision;
1441 	unsigned int txd_ptr_tbl_base;
1442 	unsigned int rxd_ptr_tbl_base;
1443 	unsigned int buf_tbl_base;
1444 	unsigned int evq_ptr_tbl_base;
1445 	unsigned int evq_rptr_tbl_base;
1446 	u64 max_dma_mask;
1447 	unsigned int rx_prefix_size;
1448 	unsigned int rx_hash_offset;
1449 	unsigned int rx_ts_offset;
1450 	unsigned int rx_buffer_padding;
1451 	bool can_rx_scatter;
1452 	bool always_rx_scatter;
1453 	bool option_descriptors;
1454 	unsigned int min_interrupt_mode;
1455 	unsigned int timer_period_max;
1456 	netdev_features_t offload_features;
1457 	int mcdi_max_ver;
1458 	unsigned int max_rx_ip_filters;
1459 	u32 hwtstamp_filters;
1460 	unsigned int rx_hash_key_size;
1461 };
1462 
1463 /**************************************************************************
1464  *
1465  * Prototypes and inline functions
1466  *
1467  *************************************************************************/
1468 
1469 static inline struct efx_channel *
efx_get_channel(struct efx_nic * efx,unsigned index)1470 efx_get_channel(struct efx_nic *efx, unsigned index)
1471 {
1472 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1473 	return efx->channel[index];
1474 }
1475 
1476 /* Iterate over all used channels */
1477 #define efx_for_each_channel(_channel, _efx)				\
1478 	for (_channel = (_efx)->channel[0];				\
1479 	     _channel;							\
1480 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1481 		     (_efx)->channel[_channel->channel + 1] : NULL)
1482 
1483 /* Iterate over all used channels in reverse */
1484 #define efx_for_each_channel_rev(_channel, _efx)			\
1485 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1486 	     _channel;							\
1487 	     _channel = _channel->channel ?				\
1488 		     (_efx)->channel[_channel->channel - 1] : NULL)
1489 
1490 static inline struct efx_channel *
efx_get_tx_channel(struct efx_nic * efx,unsigned int index)1491 efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1492 {
1493 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1494 	return efx->channel[efx->tx_channel_offset + index];
1495 }
1496 
1497 static inline struct efx_channel *
efx_get_xdp_channel(struct efx_nic * efx,unsigned int index)1498 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1499 {
1500 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1501 	return efx->channel[efx->xdp_channel_offset + index];
1502 }
1503 
efx_channel_is_xdp_tx(struct efx_channel * channel)1504 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1505 {
1506 	return channel->channel - channel->efx->xdp_channel_offset <
1507 	       channel->efx->n_xdp_channels;
1508 }
1509 
efx_channel_has_tx_queues(struct efx_channel * channel)1510 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1511 {
1512 	return channel && channel->channel >= channel->efx->tx_channel_offset;
1513 }
1514 
efx_channel_num_tx_queues(struct efx_channel * channel)1515 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1516 {
1517 	if (efx_channel_is_xdp_tx(channel))
1518 		return channel->efx->xdp_tx_per_channel;
1519 	return channel->efx->tx_queues_per_channel;
1520 }
1521 
1522 static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel * channel,unsigned int type)1523 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1524 {
1525 	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1526 	return channel->tx_queue_by_type[type];
1527 }
1528 
1529 static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic * efx,unsigned int index,unsigned int type)1530 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1531 {
1532 	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1533 
1534 	return efx_channel_get_tx_queue(channel, type);
1535 }
1536 
1537 /* Iterate over all TX queues belonging to a channel */
1538 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1539 	if (!efx_channel_has_tx_queues(_channel))			\
1540 		;							\
1541 	else								\
1542 		for (_tx_queue = (_channel)->tx_queue;			\
1543 		     _tx_queue < (_channel)->tx_queue +			\
1544 				 efx_channel_num_tx_queues(_channel);		\
1545 		     _tx_queue++)
1546 
efx_channel_has_rx_queue(struct efx_channel * channel)1547 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1548 {
1549 	return channel->rx_queue.core_index >= 0;
1550 }
1551 
1552 static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel * channel)1553 efx_channel_get_rx_queue(struct efx_channel *channel)
1554 {
1555 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1556 	return &channel->rx_queue;
1557 }
1558 
1559 /* Iterate over all RX queues belonging to a channel */
1560 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1561 	if (!efx_channel_has_rx_queue(_channel))			\
1562 		;							\
1563 	else								\
1564 		for (_rx_queue = &(_channel)->rx_queue;			\
1565 		     _rx_queue;						\
1566 		     _rx_queue = NULL)
1567 
1568 static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue * rx_queue)1569 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1570 {
1571 	return container_of(rx_queue, struct efx_channel, rx_queue);
1572 }
1573 
efx_rx_queue_index(struct efx_rx_queue * rx_queue)1574 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1575 {
1576 	return efx_rx_queue_channel(rx_queue)->channel;
1577 }
1578 
1579 /* Returns a pointer to the specified receive buffer in the RX
1580  * descriptor queue.
1581  */
efx_rx_buffer(struct efx_rx_queue * rx_queue,unsigned int index)1582 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1583 						  unsigned int index)
1584 {
1585 	return &rx_queue->buffer[index];
1586 }
1587 
1588 static inline struct efx_rx_buffer *
efx_rx_buf_next(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)1589 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1590 {
1591 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1592 		return efx_rx_buffer(rx_queue, 0);
1593 	else
1594 		return rx_buf + 1;
1595 }
1596 
1597 /**
1598  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1599  *
1600  * This calculates the maximum frame length that will be used for a
1601  * given MTU.  The frame length will be equal to the MTU plus a
1602  * constant amount of header space and padding.  This is the quantity
1603  * that the net driver will program into the MAC as the maximum frame
1604  * length.
1605  *
1606  * The 10G MAC requires 8-byte alignment on the frame
1607  * length, so we round up to the nearest 8.
1608  *
1609  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1610  * XGMII cycle).  If the frame length reaches the maximum value in the
1611  * same cycle, the XMAC can miss the IPG altogether.  We work around
1612  * this by adding a further 16 bytes.
1613  */
1614 #define EFX_FRAME_PAD	16
1615 #define EFX_MAX_FRAME_LEN(mtu) \
1616 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1617 
efx_xmit_with_hwtstamp(struct sk_buff * skb)1618 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1619 {
1620 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1621 }
efx_xmit_hwtstamp_pending(struct sk_buff * skb)1622 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1623 {
1624 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1625 }
1626 
1627 /* Get the max fill level of the TX queues on this channel */
1628 static inline unsigned int
efx_channel_tx_fill_level(struct efx_channel * channel)1629 efx_channel_tx_fill_level(struct efx_channel *channel)
1630 {
1631 	struct efx_tx_queue *tx_queue;
1632 	unsigned int fill_level = 0;
1633 
1634 	efx_for_each_channel_tx_queue(tx_queue, channel)
1635 		fill_level = max(fill_level,
1636 				 tx_queue->insert_count - tx_queue->read_count);
1637 
1638 	return fill_level;
1639 }
1640 
1641 /* Conservative approximation of efx_channel_tx_fill_level using cached value */
1642 static inline unsigned int
efx_channel_tx_old_fill_level(struct efx_channel * channel)1643 efx_channel_tx_old_fill_level(struct efx_channel *channel)
1644 {
1645 	struct efx_tx_queue *tx_queue;
1646 	unsigned int fill_level = 0;
1647 
1648 	efx_for_each_channel_tx_queue(tx_queue, channel)
1649 		fill_level = max(fill_level,
1650 				 tx_queue->insert_count - tx_queue->old_read_count);
1651 
1652 	return fill_level;
1653 }
1654 
1655 /* Get all supported features.
1656  * If a feature is not fixed, it is present in hw_features.
1657  * If a feature is fixed, it does not present in hw_features, but
1658  * always in features.
1659  */
efx_supported_features(const struct efx_nic * efx)1660 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1661 {
1662 	const struct net_device *net_dev = efx->net_dev;
1663 
1664 	return net_dev->features | net_dev->hw_features;
1665 }
1666 
1667 /* Get the current TX queue insert index. */
1668 static inline unsigned int
efx_tx_queue_get_insert_index(const struct efx_tx_queue * tx_queue)1669 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1670 {
1671 	return tx_queue->insert_count & tx_queue->ptr_mask;
1672 }
1673 
1674 /* Get a TX buffer. */
1675 static inline struct efx_tx_buffer *
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)1676 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1677 {
1678 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1679 }
1680 
1681 /* Get a TX buffer, checking it's not currently in use. */
1682 static inline struct efx_tx_buffer *
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)1683 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1684 {
1685 	struct efx_tx_buffer *buffer =
1686 		__efx_tx_queue_get_insert_buffer(tx_queue);
1687 
1688 	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1689 	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1690 	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1691 
1692 	return buffer;
1693 }
1694 
1695 #endif /* EFX_NET_DRIVER_H */
1696