1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *
4   * Common boot and setup code.
5   *
6   * Copyright (C) 2001 PPC64 Team, IBM Corp
7   */
8  
9  #include <linux/export.h>
10  #include <linux/string.h>
11  #include <linux/sched.h>
12  #include <linux/init.h>
13  #include <linux/kernel.h>
14  #include <linux/reboot.h>
15  #include <linux/delay.h>
16  #include <linux/initrd.h>
17  #include <linux/seq_file.h>
18  #include <linux/ioport.h>
19  #include <linux/console.h>
20  #include <linux/utsname.h>
21  #include <linux/tty.h>
22  #include <linux/root_dev.h>
23  #include <linux/notifier.h>
24  #include <linux/cpu.h>
25  #include <linux/unistd.h>
26  #include <linux/serial.h>
27  #include <linux/serial_8250.h>
28  #include <linux/memblock.h>
29  #include <linux/pci.h>
30  #include <linux/lockdep.h>
31  #include <linux/memory.h>
32  #include <linux/nmi.h>
33  #include <linux/pgtable.h>
34  #include <linux/of.h>
35  #include <linux/of_fdt.h>
36  
37  #include <asm/asm-prototypes.h>
38  #include <asm/kvm_guest.h>
39  #include <asm/io.h>
40  #include <asm/kdump.h>
41  #include <asm/processor.h>
42  #include <asm/smp.h>
43  #include <asm/elf.h>
44  #include <asm/machdep.h>
45  #include <asm/paca.h>
46  #include <asm/time.h>
47  #include <asm/cputable.h>
48  #include <asm/dt_cpu_ftrs.h>
49  #include <asm/sections.h>
50  #include <asm/btext.h>
51  #include <asm/nvram.h>
52  #include <asm/setup.h>
53  #include <asm/rtas.h>
54  #include <asm/iommu.h>
55  #include <asm/serial.h>
56  #include <asm/cache.h>
57  #include <asm/page.h>
58  #include <asm/mmu.h>
59  #include <asm/firmware.h>
60  #include <asm/xmon.h>
61  #include <asm/udbg.h>
62  #include <asm/kexec.h>
63  #include <asm/code-patching.h>
64  #include <asm/ftrace.h>
65  #include <asm/opal.h>
66  #include <asm/cputhreads.h>
67  #include <asm/hw_irq.h>
68  #include <asm/feature-fixups.h>
69  #include <asm/kup.h>
70  #include <asm/early_ioremap.h>
71  #include <asm/pgalloc.h>
72  
73  #include "setup.h"
74  
75  int spinning_secondaries;
76  u64 ppc64_pft_size;
77  
78  struct ppc64_caches ppc64_caches = {
79  	.l1d = {
80  		.block_size = 0x40,
81  		.log_block_size = 6,
82  	},
83  	.l1i = {
84  		.block_size = 0x40,
85  		.log_block_size = 6
86  	},
87  };
88  EXPORT_SYMBOL_GPL(ppc64_caches);
89  
90  #if defined(CONFIG_PPC_BOOK3E_64) && defined(CONFIG_SMP)
setup_tlb_core_data(void)91  void __init setup_tlb_core_data(void)
92  {
93  	int cpu;
94  
95  	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
96  
97  	for_each_possible_cpu(cpu) {
98  		int first = cpu_first_thread_sibling(cpu);
99  
100  		/*
101  		 * If we boot via kdump on a non-primary thread,
102  		 * make sure we point at the thread that actually
103  		 * set up this TLB.
104  		 */
105  		if (cpu_first_thread_sibling(boot_cpuid) == first)
106  			first = boot_cpuid;
107  
108  		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
109  
110  		/*
111  		 * If we have threads, we need either tlbsrx.
112  		 * or e6500 tablewalk mode, or else TLB handlers
113  		 * will be racy and could produce duplicate entries.
114  		 * Should we panic instead?
115  		 */
116  		WARN_ONCE(smt_enabled_at_boot >= 2 &&
117  			  book3e_htw_mode != PPC_HTW_E6500,
118  			  "%s: unsupported MMU configuration\n", __func__);
119  	}
120  }
121  #endif
122  
123  #ifdef CONFIG_SMP
124  
125  static char *smt_enabled_cmdline;
126  
127  /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)128  void __init check_smt_enabled(void)
129  {
130  	struct device_node *dn;
131  	const char *smt_option;
132  
133  	/* Default to enabling all threads */
134  	smt_enabled_at_boot = threads_per_core;
135  
136  	/* Allow the command line to overrule the OF option */
137  	if (smt_enabled_cmdline) {
138  		if (!strcmp(smt_enabled_cmdline, "on"))
139  			smt_enabled_at_boot = threads_per_core;
140  		else if (!strcmp(smt_enabled_cmdline, "off"))
141  			smt_enabled_at_boot = 0;
142  		else {
143  			int smt;
144  			int rc;
145  
146  			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
147  			if (!rc)
148  				smt_enabled_at_boot =
149  					min(threads_per_core, smt);
150  		}
151  	} else {
152  		dn = of_find_node_by_path("/options");
153  		if (dn) {
154  			smt_option = of_get_property(dn, "ibm,smt-enabled",
155  						     NULL);
156  
157  			if (smt_option) {
158  				if (!strcmp(smt_option, "on"))
159  					smt_enabled_at_boot = threads_per_core;
160  				else if (!strcmp(smt_option, "off"))
161  					smt_enabled_at_boot = 0;
162  			}
163  
164  			of_node_put(dn);
165  		}
166  	}
167  }
168  
169  /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)170  static int __init early_smt_enabled(char *p)
171  {
172  	smt_enabled_cmdline = p;
173  	return 0;
174  }
175  early_param("smt-enabled", early_smt_enabled);
176  
177  #endif /* CONFIG_SMP */
178  
179  /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(struct paca_struct * boot_paca)180  static void __init fixup_boot_paca(struct paca_struct *boot_paca)
181  {
182  	/* The boot cpu is started */
183  	boot_paca->cpu_start = 1;
184  #ifdef CONFIG_PPC_BOOK3S_64
185  	/*
186  	 * Give the early boot machine check stack somewhere to use, use
187  	 * half of the init stack. This is a bit hacky but there should not be
188  	 * deep stack usage in early init so shouldn't overflow it or overwrite
189  	 * things.
190  	 */
191  	boot_paca->mc_emergency_sp = (void *)&init_thread_union +
192  		(THREAD_SIZE/2);
193  #endif
194  	/* Allow percpu accesses to work until we setup percpu data */
195  	boot_paca->data_offset = 0;
196  	/* Mark interrupts soft and hard disabled in PACA */
197  	boot_paca->irq_soft_mask = IRQS_DISABLED;
198  	boot_paca->irq_happened = PACA_IRQ_HARD_DIS;
199  	WARN_ON(mfmsr() & MSR_EE);
200  }
201  
configure_exceptions(void)202  static void __init configure_exceptions(void)
203  {
204  	/*
205  	 * Setup the trampolines from the lowmem exception vectors
206  	 * to the kdump kernel when not using a relocatable kernel.
207  	 */
208  	setup_kdump_trampoline();
209  
210  	/* Under a PAPR hypervisor, we need hypercalls */
211  	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
212  		/*
213  		 * - PR KVM does not support AIL mode interrupts in the host
214  		 *   while a PR guest is running.
215  		 *
216  		 * - SCV system call interrupt vectors are only implemented for
217  		 *   AIL mode interrupts.
218  		 *
219  		 * - On pseries, AIL mode can only be enabled and disabled
220  		 *   system-wide so when a PR VM is created on a pseries host,
221  		 *   all CPUs of the host are set to AIL=0 mode.
222  		 *
223  		 * - Therefore host CPUs must not execute scv while a PR VM
224  		 *   exists.
225  		 *
226  		 * - SCV support can not be disabled dynamically because the
227  		 *   feature is advertised to host userspace. Disabling the
228  		 *   facility and emulating it would be possible but is not
229  		 *   implemented.
230  		 *
231  		 * - So SCV support is blanket disabled if PR KVM could possibly
232  		 *   run. That is, PR support compiled in, booting on pseries
233  		 *   with hash MMU.
234  		 */
235  		if (IS_ENABLED(CONFIG_KVM_BOOK3S_PR_POSSIBLE) && !radix_enabled()) {
236  			init_task.thread.fscr &= ~FSCR_SCV;
237  			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
238  		}
239  
240  		/* Enable AIL if possible */
241  		if (!pseries_enable_reloc_on_exc()) {
242  			init_task.thread.fscr &= ~FSCR_SCV;
243  			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
244  		}
245  
246  		/*
247  		 * Tell the hypervisor that we want our exceptions to
248  		 * be taken in little endian mode.
249  		 *
250  		 * We don't call this for big endian as our calling convention
251  		 * makes us always enter in BE, and the call may fail under
252  		 * some circumstances with kdump.
253  		 */
254  #ifdef __LITTLE_ENDIAN__
255  		pseries_little_endian_exceptions();
256  #endif
257  	} else {
258  		/* Set endian mode using OPAL */
259  		if (firmware_has_feature(FW_FEATURE_OPAL))
260  			opal_configure_cores();
261  
262  		/* AIL on native is done in cpu_ready_for_interrupts() */
263  	}
264  }
265  
cpu_ready_for_interrupts(void)266  static void cpu_ready_for_interrupts(void)
267  {
268  	/*
269  	 * Enable AIL if supported, and we are in hypervisor mode. This
270  	 * is called once for every processor.
271  	 *
272  	 * If we are not in hypervisor mode the job is done once for
273  	 * the whole partition in configure_exceptions().
274  	 */
275  	if (cpu_has_feature(CPU_FTR_HVMODE)) {
276  		unsigned long lpcr = mfspr(SPRN_LPCR);
277  		unsigned long new_lpcr = lpcr;
278  
279  		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280  			/* P10 DD1 does not have HAIL */
281  			if (pvr_version_is(PVR_POWER10) &&
282  					(mfspr(SPRN_PVR) & 0xf00) == 0x100)
283  				new_lpcr |= LPCR_AIL_3;
284  			else
285  				new_lpcr |= LPCR_HAIL;
286  		} else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
287  			new_lpcr |= LPCR_AIL_3;
288  		}
289  
290  		if (new_lpcr != lpcr)
291  			mtspr(SPRN_LPCR, new_lpcr);
292  	}
293  
294  	/*
295  	 * Set HFSCR:TM based on CPU features:
296  	 * In the special case of TM no suspend (P9N DD2.1), Linux is
297  	 * told TM is off via the dt-ftrs but told to (partially) use
298  	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
299  	 * will be off from dt-ftrs but we need to turn it on for the
300  	 * no suspend case.
301  	 */
302  	if (cpu_has_feature(CPU_FTR_HVMODE)) {
303  		if (cpu_has_feature(CPU_FTR_TM_COMP))
304  			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
305  		else
306  			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
307  	}
308  
309  	/* Set IR and DR in PACA MSR */
310  	get_paca()->kernel_msr = MSR_KERNEL;
311  }
312  
313  unsigned long spr_default_dscr = 0;
314  
record_spr_defaults(void)315  static void __init record_spr_defaults(void)
316  {
317  	if (early_cpu_has_feature(CPU_FTR_DSCR))
318  		spr_default_dscr = mfspr(SPRN_DSCR);
319  }
320  
321  /*
322   * Early initialization entry point. This is called by head.S
323   * with MMU translation disabled. We rely on the "feature" of
324   * the CPU that ignores the top 2 bits of the address in real
325   * mode so we can access kernel globals normally provided we
326   * only toy with things in the RMO region. From here, we do
327   * some early parsing of the device-tree to setup out MEMBLOCK
328   * data structures, and allocate & initialize the hash table
329   * and segment tables so we can start running with translation
330   * enabled.
331   *
332   * It is this function which will call the probe() callback of
333   * the various platform types and copy the matching one to the
334   * global ppc_md structure. Your platform can eventually do
335   * some very early initializations from the probe() routine, but
336   * this is not recommended, be very careful as, for example, the
337   * device-tree is not accessible via normal means at this point.
338   */
339  
early_setup(unsigned long dt_ptr)340  void __init early_setup(unsigned long dt_ptr)
341  {
342  	static __initdata struct paca_struct boot_paca;
343  
344  	/* -------- printk is _NOT_ safe to use here ! ------- */
345  
346  	/*
347  	 * Assume we're on cpu 0 for now.
348  	 *
349  	 * We need to load a PACA very early for a few reasons.
350  	 *
351  	 * The stack protector canary is stored in the paca, so as soon as we
352  	 * call any stack protected code we need r13 pointing somewhere valid.
353  	 *
354  	 * If we are using kcov it will call in_task() in its instrumentation,
355  	 * which relies on the current task from the PACA.
356  	 *
357  	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
358  	 * printk(), which can trigger both stack protector and kcov.
359  	 *
360  	 * percpu variables and spin locks also use the paca.
361  	 *
362  	 * So set up a temporary paca. It will be replaced below once we know
363  	 * what CPU we are on.
364  	 */
365  	initialise_paca(&boot_paca, 0);
366  	fixup_boot_paca(&boot_paca);
367  	WARN_ON(local_paca);
368  	setup_paca(&boot_paca); /* install the paca into registers */
369  
370  	/* -------- printk is now safe to use ------- */
371  
372  	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && (mfmsr() & MSR_HV))
373  		enable_machine_check();
374  
375  	/* Try new device tree based feature discovery ... */
376  	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
377  		/* Otherwise use the old style CPU table */
378  		identify_cpu(0, mfspr(SPRN_PVR));
379  
380  	/* Enable early debugging if any specified (see udbg.h) */
381  	udbg_early_init();
382  
383  	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
384  
385  	/*
386  	 * Do early initialization using the flattened device
387  	 * tree, such as retrieving the physical memory map or
388  	 * calculating/retrieving the hash table size, discover
389  	 * boot_cpuid and boot_cpu_hwid.
390  	 */
391  	early_init_devtree(__va(dt_ptr));
392  
393  	allocate_paca_ptrs();
394  	allocate_paca(boot_cpuid);
395  	set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid);
396  	fixup_boot_paca(paca_ptrs[boot_cpuid]);
397  	setup_paca(paca_ptrs[boot_cpuid]); /* install the paca into registers */
398  	// smp_processor_id() now reports boot_cpuid
399  
400  #ifdef CONFIG_SMP
401  	task_thread_info(current)->cpu = boot_cpuid; // fix task_cpu(current)
402  #endif
403  
404  	/*
405  	 * Configure exception handlers. This include setting up trampolines
406  	 * if needed, setting exception endian mode, etc...
407  	 */
408  	configure_exceptions();
409  
410  	/*
411  	 * Configure Kernel Userspace Protection. This needs to happen before
412  	 * feature fixups for platforms that implement this using features.
413  	 */
414  	setup_kup();
415  
416  	/* Apply all the dynamic patching */
417  	apply_feature_fixups();
418  	setup_feature_keys();
419  
420  	/* Initialize the hash table or TLB handling */
421  	early_init_mmu();
422  
423  	early_ioremap_setup();
424  
425  	/*
426  	 * After firmware and early platform setup code has set things up,
427  	 * we note the SPR values for configurable control/performance
428  	 * registers, and use those as initial defaults.
429  	 */
430  	record_spr_defaults();
431  
432  	/*
433  	 * At this point, we can let interrupts switch to virtual mode
434  	 * (the MMU has been setup), so adjust the MSR in the PACA to
435  	 * have IR and DR set and enable AIL if it exists
436  	 */
437  	cpu_ready_for_interrupts();
438  
439  	/*
440  	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
441  	 * will only actually get enabled on the boot cpu much later once
442  	 * ftrace itself has been initialized.
443  	 */
444  	this_cpu_enable_ftrace();
445  
446  	udbg_printf(" <- %s()\n", __func__);
447  
448  #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
449  	/*
450  	 * This needs to be done *last* (after the above udbg_printf() even)
451  	 *
452  	 * Right after we return from this function, we turn on the MMU
453  	 * which means the real-mode access trick that btext does will
454  	 * no longer work, it needs to switch to using a real MMU
455  	 * mapping. This call will ensure that it does
456  	 */
457  	btext_map();
458  #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
459  }
460  
461  #ifdef CONFIG_SMP
early_setup_secondary(void)462  void early_setup_secondary(void)
463  {
464  	/* Mark interrupts disabled in PACA */
465  	irq_soft_mask_set(IRQS_DISABLED);
466  
467  	/* Initialize the hash table or TLB handling */
468  	early_init_mmu_secondary();
469  
470  	/* Perform any KUP setup that is per-cpu */
471  	setup_kup();
472  
473  	/*
474  	 * At this point, we can let interrupts switch to virtual mode
475  	 * (the MMU has been setup), so adjust the MSR in the PACA to
476  	 * have IR and DR set.
477  	 */
478  	cpu_ready_for_interrupts();
479  }
480  
481  #endif /* CONFIG_SMP */
482  
panic_smp_self_stop(void)483  void __noreturn panic_smp_self_stop(void)
484  {
485  	hard_irq_disable();
486  	spin_begin();
487  	while (1)
488  		spin_cpu_relax();
489  }
490  
491  #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)492  static bool use_spinloop(void)
493  {
494  	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
495  		/*
496  		 * See comments in head_64.S -- not all platforms insert
497  		 * secondaries at __secondary_hold and wait at the spin
498  		 * loop.
499  		 */
500  		if (firmware_has_feature(FW_FEATURE_OPAL))
501  			return false;
502  		return true;
503  	}
504  
505  	/*
506  	 * When book3e boots from kexec, the ePAPR spin table does
507  	 * not get used.
508  	 */
509  	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
510  }
511  
smp_release_cpus(void)512  void smp_release_cpus(void)
513  {
514  	unsigned long *ptr;
515  	int i;
516  
517  	if (!use_spinloop())
518  		return;
519  
520  	/* All secondary cpus are spinning on a common spinloop, release them
521  	 * all now so they can start to spin on their individual paca
522  	 * spinloops. For non SMP kernels, the secondary cpus never get out
523  	 * of the common spinloop.
524  	 */
525  
526  	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
527  			- PHYSICAL_START);
528  	*ptr = ppc_function_entry(generic_secondary_smp_init);
529  
530  	/* And wait a bit for them to catch up */
531  	for (i = 0; i < 100000; i++) {
532  		mb();
533  		HMT_low();
534  		if (spinning_secondaries == 0)
535  			break;
536  		udelay(1);
537  	}
538  	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
539  }
540  #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
541  
542  /*
543   * Initialize some remaining members of the ppc64_caches and systemcfg
544   * structures
545   * (at least until we get rid of them completely). This is mostly some
546   * cache informations about the CPU that will be used by cache flush
547   * routines and/or provided to userland
548   */
549  
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)550  static void __init init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
551  			    u32 bsize, u32 sets)
552  {
553  	info->size = size;
554  	info->sets = sets;
555  	info->line_size = lsize;
556  	info->block_size = bsize;
557  	info->log_block_size = __ilog2(bsize);
558  	if (bsize)
559  		info->blocks_per_page = PAGE_SIZE / bsize;
560  	else
561  		info->blocks_per_page = 0;
562  
563  	if (sets == 0)
564  		info->assoc = 0xffff;
565  	else
566  		info->assoc = size / (sets * lsize);
567  }
568  
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)569  static bool __init parse_cache_info(struct device_node *np,
570  				    bool icache,
571  				    struct ppc_cache_info *info)
572  {
573  	static const char *ipropnames[] __initdata = {
574  		"i-cache-size",
575  		"i-cache-sets",
576  		"i-cache-block-size",
577  		"i-cache-line-size",
578  	};
579  	static const char *dpropnames[] __initdata = {
580  		"d-cache-size",
581  		"d-cache-sets",
582  		"d-cache-block-size",
583  		"d-cache-line-size",
584  	};
585  	const char **propnames = icache ? ipropnames : dpropnames;
586  	const __be32 *sizep, *lsizep, *bsizep, *setsp;
587  	u32 size, lsize, bsize, sets;
588  	bool success = true;
589  
590  	size = 0;
591  	sets = -1u;
592  	lsize = bsize = cur_cpu_spec->dcache_bsize;
593  	sizep = of_get_property(np, propnames[0], NULL);
594  	if (sizep != NULL)
595  		size = be32_to_cpu(*sizep);
596  	setsp = of_get_property(np, propnames[1], NULL);
597  	if (setsp != NULL)
598  		sets = be32_to_cpu(*setsp);
599  	bsizep = of_get_property(np, propnames[2], NULL);
600  	lsizep = of_get_property(np, propnames[3], NULL);
601  	if (bsizep == NULL)
602  		bsizep = lsizep;
603  	if (lsizep == NULL)
604  		lsizep = bsizep;
605  	if (lsizep != NULL)
606  		lsize = be32_to_cpu(*lsizep);
607  	if (bsizep != NULL)
608  		bsize = be32_to_cpu(*bsizep);
609  	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
610  		success = false;
611  
612  	/*
613  	 * OF is weird .. it represents fully associative caches
614  	 * as "1 way" which doesn't make much sense and doesn't
615  	 * leave room for direct mapped. We'll assume that 0
616  	 * in OF means direct mapped for that reason.
617  	 */
618  	if (sets == 1)
619  		sets = 0;
620  	else if (sets == 0)
621  		sets = 1;
622  
623  	init_cache_info(info, size, lsize, bsize, sets);
624  
625  	return success;
626  }
627  
initialize_cache_info(void)628  void __init initialize_cache_info(void)
629  {
630  	struct device_node *cpu = NULL, *l2, *l3 = NULL;
631  	u32 pvr;
632  
633  	/*
634  	 * All shipping POWER8 machines have a firmware bug that
635  	 * puts incorrect information in the device-tree. This will
636  	 * be (hopefully) fixed for future chips but for now hard
637  	 * code the values if we are running on one of these
638  	 */
639  	pvr = PVR_VER(mfspr(SPRN_PVR));
640  	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
641  	    pvr == PVR_POWER8NVL) {
642  						/* size    lsize   blk  sets */
643  		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
644  		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
645  		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
646  		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
647  	} else
648  		cpu = of_find_node_by_type(NULL, "cpu");
649  
650  	/*
651  	 * We're assuming *all* of the CPUs have the same
652  	 * d-cache and i-cache sizes... -Peter
653  	 */
654  	if (cpu) {
655  		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
656  			pr_warn("Argh, can't find dcache properties !\n");
657  
658  		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
659  			pr_warn("Argh, can't find icache properties !\n");
660  
661  		/*
662  		 * Try to find the L2 and L3 if any. Assume they are
663  		 * unified and use the D-side properties.
664  		 */
665  		l2 = of_find_next_cache_node(cpu);
666  		of_node_put(cpu);
667  		if (l2) {
668  			parse_cache_info(l2, false, &ppc64_caches.l2);
669  			l3 = of_find_next_cache_node(l2);
670  			of_node_put(l2);
671  		}
672  		if (l3) {
673  			parse_cache_info(l3, false, &ppc64_caches.l3);
674  			of_node_put(l3);
675  		}
676  	}
677  
678  	/* For use by binfmt_elf */
679  	dcache_bsize = ppc64_caches.l1d.block_size;
680  	icache_bsize = ppc64_caches.l1i.block_size;
681  
682  	cur_cpu_spec->dcache_bsize = dcache_bsize;
683  	cur_cpu_spec->icache_bsize = icache_bsize;
684  }
685  
686  /*
687   * This returns the limit below which memory accesses to the linear
688   * mapping are guarnateed not to cause an architectural exception (e.g.,
689   * TLB or SLB miss fault).
690   *
691   * This is used to allocate PACAs and various interrupt stacks that
692   * that are accessed early in interrupt handlers that must not cause
693   * re-entrant interrupts.
694   */
ppc64_bolted_size(void)695  __init u64 ppc64_bolted_size(void)
696  {
697  #ifdef CONFIG_PPC_BOOK3E_64
698  	/* Freescale BookE bolts the entire linear mapping */
699  	return linear_map_top;
700  #else
701  	/* BookS radix, does not take faults on linear mapping */
702  	if (early_radix_enabled())
703  		return ULONG_MAX;
704  
705  	/* BookS hash, the first segment is bolted */
706  	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
707  		return 1UL << SID_SHIFT_1T;
708  	return 1UL << SID_SHIFT;
709  #endif
710  }
711  
alloc_stack(unsigned long limit,int cpu)712  static void *__init alloc_stack(unsigned long limit, int cpu)
713  {
714  	void *ptr;
715  
716  	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
717  
718  	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
719  				     MEMBLOCK_LOW_LIMIT, limit,
720  				     early_cpu_to_node(cpu));
721  	if (!ptr)
722  		panic("cannot allocate stacks");
723  
724  	return ptr;
725  }
726  
irqstack_early_init(void)727  void __init irqstack_early_init(void)
728  {
729  	u64 limit = ppc64_bolted_size();
730  	unsigned int i;
731  
732  	/*
733  	 * Interrupt stacks must be in the first segment since we
734  	 * cannot afford to take SLB misses on them. They are not
735  	 * accessed in realmode.
736  	 */
737  	for_each_possible_cpu(i) {
738  		softirq_ctx[i] = alloc_stack(limit, i);
739  		hardirq_ctx[i] = alloc_stack(limit, i);
740  	}
741  }
742  
743  #ifdef CONFIG_PPC_BOOK3E_64
exc_lvl_early_init(void)744  void __init exc_lvl_early_init(void)
745  {
746  	unsigned int i;
747  
748  	for_each_possible_cpu(i) {
749  		void *sp;
750  
751  		sp = alloc_stack(ULONG_MAX, i);
752  		critirq_ctx[i] = sp;
753  		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
754  
755  		sp = alloc_stack(ULONG_MAX, i);
756  		dbgirq_ctx[i] = sp;
757  		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
758  
759  		sp = alloc_stack(ULONG_MAX, i);
760  		mcheckirq_ctx[i] = sp;
761  		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
762  	}
763  
764  	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
765  		patch_exception(0x040, exc_debug_debug_book3e);
766  }
767  #endif
768  
769  /*
770   * Stack space used when we detect a bad kernel stack pointer, and
771   * early in SMP boots before relocation is enabled. Exclusive emergency
772   * stack for machine checks.
773   */
emergency_stack_init(void)774  void __init emergency_stack_init(void)
775  {
776  	u64 limit, mce_limit;
777  	unsigned int i;
778  
779  	/*
780  	 * Emergency stacks must be under 256MB, we cannot afford to take
781  	 * SLB misses on them. The ABI also requires them to be 128-byte
782  	 * aligned.
783  	 *
784  	 * Since we use these as temporary stacks during secondary CPU
785  	 * bringup, machine check, system reset, and HMI, we need to get
786  	 * at them in real mode. This means they must also be within the RMO
787  	 * region.
788  	 *
789  	 * The IRQ stacks allocated elsewhere in this file are zeroed and
790  	 * initialized in kernel/irq.c. These are initialized here in order
791  	 * to have emergency stacks available as early as possible.
792  	 */
793  	limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
794  
795  	/*
796  	 * Machine check on pseries calls rtas, but can't use the static
797  	 * rtas_args due to a machine check hitting while the lock is held.
798  	 * rtas args have to be under 4GB, so the machine check stack is
799  	 * limited to 4GB so args can be put on stack.
800  	 */
801  	if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
802  		mce_limit = SZ_4G;
803  
804  	for_each_possible_cpu(i) {
805  		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
806  
807  #ifdef CONFIG_PPC_BOOK3S_64
808  		/* emergency stack for NMI exception handling. */
809  		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
810  
811  		/* emergency stack for machine check exception handling. */
812  		paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
813  #endif
814  	}
815  }
816  
817  #ifdef CONFIG_SMP
pcpu_cpu_distance(unsigned int from,unsigned int to)818  static int pcpu_cpu_distance(unsigned int from, unsigned int to)
819  {
820  	if (early_cpu_to_node(from) == early_cpu_to_node(to))
821  		return LOCAL_DISTANCE;
822  	else
823  		return REMOTE_DISTANCE;
824  }
825  
pcpu_cpu_to_node(int cpu)826  static __init int pcpu_cpu_to_node(int cpu)
827  {
828  	return early_cpu_to_node(cpu);
829  }
830  
831  unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
832  EXPORT_SYMBOL(__per_cpu_offset);
833  DEFINE_STATIC_KEY_FALSE(__percpu_first_chunk_is_paged);
834  
setup_per_cpu_areas(void)835  void __init setup_per_cpu_areas(void)
836  {
837  	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
838  	size_t atom_size;
839  	unsigned long delta;
840  	unsigned int cpu;
841  	int rc = -EINVAL;
842  
843  	/*
844  	 * BookE and BookS radix are historical values and should be revisited.
845  	 */
846  	if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) {
847  		atom_size = SZ_1M;
848  	} else if (radix_enabled()) {
849  		atom_size = PAGE_SIZE;
850  	} else if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) {
851  		/*
852  		 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
853  		 * to group units.  For larger mappings, use 1M atom which
854  		 * should be large enough to contain a number of units.
855  		 */
856  		if (mmu_linear_psize == MMU_PAGE_4K)
857  			atom_size = PAGE_SIZE;
858  		else
859  			atom_size = SZ_1M;
860  	}
861  
862  	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
863  		rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
864  					    pcpu_cpu_to_node);
865  		if (rc)
866  			pr_warn("PERCPU: %s allocator failed (%d), "
867  				"falling back to page size\n",
868  				pcpu_fc_names[pcpu_chosen_fc], rc);
869  	}
870  
871  	if (rc < 0)
872  		rc = pcpu_page_first_chunk(0, pcpu_cpu_to_node);
873  	if (rc < 0)
874  		panic("cannot initialize percpu area (err=%d)", rc);
875  
876  	static_key_enable(&__percpu_first_chunk_is_paged.key);
877  	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
878  	for_each_possible_cpu(cpu) {
879                  __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
880  		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
881  	}
882  }
883  #endif
884  
885  #ifdef CONFIG_MEMORY_HOTPLUG
memory_block_size_bytes(void)886  unsigned long memory_block_size_bytes(void)
887  {
888  	if (ppc_md.memory_block_size)
889  		return ppc_md.memory_block_size();
890  
891  	return MIN_MEMORY_BLOCK_SIZE;
892  }
893  #endif
894  
895  #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
896  struct ppc_pci_io ppc_pci_io;
897  EXPORT_SYMBOL(ppc_pci_io);
898  #endif
899  
900  #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)901  u64 hw_nmi_get_sample_period(int watchdog_thresh)
902  {
903  	return ppc_proc_freq * watchdog_thresh;
904  }
905  #endif
906  
907  /*
908   * The perf based hardlockup detector breaks PMU event based branches, so
909   * disable it by default. Book3S has a soft-nmi hardlockup detector based
910   * on the decrementer interrupt, so it does not suffer from this problem.
911   *
912   * It is likely to get false positives in KVM guests, so disable it there
913   * by default too. PowerVM will not stop or arbitrarily oversubscribe
914   * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
915   * the detector for non-KVM guests, assume PowerVM.
916   */
disable_hardlockup_detector(void)917  static int __init disable_hardlockup_detector(void)
918  {
919  #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
920  	hardlockup_detector_disable();
921  #else
922  	if (firmware_has_feature(FW_FEATURE_LPAR)) {
923  		if (is_kvm_guest())
924  			hardlockup_detector_disable();
925  	}
926  #endif
927  
928  	return 0;
929  }
930  early_initcall(disable_hardlockup_detector);
931