1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206 }; 207 208 typedef void (*btf_dtor_kfunc_t)(void *); 209 210 struct btf_field_kptr { 211 struct btf *btf; 212 struct module *module; 213 /* dtor used if btf_is_kernel(btf), otherwise the type is 214 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 215 */ 216 btf_dtor_kfunc_t dtor; 217 u32 btf_id; 218 }; 219 220 struct btf_field_graph_root { 221 struct btf *btf; 222 u32 value_btf_id; 223 u32 node_offset; 224 struct btf_record *value_rec; 225 }; 226 227 struct btf_field { 228 u32 offset; 229 u32 size; 230 enum btf_field_type type; 231 union { 232 struct btf_field_kptr kptr; 233 struct btf_field_graph_root graph_root; 234 }; 235 }; 236 237 struct btf_record { 238 u32 cnt; 239 u32 field_mask; 240 int spin_lock_off; 241 int timer_off; 242 int wq_off; 243 int refcount_off; 244 struct btf_field fields[]; 245 }; 246 247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 248 struct bpf_rb_node_kern { 249 struct rb_node rb_node; 250 void *owner; 251 } __attribute__((aligned(8))); 252 253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 254 struct bpf_list_node_kern { 255 struct list_head list_head; 256 void *owner; 257 } __attribute__((aligned(8))); 258 259 struct bpf_map { 260 const struct bpf_map_ops *ops; 261 struct bpf_map *inner_map_meta; 262 #ifdef CONFIG_SECURITY 263 void *security; 264 #endif 265 enum bpf_map_type map_type; 266 u32 key_size; 267 u32 value_size; 268 u32 max_entries; 269 u64 map_extra; /* any per-map-type extra fields */ 270 u32 map_flags; 271 u32 id; 272 struct btf_record *record; 273 int numa_node; 274 u32 btf_key_type_id; 275 u32 btf_value_type_id; 276 u32 btf_vmlinux_value_type_id; 277 struct btf *btf; 278 #ifdef CONFIG_MEMCG 279 struct obj_cgroup *objcg; 280 #endif 281 char name[BPF_OBJ_NAME_LEN]; 282 struct mutex freeze_mutex; 283 atomic64_t refcnt; 284 atomic64_t usercnt; 285 /* rcu is used before freeing and work is only used during freeing */ 286 union { 287 struct work_struct work; 288 struct rcu_head rcu; 289 }; 290 atomic64_t writecnt; 291 /* 'Ownership' of program-containing map is claimed by the first program 292 * that is going to use this map or by the first program which FD is 293 * stored in the map to make sure that all callers and callees have the 294 * same prog type, JITed flag and xdp_has_frags flag. 295 */ 296 struct { 297 const struct btf_type *attach_func_proto; 298 spinlock_t lock; 299 enum bpf_prog_type type; 300 bool jited; 301 bool xdp_has_frags; 302 } owner; 303 bool bypass_spec_v1; 304 bool frozen; /* write-once; write-protected by freeze_mutex */ 305 bool free_after_mult_rcu_gp; 306 bool free_after_rcu_gp; 307 atomic64_t sleepable_refcnt; 308 s64 __percpu *elem_count; 309 }; 310 btf_field_type_name(enum btf_field_type type)311 static inline const char *btf_field_type_name(enum btf_field_type type) 312 { 313 switch (type) { 314 case BPF_SPIN_LOCK: 315 return "bpf_spin_lock"; 316 case BPF_TIMER: 317 return "bpf_timer"; 318 case BPF_WORKQUEUE: 319 return "bpf_wq"; 320 case BPF_KPTR_UNREF: 321 case BPF_KPTR_REF: 322 return "kptr"; 323 case BPF_KPTR_PERCPU: 324 return "percpu_kptr"; 325 case BPF_LIST_HEAD: 326 return "bpf_list_head"; 327 case BPF_LIST_NODE: 328 return "bpf_list_node"; 329 case BPF_RB_ROOT: 330 return "bpf_rb_root"; 331 case BPF_RB_NODE: 332 return "bpf_rb_node"; 333 case BPF_REFCOUNT: 334 return "bpf_refcount"; 335 default: 336 WARN_ON_ONCE(1); 337 return "unknown"; 338 } 339 } 340 btf_field_type_size(enum btf_field_type type)341 static inline u32 btf_field_type_size(enum btf_field_type type) 342 { 343 switch (type) { 344 case BPF_SPIN_LOCK: 345 return sizeof(struct bpf_spin_lock); 346 case BPF_TIMER: 347 return sizeof(struct bpf_timer); 348 case BPF_WORKQUEUE: 349 return sizeof(struct bpf_wq); 350 case BPF_KPTR_UNREF: 351 case BPF_KPTR_REF: 352 case BPF_KPTR_PERCPU: 353 return sizeof(u64); 354 case BPF_LIST_HEAD: 355 return sizeof(struct bpf_list_head); 356 case BPF_LIST_NODE: 357 return sizeof(struct bpf_list_node); 358 case BPF_RB_ROOT: 359 return sizeof(struct bpf_rb_root); 360 case BPF_RB_NODE: 361 return sizeof(struct bpf_rb_node); 362 case BPF_REFCOUNT: 363 return sizeof(struct bpf_refcount); 364 default: 365 WARN_ON_ONCE(1); 366 return 0; 367 } 368 } 369 btf_field_type_align(enum btf_field_type type)370 static inline u32 btf_field_type_align(enum btf_field_type type) 371 { 372 switch (type) { 373 case BPF_SPIN_LOCK: 374 return __alignof__(struct bpf_spin_lock); 375 case BPF_TIMER: 376 return __alignof__(struct bpf_timer); 377 case BPF_WORKQUEUE: 378 return __alignof__(struct bpf_wq); 379 case BPF_KPTR_UNREF: 380 case BPF_KPTR_REF: 381 case BPF_KPTR_PERCPU: 382 return __alignof__(u64); 383 case BPF_LIST_HEAD: 384 return __alignof__(struct bpf_list_head); 385 case BPF_LIST_NODE: 386 return __alignof__(struct bpf_list_node); 387 case BPF_RB_ROOT: 388 return __alignof__(struct bpf_rb_root); 389 case BPF_RB_NODE: 390 return __alignof__(struct bpf_rb_node); 391 case BPF_REFCOUNT: 392 return __alignof__(struct bpf_refcount); 393 default: 394 WARN_ON_ONCE(1); 395 return 0; 396 } 397 } 398 bpf_obj_init_field(const struct btf_field * field,void * addr)399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 400 { 401 memset(addr, 0, field->size); 402 403 switch (field->type) { 404 case BPF_REFCOUNT: 405 refcount_set((refcount_t *)addr, 1); 406 break; 407 case BPF_RB_NODE: 408 RB_CLEAR_NODE((struct rb_node *)addr); 409 break; 410 case BPF_LIST_HEAD: 411 case BPF_LIST_NODE: 412 INIT_LIST_HEAD((struct list_head *)addr); 413 break; 414 case BPF_RB_ROOT: 415 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 416 case BPF_SPIN_LOCK: 417 case BPF_TIMER: 418 case BPF_WORKQUEUE: 419 case BPF_KPTR_UNREF: 420 case BPF_KPTR_REF: 421 case BPF_KPTR_PERCPU: 422 break; 423 default: 424 WARN_ON_ONCE(1); 425 return; 426 } 427 } 428 btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 430 { 431 if (IS_ERR_OR_NULL(rec)) 432 return false; 433 return rec->field_mask & type; 434 } 435 bpf_obj_init(const struct btf_record * rec,void * obj)436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 437 { 438 int i; 439 440 if (IS_ERR_OR_NULL(rec)) 441 return; 442 for (i = 0; i < rec->cnt; i++) 443 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 444 } 445 446 /* 'dst' must be a temporary buffer and should not point to memory that is being 447 * used in parallel by a bpf program or bpf syscall, otherwise the access from 448 * the bpf program or bpf syscall may be corrupted by the reinitialization, 449 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 450 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 451 * program or bpf syscall. 452 */ check_and_init_map_value(struct bpf_map * map,void * dst)453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 454 { 455 bpf_obj_init(map->record, dst); 456 } 457 458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 459 * forced to use 'long' read/writes to try to atomically copy long counters. 460 * Best-effort only. No barriers here, since it _will_ race with concurrent 461 * updates from BPF programs. Called from bpf syscall and mostly used with 462 * size 8 or 16 bytes, so ask compiler to inline it. 463 */ bpf_long_memcpy(void * dst,const void * src,u32 size)464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 465 { 466 const long *lsrc = src; 467 long *ldst = dst; 468 469 size /= sizeof(long); 470 while (size--) 471 data_race(*ldst++ = *lsrc++); 472 } 473 474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)475 static inline void bpf_obj_memcpy(struct btf_record *rec, 476 void *dst, void *src, u32 size, 477 bool long_memcpy) 478 { 479 u32 curr_off = 0; 480 int i; 481 482 if (IS_ERR_OR_NULL(rec)) { 483 if (long_memcpy) 484 bpf_long_memcpy(dst, src, round_up(size, 8)); 485 else 486 memcpy(dst, src, size); 487 return; 488 } 489 490 for (i = 0; i < rec->cnt; i++) { 491 u32 next_off = rec->fields[i].offset; 492 u32 sz = next_off - curr_off; 493 494 memcpy(dst + curr_off, src + curr_off, sz); 495 curr_off += rec->fields[i].size + sz; 496 } 497 memcpy(dst + curr_off, src + curr_off, size - curr_off); 498 } 499 copy_map_value(struct bpf_map * map,void * dst,void * src)500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 501 { 502 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 503 } 504 copy_map_value_long(struct bpf_map * map,void * dst,void * src)505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 506 { 507 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 508 } 509 bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 511 { 512 u32 curr_off = 0; 513 int i; 514 515 if (IS_ERR_OR_NULL(rec)) { 516 memset(dst, 0, size); 517 return; 518 } 519 520 for (i = 0; i < rec->cnt; i++) { 521 u32 next_off = rec->fields[i].offset; 522 u32 sz = next_off - curr_off; 523 524 memset(dst + curr_off, 0, sz); 525 curr_off += rec->fields[i].size + sz; 526 } 527 memset(dst + curr_off, 0, size - curr_off); 528 } 529 zero_map_value(struct bpf_map * map,void * dst)530 static inline void zero_map_value(struct bpf_map *map, void *dst) 531 { 532 bpf_obj_memzero(map->record, dst, map->value_size); 533 } 534 535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 536 bool lock_src); 537 void bpf_timer_cancel_and_free(void *timer); 538 void bpf_wq_cancel_and_free(void *timer); 539 void bpf_list_head_free(const struct btf_field *field, void *list_head, 540 struct bpf_spin_lock *spin_lock); 541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 542 struct bpf_spin_lock *spin_lock); 543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 546 547 struct bpf_offload_dev; 548 struct bpf_offloaded_map; 549 550 struct bpf_map_dev_ops { 551 int (*map_get_next_key)(struct bpf_offloaded_map *map, 552 void *key, void *next_key); 553 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 554 void *key, void *value); 555 int (*map_update_elem)(struct bpf_offloaded_map *map, 556 void *key, void *value, u64 flags); 557 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 558 }; 559 560 struct bpf_offloaded_map { 561 struct bpf_map map; 562 struct net_device *netdev; 563 const struct bpf_map_dev_ops *dev_ops; 564 void *dev_priv; 565 struct list_head offloads; 566 }; 567 map_to_offmap(struct bpf_map * map)568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 569 { 570 return container_of(map, struct bpf_offloaded_map, map); 571 } 572 bpf_map_offload_neutral(const struct bpf_map * map)573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 574 { 575 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 576 } 577 bpf_map_support_seq_show(const struct bpf_map * map)578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 579 { 580 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 581 map->ops->map_seq_show_elem; 582 } 583 584 int map_check_no_btf(const struct bpf_map *map, 585 const struct btf *btf, 586 const struct btf_type *key_type, 587 const struct btf_type *value_type); 588 589 bool bpf_map_meta_equal(const struct bpf_map *meta0, 590 const struct bpf_map *meta1); 591 592 extern const struct bpf_map_ops bpf_map_offload_ops; 593 594 /* bpf_type_flag contains a set of flags that are applicable to the values of 595 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 596 * or a memory is read-only. We classify types into two categories: base types 597 * and extended types. Extended types are base types combined with a type flag. 598 * 599 * Currently there are no more than 32 base types in arg_type, ret_type and 600 * reg_types. 601 */ 602 #define BPF_BASE_TYPE_BITS 8 603 604 enum bpf_type_flag { 605 /* PTR may be NULL. */ 606 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 609 * compatible with both mutable and immutable memory. 610 */ 611 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 612 613 /* MEM points to BPF ring buffer reservation. */ 614 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 615 616 /* MEM is in user address space. */ 617 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 618 619 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 620 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 621 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 622 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 623 * to the specified cpu. 624 */ 625 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 626 627 /* Indicates that the argument will be released. */ 628 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 629 630 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 631 * unreferenced and referenced kptr loaded from map value using a load 632 * instruction, so that they can only be dereferenced but not escape the 633 * BPF program into the kernel (i.e. cannot be passed as arguments to 634 * kfunc or bpf helpers). 635 */ 636 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 637 638 /* MEM can be uninitialized. */ 639 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 640 641 /* DYNPTR points to memory local to the bpf program. */ 642 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 643 644 /* DYNPTR points to a kernel-produced ringbuf record. */ 645 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 646 647 /* Size is known at compile time. */ 648 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 649 650 /* MEM is of an allocated object of type in program BTF. This is used to 651 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 652 */ 653 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 654 655 /* PTR was passed from the kernel in a trusted context, and may be 656 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 657 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 658 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 659 * without invoking bpf_kptr_xchg(). What we really need to know is 660 * whether a pointer is safe to pass to a kfunc or BPF helper function. 661 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 662 * helpers, they do not cover all possible instances of unsafe 663 * pointers. For example, a pointer that was obtained from walking a 664 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 665 * fact that it may be NULL, invalid, etc. This is due to backwards 666 * compatibility requirements, as this was the behavior that was first 667 * introduced when kptrs were added. The behavior is now considered 668 * deprecated, and PTR_UNTRUSTED will eventually be removed. 669 * 670 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 671 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 672 * For example, pointers passed to tracepoint arguments are considered 673 * PTR_TRUSTED, as are pointers that are passed to struct_ops 674 * callbacks. As alluded to above, pointers that are obtained from 675 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 676 * struct task_struct *task is PTR_TRUSTED, then accessing 677 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 678 * in a BPF register. Similarly, pointers passed to certain programs 679 * types such as kretprobes are not guaranteed to be valid, as they may 680 * for example contain an object that was recently freed. 681 */ 682 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 683 684 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 685 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 686 687 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 688 * Currently only valid for linked-list and rbtree nodes. If the nodes 689 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 690 */ 691 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 692 693 /* DYNPTR points to sk_buff */ 694 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 695 696 /* DYNPTR points to xdp_buff */ 697 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 698 699 /* Memory must be aligned on some architectures, used in combination with 700 * MEM_FIXED_SIZE. 701 */ 702 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 703 704 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence 705 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the 706 * MEM_UNINIT means that memory needs to be initialized since it is also 707 * read. 708 */ 709 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), 710 711 __BPF_TYPE_FLAG_MAX, 712 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 713 }; 714 715 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 716 | DYNPTR_TYPE_XDP) 717 718 /* Max number of base types. */ 719 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 720 721 /* Max number of all types. */ 722 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 723 724 /* function argument constraints */ 725 enum bpf_arg_type { 726 ARG_DONTCARE = 0, /* unused argument in helper function */ 727 728 /* the following constraints used to prototype 729 * bpf_map_lookup/update/delete_elem() functions 730 */ 731 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 732 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 733 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 734 735 /* Used to prototype bpf_memcmp() and other functions that access data 736 * on eBPF program stack 737 */ 738 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 739 ARG_PTR_TO_ARENA, 740 741 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 742 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 743 744 ARG_PTR_TO_CTX, /* pointer to context */ 745 ARG_ANYTHING, /* any (initialized) argument is ok */ 746 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 747 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 748 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 749 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 750 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 751 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 752 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 753 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 754 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 755 ARG_PTR_TO_STACK, /* pointer to stack */ 756 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 757 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 758 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 759 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 760 __BPF_ARG_TYPE_MAX, 761 762 /* Extended arg_types. */ 763 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 764 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 765 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 766 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 767 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 768 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 769 /* Pointer to memory does not need to be initialized, since helper function 770 * fills all bytes or clears them in error case. 771 */ 772 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, 773 /* Pointer to valid memory of size known at compile time. */ 774 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 775 776 /* This must be the last entry. Its purpose is to ensure the enum is 777 * wide enough to hold the higher bits reserved for bpf_type_flag. 778 */ 779 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 780 }; 781 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 782 783 /* type of values returned from helper functions */ 784 enum bpf_return_type { 785 RET_INTEGER, /* function returns integer */ 786 RET_VOID, /* function doesn't return anything */ 787 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 788 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 789 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 790 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 791 RET_PTR_TO_MEM, /* returns a pointer to memory */ 792 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 793 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 794 __BPF_RET_TYPE_MAX, 795 796 /* Extended ret_types. */ 797 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 798 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 799 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 800 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 801 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 802 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 803 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 804 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 805 806 /* This must be the last entry. Its purpose is to ensure the enum is 807 * wide enough to hold the higher bits reserved for bpf_type_flag. 808 */ 809 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 810 }; 811 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 812 813 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 814 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 815 * instructions after verifying 816 */ 817 struct bpf_func_proto { 818 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 819 bool gpl_only; 820 bool pkt_access; 821 bool might_sleep; 822 /* set to true if helper follows contract for llvm 823 * attribute bpf_fastcall: 824 * - void functions do not scratch r0 825 * - functions taking N arguments scratch only registers r1-rN 826 */ 827 bool allow_fastcall; 828 enum bpf_return_type ret_type; 829 union { 830 struct { 831 enum bpf_arg_type arg1_type; 832 enum bpf_arg_type arg2_type; 833 enum bpf_arg_type arg3_type; 834 enum bpf_arg_type arg4_type; 835 enum bpf_arg_type arg5_type; 836 }; 837 enum bpf_arg_type arg_type[5]; 838 }; 839 union { 840 struct { 841 u32 *arg1_btf_id; 842 u32 *arg2_btf_id; 843 u32 *arg3_btf_id; 844 u32 *arg4_btf_id; 845 u32 *arg5_btf_id; 846 }; 847 u32 *arg_btf_id[5]; 848 struct { 849 size_t arg1_size; 850 size_t arg2_size; 851 size_t arg3_size; 852 size_t arg4_size; 853 size_t arg5_size; 854 }; 855 size_t arg_size[5]; 856 }; 857 int *ret_btf_id; /* return value btf_id */ 858 bool (*allowed)(const struct bpf_prog *prog); 859 }; 860 861 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 862 * the first argument to eBPF programs. 863 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 864 */ 865 struct bpf_context; 866 867 enum bpf_access_type { 868 BPF_READ = 1, 869 BPF_WRITE = 2 870 }; 871 872 /* types of values stored in eBPF registers */ 873 /* Pointer types represent: 874 * pointer 875 * pointer + imm 876 * pointer + (u16) var 877 * pointer + (u16) var + imm 878 * if (range > 0) then [ptr, ptr + range - off) is safe to access 879 * if (id > 0) means that some 'var' was added 880 * if (off > 0) means that 'imm' was added 881 */ 882 enum bpf_reg_type { 883 NOT_INIT = 0, /* nothing was written into register */ 884 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 885 PTR_TO_CTX, /* reg points to bpf_context */ 886 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 887 PTR_TO_MAP_VALUE, /* reg points to map element value */ 888 PTR_TO_MAP_KEY, /* reg points to a map element key */ 889 PTR_TO_STACK, /* reg == frame_pointer + offset */ 890 PTR_TO_PACKET_META, /* skb->data - meta_len */ 891 PTR_TO_PACKET, /* reg points to skb->data */ 892 PTR_TO_PACKET_END, /* skb->data + headlen */ 893 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 894 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 895 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 896 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 897 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 898 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 899 /* PTR_TO_BTF_ID points to a kernel struct that does not need 900 * to be null checked by the BPF program. This does not imply the 901 * pointer is _not_ null and in practice this can easily be a null 902 * pointer when reading pointer chains. The assumption is program 903 * context will handle null pointer dereference typically via fault 904 * handling. The verifier must keep this in mind and can make no 905 * assumptions about null or non-null when doing branch analysis. 906 * Further, when passed into helpers the helpers can not, without 907 * additional context, assume the value is non-null. 908 */ 909 PTR_TO_BTF_ID, 910 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 911 * been checked for null. Used primarily to inform the verifier 912 * an explicit null check is required for this struct. 913 */ 914 PTR_TO_MEM, /* reg points to valid memory region */ 915 PTR_TO_ARENA, 916 PTR_TO_BUF, /* reg points to a read/write buffer */ 917 PTR_TO_FUNC, /* reg points to a bpf program function */ 918 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 919 __BPF_REG_TYPE_MAX, 920 921 /* Extended reg_types. */ 922 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 923 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 924 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 925 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 926 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 927 928 /* This must be the last entry. Its purpose is to ensure the enum is 929 * wide enough to hold the higher bits reserved for bpf_type_flag. 930 */ 931 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 932 }; 933 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 934 935 /* The information passed from prog-specific *_is_valid_access 936 * back to the verifier. 937 */ 938 struct bpf_insn_access_aux { 939 enum bpf_reg_type reg_type; 940 bool is_ldsx; 941 union { 942 int ctx_field_size; 943 struct { 944 struct btf *btf; 945 u32 btf_id; 946 }; 947 }; 948 struct bpf_verifier_log *log; /* for verbose logs */ 949 bool is_retval; /* is accessing function return value ? */ 950 }; 951 952 static inline void bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)953 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 954 { 955 aux->ctx_field_size = size; 956 } 957 bpf_is_ldimm64(const struct bpf_insn * insn)958 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 959 { 960 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 961 } 962 bpf_pseudo_func(const struct bpf_insn * insn)963 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 964 { 965 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 966 } 967 968 struct bpf_prog_ops { 969 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 970 union bpf_attr __user *uattr); 971 }; 972 973 struct bpf_reg_state; 974 struct bpf_verifier_ops { 975 /* return eBPF function prototype for verification */ 976 const struct bpf_func_proto * 977 (*get_func_proto)(enum bpf_func_id func_id, 978 const struct bpf_prog *prog); 979 980 /* return true if 'size' wide access at offset 'off' within bpf_context 981 * with 'type' (read or write) is allowed 982 */ 983 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 984 const struct bpf_prog *prog, 985 struct bpf_insn_access_aux *info); 986 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 987 const struct bpf_prog *prog); 988 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 989 s16 ctx_stack_off); 990 int (*gen_ld_abs)(const struct bpf_insn *orig, 991 struct bpf_insn *insn_buf); 992 u32 (*convert_ctx_access)(enum bpf_access_type type, 993 const struct bpf_insn *src, 994 struct bpf_insn *dst, 995 struct bpf_prog *prog, u32 *target_size); 996 int (*btf_struct_access)(struct bpf_verifier_log *log, 997 const struct bpf_reg_state *reg, 998 int off, int size); 999 }; 1000 1001 struct bpf_prog_offload_ops { 1002 /* verifier basic callbacks */ 1003 int (*insn_hook)(struct bpf_verifier_env *env, 1004 int insn_idx, int prev_insn_idx); 1005 int (*finalize)(struct bpf_verifier_env *env); 1006 /* verifier optimization callbacks (called after .finalize) */ 1007 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1008 struct bpf_insn *insn); 1009 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1010 /* program management callbacks */ 1011 int (*prepare)(struct bpf_prog *prog); 1012 int (*translate)(struct bpf_prog *prog); 1013 void (*destroy)(struct bpf_prog *prog); 1014 }; 1015 1016 struct bpf_prog_offload { 1017 struct bpf_prog *prog; 1018 struct net_device *netdev; 1019 struct bpf_offload_dev *offdev; 1020 void *dev_priv; 1021 struct list_head offloads; 1022 bool dev_state; 1023 bool opt_failed; 1024 void *jited_image; 1025 u32 jited_len; 1026 }; 1027 1028 enum bpf_cgroup_storage_type { 1029 BPF_CGROUP_STORAGE_SHARED, 1030 BPF_CGROUP_STORAGE_PERCPU, 1031 __BPF_CGROUP_STORAGE_MAX 1032 }; 1033 1034 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1035 1036 /* The longest tracepoint has 12 args. 1037 * See include/trace/bpf_probe.h 1038 */ 1039 #define MAX_BPF_FUNC_ARGS 12 1040 1041 /* The maximum number of arguments passed through registers 1042 * a single function may have. 1043 */ 1044 #define MAX_BPF_FUNC_REG_ARGS 5 1045 1046 /* The argument is a structure. */ 1047 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1048 1049 /* The argument is signed. */ 1050 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1051 1052 struct btf_func_model { 1053 u8 ret_size; 1054 u8 ret_flags; 1055 u8 nr_args; 1056 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1057 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1058 }; 1059 1060 /* Restore arguments before returning from trampoline to let original function 1061 * continue executing. This flag is used for fentry progs when there are no 1062 * fexit progs. 1063 */ 1064 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1065 /* Call original function after fentry progs, but before fexit progs. 1066 * Makes sense for fentry/fexit, normal calls and indirect calls. 1067 */ 1068 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1069 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1070 * programs only. Should not be used with normal calls and indirect calls. 1071 */ 1072 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1073 /* Store IP address of the caller on the trampoline stack, 1074 * so it's available for trampoline's programs. 1075 */ 1076 #define BPF_TRAMP_F_IP_ARG BIT(3) 1077 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1078 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1079 1080 /* Get original function from stack instead of from provided direct address. 1081 * Makes sense for trampolines with fexit or fmod_ret programs. 1082 */ 1083 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1084 1085 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1086 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1087 */ 1088 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1089 1090 /* Indicate that current trampoline is in a tail call context. Then, it has to 1091 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1092 */ 1093 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1094 1095 /* 1096 * Indicate the trampoline should be suitable to receive indirect calls; 1097 * without this indirectly calling the generated code can result in #UD/#CP, 1098 * depending on the CFI options. 1099 * 1100 * Used by bpf_struct_ops. 1101 * 1102 * Incompatible with FENTRY usage, overloads @func_addr argument. 1103 */ 1104 #define BPF_TRAMP_F_INDIRECT BIT(8) 1105 1106 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1107 * bytes on x86. 1108 */ 1109 enum { 1110 #if defined(__s390x__) 1111 BPF_MAX_TRAMP_LINKS = 27, 1112 #else 1113 BPF_MAX_TRAMP_LINKS = 38, 1114 #endif 1115 }; 1116 1117 struct bpf_tramp_links { 1118 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1119 int nr_links; 1120 }; 1121 1122 struct bpf_tramp_run_ctx; 1123 1124 /* Different use cases for BPF trampoline: 1125 * 1. replace nop at the function entry (kprobe equivalent) 1126 * flags = BPF_TRAMP_F_RESTORE_REGS 1127 * fentry = a set of programs to run before returning from trampoline 1128 * 1129 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1130 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1131 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1132 * fentry = a set of program to run before calling original function 1133 * fexit = a set of program to run after original function 1134 * 1135 * 3. replace direct call instruction anywhere in the function body 1136 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1137 * With flags = 0 1138 * fentry = a set of programs to run before returning from trampoline 1139 * With flags = BPF_TRAMP_F_CALL_ORIG 1140 * orig_call = original callback addr or direct function addr 1141 * fentry = a set of program to run before calling original function 1142 * fexit = a set of program to run after original function 1143 */ 1144 struct bpf_tramp_image; 1145 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1146 const struct btf_func_model *m, u32 flags, 1147 struct bpf_tramp_links *tlinks, 1148 void *func_addr); 1149 void *arch_alloc_bpf_trampoline(unsigned int size); 1150 void arch_free_bpf_trampoline(void *image, unsigned int size); 1151 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1152 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1153 struct bpf_tramp_links *tlinks, void *func_addr); 1154 1155 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1156 struct bpf_tramp_run_ctx *run_ctx); 1157 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1158 struct bpf_tramp_run_ctx *run_ctx); 1159 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1160 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1161 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1162 struct bpf_tramp_run_ctx *run_ctx); 1163 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1164 struct bpf_tramp_run_ctx *run_ctx); 1165 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1166 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1167 1168 struct bpf_ksym { 1169 unsigned long start; 1170 unsigned long end; 1171 char name[KSYM_NAME_LEN]; 1172 struct list_head lnode; 1173 struct latch_tree_node tnode; 1174 bool prog; 1175 }; 1176 1177 enum bpf_tramp_prog_type { 1178 BPF_TRAMP_FENTRY, 1179 BPF_TRAMP_FEXIT, 1180 BPF_TRAMP_MODIFY_RETURN, 1181 BPF_TRAMP_MAX, 1182 BPF_TRAMP_REPLACE, /* more than MAX */ 1183 }; 1184 1185 struct bpf_tramp_image { 1186 void *image; 1187 int size; 1188 struct bpf_ksym ksym; 1189 struct percpu_ref pcref; 1190 void *ip_after_call; 1191 void *ip_epilogue; 1192 union { 1193 struct rcu_head rcu; 1194 struct work_struct work; 1195 }; 1196 }; 1197 1198 struct bpf_trampoline { 1199 /* hlist for trampoline_table */ 1200 struct hlist_node hlist; 1201 struct ftrace_ops *fops; 1202 /* serializes access to fields of this trampoline */ 1203 struct mutex mutex; 1204 refcount_t refcnt; 1205 u32 flags; 1206 u64 key; 1207 struct { 1208 struct btf_func_model model; 1209 void *addr; 1210 bool ftrace_managed; 1211 } func; 1212 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1213 * program by replacing one of its functions. func.addr is the address 1214 * of the function it replaced. 1215 */ 1216 struct bpf_prog *extension_prog; 1217 /* list of BPF programs using this trampoline */ 1218 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1219 /* Number of attached programs. A counter per kind. */ 1220 int progs_cnt[BPF_TRAMP_MAX]; 1221 /* Executable image of trampoline */ 1222 struct bpf_tramp_image *cur_image; 1223 }; 1224 1225 struct bpf_attach_target_info { 1226 struct btf_func_model fmodel; 1227 long tgt_addr; 1228 struct module *tgt_mod; 1229 const char *tgt_name; 1230 const struct btf_type *tgt_type; 1231 }; 1232 1233 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1234 1235 struct bpf_dispatcher_prog { 1236 struct bpf_prog *prog; 1237 refcount_t users; 1238 }; 1239 1240 struct bpf_dispatcher { 1241 /* dispatcher mutex */ 1242 struct mutex mutex; 1243 void *func; 1244 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1245 int num_progs; 1246 void *image; 1247 void *rw_image; 1248 u32 image_off; 1249 struct bpf_ksym ksym; 1250 #ifdef CONFIG_HAVE_STATIC_CALL 1251 struct static_call_key *sc_key; 1252 void *sc_tramp; 1253 #endif 1254 }; 1255 1256 #ifndef __bpfcall 1257 #define __bpfcall __nocfi 1258 #endif 1259 bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1260 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1261 const void *ctx, 1262 const struct bpf_insn *insnsi, 1263 bpf_func_t bpf_func) 1264 { 1265 return bpf_func(ctx, insnsi); 1266 } 1267 1268 /* the implementation of the opaque uapi struct bpf_dynptr */ 1269 struct bpf_dynptr_kern { 1270 void *data; 1271 /* Size represents the number of usable bytes of dynptr data. 1272 * If for example the offset is at 4 for a local dynptr whose data is 1273 * of type u64, the number of usable bytes is 4. 1274 * 1275 * The upper 8 bits are reserved. It is as follows: 1276 * Bits 0 - 23 = size 1277 * Bits 24 - 30 = dynptr type 1278 * Bit 31 = whether dynptr is read-only 1279 */ 1280 u32 size; 1281 u32 offset; 1282 } __aligned(8); 1283 1284 enum bpf_dynptr_type { 1285 BPF_DYNPTR_TYPE_INVALID, 1286 /* Points to memory that is local to the bpf program */ 1287 BPF_DYNPTR_TYPE_LOCAL, 1288 /* Underlying data is a ringbuf record */ 1289 BPF_DYNPTR_TYPE_RINGBUF, 1290 /* Underlying data is a sk_buff */ 1291 BPF_DYNPTR_TYPE_SKB, 1292 /* Underlying data is a xdp_buff */ 1293 BPF_DYNPTR_TYPE_XDP, 1294 }; 1295 1296 int bpf_dynptr_check_size(u32 size); 1297 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1298 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1299 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1300 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1301 1302 #ifdef CONFIG_BPF_JIT 1303 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1304 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1305 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1306 struct bpf_attach_target_info *tgt_info); 1307 void bpf_trampoline_put(struct bpf_trampoline *tr); 1308 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1309 1310 /* 1311 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1312 * indirection with a direct call to the bpf program. If the architecture does 1313 * not have STATIC_CALL, avoid a double-indirection. 1314 */ 1315 #ifdef CONFIG_HAVE_STATIC_CALL 1316 1317 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1318 .sc_key = &STATIC_CALL_KEY(_name), \ 1319 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1320 1321 #define __BPF_DISPATCHER_SC(name) \ 1322 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1323 1324 #define __BPF_DISPATCHER_CALL(name) \ 1325 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1326 1327 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1328 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1329 1330 #else 1331 #define __BPF_DISPATCHER_SC_INIT(name) 1332 #define __BPF_DISPATCHER_SC(name) 1333 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1334 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1335 #endif 1336 1337 #define BPF_DISPATCHER_INIT(_name) { \ 1338 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1339 .func = &_name##_func, \ 1340 .progs = {}, \ 1341 .num_progs = 0, \ 1342 .image = NULL, \ 1343 .image_off = 0, \ 1344 .ksym = { \ 1345 .name = #_name, \ 1346 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1347 }, \ 1348 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1349 } 1350 1351 #define DEFINE_BPF_DISPATCHER(name) \ 1352 __BPF_DISPATCHER_SC(name); \ 1353 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1354 const void *ctx, \ 1355 const struct bpf_insn *insnsi, \ 1356 bpf_func_t bpf_func) \ 1357 { \ 1358 return __BPF_DISPATCHER_CALL(name); \ 1359 } \ 1360 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1361 struct bpf_dispatcher bpf_dispatcher_##name = \ 1362 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1363 1364 #define DECLARE_BPF_DISPATCHER(name) \ 1365 unsigned int bpf_dispatcher_##name##_func( \ 1366 const void *ctx, \ 1367 const struct bpf_insn *insnsi, \ 1368 bpf_func_t bpf_func); \ 1369 extern struct bpf_dispatcher bpf_dispatcher_##name; 1370 1371 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1372 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1373 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1374 struct bpf_prog *to); 1375 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1376 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1377 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1378 void bpf_ksym_add(struct bpf_ksym *ksym); 1379 void bpf_ksym_del(struct bpf_ksym *ksym); 1380 int bpf_jit_charge_modmem(u32 size); 1381 void bpf_jit_uncharge_modmem(u32 size); 1382 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1383 #else bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)1384 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1385 struct bpf_trampoline *tr) 1386 { 1387 return -ENOTSUPP; 1388 } bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)1389 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1390 struct bpf_trampoline *tr) 1391 { 1392 return -ENOTSUPP; 1393 } bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1394 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1395 struct bpf_attach_target_info *tgt_info) 1396 { 1397 return NULL; 1398 } bpf_trampoline_put(struct bpf_trampoline * tr)1399 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1400 #define DEFINE_BPF_DISPATCHER(name) 1401 #define DECLARE_BPF_DISPATCHER(name) 1402 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1403 #define BPF_DISPATCHER_PTR(name) NULL bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1404 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1405 struct bpf_prog *from, 1406 struct bpf_prog *to) {} is_bpf_image_address(unsigned long address)1407 static inline bool is_bpf_image_address(unsigned long address) 1408 { 1409 return false; 1410 } bpf_prog_has_trampoline(const struct bpf_prog * prog)1411 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1412 { 1413 return false; 1414 } 1415 #endif 1416 1417 struct bpf_func_info_aux { 1418 u16 linkage; 1419 bool unreliable; 1420 bool called : 1; 1421 bool verified : 1; 1422 }; 1423 1424 enum bpf_jit_poke_reason { 1425 BPF_POKE_REASON_TAIL_CALL, 1426 }; 1427 1428 /* Descriptor of pokes pointing /into/ the JITed image. */ 1429 struct bpf_jit_poke_descriptor { 1430 void *tailcall_target; 1431 void *tailcall_bypass; 1432 void *bypass_addr; 1433 void *aux; 1434 union { 1435 struct { 1436 struct bpf_map *map; 1437 u32 key; 1438 } tail_call; 1439 }; 1440 bool tailcall_target_stable; 1441 u8 adj_off; 1442 u16 reason; 1443 u32 insn_idx; 1444 }; 1445 1446 /* reg_type info for ctx arguments */ 1447 struct bpf_ctx_arg_aux { 1448 u32 offset; 1449 enum bpf_reg_type reg_type; 1450 struct btf *btf; 1451 u32 btf_id; 1452 }; 1453 1454 struct btf_mod_pair { 1455 struct btf *btf; 1456 struct module *module; 1457 }; 1458 1459 struct bpf_kfunc_desc_tab; 1460 1461 struct bpf_prog_aux { 1462 atomic64_t refcnt; 1463 u32 used_map_cnt; 1464 u32 used_btf_cnt; 1465 u32 max_ctx_offset; 1466 u32 max_pkt_offset; 1467 u32 max_tp_access; 1468 u32 stack_depth; 1469 u32 id; 1470 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1471 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1472 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1473 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1474 u32 ctx_arg_info_size; 1475 u32 max_rdonly_access; 1476 u32 max_rdwr_access; 1477 struct btf *attach_btf; 1478 const struct bpf_ctx_arg_aux *ctx_arg_info; 1479 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1480 struct bpf_prog *dst_prog; 1481 struct bpf_trampoline *dst_trampoline; 1482 enum bpf_prog_type saved_dst_prog_type; 1483 enum bpf_attach_type saved_dst_attach_type; 1484 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1485 bool dev_bound; /* Program is bound to the netdev. */ 1486 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1487 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1488 bool attach_tracing_prog; /* true if tracing another tracing program */ 1489 bool func_proto_unreliable; 1490 bool tail_call_reachable; 1491 bool xdp_has_frags; 1492 bool exception_cb; 1493 bool exception_boundary; 1494 struct bpf_arena *arena; 1495 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1496 const struct btf_type *attach_func_proto; 1497 /* function name for valid attach_btf_id */ 1498 const char *attach_func_name; 1499 struct bpf_prog **func; 1500 void *jit_data; /* JIT specific data. arch dependent */ 1501 struct bpf_jit_poke_descriptor *poke_tab; 1502 struct bpf_kfunc_desc_tab *kfunc_tab; 1503 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1504 u32 size_poke_tab; 1505 #ifdef CONFIG_FINEIBT 1506 struct bpf_ksym ksym_prefix; 1507 #endif 1508 struct bpf_ksym ksym; 1509 const struct bpf_prog_ops *ops; 1510 struct bpf_map **used_maps; 1511 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1512 struct btf_mod_pair *used_btfs; 1513 struct bpf_prog *prog; 1514 struct user_struct *user; 1515 u64 load_time; /* ns since boottime */ 1516 u32 verified_insns; 1517 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1518 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1519 char name[BPF_OBJ_NAME_LEN]; 1520 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1521 #ifdef CONFIG_SECURITY 1522 void *security; 1523 #endif 1524 struct bpf_token *token; 1525 struct bpf_prog_offload *offload; 1526 struct btf *btf; 1527 struct bpf_func_info *func_info; 1528 struct bpf_func_info_aux *func_info_aux; 1529 /* bpf_line_info loaded from userspace. linfo->insn_off 1530 * has the xlated insn offset. 1531 * Both the main and sub prog share the same linfo. 1532 * The subprog can access its first linfo by 1533 * using the linfo_idx. 1534 */ 1535 struct bpf_line_info *linfo; 1536 /* jited_linfo is the jited addr of the linfo. It has a 1537 * one to one mapping to linfo: 1538 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1539 * Both the main and sub prog share the same jited_linfo. 1540 * The subprog can access its first jited_linfo by 1541 * using the linfo_idx. 1542 */ 1543 void **jited_linfo; 1544 u32 func_info_cnt; 1545 u32 nr_linfo; 1546 /* subprog can use linfo_idx to access its first linfo and 1547 * jited_linfo. 1548 * main prog always has linfo_idx == 0 1549 */ 1550 u32 linfo_idx; 1551 struct module *mod; 1552 u32 num_exentries; 1553 struct exception_table_entry *extable; 1554 union { 1555 struct work_struct work; 1556 struct rcu_head rcu; 1557 }; 1558 }; 1559 1560 struct bpf_prog { 1561 u16 pages; /* Number of allocated pages */ 1562 u16 jited:1, /* Is our filter JIT'ed? */ 1563 jit_requested:1,/* archs need to JIT the prog */ 1564 gpl_compatible:1, /* Is filter GPL compatible? */ 1565 cb_access:1, /* Is control block accessed? */ 1566 dst_needed:1, /* Do we need dst entry? */ 1567 blinding_requested:1, /* needs constant blinding */ 1568 blinded:1, /* Was blinded */ 1569 is_func:1, /* program is a bpf function */ 1570 kprobe_override:1, /* Do we override a kprobe? */ 1571 has_callchain_buf:1, /* callchain buffer allocated? */ 1572 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1573 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1574 call_get_func_ip:1, /* Do we call get_func_ip() */ 1575 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1576 sleepable:1; /* BPF program is sleepable */ 1577 enum bpf_prog_type type; /* Type of BPF program */ 1578 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1579 u32 len; /* Number of filter blocks */ 1580 u32 jited_len; /* Size of jited insns in bytes */ 1581 u8 tag[BPF_TAG_SIZE]; 1582 struct bpf_prog_stats __percpu *stats; 1583 int __percpu *active; 1584 unsigned int (*bpf_func)(const void *ctx, 1585 const struct bpf_insn *insn); 1586 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1587 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1588 /* Instructions for interpreter */ 1589 union { 1590 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1591 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1592 }; 1593 }; 1594 1595 struct bpf_array_aux { 1596 /* Programs with direct jumps into programs part of this array. */ 1597 struct list_head poke_progs; 1598 struct bpf_map *map; 1599 struct mutex poke_mutex; 1600 struct work_struct work; 1601 }; 1602 1603 struct bpf_link { 1604 atomic64_t refcnt; 1605 u32 id; 1606 enum bpf_link_type type; 1607 const struct bpf_link_ops *ops; 1608 struct bpf_prog *prog; 1609 /* rcu is used before freeing, work can be used to schedule that 1610 * RCU-based freeing before that, so they never overlap 1611 */ 1612 union { 1613 struct rcu_head rcu; 1614 struct work_struct work; 1615 }; 1616 }; 1617 1618 struct bpf_link_ops { 1619 void (*release)(struct bpf_link *link); 1620 /* deallocate link resources callback, called without RCU grace period 1621 * waiting 1622 */ 1623 void (*dealloc)(struct bpf_link *link); 1624 /* deallocate link resources callback, called after RCU grace period; 1625 * if underlying BPF program is sleepable we go through tasks trace 1626 * RCU GP and then "classic" RCU GP 1627 */ 1628 void (*dealloc_deferred)(struct bpf_link *link); 1629 int (*detach)(struct bpf_link *link); 1630 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1631 struct bpf_prog *old_prog); 1632 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1633 int (*fill_link_info)(const struct bpf_link *link, 1634 struct bpf_link_info *info); 1635 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1636 struct bpf_map *old_map); 1637 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1638 }; 1639 1640 struct bpf_tramp_link { 1641 struct bpf_link link; 1642 struct hlist_node tramp_hlist; 1643 u64 cookie; 1644 }; 1645 1646 struct bpf_shim_tramp_link { 1647 struct bpf_tramp_link link; 1648 struct bpf_trampoline *trampoline; 1649 }; 1650 1651 struct bpf_tracing_link { 1652 struct bpf_tramp_link link; 1653 enum bpf_attach_type attach_type; 1654 struct bpf_trampoline *trampoline; 1655 struct bpf_prog *tgt_prog; 1656 }; 1657 1658 struct bpf_raw_tp_link { 1659 struct bpf_link link; 1660 struct bpf_raw_event_map *btp; 1661 u64 cookie; 1662 }; 1663 1664 struct bpf_link_primer { 1665 struct bpf_link *link; 1666 struct file *file; 1667 int fd; 1668 u32 id; 1669 }; 1670 1671 struct bpf_mount_opts { 1672 kuid_t uid; 1673 kgid_t gid; 1674 umode_t mode; 1675 1676 /* BPF token-related delegation options */ 1677 u64 delegate_cmds; 1678 u64 delegate_maps; 1679 u64 delegate_progs; 1680 u64 delegate_attachs; 1681 }; 1682 1683 struct bpf_token { 1684 struct work_struct work; 1685 atomic64_t refcnt; 1686 struct user_namespace *userns; 1687 u64 allowed_cmds; 1688 u64 allowed_maps; 1689 u64 allowed_progs; 1690 u64 allowed_attachs; 1691 #ifdef CONFIG_SECURITY 1692 void *security; 1693 #endif 1694 }; 1695 1696 struct bpf_struct_ops_value; 1697 struct btf_member; 1698 1699 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1700 /** 1701 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1702 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1703 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1704 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1705 * when determining whether the struct_ops progs in the 1706 * struct_ops map are valid. 1707 * @init: A callback that is invoked a single time, and before any other 1708 * callback, to initialize the structure. A nonzero return value means 1709 * the subsystem could not be initialized. 1710 * @check_member: When defined, a callback invoked by the verifier to allow 1711 * the subsystem to determine if an entry in the struct_ops map 1712 * is valid. A nonzero return value means that the map is 1713 * invalid and should be rejected by the verifier. 1714 * @init_member: A callback that is invoked for each member of the struct_ops 1715 * map to allow the subsystem to initialize the member. A nonzero 1716 * value means the member could not be initialized. This callback 1717 * is exclusive with the @type, @type_id, @value_type, and 1718 * @value_id fields. 1719 * @reg: A callback that is invoked when the struct_ops map has been 1720 * initialized and is being attached to. Zero means the struct_ops map 1721 * has been successfully registered and is live. A nonzero return value 1722 * means the struct_ops map could not be registered. 1723 * @unreg: A callback that is invoked when the struct_ops map should be 1724 * unregistered. 1725 * @update: A callback that is invoked when the live struct_ops map is being 1726 * updated to contain new values. This callback is only invoked when 1727 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1728 * it is assumed that the struct_ops map cannot be updated. 1729 * @validate: A callback that is invoked after all of the members have been 1730 * initialized. This callback should perform static checks on the 1731 * map, meaning that it should either fail or succeed 1732 * deterministically. A struct_ops map that has been validated may 1733 * not necessarily succeed in being registered if the call to @reg 1734 * fails. For example, a valid struct_ops map may be loaded, but 1735 * then fail to be registered due to there being another active 1736 * struct_ops map on the system in the subsystem already. For this 1737 * reason, if this callback is not defined, the check is skipped as 1738 * the struct_ops map will have final verification performed in 1739 * @reg. 1740 * @type: BTF type. 1741 * @value_type: Value type. 1742 * @name: The name of the struct bpf_struct_ops object. 1743 * @func_models: Func models 1744 * @type_id: BTF type id. 1745 * @value_id: BTF value id. 1746 */ 1747 struct bpf_struct_ops { 1748 const struct bpf_verifier_ops *verifier_ops; 1749 int (*init)(struct btf *btf); 1750 int (*check_member)(const struct btf_type *t, 1751 const struct btf_member *member, 1752 const struct bpf_prog *prog); 1753 int (*init_member)(const struct btf_type *t, 1754 const struct btf_member *member, 1755 void *kdata, const void *udata); 1756 int (*reg)(void *kdata, struct bpf_link *link); 1757 void (*unreg)(void *kdata, struct bpf_link *link); 1758 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1759 int (*validate)(void *kdata); 1760 void *cfi_stubs; 1761 struct module *owner; 1762 const char *name; 1763 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1764 }; 1765 1766 /* Every member of a struct_ops type has an instance even a member is not 1767 * an operator (function pointer). The "info" field will be assigned to 1768 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1769 * argument information required by the verifier to verify the program. 1770 * 1771 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1772 * corresponding entry for an given argument. 1773 */ 1774 struct bpf_struct_ops_arg_info { 1775 struct bpf_ctx_arg_aux *info; 1776 u32 cnt; 1777 }; 1778 1779 struct bpf_struct_ops_desc { 1780 struct bpf_struct_ops *st_ops; 1781 1782 const struct btf_type *type; 1783 const struct btf_type *value_type; 1784 u32 type_id; 1785 u32 value_id; 1786 1787 /* Collection of argument information for each member */ 1788 struct bpf_struct_ops_arg_info *arg_info; 1789 }; 1790 1791 enum bpf_struct_ops_state { 1792 BPF_STRUCT_OPS_STATE_INIT, 1793 BPF_STRUCT_OPS_STATE_INUSE, 1794 BPF_STRUCT_OPS_STATE_TOBEFREE, 1795 BPF_STRUCT_OPS_STATE_READY, 1796 }; 1797 1798 struct bpf_struct_ops_common_value { 1799 refcount_t refcnt; 1800 enum bpf_struct_ops_state state; 1801 }; 1802 1803 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1804 /* This macro helps developer to register a struct_ops type and generate 1805 * type information correctly. Developers should use this macro to register 1806 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1807 */ 1808 #define register_bpf_struct_ops(st_ops, type) \ 1809 ({ \ 1810 struct bpf_struct_ops_##type { \ 1811 struct bpf_struct_ops_common_value common; \ 1812 struct type data ____cacheline_aligned_in_smp; \ 1813 }; \ 1814 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1815 __register_bpf_struct_ops(st_ops); \ 1816 }) 1817 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1818 bool bpf_struct_ops_get(const void *kdata); 1819 void bpf_struct_ops_put(const void *kdata); 1820 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1821 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1822 void *value); 1823 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1824 struct bpf_tramp_link *link, 1825 const struct btf_func_model *model, 1826 void *stub_func, 1827 void **image, u32 *image_off, 1828 bool allow_alloc); 1829 void bpf_struct_ops_image_free(void *image); bpf_try_module_get(const void * data,struct module * owner)1830 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1831 { 1832 if (owner == BPF_MODULE_OWNER) 1833 return bpf_struct_ops_get(data); 1834 else 1835 return try_module_get(owner); 1836 } bpf_module_put(const void * data,struct module * owner)1837 static inline void bpf_module_put(const void *data, struct module *owner) 1838 { 1839 if (owner == BPF_MODULE_OWNER) 1840 bpf_struct_ops_put(data); 1841 else 1842 module_put(owner); 1843 } 1844 int bpf_struct_ops_link_create(union bpf_attr *attr); 1845 1846 #ifdef CONFIG_NET 1847 /* Define it here to avoid the use of forward declaration */ 1848 struct bpf_dummy_ops_state { 1849 int val; 1850 }; 1851 1852 struct bpf_dummy_ops { 1853 int (*test_1)(struct bpf_dummy_ops_state *cb); 1854 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1855 char a3, unsigned long a4); 1856 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1857 }; 1858 1859 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1860 union bpf_attr __user *uattr); 1861 #endif 1862 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1863 struct btf *btf, 1864 struct bpf_verifier_log *log); 1865 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1866 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1867 #else 1868 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) bpf_try_module_get(const void * data,struct module * owner)1869 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1870 { 1871 return try_module_get(owner); 1872 } bpf_module_put(const void * data,struct module * owner)1873 static inline void bpf_module_put(const void *data, struct module *owner) 1874 { 1875 module_put(owner); 1876 } bpf_struct_ops_supported(const struct bpf_struct_ops * st_ops,u32 moff)1877 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1878 { 1879 return -ENOTSUPP; 1880 } bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)1881 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1882 void *key, 1883 void *value) 1884 { 1885 return -EINVAL; 1886 } bpf_struct_ops_link_create(union bpf_attr * attr)1887 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1888 { 1889 return -EOPNOTSUPP; 1890 } bpf_map_struct_ops_info_fill(struct bpf_map_info * info,struct bpf_map * map)1891 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1892 { 1893 } 1894 bpf_struct_ops_desc_release(struct bpf_struct_ops_desc * st_ops_desc)1895 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1896 { 1897 } 1898 1899 #endif 1900 1901 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1902 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1903 int cgroup_atype); 1904 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1905 #else bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)1906 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1907 int cgroup_atype) 1908 { 1909 return -EOPNOTSUPP; 1910 } bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)1911 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1912 { 1913 } 1914 #endif 1915 1916 struct bpf_array { 1917 struct bpf_map map; 1918 u32 elem_size; 1919 u32 index_mask; 1920 struct bpf_array_aux *aux; 1921 union { 1922 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1923 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1924 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1925 }; 1926 }; 1927 1928 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1929 #define MAX_TAIL_CALL_CNT 33 1930 1931 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1932 * It's enum to expose it (and thus make it discoverable) through BTF. 1933 */ 1934 enum { 1935 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1936 }; 1937 1938 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1939 BPF_F_RDONLY_PROG | \ 1940 BPF_F_WRONLY | \ 1941 BPF_F_WRONLY_PROG) 1942 1943 #define BPF_MAP_CAN_READ BIT(0) 1944 #define BPF_MAP_CAN_WRITE BIT(1) 1945 1946 /* Maximum number of user-producer ring buffer samples that can be drained in 1947 * a call to bpf_user_ringbuf_drain(). 1948 */ 1949 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1950 bpf_map_flags_to_cap(struct bpf_map * map)1951 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1952 { 1953 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1954 1955 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1956 * not possible. 1957 */ 1958 if (access_flags & BPF_F_RDONLY_PROG) 1959 return BPF_MAP_CAN_READ; 1960 else if (access_flags & BPF_F_WRONLY_PROG) 1961 return BPF_MAP_CAN_WRITE; 1962 else 1963 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1964 } 1965 bpf_map_flags_access_ok(u32 access_flags)1966 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1967 { 1968 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1969 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1970 } 1971 1972 struct bpf_event_entry { 1973 struct perf_event *event; 1974 struct file *perf_file; 1975 struct file *map_file; 1976 struct rcu_head rcu; 1977 }; 1978 map_type_contains_progs(struct bpf_map * map)1979 static inline bool map_type_contains_progs(struct bpf_map *map) 1980 { 1981 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1982 map->map_type == BPF_MAP_TYPE_DEVMAP || 1983 map->map_type == BPF_MAP_TYPE_CPUMAP; 1984 } 1985 1986 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1987 int bpf_prog_calc_tag(struct bpf_prog *fp); 1988 1989 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1990 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1991 1992 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1993 unsigned long off, unsigned long len); 1994 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1995 const struct bpf_insn *src, 1996 struct bpf_insn *dst, 1997 struct bpf_prog *prog, 1998 u32 *target_size); 1999 2000 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2001 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2002 2003 /* an array of programs to be executed under rcu_lock. 2004 * 2005 * Typical usage: 2006 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2007 * 2008 * the structure returned by bpf_prog_array_alloc() should be populated 2009 * with program pointers and the last pointer must be NULL. 2010 * The user has to keep refcnt on the program and make sure the program 2011 * is removed from the array before bpf_prog_put(). 2012 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2013 * since other cpus are walking the array of pointers in parallel. 2014 */ 2015 struct bpf_prog_array_item { 2016 struct bpf_prog *prog; 2017 union { 2018 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2019 u64 bpf_cookie; 2020 }; 2021 }; 2022 2023 struct bpf_prog_array { 2024 struct rcu_head rcu; 2025 struct bpf_prog_array_item items[]; 2026 }; 2027 2028 struct bpf_empty_prog_array { 2029 struct bpf_prog_array hdr; 2030 struct bpf_prog *null_prog; 2031 }; 2032 2033 /* to avoid allocating empty bpf_prog_array for cgroups that 2034 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2035 * It will not be modified the caller of bpf_prog_array_alloc() 2036 * (since caller requested prog_cnt == 0) 2037 * that pointer should be 'freed' by bpf_prog_array_free() 2038 */ 2039 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2040 2041 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2042 void bpf_prog_array_free(struct bpf_prog_array *progs); 2043 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2044 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2045 int bpf_prog_array_length(struct bpf_prog_array *progs); 2046 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2047 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2048 __u32 __user *prog_ids, u32 cnt); 2049 2050 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2051 struct bpf_prog *old_prog); 2052 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2053 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2054 struct bpf_prog *prog); 2055 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2056 u32 *prog_ids, u32 request_cnt, 2057 u32 *prog_cnt); 2058 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2059 struct bpf_prog *exclude_prog, 2060 struct bpf_prog *include_prog, 2061 u64 bpf_cookie, 2062 struct bpf_prog_array **new_array); 2063 2064 struct bpf_run_ctx {}; 2065 2066 struct bpf_cg_run_ctx { 2067 struct bpf_run_ctx run_ctx; 2068 const struct bpf_prog_array_item *prog_item; 2069 int retval; 2070 }; 2071 2072 struct bpf_trace_run_ctx { 2073 struct bpf_run_ctx run_ctx; 2074 u64 bpf_cookie; 2075 bool is_uprobe; 2076 }; 2077 2078 struct bpf_tramp_run_ctx { 2079 struct bpf_run_ctx run_ctx; 2080 u64 bpf_cookie; 2081 struct bpf_run_ctx *saved_run_ctx; 2082 }; 2083 bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)2084 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2085 { 2086 struct bpf_run_ctx *old_ctx = NULL; 2087 2088 #ifdef CONFIG_BPF_SYSCALL 2089 old_ctx = current->bpf_ctx; 2090 current->bpf_ctx = new_ctx; 2091 #endif 2092 return old_ctx; 2093 } 2094 bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)2095 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2096 { 2097 #ifdef CONFIG_BPF_SYSCALL 2098 current->bpf_ctx = old_ctx; 2099 #endif 2100 } 2101 2102 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2103 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2104 /* BPF program asks to set CN on the packet. */ 2105 #define BPF_RET_SET_CN (1 << 0) 2106 2107 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2108 2109 static __always_inline u32 bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2110 bpf_prog_run_array(const struct bpf_prog_array *array, 2111 const void *ctx, bpf_prog_run_fn run_prog) 2112 { 2113 const struct bpf_prog_array_item *item; 2114 const struct bpf_prog *prog; 2115 struct bpf_run_ctx *old_run_ctx; 2116 struct bpf_trace_run_ctx run_ctx; 2117 u32 ret = 1; 2118 2119 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2120 2121 if (unlikely(!array)) 2122 return ret; 2123 2124 run_ctx.is_uprobe = false; 2125 2126 migrate_disable(); 2127 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2128 item = &array->items[0]; 2129 while ((prog = READ_ONCE(item->prog))) { 2130 run_ctx.bpf_cookie = item->bpf_cookie; 2131 ret &= run_prog(prog, ctx); 2132 item++; 2133 } 2134 bpf_reset_run_ctx(old_run_ctx); 2135 migrate_enable(); 2136 return ret; 2137 } 2138 2139 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2140 * 2141 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2142 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2143 * in order to use the tasks_trace rcu grace period. 2144 * 2145 * When a non-sleepable program is inside the array, we take the rcu read 2146 * section and disable preemption for that program alone, so it can access 2147 * rcu-protected dynamically sized maps. 2148 */ 2149 static __always_inline u32 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu * array_rcu,const void * ctx,bpf_prog_run_fn run_prog)2150 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2151 const void *ctx, bpf_prog_run_fn run_prog) 2152 { 2153 const struct bpf_prog_array_item *item; 2154 const struct bpf_prog *prog; 2155 const struct bpf_prog_array *array; 2156 struct bpf_run_ctx *old_run_ctx; 2157 struct bpf_trace_run_ctx run_ctx; 2158 u32 ret = 1; 2159 2160 might_fault(); 2161 2162 rcu_read_lock_trace(); 2163 migrate_disable(); 2164 2165 run_ctx.is_uprobe = true; 2166 2167 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2168 if (unlikely(!array)) 2169 goto out; 2170 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2171 item = &array->items[0]; 2172 while ((prog = READ_ONCE(item->prog))) { 2173 if (!prog->sleepable) 2174 rcu_read_lock(); 2175 2176 run_ctx.bpf_cookie = item->bpf_cookie; 2177 ret &= run_prog(prog, ctx); 2178 item++; 2179 2180 if (!prog->sleepable) 2181 rcu_read_unlock(); 2182 } 2183 bpf_reset_run_ctx(old_run_ctx); 2184 out: 2185 migrate_enable(); 2186 rcu_read_unlock_trace(); 2187 return ret; 2188 } 2189 2190 #ifdef CONFIG_BPF_SYSCALL 2191 DECLARE_PER_CPU(int, bpf_prog_active); 2192 extern struct mutex bpf_stats_enabled_mutex; 2193 2194 /* 2195 * Block execution of BPF programs attached to instrumentation (perf, 2196 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2197 * these events can happen inside a region which holds a map bucket lock 2198 * and can deadlock on it. 2199 */ bpf_disable_instrumentation(void)2200 static inline void bpf_disable_instrumentation(void) 2201 { 2202 migrate_disable(); 2203 this_cpu_inc(bpf_prog_active); 2204 } 2205 bpf_enable_instrumentation(void)2206 static inline void bpf_enable_instrumentation(void) 2207 { 2208 this_cpu_dec(bpf_prog_active); 2209 migrate_enable(); 2210 } 2211 2212 extern const struct super_operations bpf_super_ops; 2213 extern const struct file_operations bpf_map_fops; 2214 extern const struct file_operations bpf_prog_fops; 2215 extern const struct file_operations bpf_iter_fops; 2216 2217 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2218 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2219 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2220 #define BPF_MAP_TYPE(_id, _ops) \ 2221 extern const struct bpf_map_ops _ops; 2222 #define BPF_LINK_TYPE(_id, _name) 2223 #include <linux/bpf_types.h> 2224 #undef BPF_PROG_TYPE 2225 #undef BPF_MAP_TYPE 2226 #undef BPF_LINK_TYPE 2227 2228 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2229 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2230 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2231 2232 struct bpf_prog *bpf_prog_get(u32 ufd); 2233 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2234 bool attach_drv); 2235 void bpf_prog_add(struct bpf_prog *prog, int i); 2236 void bpf_prog_sub(struct bpf_prog *prog, int i); 2237 void bpf_prog_inc(struct bpf_prog *prog); 2238 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2239 void bpf_prog_put(struct bpf_prog *prog); 2240 2241 void bpf_prog_free_id(struct bpf_prog *prog); 2242 void bpf_map_free_id(struct bpf_map *map); 2243 2244 struct btf_field *btf_record_find(const struct btf_record *rec, 2245 u32 offset, u32 field_mask); 2246 void btf_record_free(struct btf_record *rec); 2247 void bpf_map_free_record(struct bpf_map *map); 2248 struct btf_record *btf_record_dup(const struct btf_record *rec); 2249 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2250 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2251 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2252 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2253 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2254 2255 struct bpf_map *bpf_map_get(u32 ufd); 2256 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2257 __bpf_map_get(struct fd f)2258 static inline struct bpf_map *__bpf_map_get(struct fd f) 2259 { 2260 if (fd_empty(f)) 2261 return ERR_PTR(-EBADF); 2262 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2263 return ERR_PTR(-EINVAL); 2264 return fd_file(f)->private_data; 2265 } 2266 2267 void bpf_map_inc(struct bpf_map *map); 2268 void bpf_map_inc_with_uref(struct bpf_map *map); 2269 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2270 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2271 void bpf_map_put_with_uref(struct bpf_map *map); 2272 void bpf_map_put(struct bpf_map *map); 2273 void *bpf_map_area_alloc(u64 size, int numa_node); 2274 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2275 void bpf_map_area_free(void *base); 2276 bool bpf_map_write_active(const struct bpf_map *map); 2277 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2278 int generic_map_lookup_batch(struct bpf_map *map, 2279 const union bpf_attr *attr, 2280 union bpf_attr __user *uattr); 2281 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2282 const union bpf_attr *attr, 2283 union bpf_attr __user *uattr); 2284 int generic_map_delete_batch(struct bpf_map *map, 2285 const union bpf_attr *attr, 2286 union bpf_attr __user *uattr); 2287 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2288 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2289 2290 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2291 unsigned long nr_pages, struct page **page_array); 2292 #ifdef CONFIG_MEMCG 2293 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2294 int node); 2295 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2296 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2297 gfp_t flags); 2298 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2299 size_t align, gfp_t flags); 2300 #else 2301 /* 2302 * These specialized allocators have to be macros for their allocations to be 2303 * accounted separately (to have separate alloc_tag). 2304 */ 2305 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2306 kmalloc_node(_size, _flags, _node) 2307 #define bpf_map_kzalloc(_map, _size, _flags) \ 2308 kzalloc(_size, _flags) 2309 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2310 kvcalloc(_n, _size, _flags) 2311 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2312 __alloc_percpu_gfp(_size, _align, _flags) 2313 #endif 2314 2315 static inline int bpf_map_init_elem_count(struct bpf_map * map)2316 bpf_map_init_elem_count(struct bpf_map *map) 2317 { 2318 size_t size = sizeof(*map->elem_count), align = size; 2319 gfp_t flags = GFP_USER | __GFP_NOWARN; 2320 2321 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2322 if (!map->elem_count) 2323 return -ENOMEM; 2324 2325 return 0; 2326 } 2327 2328 static inline void bpf_map_free_elem_count(struct bpf_map * map)2329 bpf_map_free_elem_count(struct bpf_map *map) 2330 { 2331 free_percpu(map->elem_count); 2332 } 2333 bpf_map_inc_elem_count(struct bpf_map * map)2334 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2335 { 2336 this_cpu_inc(*map->elem_count); 2337 } 2338 bpf_map_dec_elem_count(struct bpf_map * map)2339 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2340 { 2341 this_cpu_dec(*map->elem_count); 2342 } 2343 2344 extern int sysctl_unprivileged_bpf_disabled; 2345 2346 bool bpf_token_capable(const struct bpf_token *token, int cap); 2347 bpf_allow_ptr_leaks(const struct bpf_token * token)2348 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2349 { 2350 return bpf_token_capable(token, CAP_PERFMON); 2351 } 2352 bpf_allow_uninit_stack(const struct bpf_token * token)2353 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2354 { 2355 return bpf_token_capable(token, CAP_PERFMON); 2356 } 2357 bpf_bypass_spec_v1(const struct bpf_token * token)2358 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2359 { 2360 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2361 } 2362 bpf_bypass_spec_v4(const struct bpf_token * token)2363 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2364 { 2365 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2366 } 2367 2368 int bpf_map_new_fd(struct bpf_map *map, int flags); 2369 int bpf_prog_new_fd(struct bpf_prog *prog); 2370 2371 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2372 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2373 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2374 int bpf_link_settle(struct bpf_link_primer *primer); 2375 void bpf_link_cleanup(struct bpf_link_primer *primer); 2376 void bpf_link_inc(struct bpf_link *link); 2377 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2378 void bpf_link_put(struct bpf_link *link); 2379 int bpf_link_new_fd(struct bpf_link *link); 2380 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2381 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2382 2383 void bpf_token_inc(struct bpf_token *token); 2384 void bpf_token_put(struct bpf_token *token); 2385 int bpf_token_create(union bpf_attr *attr); 2386 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2387 2388 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2389 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2390 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2391 enum bpf_prog_type prog_type, 2392 enum bpf_attach_type attach_type); 2393 2394 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2395 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2396 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2397 umode_t mode); 2398 2399 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2400 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2401 extern int bpf_iter_ ## target(args); \ 2402 int __init bpf_iter_ ## target(args) { return 0; } 2403 2404 /* 2405 * The task type of iterators. 2406 * 2407 * For BPF task iterators, they can be parameterized with various 2408 * parameters to visit only some of tasks. 2409 * 2410 * BPF_TASK_ITER_ALL (default) 2411 * Iterate over resources of every task. 2412 * 2413 * BPF_TASK_ITER_TID 2414 * Iterate over resources of a task/tid. 2415 * 2416 * BPF_TASK_ITER_TGID 2417 * Iterate over resources of every task of a process / task group. 2418 */ 2419 enum bpf_iter_task_type { 2420 BPF_TASK_ITER_ALL = 0, 2421 BPF_TASK_ITER_TID, 2422 BPF_TASK_ITER_TGID, 2423 }; 2424 2425 struct bpf_iter_aux_info { 2426 /* for map_elem iter */ 2427 struct bpf_map *map; 2428 2429 /* for cgroup iter */ 2430 struct { 2431 struct cgroup *start; /* starting cgroup */ 2432 enum bpf_cgroup_iter_order order; 2433 } cgroup; 2434 struct { 2435 enum bpf_iter_task_type type; 2436 u32 pid; 2437 } task; 2438 }; 2439 2440 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2441 union bpf_iter_link_info *linfo, 2442 struct bpf_iter_aux_info *aux); 2443 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2444 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2445 struct seq_file *seq); 2446 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2447 struct bpf_link_info *info); 2448 typedef const struct bpf_func_proto * 2449 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2450 const struct bpf_prog *prog); 2451 2452 enum bpf_iter_feature { 2453 BPF_ITER_RESCHED = BIT(0), 2454 }; 2455 2456 #define BPF_ITER_CTX_ARG_MAX 2 2457 struct bpf_iter_reg { 2458 const char *target; 2459 bpf_iter_attach_target_t attach_target; 2460 bpf_iter_detach_target_t detach_target; 2461 bpf_iter_show_fdinfo_t show_fdinfo; 2462 bpf_iter_fill_link_info_t fill_link_info; 2463 bpf_iter_get_func_proto_t get_func_proto; 2464 u32 ctx_arg_info_size; 2465 u32 feature; 2466 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2467 const struct bpf_iter_seq_info *seq_info; 2468 }; 2469 2470 struct bpf_iter_meta { 2471 __bpf_md_ptr(struct seq_file *, seq); 2472 u64 session_id; 2473 u64 seq_num; 2474 }; 2475 2476 struct bpf_iter__bpf_map_elem { 2477 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2478 __bpf_md_ptr(struct bpf_map *, map); 2479 __bpf_md_ptr(void *, key); 2480 __bpf_md_ptr(void *, value); 2481 }; 2482 2483 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2484 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2485 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2486 const struct bpf_func_proto * 2487 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2488 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2489 int bpf_iter_new_fd(struct bpf_link *link); 2490 bool bpf_link_is_iter(struct bpf_link *link); 2491 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2492 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2493 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2494 struct seq_file *seq); 2495 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2496 struct bpf_link_info *info); 2497 2498 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2499 struct bpf_func_state *caller, 2500 struct bpf_func_state *callee); 2501 2502 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2503 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2504 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2505 u64 flags); 2506 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2507 u64 flags); 2508 2509 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2510 2511 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2512 void *key, void *value, u64 map_flags); 2513 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2514 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2515 void *key, void *value, u64 map_flags); 2516 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2517 2518 int bpf_get_file_flag(int flags); 2519 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2520 size_t actual_size); 2521 2522 /* verify correctness of eBPF program */ 2523 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2524 2525 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2526 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2527 #endif 2528 2529 struct btf *bpf_get_btf_vmlinux(void); 2530 2531 /* Map specifics */ 2532 struct xdp_frame; 2533 struct sk_buff; 2534 struct bpf_dtab_netdev; 2535 struct bpf_cpu_map_entry; 2536 2537 void __dev_flush(struct list_head *flush_list); 2538 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2539 struct net_device *dev_rx); 2540 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2541 struct net_device *dev_rx); 2542 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2543 struct bpf_map *map, bool exclude_ingress); 2544 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2545 struct bpf_prog *xdp_prog); 2546 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2547 struct bpf_prog *xdp_prog, struct bpf_map *map, 2548 bool exclude_ingress); 2549 2550 void __cpu_map_flush(struct list_head *flush_list); 2551 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2552 struct net_device *dev_rx); 2553 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2554 struct sk_buff *skb); 2555 2556 /* Return map's numa specified by userspace */ bpf_map_attr_numa_node(const union bpf_attr * attr)2557 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2558 { 2559 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2560 attr->numa_node : NUMA_NO_NODE; 2561 } 2562 2563 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2564 int array_map_alloc_check(union bpf_attr *attr); 2565 2566 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2567 union bpf_attr __user *uattr); 2568 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2569 union bpf_attr __user *uattr); 2570 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2571 const union bpf_attr *kattr, 2572 union bpf_attr __user *uattr); 2573 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2574 const union bpf_attr *kattr, 2575 union bpf_attr __user *uattr); 2576 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2577 const union bpf_attr *kattr, 2578 union bpf_attr __user *uattr); 2579 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2580 const union bpf_attr *kattr, 2581 union bpf_attr __user *uattr); 2582 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2583 const union bpf_attr *kattr, 2584 union bpf_attr __user *uattr); 2585 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2586 const struct bpf_prog *prog, 2587 struct bpf_insn_access_aux *info); 2588 bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2589 static inline bool bpf_tracing_ctx_access(int off, int size, 2590 enum bpf_access_type type) 2591 { 2592 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2593 return false; 2594 if (type != BPF_READ) 2595 return false; 2596 if (off % size != 0) 2597 return false; 2598 return true; 2599 } 2600 bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2601 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2602 enum bpf_access_type type, 2603 const struct bpf_prog *prog, 2604 struct bpf_insn_access_aux *info) 2605 { 2606 if (!bpf_tracing_ctx_access(off, size, type)) 2607 return false; 2608 return btf_ctx_access(off, size, type, prog, info); 2609 } 2610 2611 int btf_struct_access(struct bpf_verifier_log *log, 2612 const struct bpf_reg_state *reg, 2613 int off, int size, enum bpf_access_type atype, 2614 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2615 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2616 const struct btf *btf, u32 id, int off, 2617 const struct btf *need_btf, u32 need_type_id, 2618 bool strict); 2619 2620 int btf_distill_func_proto(struct bpf_verifier_log *log, 2621 struct btf *btf, 2622 const struct btf_type *func_proto, 2623 const char *func_name, 2624 struct btf_func_model *m); 2625 2626 struct bpf_reg_state; 2627 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2628 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2629 struct btf *btf, const struct btf_type *t); 2630 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2631 int comp_idx, const char *tag_key); 2632 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2633 int comp_idx, const char *tag_key, int last_id); 2634 2635 struct bpf_prog *bpf_prog_by_id(u32 id); 2636 struct bpf_link *bpf_link_by_id(u32 id); 2637 2638 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2639 const struct bpf_prog *prog); 2640 void bpf_task_storage_free(struct task_struct *task); 2641 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2642 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2643 const struct btf_func_model * 2644 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2645 const struct bpf_insn *insn); 2646 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2647 u16 btf_fd_idx, u8 **func_addr); 2648 2649 struct bpf_core_ctx { 2650 struct bpf_verifier_log *log; 2651 const struct btf *btf; 2652 }; 2653 2654 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2655 const struct bpf_reg_state *reg, 2656 const char *field_name, u32 btf_id, const char *suffix); 2657 2658 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2659 const struct btf *reg_btf, u32 reg_id, 2660 const struct btf *arg_btf, u32 arg_id); 2661 2662 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2663 int relo_idx, void *insn); 2664 unprivileged_ebpf_enabled(void)2665 static inline bool unprivileged_ebpf_enabled(void) 2666 { 2667 return !sysctl_unprivileged_bpf_disabled; 2668 } 2669 2670 /* Not all bpf prog type has the bpf_ctx. 2671 * For the bpf prog type that has initialized the bpf_ctx, 2672 * this function can be used to decide if a kernel function 2673 * is called by a bpf program. 2674 */ has_current_bpf_ctx(void)2675 static inline bool has_current_bpf_ctx(void) 2676 { 2677 return !!current->bpf_ctx; 2678 } 2679 2680 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2681 2682 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2683 enum bpf_dynptr_type type, u32 offset, u32 size); 2684 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2685 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2686 2687 #else /* !CONFIG_BPF_SYSCALL */ bpf_prog_get(u32 ufd)2688 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2689 { 2690 return ERR_PTR(-EOPNOTSUPP); 2691 } 2692 bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2693 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2694 enum bpf_prog_type type, 2695 bool attach_drv) 2696 { 2697 return ERR_PTR(-EOPNOTSUPP); 2698 } 2699 bpf_prog_add(struct bpf_prog * prog,int i)2700 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2701 { 2702 } 2703 bpf_prog_sub(struct bpf_prog * prog,int i)2704 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2705 { 2706 } 2707 bpf_prog_put(struct bpf_prog * prog)2708 static inline void bpf_prog_put(struct bpf_prog *prog) 2709 { 2710 } 2711 bpf_prog_inc(struct bpf_prog * prog)2712 static inline void bpf_prog_inc(struct bpf_prog *prog) 2713 { 2714 } 2715 2716 static inline struct bpf_prog *__must_check bpf_prog_inc_not_zero(struct bpf_prog * prog)2717 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2718 { 2719 return ERR_PTR(-EOPNOTSUPP); 2720 } 2721 bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog)2722 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2723 const struct bpf_link_ops *ops, 2724 struct bpf_prog *prog) 2725 { 2726 } 2727 bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2728 static inline int bpf_link_prime(struct bpf_link *link, 2729 struct bpf_link_primer *primer) 2730 { 2731 return -EOPNOTSUPP; 2732 } 2733 bpf_link_settle(struct bpf_link_primer * primer)2734 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2735 { 2736 return -EOPNOTSUPP; 2737 } 2738 bpf_link_cleanup(struct bpf_link_primer * primer)2739 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2740 { 2741 } 2742 bpf_link_inc(struct bpf_link * link)2743 static inline void bpf_link_inc(struct bpf_link *link) 2744 { 2745 } 2746 bpf_link_inc_not_zero(struct bpf_link * link)2747 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2748 { 2749 return NULL; 2750 } 2751 bpf_link_put(struct bpf_link * link)2752 static inline void bpf_link_put(struct bpf_link *link) 2753 { 2754 } 2755 bpf_obj_get_user(const char __user * pathname,int flags)2756 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2757 { 2758 return -EOPNOTSUPP; 2759 } 2760 bpf_token_capable(const struct bpf_token * token,int cap)2761 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2762 { 2763 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2764 } 2765 bpf_token_inc(struct bpf_token * token)2766 static inline void bpf_token_inc(struct bpf_token *token) 2767 { 2768 } 2769 bpf_token_put(struct bpf_token * token)2770 static inline void bpf_token_put(struct bpf_token *token) 2771 { 2772 } 2773 bpf_token_get_from_fd(u32 ufd)2774 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2775 { 2776 return ERR_PTR(-EOPNOTSUPP); 2777 } 2778 __dev_flush(struct list_head * flush_list)2779 static inline void __dev_flush(struct list_head *flush_list) 2780 { 2781 } 2782 2783 struct xdp_frame; 2784 struct bpf_dtab_netdev; 2785 struct bpf_cpu_map_entry; 2786 2787 static inline dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2788 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2789 struct net_device *dev_rx) 2790 { 2791 return 0; 2792 } 2793 2794 static inline dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2795 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2796 struct net_device *dev_rx) 2797 { 2798 return 0; 2799 } 2800 2801 static inline dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)2802 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2803 struct bpf_map *map, bool exclude_ingress) 2804 { 2805 return 0; 2806 } 2807 2808 struct sk_buff; 2809 dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)2810 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2811 struct sk_buff *skb, 2812 struct bpf_prog *xdp_prog) 2813 { 2814 return 0; 2815 } 2816 2817 static inline dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)2818 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2819 struct bpf_prog *xdp_prog, struct bpf_map *map, 2820 bool exclude_ingress) 2821 { 2822 return 0; 2823 } 2824 __cpu_map_flush(struct list_head * flush_list)2825 static inline void __cpu_map_flush(struct list_head *flush_list) 2826 { 2827 } 2828 cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)2829 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2830 struct xdp_frame *xdpf, 2831 struct net_device *dev_rx) 2832 { 2833 return 0; 2834 } 2835 cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)2836 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2837 struct sk_buff *skb) 2838 { 2839 return -EOPNOTSUPP; 2840 } 2841 bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)2842 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2843 enum bpf_prog_type type) 2844 { 2845 return ERR_PTR(-EOPNOTSUPP); 2846 } 2847 bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2848 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2849 const union bpf_attr *kattr, 2850 union bpf_attr __user *uattr) 2851 { 2852 return -ENOTSUPP; 2853 } 2854 bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2855 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2856 const union bpf_attr *kattr, 2857 union bpf_attr __user *uattr) 2858 { 2859 return -ENOTSUPP; 2860 } 2861 bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2862 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2863 const union bpf_attr *kattr, 2864 union bpf_attr __user *uattr) 2865 { 2866 return -ENOTSUPP; 2867 } 2868 bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2869 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2870 const union bpf_attr *kattr, 2871 union bpf_attr __user *uattr) 2872 { 2873 return -ENOTSUPP; 2874 } 2875 bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2876 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2877 const union bpf_attr *kattr, 2878 union bpf_attr __user *uattr) 2879 { 2880 return -ENOTSUPP; 2881 } 2882 bpf_map_put(struct bpf_map * map)2883 static inline void bpf_map_put(struct bpf_map *map) 2884 { 2885 } 2886 bpf_prog_by_id(u32 id)2887 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2888 { 2889 return ERR_PTR(-ENOTSUPP); 2890 } 2891 btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)2892 static inline int btf_struct_access(struct bpf_verifier_log *log, 2893 const struct bpf_reg_state *reg, 2894 int off, int size, enum bpf_access_type atype, 2895 u32 *next_btf_id, enum bpf_type_flag *flag, 2896 const char **field_name) 2897 { 2898 return -EACCES; 2899 } 2900 2901 static inline const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2902 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2903 { 2904 return NULL; 2905 } 2906 bpf_task_storage_free(struct task_struct * task)2907 static inline void bpf_task_storage_free(struct task_struct *task) 2908 { 2909 } 2910 bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2911 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2912 { 2913 return false; 2914 } 2915 2916 static inline const struct btf_func_model * bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2917 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2918 const struct bpf_insn *insn) 2919 { 2920 return NULL; 2921 } 2922 2923 static inline int bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2924 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2925 u16 btf_fd_idx, u8 **func_addr) 2926 { 2927 return -ENOTSUPP; 2928 } 2929 unprivileged_ebpf_enabled(void)2930 static inline bool unprivileged_ebpf_enabled(void) 2931 { 2932 return false; 2933 } 2934 has_current_bpf_ctx(void)2935 static inline bool has_current_bpf_ctx(void) 2936 { 2937 return false; 2938 } 2939 bpf_prog_inc_misses_counter(struct bpf_prog * prog)2940 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2941 { 2942 } 2943 bpf_cgrp_storage_free(struct cgroup * cgroup)2944 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2945 { 2946 } 2947 bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)2948 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2949 enum bpf_dynptr_type type, u32 offset, u32 size) 2950 { 2951 } 2952 bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)2953 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2954 { 2955 } 2956 bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)2957 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2958 { 2959 } 2960 #endif /* CONFIG_BPF_SYSCALL */ 2961 2962 static __always_inline int bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)2963 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2964 { 2965 int ret = -EFAULT; 2966 2967 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2968 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2969 if (unlikely(ret < 0)) 2970 memset(dst, 0, size); 2971 return ret; 2972 } 2973 2974 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 2975 bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)2976 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2977 enum bpf_prog_type type) 2978 { 2979 return bpf_prog_get_type_dev(ufd, type, false); 2980 } 2981 2982 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2983 struct bpf_map **used_maps, u32 len); 2984 2985 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2986 2987 int bpf_prog_offload_compile(struct bpf_prog *prog); 2988 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2989 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2990 struct bpf_prog *prog); 2991 2992 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2993 2994 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2995 int bpf_map_offload_update_elem(struct bpf_map *map, 2996 void *key, void *value, u64 flags); 2997 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2998 int bpf_map_offload_get_next_key(struct bpf_map *map, 2999 void *key, void *next_key); 3000 3001 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3002 3003 struct bpf_offload_dev * 3004 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3005 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3006 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3007 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3008 struct net_device *netdev); 3009 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3010 struct net_device *netdev); 3011 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3012 3013 void unpriv_ebpf_notify(int new_state); 3014 3015 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3016 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3017 struct bpf_prog_aux *prog_aux); 3018 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3019 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3020 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3021 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3022 bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3023 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3024 { 3025 return aux->dev_bound; 3026 } 3027 bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)3028 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3029 { 3030 return aux->offload_requested; 3031 } 3032 3033 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3034 bpf_map_is_offloaded(struct bpf_map * map)3035 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3036 { 3037 return unlikely(map->ops == &bpf_map_offload_ops); 3038 } 3039 3040 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3041 void bpf_map_offload_map_free(struct bpf_map *map); 3042 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3043 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3044 const union bpf_attr *kattr, 3045 union bpf_attr __user *uattr); 3046 3047 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3048 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3049 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3050 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3051 union bpf_attr __user *uattr); 3052 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3053 3054 void sock_map_unhash(struct sock *sk); 3055 void sock_map_destroy(struct sock *sk); 3056 void sock_map_close(struct sock *sk, long timeout); 3057 #else bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)3058 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3059 struct bpf_prog_aux *prog_aux) 3060 { 3061 return -EOPNOTSUPP; 3062 } 3063 bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)3064 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3065 u32 func_id) 3066 { 3067 return NULL; 3068 } 3069 bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)3070 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3071 union bpf_attr *attr) 3072 { 3073 return -EOPNOTSUPP; 3074 } 3075 bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)3076 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3077 struct bpf_prog *old_prog) 3078 { 3079 return -EOPNOTSUPP; 3080 } 3081 bpf_dev_bound_netdev_unregister(struct net_device * dev)3082 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3083 { 3084 } 3085 bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3086 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3087 { 3088 return false; 3089 } 3090 bpf_prog_is_offloaded(struct bpf_prog_aux * aux)3091 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3092 { 3093 return false; 3094 } 3095 bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)3096 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3097 { 3098 return false; 3099 } 3100 bpf_map_is_offloaded(struct bpf_map * map)3101 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3102 { 3103 return false; 3104 } 3105 bpf_map_offload_map_alloc(union bpf_attr * attr)3106 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3107 { 3108 return ERR_PTR(-EOPNOTSUPP); 3109 } 3110 bpf_map_offload_map_free(struct bpf_map * map)3111 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3112 { 3113 } 3114 bpf_map_offload_map_mem_usage(const struct bpf_map * map)3115 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3116 { 3117 return 0; 3118 } 3119 bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3120 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3121 const union bpf_attr *kattr, 3122 union bpf_attr __user *uattr) 3123 { 3124 return -ENOTSUPP; 3125 } 3126 3127 #ifdef CONFIG_BPF_SYSCALL sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)3128 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3129 struct bpf_prog *prog) 3130 { 3131 return -EINVAL; 3132 } 3133 sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)3134 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3135 enum bpf_prog_type ptype) 3136 { 3137 return -EOPNOTSUPP; 3138 } 3139 sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)3140 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3141 u64 flags) 3142 { 3143 return -EOPNOTSUPP; 3144 } 3145 sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)3146 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3147 union bpf_attr __user *uattr) 3148 { 3149 return -EINVAL; 3150 } 3151 sock_map_link_create(const union bpf_attr * attr,struct bpf_prog * prog)3152 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3153 { 3154 return -EOPNOTSUPP; 3155 } 3156 #endif /* CONFIG_BPF_SYSCALL */ 3157 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3158 3159 static __always_inline void bpf_prog_inc_misses_counters(const struct bpf_prog_array * array)3160 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3161 { 3162 const struct bpf_prog_array_item *item; 3163 struct bpf_prog *prog; 3164 3165 if (unlikely(!array)) 3166 return; 3167 3168 item = &array->items[0]; 3169 while ((prog = READ_ONCE(item->prog))) { 3170 bpf_prog_inc_misses_counter(prog); 3171 item++; 3172 } 3173 } 3174 3175 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3176 void bpf_sk_reuseport_detach(struct sock *sk); 3177 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3178 void *value); 3179 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3180 void *value, u64 map_flags); 3181 #else bpf_sk_reuseport_detach(struct sock * sk)3182 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3183 { 3184 } 3185 3186 #ifdef CONFIG_BPF_SYSCALL bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)3187 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3188 void *key, void *value) 3189 { 3190 return -EOPNOTSUPP; 3191 } 3192 bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)3193 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3194 void *key, void *value, 3195 u64 map_flags) 3196 { 3197 return -EOPNOTSUPP; 3198 } 3199 #endif /* CONFIG_BPF_SYSCALL */ 3200 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3201 3202 /* verifier prototypes for helper functions called from eBPF programs */ 3203 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3204 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3205 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3206 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3207 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3208 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3209 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3210 3211 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3212 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3213 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3214 extern const struct bpf_func_proto bpf_tail_call_proto; 3215 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3216 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3217 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3218 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3219 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3220 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3221 extern const struct bpf_func_proto bpf_get_stackid_proto; 3222 extern const struct bpf_func_proto bpf_get_stack_proto; 3223 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3224 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3225 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3226 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3227 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3228 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3229 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3230 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3231 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3232 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3233 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3234 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3235 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3236 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3237 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3238 extern const struct bpf_func_proto bpf_spin_lock_proto; 3239 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3240 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3241 extern const struct bpf_func_proto bpf_strtol_proto; 3242 extern const struct bpf_func_proto bpf_strtoul_proto; 3243 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3244 extern const struct bpf_func_proto bpf_jiffies64_proto; 3245 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3246 extern const struct bpf_func_proto bpf_event_output_data_proto; 3247 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3248 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3249 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3250 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3251 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3252 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3253 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3254 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3255 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3256 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3257 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3258 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3259 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3260 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3261 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3262 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3263 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3264 extern const struct bpf_func_proto bpf_snprintf_proto; 3265 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3266 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3267 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3268 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3269 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3270 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3271 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3272 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3273 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3274 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3275 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3276 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3277 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3278 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3279 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3280 extern const struct bpf_func_proto bpf_find_vma_proto; 3281 extern const struct bpf_func_proto bpf_loop_proto; 3282 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3283 extern const struct bpf_func_proto bpf_set_retval_proto; 3284 extern const struct bpf_func_proto bpf_get_retval_proto; 3285 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3286 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3287 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3288 3289 const struct bpf_func_proto *tracing_prog_func_proto( 3290 enum bpf_func_id func_id, const struct bpf_prog *prog); 3291 3292 /* Shared helpers among cBPF and eBPF. */ 3293 void bpf_user_rnd_init_once(void); 3294 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3295 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3296 3297 #if defined(CONFIG_NET) 3298 bool bpf_sock_common_is_valid_access(int off, int size, 3299 enum bpf_access_type type, 3300 struct bpf_insn_access_aux *info); 3301 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3302 struct bpf_insn_access_aux *info); 3303 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3304 const struct bpf_insn *si, 3305 struct bpf_insn *insn_buf, 3306 struct bpf_prog *prog, 3307 u32 *target_size); 3308 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3309 struct bpf_dynptr *ptr); 3310 #else bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3311 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3312 enum bpf_access_type type, 3313 struct bpf_insn_access_aux *info) 3314 { 3315 return false; 3316 } bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3317 static inline bool bpf_sock_is_valid_access(int off, int size, 3318 enum bpf_access_type type, 3319 struct bpf_insn_access_aux *info) 3320 { 3321 return false; 3322 } bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3323 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3324 const struct bpf_insn *si, 3325 struct bpf_insn *insn_buf, 3326 struct bpf_prog *prog, 3327 u32 *target_size) 3328 { 3329 return 0; 3330 } bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr)3331 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3332 struct bpf_dynptr *ptr) 3333 { 3334 return -EOPNOTSUPP; 3335 } 3336 #endif 3337 3338 #ifdef CONFIG_INET 3339 struct sk_reuseport_kern { 3340 struct sk_buff *skb; 3341 struct sock *sk; 3342 struct sock *selected_sk; 3343 struct sock *migrating_sk; 3344 void *data_end; 3345 u32 hash; 3346 u32 reuseport_id; 3347 bool bind_inany; 3348 }; 3349 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3350 struct bpf_insn_access_aux *info); 3351 3352 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3353 const struct bpf_insn *si, 3354 struct bpf_insn *insn_buf, 3355 struct bpf_prog *prog, 3356 u32 *target_size); 3357 3358 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3359 struct bpf_insn_access_aux *info); 3360 3361 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3362 const struct bpf_insn *si, 3363 struct bpf_insn *insn_buf, 3364 struct bpf_prog *prog, 3365 u32 *target_size); 3366 #else bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3367 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3368 enum bpf_access_type type, 3369 struct bpf_insn_access_aux *info) 3370 { 3371 return false; 3372 } 3373 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3374 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3375 const struct bpf_insn *si, 3376 struct bpf_insn *insn_buf, 3377 struct bpf_prog *prog, 3378 u32 *target_size) 3379 { 3380 return 0; 3381 } bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3382 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3383 enum bpf_access_type type, 3384 struct bpf_insn_access_aux *info) 3385 { 3386 return false; 3387 } 3388 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3389 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3390 const struct bpf_insn *si, 3391 struct bpf_insn *insn_buf, 3392 struct bpf_prog *prog, 3393 u32 *target_size) 3394 { 3395 return 0; 3396 } 3397 #endif /* CONFIG_INET */ 3398 3399 enum bpf_text_poke_type { 3400 BPF_MOD_CALL, 3401 BPF_MOD_JUMP, 3402 }; 3403 3404 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3405 void *addr1, void *addr2); 3406 3407 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3408 struct bpf_prog *new, struct bpf_prog *old); 3409 3410 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3411 int bpf_arch_text_invalidate(void *dst, size_t len); 3412 3413 struct btf_id_set; 3414 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3415 3416 #define MAX_BPRINTF_VARARGS 12 3417 #define MAX_BPRINTF_BUF 1024 3418 3419 struct bpf_bprintf_data { 3420 u32 *bin_args; 3421 char *buf; 3422 bool get_bin_args; 3423 bool get_buf; 3424 }; 3425 3426 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3427 u32 num_args, struct bpf_bprintf_data *data); 3428 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3429 3430 #ifdef CONFIG_BPF_LSM 3431 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3432 void bpf_cgroup_atype_put(int cgroup_atype); 3433 #else bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3434 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} bpf_cgroup_atype_put(int cgroup_atype)3435 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3436 #endif /* CONFIG_BPF_LSM */ 3437 3438 struct key; 3439 3440 #ifdef CONFIG_KEYS 3441 struct bpf_key { 3442 struct key *key; 3443 bool has_ref; 3444 }; 3445 #endif /* CONFIG_KEYS */ 3446 type_is_alloc(u32 type)3447 static inline bool type_is_alloc(u32 type) 3448 { 3449 return type & MEM_ALLOC; 3450 } 3451 bpf_memcg_flags(gfp_t flags)3452 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3453 { 3454 if (memcg_bpf_enabled()) 3455 return flags | __GFP_ACCOUNT; 3456 return flags; 3457 } 3458 bpf_is_subprog(const struct bpf_prog * prog)3459 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3460 { 3461 return prog->aux->func_idx != 0; 3462 } 3463 3464 #endif /* _LINUX_BPF_H */ 3465