1 /* SPDX-License-Identifier: GPL-2.0-or-later 2 * 3 * Copyright (C) 2005 David Brownell 4 */ 5 6 #ifndef __LINUX_SPI_H 7 #define __LINUX_SPI_H 8 9 #include <linux/acpi.h> 10 #include <linux/bits.h> 11 #include <linux/completion.h> 12 #include <linux/device.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/kthread.h> 15 #include <linux/mod_devicetable.h> 16 #include <linux/overflow.h> 17 #include <linux/scatterlist.h> 18 #include <linux/slab.h> 19 #include <linux/u64_stats_sync.h> 20 21 #include <uapi/linux/spi/spi.h> 22 23 /* Max no. of CS supported per spi device */ 24 #define SPI_CS_CNT_MAX 16 25 26 struct dma_chan; 27 struct software_node; 28 struct ptp_system_timestamp; 29 struct spi_controller; 30 struct spi_transfer; 31 struct spi_controller_mem_ops; 32 struct spi_controller_mem_caps; 33 struct spi_message; 34 35 /* 36 * INTERFACES between SPI master-side drivers and SPI slave protocol handlers, 37 * and SPI infrastructure. 38 */ 39 extern const struct bus_type spi_bus_type; 40 41 /** 42 * struct spi_statistics - statistics for spi transfers 43 * @syncp: seqcount to protect members in this struct for per-cpu update 44 * on 32-bit systems 45 * 46 * @messages: number of spi-messages handled 47 * @transfers: number of spi_transfers handled 48 * @errors: number of errors during spi_transfer 49 * @timedout: number of timeouts during spi_transfer 50 * 51 * @spi_sync: number of times spi_sync is used 52 * @spi_sync_immediate: 53 * number of times spi_sync is executed immediately 54 * in calling context without queuing and scheduling 55 * @spi_async: number of times spi_async is used 56 * 57 * @bytes: number of bytes transferred to/from device 58 * @bytes_tx: number of bytes sent to device 59 * @bytes_rx: number of bytes received from device 60 * 61 * @transfer_bytes_histo: 62 * transfer bytes histogram 63 * 64 * @transfers_split_maxsize: 65 * number of transfers that have been split because of 66 * maxsize limit 67 */ 68 struct spi_statistics { 69 struct u64_stats_sync syncp; 70 71 u64_stats_t messages; 72 u64_stats_t transfers; 73 u64_stats_t errors; 74 u64_stats_t timedout; 75 76 u64_stats_t spi_sync; 77 u64_stats_t spi_sync_immediate; 78 u64_stats_t spi_async; 79 80 u64_stats_t bytes; 81 u64_stats_t bytes_rx; 82 u64_stats_t bytes_tx; 83 84 #define SPI_STATISTICS_HISTO_SIZE 17 85 u64_stats_t transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE]; 86 87 u64_stats_t transfers_split_maxsize; 88 }; 89 90 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count) \ 91 do { \ 92 struct spi_statistics *__lstats; \ 93 get_cpu(); \ 94 __lstats = this_cpu_ptr(pcpu_stats); \ 95 u64_stats_update_begin(&__lstats->syncp); \ 96 u64_stats_add(&__lstats->field, count); \ 97 u64_stats_update_end(&__lstats->syncp); \ 98 put_cpu(); \ 99 } while (0) 100 101 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field) \ 102 do { \ 103 struct spi_statistics *__lstats; \ 104 get_cpu(); \ 105 __lstats = this_cpu_ptr(pcpu_stats); \ 106 u64_stats_update_begin(&__lstats->syncp); \ 107 u64_stats_inc(&__lstats->field); \ 108 u64_stats_update_end(&__lstats->syncp); \ 109 put_cpu(); \ 110 } while (0) 111 112 /** 113 * struct spi_delay - SPI delay information 114 * @value: Value for the delay 115 * @unit: Unit for the delay 116 */ 117 struct spi_delay { 118 #define SPI_DELAY_UNIT_USECS 0 119 #define SPI_DELAY_UNIT_NSECS 1 120 #define SPI_DELAY_UNIT_SCK 2 121 u16 value; 122 u8 unit; 123 }; 124 125 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer); 126 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer); 127 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 128 struct spi_transfer *xfer); 129 130 /** 131 * struct spi_device - Controller side proxy for an SPI slave device 132 * @dev: Driver model representation of the device. 133 * @controller: SPI controller used with the device. 134 * @max_speed_hz: Maximum clock rate to be used with this chip 135 * (on this board); may be changed by the device's driver. 136 * The spi_transfer.speed_hz can override this for each transfer. 137 * @chip_select: Array of physical chipselect, spi->chipselect[i] gives 138 * the corresponding physical CS for logical CS i. 139 * @mode: The spi mode defines how data is clocked out and in. 140 * This may be changed by the device's driver. 141 * The "active low" default for chipselect mode can be overridden 142 * (by specifying SPI_CS_HIGH) as can the "MSB first" default for 143 * each word in a transfer (by specifying SPI_LSB_FIRST). 144 * @bits_per_word: Data transfers involve one or more words; word sizes 145 * like eight or 12 bits are common. In-memory wordsizes are 146 * powers of two bytes (e.g. 20 bit samples use 32 bits). 147 * This may be changed by the device's driver, or left at the 148 * default (0) indicating protocol words are eight bit bytes. 149 * The spi_transfer.bits_per_word can override this for each transfer. 150 * @rt: Make the pump thread real time priority. 151 * @irq: Negative, or the number passed to request_irq() to receive 152 * interrupts from this device. 153 * @controller_state: Controller's runtime state 154 * @controller_data: Board-specific definitions for controller, such as 155 * FIFO initialization parameters; from board_info.controller_data 156 * @modalias: Name of the driver to use with this device, or an alias 157 * for that name. This appears in the sysfs "modalias" attribute 158 * for driver coldplugging, and in uevents used for hotplugging 159 * @driver_override: If the name of a driver is written to this attribute, then 160 * the device will bind to the named driver and only the named driver. 161 * Do not set directly, because core frees it; use driver_set_override() to 162 * set or clear it. 163 * @cs_gpiod: Array of GPIO descriptors of the corresponding chipselect lines 164 * (optional, NULL when not using a GPIO line) 165 * @word_delay: delay to be inserted between consecutive 166 * words of a transfer 167 * @cs_setup: delay to be introduced by the controller after CS is asserted 168 * @cs_hold: delay to be introduced by the controller before CS is deasserted 169 * @cs_inactive: delay to be introduced by the controller after CS is 170 * deasserted. If @cs_change_delay is used from @spi_transfer, then the 171 * two delays will be added up. 172 * @pcpu_statistics: statistics for the spi_device 173 * @cs_index_mask: Bit mask of the active chipselect(s) in the chipselect array 174 * 175 * A @spi_device is used to interchange data between an SPI slave 176 * (usually a discrete chip) and CPU memory. 177 * 178 * In @dev, the platform_data is used to hold information about this 179 * device that's meaningful to the device's protocol driver, but not 180 * to its controller. One example might be an identifier for a chip 181 * variant with slightly different functionality; another might be 182 * information about how this particular board wires the chip's pins. 183 */ 184 struct spi_device { 185 struct device dev; 186 struct spi_controller *controller; 187 u32 max_speed_hz; 188 u8 chip_select[SPI_CS_CNT_MAX]; 189 u8 bits_per_word; 190 bool rt; 191 #define SPI_NO_TX BIT(31) /* No transmit wire */ 192 #define SPI_NO_RX BIT(30) /* No receive wire */ 193 /* 194 * TPM specification defines flow control over SPI. Client device 195 * can insert a wait state on MISO when address is transmitted by 196 * controller on MOSI. Detecting the wait state in software is only 197 * possible for full duplex controllers. For controllers that support 198 * only half-duplex, the wait state detection needs to be implemented 199 * in hardware. TPM devices would set this flag when hardware flow 200 * control is expected from SPI controller. 201 */ 202 #define SPI_TPM_HW_FLOW BIT(29) /* TPM HW flow control */ 203 /* 204 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK. 205 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart, 206 * which is defined in 'include/uapi/linux/spi/spi.h'. 207 * The bits defined here are from bit 31 downwards, while in 208 * SPI_MODE_USER_MASK are from 0 upwards. 209 * These bits must not overlap. A static assert check should make sure of that. 210 * If adding extra bits, make sure to decrease the bit index below as well. 211 */ 212 #define SPI_MODE_KERNEL_MASK (~(BIT(29) - 1)) 213 u32 mode; 214 int irq; 215 void *controller_state; 216 void *controller_data; 217 char modalias[SPI_NAME_SIZE]; 218 const char *driver_override; 219 struct gpio_desc *cs_gpiod[SPI_CS_CNT_MAX]; /* Chip select gpio desc */ 220 struct spi_delay word_delay; /* Inter-word delay */ 221 /* CS delays */ 222 struct spi_delay cs_setup; 223 struct spi_delay cs_hold; 224 struct spi_delay cs_inactive; 225 226 /* The statistics */ 227 struct spi_statistics __percpu *pcpu_statistics; 228 229 /* Bit mask of the chipselect(s) that the driver need to use from 230 * the chipselect array.When the controller is capable to handle 231 * multiple chip selects & memories are connected in parallel 232 * then more than one bit need to be set in cs_index_mask. 233 */ 234 u32 cs_index_mask : SPI_CS_CNT_MAX; 235 236 /* 237 * Likely need more hooks for more protocol options affecting how 238 * the controller talks to each chip, like: 239 * - memory packing (12 bit samples into low bits, others zeroed) 240 * - priority 241 * - chipselect delays 242 * - ... 243 */ 244 }; 245 246 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */ 247 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0, 248 "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap"); 249 to_spi_device(const struct device * dev)250 static inline struct spi_device *to_spi_device(const struct device *dev) 251 { 252 return dev ? container_of(dev, struct spi_device, dev) : NULL; 253 } 254 255 /* Most drivers won't need to care about device refcounting */ spi_dev_get(struct spi_device * spi)256 static inline struct spi_device *spi_dev_get(struct spi_device *spi) 257 { 258 return (spi && get_device(&spi->dev)) ? spi : NULL; 259 } 260 spi_dev_put(struct spi_device * spi)261 static inline void spi_dev_put(struct spi_device *spi) 262 { 263 if (spi) 264 put_device(&spi->dev); 265 } 266 267 /* ctldata is for the bus_controller driver's runtime state */ spi_get_ctldata(const struct spi_device * spi)268 static inline void *spi_get_ctldata(const struct spi_device *spi) 269 { 270 return spi->controller_state; 271 } 272 spi_set_ctldata(struct spi_device * spi,void * state)273 static inline void spi_set_ctldata(struct spi_device *spi, void *state) 274 { 275 spi->controller_state = state; 276 } 277 278 /* Device driver data */ 279 spi_set_drvdata(struct spi_device * spi,void * data)280 static inline void spi_set_drvdata(struct spi_device *spi, void *data) 281 { 282 dev_set_drvdata(&spi->dev, data); 283 } 284 spi_get_drvdata(const struct spi_device * spi)285 static inline void *spi_get_drvdata(const struct spi_device *spi) 286 { 287 return dev_get_drvdata(&spi->dev); 288 } 289 spi_get_chipselect(const struct spi_device * spi,u8 idx)290 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx) 291 { 292 return spi->chip_select[idx]; 293 } 294 spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)295 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect) 296 { 297 spi->chip_select[idx] = chipselect; 298 } 299 spi_get_csgpiod(const struct spi_device * spi,u8 idx)300 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx) 301 { 302 return spi->cs_gpiod[idx]; 303 } 304 spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)305 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod) 306 { 307 spi->cs_gpiod[idx] = csgpiod; 308 } 309 spi_is_csgpiod(struct spi_device * spi)310 static inline bool spi_is_csgpiod(struct spi_device *spi) 311 { 312 u8 idx; 313 314 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 315 if (spi_get_csgpiod(spi, idx)) 316 return true; 317 } 318 return false; 319 } 320 321 /** 322 * struct spi_driver - Host side "protocol" driver 323 * @id_table: List of SPI devices supported by this driver 324 * @probe: Binds this driver to the SPI device. Drivers can verify 325 * that the device is actually present, and may need to configure 326 * characteristics (such as bits_per_word) which weren't needed for 327 * the initial configuration done during system setup. 328 * @remove: Unbinds this driver from the SPI device 329 * @shutdown: Standard shutdown callback used during system state 330 * transitions such as powerdown/halt and kexec 331 * @driver: SPI device drivers should initialize the name and owner 332 * field of this structure. 333 * 334 * This represents the kind of device driver that uses SPI messages to 335 * interact with the hardware at the other end of a SPI link. It's called 336 * a "protocol" driver because it works through messages rather than talking 337 * directly to SPI hardware (which is what the underlying SPI controller 338 * driver does to pass those messages). These protocols are defined in the 339 * specification for the device(s) supported by the driver. 340 * 341 * As a rule, those device protocols represent the lowest level interface 342 * supported by a driver, and it will support upper level interfaces too. 343 * Examples of such upper levels include frameworks like MTD, networking, 344 * MMC, RTC, filesystem character device nodes, and hardware monitoring. 345 */ 346 struct spi_driver { 347 const struct spi_device_id *id_table; 348 int (*probe)(struct spi_device *spi); 349 void (*remove)(struct spi_device *spi); 350 void (*shutdown)(struct spi_device *spi); 351 struct device_driver driver; 352 }; 353 354 #define to_spi_driver(__drv) \ 355 ( __drv ? container_of_const(__drv, struct spi_driver, driver) : NULL ) 356 357 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv); 358 359 /** 360 * spi_unregister_driver - reverse effect of spi_register_driver 361 * @sdrv: the driver to unregister 362 * Context: can sleep 363 */ spi_unregister_driver(struct spi_driver * sdrv)364 static inline void spi_unregister_driver(struct spi_driver *sdrv) 365 { 366 if (sdrv) 367 driver_unregister(&sdrv->driver); 368 } 369 370 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select); 371 372 /* Use a define to avoid include chaining to get THIS_MODULE */ 373 #define spi_register_driver(driver) \ 374 __spi_register_driver(THIS_MODULE, driver) 375 376 /** 377 * module_spi_driver() - Helper macro for registering a SPI driver 378 * @__spi_driver: spi_driver struct 379 * 380 * Helper macro for SPI drivers which do not do anything special in module 381 * init/exit. This eliminates a lot of boilerplate. Each module may only 382 * use this macro once, and calling it replaces module_init() and module_exit() 383 */ 384 #define module_spi_driver(__spi_driver) \ 385 module_driver(__spi_driver, spi_register_driver, \ 386 spi_unregister_driver) 387 388 /** 389 * struct spi_controller - interface to SPI master or slave controller 390 * @dev: device interface to this driver 391 * @list: link with the global spi_controller list 392 * @bus_num: board-specific (and often SOC-specific) identifier for a 393 * given SPI controller. 394 * @num_chipselect: chipselects are used to distinguish individual 395 * SPI slaves, and are numbered from zero to num_chipselects. 396 * each slave has a chipselect signal, but it's common that not 397 * every chipselect is connected to a slave. 398 * @dma_alignment: SPI controller constraint on DMA buffers alignment. 399 * @mode_bits: flags understood by this controller driver 400 * @buswidth_override_bits: flags to override for this controller driver 401 * @bits_per_word_mask: A mask indicating which values of bits_per_word are 402 * supported by the driver. Bit n indicates that a bits_per_word n+1 is 403 * supported. If set, the SPI core will reject any transfer with an 404 * unsupported bits_per_word. If not set, this value is simply ignored, 405 * and it's up to the individual driver to perform any validation. 406 * @min_speed_hz: Lowest supported transfer speed 407 * @max_speed_hz: Highest supported transfer speed 408 * @flags: other constraints relevant to this driver 409 * @slave: indicates that this is an SPI slave controller 410 * @target: indicates that this is an SPI target controller 411 * @devm_allocated: whether the allocation of this struct is devres-managed 412 * @max_transfer_size: function that returns the max transfer size for 413 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used. 414 * @max_message_size: function that returns the max message size for 415 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used. 416 * @io_mutex: mutex for physical bus access 417 * @add_lock: mutex to avoid adding devices to the same chipselect 418 * @bus_lock_spinlock: spinlock for SPI bus locking 419 * @bus_lock_mutex: mutex for exclusion of multiple callers 420 * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use 421 * @setup: updates the device mode and clocking records used by a 422 * device's SPI controller; protocol code may call this. This 423 * must fail if an unrecognized or unsupported mode is requested. 424 * It's always safe to call this unless transfers are pending on 425 * the device whose settings are being modified. 426 * @set_cs_timing: optional hook for SPI devices to request SPI master 427 * controller for configuring specific CS setup time, hold time and inactive 428 * delay interms of clock counts 429 * @transfer: adds a message to the controller's transfer queue. 430 * @cleanup: frees controller-specific state 431 * @can_dma: determine whether this controller supports DMA 432 * @dma_map_dev: device which can be used for DMA mapping 433 * @cur_rx_dma_dev: device which is currently used for RX DMA mapping 434 * @cur_tx_dma_dev: device which is currently used for TX DMA mapping 435 * @queued: whether this controller is providing an internal message queue 436 * @kworker: pointer to thread struct for message pump 437 * @pump_messages: work struct for scheduling work to the message pump 438 * @queue_lock: spinlock to synchronise access to message queue 439 * @queue: message queue 440 * @cur_msg: the currently in-flight message 441 * @cur_msg_completion: a completion for the current in-flight message 442 * @cur_msg_incomplete: Flag used internally to opportunistically skip 443 * the @cur_msg_completion. This flag is used to check if the driver has 444 * already called spi_finalize_current_message(). 445 * @cur_msg_need_completion: Flag used internally to opportunistically skip 446 * the @cur_msg_completion. This flag is used to signal the context that 447 * is running spi_finalize_current_message() that it needs to complete() 448 * @fallback: fallback to PIO if DMA transfer return failure with 449 * SPI_TRANS_FAIL_NO_START. 450 * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs. 451 * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip 452 * selected 453 * @last_cs_index_mask: bit mask the last chip selects that were used 454 * @xfer_completion: used by core transfer_one_message() 455 * @busy: message pump is busy 456 * @running: message pump is running 457 * @rt: whether this queue is set to run as a realtime task 458 * @auto_runtime_pm: the core should ensure a runtime PM reference is held 459 * while the hardware is prepared, using the parent 460 * device for the spidev 461 * @max_dma_len: Maximum length of a DMA transfer for the device. 462 * @prepare_transfer_hardware: a message will soon arrive from the queue 463 * so the subsystem requests the driver to prepare the transfer hardware 464 * by issuing this call 465 * @transfer_one_message: the subsystem calls the driver to transfer a single 466 * message while queuing transfers that arrive in the meantime. When the 467 * driver is finished with this message, it must call 468 * spi_finalize_current_message() so the subsystem can issue the next 469 * message 470 * @unprepare_transfer_hardware: there are currently no more messages on the 471 * queue so the subsystem notifies the driver that it may relax the 472 * hardware by issuing this call 473 * 474 * @set_cs: set the logic level of the chip select line. May be called 475 * from interrupt context. 476 * @optimize_message: optimize the message for reuse 477 * @unoptimize_message: release resources allocated by optimize_message 478 * @prepare_message: set up the controller to transfer a single message, 479 * for example doing DMA mapping. Called from threaded 480 * context. 481 * @transfer_one: transfer a single spi_transfer. 482 * 483 * - return 0 if the transfer is finished, 484 * - return 1 if the transfer is still in progress. When 485 * the driver is finished with this transfer it must 486 * call spi_finalize_current_transfer() so the subsystem 487 * can issue the next transfer. If the transfer fails, the 488 * driver must set the flag SPI_TRANS_FAIL_IO to 489 * spi_transfer->error first, before calling 490 * spi_finalize_current_transfer(). 491 * Note: transfer_one and transfer_one_message are mutually 492 * exclusive; when both are set, the generic subsystem does 493 * not call your transfer_one callback. 494 * @handle_err: the subsystem calls the driver to handle an error that occurs 495 * in the generic implementation of transfer_one_message(). 496 * @mem_ops: optimized/dedicated operations for interactions with SPI memory. 497 * This field is optional and should only be implemented if the 498 * controller has native support for memory like operations. 499 * @mem_caps: controller capabilities for the handling of memory operations. 500 * @unprepare_message: undo any work done by prepare_message(). 501 * @target_abort: abort the ongoing transfer request on an SPI target controller 502 * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS 503 * number. Any individual value may be NULL for CS lines that 504 * are not GPIOs (driven by the SPI controller itself). 505 * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab 506 * GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have 507 * the cs_gpiod assigned if a GPIO line is found for the chipselect. 508 * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will 509 * fill in this field with the first unused native CS, to be used by SPI 510 * controller drivers that need to drive a native CS when using GPIO CS. 511 * @max_native_cs: When cs_gpiods is used, and this field is filled in, 512 * spi_register_controller() will validate all native CS (including the 513 * unused native CS) against this value. 514 * @pcpu_statistics: statistics for the spi_controller 515 * @dma_tx: DMA transmit channel 516 * @dma_rx: DMA receive channel 517 * @dummy_rx: dummy receive buffer for full-duplex devices 518 * @dummy_tx: dummy transmit buffer for full-duplex devices 519 * @fw_translate_cs: If the boot firmware uses different numbering scheme 520 * what Linux expects, this optional hook can be used to translate 521 * between the two. 522 * @ptp_sts_supported: If the driver sets this to true, it must provide a 523 * time snapshot in @spi_transfer->ptp_sts as close as possible to the 524 * moment in time when @spi_transfer->ptp_sts_word_pre and 525 * @spi_transfer->ptp_sts_word_post were transmitted. 526 * If the driver does not set this, the SPI core takes the snapshot as 527 * close to the driver hand-over as possible. 528 * @irq_flags: Interrupt enable state during PTP system timestamping 529 * @queue_empty: signal green light for opportunistically skipping the queue 530 * for spi_sync transfers. 531 * @must_async: disable all fast paths in the core 532 * @defer_optimize_message: set to true if controller cannot pre-optimize messages 533 * and needs to defer the optimization step until the message is actually 534 * being transferred 535 * 536 * Each SPI controller can communicate with one or more @spi_device 537 * children. These make a small bus, sharing MOSI, MISO and SCK signals 538 * but not chip select signals. Each device may be configured to use a 539 * different clock rate, since those shared signals are ignored unless 540 * the chip is selected. 541 * 542 * The driver for an SPI controller manages access to those devices through 543 * a queue of spi_message transactions, copying data between CPU memory and 544 * an SPI slave device. For each such message it queues, it calls the 545 * message's completion function when the transaction completes. 546 */ 547 struct spi_controller { 548 struct device dev; 549 550 struct list_head list; 551 552 /* 553 * Other than negative (== assign one dynamically), bus_num is fully 554 * board-specific. Usually that simplifies to being SoC-specific. 555 * example: one SoC has three SPI controllers, numbered 0..2, 556 * and one board's schematics might show it using SPI-2. Software 557 * would normally use bus_num=2 for that controller. 558 */ 559 s16 bus_num; 560 561 /* 562 * Chipselects will be integral to many controllers; some others 563 * might use board-specific GPIOs. 564 */ 565 u16 num_chipselect; 566 567 /* Some SPI controllers pose alignment requirements on DMAable 568 * buffers; let protocol drivers know about these requirements. 569 */ 570 u16 dma_alignment; 571 572 /* spi_device.mode flags understood by this controller driver */ 573 u32 mode_bits; 574 575 /* spi_device.mode flags override flags for this controller */ 576 u32 buswidth_override_bits; 577 578 /* Bitmask of supported bits_per_word for transfers */ 579 u32 bits_per_word_mask; 580 #define SPI_BPW_MASK(bits) BIT((bits) - 1) 581 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1) 582 583 /* Limits on transfer speed */ 584 u32 min_speed_hz; 585 u32 max_speed_hz; 586 587 /* Other constraints relevant to this driver */ 588 u16 flags; 589 #define SPI_CONTROLLER_HALF_DUPLEX BIT(0) /* Can't do full duplex */ 590 #define SPI_CONTROLLER_NO_RX BIT(1) /* Can't do buffer read */ 591 #define SPI_CONTROLLER_NO_TX BIT(2) /* Can't do buffer write */ 592 #define SPI_CONTROLLER_MUST_RX BIT(3) /* Requires rx */ 593 #define SPI_CONTROLLER_MUST_TX BIT(4) /* Requires tx */ 594 #define SPI_CONTROLLER_GPIO_SS BIT(5) /* GPIO CS must select slave */ 595 #define SPI_CONTROLLER_SUSPENDED BIT(6) /* Currently suspended */ 596 /* 597 * The spi-controller has multi chip select capability and can 598 * assert/de-assert more than one chip select at once. 599 */ 600 #define SPI_CONTROLLER_MULTI_CS BIT(7) 601 602 /* Flag indicating if the allocation of this struct is devres-managed */ 603 bool devm_allocated; 604 605 union { 606 /* Flag indicating this is an SPI slave controller */ 607 bool slave; 608 /* Flag indicating this is an SPI target controller */ 609 bool target; 610 }; 611 612 /* 613 * On some hardware transfer / message size may be constrained 614 * the limit may depend on device transfer settings. 615 */ 616 size_t (*max_transfer_size)(struct spi_device *spi); 617 size_t (*max_message_size)(struct spi_device *spi); 618 619 /* I/O mutex */ 620 struct mutex io_mutex; 621 622 /* Used to avoid adding the same CS twice */ 623 struct mutex add_lock; 624 625 /* Lock and mutex for SPI bus locking */ 626 spinlock_t bus_lock_spinlock; 627 struct mutex bus_lock_mutex; 628 629 /* Flag indicating that the SPI bus is locked for exclusive use */ 630 bool bus_lock_flag; 631 632 /* 633 * Setup mode and clock, etc (SPI driver may call many times). 634 * 635 * IMPORTANT: this may be called when transfers to another 636 * device are active. DO NOT UPDATE SHARED REGISTERS in ways 637 * which could break those transfers. 638 */ 639 int (*setup)(struct spi_device *spi); 640 641 /* 642 * set_cs_timing() method is for SPI controllers that supports 643 * configuring CS timing. 644 * 645 * This hook allows SPI client drivers to request SPI controllers 646 * to configure specific CS timing through spi_set_cs_timing() after 647 * spi_setup(). 648 */ 649 int (*set_cs_timing)(struct spi_device *spi); 650 651 /* 652 * Bidirectional bulk transfers 653 * 654 * + The transfer() method may not sleep; its main role is 655 * just to add the message to the queue. 656 * + For now there's no remove-from-queue operation, or 657 * any other request management 658 * + To a given spi_device, message queueing is pure FIFO 659 * 660 * + The controller's main job is to process its message queue, 661 * selecting a chip (for masters), then transferring data 662 * + If there are multiple spi_device children, the i/o queue 663 * arbitration algorithm is unspecified (round robin, FIFO, 664 * priority, reservations, preemption, etc) 665 * 666 * + Chipselect stays active during the entire message 667 * (unless modified by spi_transfer.cs_change != 0). 668 * + The message transfers use clock and SPI mode parameters 669 * previously established by setup() for this device 670 */ 671 int (*transfer)(struct spi_device *spi, 672 struct spi_message *mesg); 673 674 /* Called on release() to free memory provided by spi_controller */ 675 void (*cleanup)(struct spi_device *spi); 676 677 /* 678 * Used to enable core support for DMA handling, if can_dma() 679 * exists and returns true then the transfer will be mapped 680 * prior to transfer_one() being called. The driver should 681 * not modify or store xfer and dma_tx and dma_rx must be set 682 * while the device is prepared. 683 */ 684 bool (*can_dma)(struct spi_controller *ctlr, 685 struct spi_device *spi, 686 struct spi_transfer *xfer); 687 struct device *dma_map_dev; 688 struct device *cur_rx_dma_dev; 689 struct device *cur_tx_dma_dev; 690 691 /* 692 * These hooks are for drivers that want to use the generic 693 * controller transfer queueing mechanism. If these are used, the 694 * transfer() function above must NOT be specified by the driver. 695 * Over time we expect SPI drivers to be phased over to this API. 696 */ 697 bool queued; 698 struct kthread_worker *kworker; 699 struct kthread_work pump_messages; 700 spinlock_t queue_lock; 701 struct list_head queue; 702 struct spi_message *cur_msg; 703 struct completion cur_msg_completion; 704 bool cur_msg_incomplete; 705 bool cur_msg_need_completion; 706 bool busy; 707 bool running; 708 bool rt; 709 bool auto_runtime_pm; 710 bool fallback; 711 bool last_cs_mode_high; 712 s8 last_cs[SPI_CS_CNT_MAX]; 713 u32 last_cs_index_mask : SPI_CS_CNT_MAX; 714 struct completion xfer_completion; 715 size_t max_dma_len; 716 717 int (*optimize_message)(struct spi_message *msg); 718 int (*unoptimize_message)(struct spi_message *msg); 719 int (*prepare_transfer_hardware)(struct spi_controller *ctlr); 720 int (*transfer_one_message)(struct spi_controller *ctlr, 721 struct spi_message *mesg); 722 int (*unprepare_transfer_hardware)(struct spi_controller *ctlr); 723 int (*prepare_message)(struct spi_controller *ctlr, 724 struct spi_message *message); 725 int (*unprepare_message)(struct spi_controller *ctlr, 726 struct spi_message *message); 727 int (*target_abort)(struct spi_controller *ctlr); 728 729 /* 730 * These hooks are for drivers that use a generic implementation 731 * of transfer_one_message() provided by the core. 732 */ 733 void (*set_cs)(struct spi_device *spi, bool enable); 734 int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi, 735 struct spi_transfer *transfer); 736 void (*handle_err)(struct spi_controller *ctlr, 737 struct spi_message *message); 738 739 /* Optimized handlers for SPI memory-like operations. */ 740 const struct spi_controller_mem_ops *mem_ops; 741 const struct spi_controller_mem_caps *mem_caps; 742 743 /* GPIO chip select */ 744 struct gpio_desc **cs_gpiods; 745 bool use_gpio_descriptors; 746 s8 unused_native_cs; 747 s8 max_native_cs; 748 749 /* Statistics */ 750 struct spi_statistics __percpu *pcpu_statistics; 751 752 /* DMA channels for use with core dmaengine helpers */ 753 struct dma_chan *dma_tx; 754 struct dma_chan *dma_rx; 755 756 /* Dummy data for full duplex devices */ 757 void *dummy_rx; 758 void *dummy_tx; 759 760 int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs); 761 762 /* 763 * Driver sets this field to indicate it is able to snapshot SPI 764 * transfers (needed e.g. for reading the time of POSIX clocks) 765 */ 766 bool ptp_sts_supported; 767 768 /* Interrupt enable state during PTP system timestamping */ 769 unsigned long irq_flags; 770 771 /* Flag for enabling opportunistic skipping of the queue in spi_sync */ 772 bool queue_empty; 773 bool must_async; 774 bool defer_optimize_message; 775 }; 776 spi_controller_get_devdata(struct spi_controller * ctlr)777 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr) 778 { 779 return dev_get_drvdata(&ctlr->dev); 780 } 781 spi_controller_set_devdata(struct spi_controller * ctlr,void * data)782 static inline void spi_controller_set_devdata(struct spi_controller *ctlr, 783 void *data) 784 { 785 dev_set_drvdata(&ctlr->dev, data); 786 } 787 spi_controller_get(struct spi_controller * ctlr)788 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr) 789 { 790 if (!ctlr || !get_device(&ctlr->dev)) 791 return NULL; 792 return ctlr; 793 } 794 spi_controller_put(struct spi_controller * ctlr)795 static inline void spi_controller_put(struct spi_controller *ctlr) 796 { 797 if (ctlr) 798 put_device(&ctlr->dev); 799 } 800 spi_controller_is_target(struct spi_controller * ctlr)801 static inline bool spi_controller_is_target(struct spi_controller *ctlr) 802 { 803 return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target; 804 } 805 806 /* PM calls that need to be issued by the driver */ 807 extern int spi_controller_suspend(struct spi_controller *ctlr); 808 extern int spi_controller_resume(struct spi_controller *ctlr); 809 810 /* Calls the driver make to interact with the message queue */ 811 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr); 812 extern void spi_finalize_current_message(struct spi_controller *ctlr); 813 extern void spi_finalize_current_transfer(struct spi_controller *ctlr); 814 815 /* Helper calls for driver to timestamp transfer */ 816 void spi_take_timestamp_pre(struct spi_controller *ctlr, 817 struct spi_transfer *xfer, 818 size_t progress, bool irqs_off); 819 void spi_take_timestamp_post(struct spi_controller *ctlr, 820 struct spi_transfer *xfer, 821 size_t progress, bool irqs_off); 822 823 /* The SPI driver core manages memory for the spi_controller classdev */ 824 extern struct spi_controller *__spi_alloc_controller(struct device *host, 825 unsigned int size, bool slave); 826 spi_alloc_master(struct device * host,unsigned int size)827 static inline struct spi_controller *spi_alloc_master(struct device *host, 828 unsigned int size) 829 { 830 return __spi_alloc_controller(host, size, false); 831 } 832 spi_alloc_slave(struct device * host,unsigned int size)833 static inline struct spi_controller *spi_alloc_slave(struct device *host, 834 unsigned int size) 835 { 836 if (!IS_ENABLED(CONFIG_SPI_SLAVE)) 837 return NULL; 838 839 return __spi_alloc_controller(host, size, true); 840 } 841 spi_alloc_host(struct device * dev,unsigned int size)842 static inline struct spi_controller *spi_alloc_host(struct device *dev, 843 unsigned int size) 844 { 845 return __spi_alloc_controller(dev, size, false); 846 } 847 spi_alloc_target(struct device * dev,unsigned int size)848 static inline struct spi_controller *spi_alloc_target(struct device *dev, 849 unsigned int size) 850 { 851 if (!IS_ENABLED(CONFIG_SPI_SLAVE)) 852 return NULL; 853 854 return __spi_alloc_controller(dev, size, true); 855 } 856 857 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 858 unsigned int size, 859 bool slave); 860 devm_spi_alloc_master(struct device * dev,unsigned int size)861 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev, 862 unsigned int size) 863 { 864 return __devm_spi_alloc_controller(dev, size, false); 865 } 866 devm_spi_alloc_slave(struct device * dev,unsigned int size)867 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev, 868 unsigned int size) 869 { 870 if (!IS_ENABLED(CONFIG_SPI_SLAVE)) 871 return NULL; 872 873 return __devm_spi_alloc_controller(dev, size, true); 874 } 875 devm_spi_alloc_host(struct device * dev,unsigned int size)876 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev, 877 unsigned int size) 878 { 879 return __devm_spi_alloc_controller(dev, size, false); 880 } 881 devm_spi_alloc_target(struct device * dev,unsigned int size)882 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev, 883 unsigned int size) 884 { 885 if (!IS_ENABLED(CONFIG_SPI_SLAVE)) 886 return NULL; 887 888 return __devm_spi_alloc_controller(dev, size, true); 889 } 890 891 extern int spi_register_controller(struct spi_controller *ctlr); 892 extern int devm_spi_register_controller(struct device *dev, 893 struct spi_controller *ctlr); 894 extern void spi_unregister_controller(struct spi_controller *ctlr); 895 896 #if IS_ENABLED(CONFIG_ACPI) && IS_ENABLED(CONFIG_SPI_MASTER) 897 extern struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 898 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 899 struct acpi_device *adev, 900 int index); 901 int acpi_spi_count_resources(struct acpi_device *adev); 902 #else acpi_spi_find_controller_by_adev(struct acpi_device * adev)903 static inline struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 904 { 905 return NULL; 906 } 907 acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)908 static inline struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 909 struct acpi_device *adev, 910 int index) 911 { 912 return ERR_PTR(-ENODEV); 913 } 914 acpi_spi_count_resources(struct acpi_device * adev)915 static inline int acpi_spi_count_resources(struct acpi_device *adev) 916 { 917 return 0; 918 } 919 #endif 920 921 /* 922 * SPI resource management while processing a SPI message 923 */ 924 925 typedef void (*spi_res_release_t)(struct spi_controller *ctlr, 926 struct spi_message *msg, 927 void *res); 928 929 /** 930 * struct spi_res - SPI resource management structure 931 * @entry: list entry 932 * @release: release code called prior to freeing this resource 933 * @data: extra data allocated for the specific use-case 934 * 935 * This is based on ideas from devres, but focused on life-cycle 936 * management during spi_message processing. 937 */ 938 struct spi_res { 939 struct list_head entry; 940 spi_res_release_t release; 941 unsigned long long data[]; /* Guarantee ull alignment */ 942 }; 943 944 /*---------------------------------------------------------------------------*/ 945 946 /* 947 * I/O INTERFACE between SPI controller and protocol drivers 948 * 949 * Protocol drivers use a queue of spi_messages, each transferring data 950 * between the controller and memory buffers. 951 * 952 * The spi_messages themselves consist of a series of read+write transfer 953 * segments. Those segments always read the same number of bits as they 954 * write; but one or the other is easily ignored by passing a NULL buffer 955 * pointer. (This is unlike most types of I/O API, because SPI hardware 956 * is full duplex.) 957 * 958 * NOTE: Allocation of spi_transfer and spi_message memory is entirely 959 * up to the protocol driver, which guarantees the integrity of both (as 960 * well as the data buffers) for as long as the message is queued. 961 */ 962 963 /** 964 * struct spi_transfer - a read/write buffer pair 965 * @tx_buf: data to be written (DMA-safe memory), or NULL 966 * @rx_buf: data to be read (DMA-safe memory), or NULL 967 * @tx_dma: DMA address of tx_buf, currently not for client use 968 * @rx_dma: DMA address of rx_buf, currently not for client use 969 * @tx_nbits: number of bits used for writing. If 0 the default 970 * (SPI_NBITS_SINGLE) is used. 971 * @rx_nbits: number of bits used for reading. If 0 the default 972 * (SPI_NBITS_SINGLE) is used. 973 * @len: size of rx and tx buffers (in bytes) 974 * @speed_hz: Select a speed other than the device default for this 975 * transfer. If 0 the default (from @spi_device) is used. 976 * @bits_per_word: select a bits_per_word other than the device default 977 * for this transfer. If 0 the default (from @spi_device) is used. 978 * @dummy_data: indicates transfer is dummy bytes transfer. 979 * @cs_off: performs the transfer with chipselect off. 980 * @cs_change: affects chipselect after this transfer completes 981 * @cs_change_delay: delay between cs deassert and assert when 982 * @cs_change is set and @spi_transfer is not the last in @spi_message 983 * @delay: delay to be introduced after this transfer before 984 * (optionally) changing the chipselect status, then starting 985 * the next transfer or completing this @spi_message. 986 * @word_delay: inter word delay to be introduced after each word size 987 * (set by bits_per_word) transmission. 988 * @effective_speed_hz: the effective SCK-speed that was used to 989 * transfer this transfer. Set to 0 if the SPI bus driver does 990 * not support it. 991 * @transfer_list: transfers are sequenced through @spi_message.transfers 992 * @tx_sg_mapped: If true, the @tx_sg is mapped for DMA 993 * @rx_sg_mapped: If true, the @rx_sg is mapped for DMA 994 * @tx_sg: Scatterlist for transmit, currently not for client use 995 * @rx_sg: Scatterlist for receive, currently not for client use 996 * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset 997 * within @tx_buf for which the SPI device is requesting that the time 998 * snapshot for this transfer begins. Upon completing the SPI transfer, 999 * this value may have changed compared to what was requested, depending 1000 * on the available snapshotting resolution (DMA transfer, 1001 * @ptp_sts_supported is false, etc). 1002 * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning 1003 * that a single byte should be snapshotted). 1004 * If the core takes care of the timestamp (if @ptp_sts_supported is false 1005 * for this controller), it will set @ptp_sts_word_pre to 0, and 1006 * @ptp_sts_word_post to the length of the transfer. This is done 1007 * purposefully (instead of setting to spi_transfer->len - 1) to denote 1008 * that a transfer-level snapshot taken from within the driver may still 1009 * be of higher quality. 1010 * @ptp_sts: Pointer to a memory location held by the SPI slave device where a 1011 * PTP system timestamp structure may lie. If drivers use PIO or their 1012 * hardware has some sort of assist for retrieving exact transfer timing, 1013 * they can (and should) assert @ptp_sts_supported and populate this 1014 * structure using the ptp_read_system_*ts helper functions. 1015 * The timestamp must represent the time at which the SPI slave device has 1016 * processed the word, i.e. the "pre" timestamp should be taken before 1017 * transmitting the "pre" word, and the "post" timestamp after receiving 1018 * transmit confirmation from the controller for the "post" word. 1019 * @timestamped: true if the transfer has been timestamped 1020 * @error: Error status logged by SPI controller driver. 1021 * 1022 * SPI transfers always write the same number of bytes as they read. 1023 * Protocol drivers should always provide @rx_buf and/or @tx_buf. 1024 * In some cases, they may also want to provide DMA addresses for 1025 * the data being transferred; that may reduce overhead, when the 1026 * underlying driver uses DMA. 1027 * 1028 * If the transmit buffer is NULL, zeroes will be shifted out 1029 * while filling @rx_buf. If the receive buffer is NULL, the data 1030 * shifted in will be discarded. Only "len" bytes shift out (or in). 1031 * It's an error to try to shift out a partial word. (For example, by 1032 * shifting out three bytes with word size of sixteen or twenty bits; 1033 * the former uses two bytes per word, the latter uses four bytes.) 1034 * 1035 * In-memory data values are always in native CPU byte order, translated 1036 * from the wire byte order (big-endian except with SPI_LSB_FIRST). So 1037 * for example when bits_per_word is sixteen, buffers are 2N bytes long 1038 * (@len = 2N) and hold N sixteen bit words in CPU byte order. 1039 * 1040 * When the word size of the SPI transfer is not a power-of-two multiple 1041 * of eight bits, those in-memory words include extra bits. In-memory 1042 * words are always seen by protocol drivers as right-justified, so the 1043 * undefined (rx) or unused (tx) bits are always the most significant bits. 1044 * 1045 * All SPI transfers start with the relevant chipselect active. Normally 1046 * it stays selected until after the last transfer in a message. Drivers 1047 * can affect the chipselect signal using cs_change. 1048 * 1049 * (i) If the transfer isn't the last one in the message, this flag is 1050 * used to make the chipselect briefly go inactive in the middle of the 1051 * message. Toggling chipselect in this way may be needed to terminate 1052 * a chip command, letting a single spi_message perform all of group of 1053 * chip transactions together. 1054 * 1055 * (ii) When the transfer is the last one in the message, the chip may 1056 * stay selected until the next transfer. On multi-device SPI busses 1057 * with nothing blocking messages going to other devices, this is just 1058 * a performance hint; starting a message to another device deselects 1059 * this one. But in other cases, this can be used to ensure correctness. 1060 * Some devices need protocol transactions to be built from a series of 1061 * spi_message submissions, where the content of one message is determined 1062 * by the results of previous messages and where the whole transaction 1063 * ends when the chipselect goes inactive. 1064 * 1065 * When SPI can transfer in 1x,2x or 4x. It can get this transfer information 1066 * from device through @tx_nbits and @rx_nbits. In Bi-direction, these 1067 * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x) 1068 * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer. 1069 * 1070 * The code that submits an spi_message (and its spi_transfers) 1071 * to the lower layers is responsible for managing its memory. 1072 * Zero-initialize every field you don't set up explicitly, to 1073 * insulate against future API updates. After you submit a message 1074 * and its transfers, ignore them until its completion callback. 1075 */ 1076 struct spi_transfer { 1077 /* 1078 * It's okay if tx_buf == rx_buf (right?). 1079 * For MicroWire, one buffer must be NULL. 1080 * Buffers must work with dma_*map_single() calls. 1081 */ 1082 const void *tx_buf; 1083 void *rx_buf; 1084 unsigned len; 1085 1086 #define SPI_TRANS_FAIL_NO_START BIT(0) 1087 #define SPI_TRANS_FAIL_IO BIT(1) 1088 u16 error; 1089 1090 bool tx_sg_mapped; 1091 bool rx_sg_mapped; 1092 1093 struct sg_table tx_sg; 1094 struct sg_table rx_sg; 1095 dma_addr_t tx_dma; 1096 dma_addr_t rx_dma; 1097 1098 unsigned dummy_data:1; 1099 unsigned cs_off:1; 1100 unsigned cs_change:1; 1101 unsigned tx_nbits:4; 1102 unsigned rx_nbits:4; 1103 unsigned timestamped:1; 1104 #define SPI_NBITS_SINGLE 0x01 /* 1-bit transfer */ 1105 #define SPI_NBITS_DUAL 0x02 /* 2-bit transfer */ 1106 #define SPI_NBITS_QUAD 0x04 /* 4-bit transfer */ 1107 #define SPI_NBITS_OCTAL 0x08 /* 8-bit transfer */ 1108 u8 bits_per_word; 1109 struct spi_delay delay; 1110 struct spi_delay cs_change_delay; 1111 struct spi_delay word_delay; 1112 u32 speed_hz; 1113 1114 u32 effective_speed_hz; 1115 1116 unsigned int ptp_sts_word_pre; 1117 unsigned int ptp_sts_word_post; 1118 1119 struct ptp_system_timestamp *ptp_sts; 1120 1121 struct list_head transfer_list; 1122 }; 1123 1124 /** 1125 * struct spi_message - one multi-segment SPI transaction 1126 * @transfers: list of transfer segments in this transaction 1127 * @spi: SPI device to which the transaction is queued 1128 * @pre_optimized: peripheral driver pre-optimized the message 1129 * @optimized: the message is in the optimized state 1130 * @prepared: spi_prepare_message was called for the this message 1131 * @status: zero for success, else negative errno 1132 * @complete: called to report transaction completions 1133 * @context: the argument to complete() when it's called 1134 * @frame_length: the total number of bytes in the message 1135 * @actual_length: the total number of bytes that were transferred in all 1136 * successful segments 1137 * @queue: for use by whichever driver currently owns the message 1138 * @state: for use by whichever driver currently owns the message 1139 * @opt_state: for use by whichever driver currently owns the message 1140 * @resources: for resource management when the SPI message is processed 1141 * 1142 * A @spi_message is used to execute an atomic sequence of data transfers, 1143 * each represented by a struct spi_transfer. The sequence is "atomic" 1144 * in the sense that no other spi_message may use that SPI bus until that 1145 * sequence completes. On some systems, many such sequences can execute as 1146 * a single programmed DMA transfer. On all systems, these messages are 1147 * queued, and might complete after transactions to other devices. Messages 1148 * sent to a given spi_device are always executed in FIFO order. 1149 * 1150 * The code that submits an spi_message (and its spi_transfers) 1151 * to the lower layers is responsible for managing its memory. 1152 * Zero-initialize every field you don't set up explicitly, to 1153 * insulate against future API updates. After you submit a message 1154 * and its transfers, ignore them until its completion callback. 1155 */ 1156 struct spi_message { 1157 struct list_head transfers; 1158 1159 struct spi_device *spi; 1160 1161 /* spi_optimize_message() was called for this message */ 1162 bool pre_optimized; 1163 /* __spi_optimize_message() was called for this message */ 1164 bool optimized; 1165 1166 /* spi_prepare_message() was called for this message */ 1167 bool prepared; 1168 1169 /* 1170 * REVISIT: we might want a flag affecting the behavior of the 1171 * last transfer ... allowing things like "read 16 bit length L" 1172 * immediately followed by "read L bytes". Basically imposing 1173 * a specific message scheduling algorithm. 1174 * 1175 * Some controller drivers (message-at-a-time queue processing) 1176 * could provide that as their default scheduling algorithm. But 1177 * others (with multi-message pipelines) could need a flag to 1178 * tell them about such special cases. 1179 */ 1180 1181 /* Completion is reported through a callback */ 1182 int status; 1183 void (*complete)(void *context); 1184 void *context; 1185 unsigned frame_length; 1186 unsigned actual_length; 1187 1188 /* 1189 * For optional use by whatever driver currently owns the 1190 * spi_message ... between calls to spi_async and then later 1191 * complete(), that's the spi_controller controller driver. 1192 */ 1193 struct list_head queue; 1194 void *state; 1195 /* 1196 * Optional state for use by controller driver between calls to 1197 * __spi_optimize_message() and __spi_unoptimize_message(). 1198 */ 1199 void *opt_state; 1200 1201 /* List of spi_res resources when the SPI message is processed */ 1202 struct list_head resources; 1203 }; 1204 spi_message_init_no_memset(struct spi_message * m)1205 static inline void spi_message_init_no_memset(struct spi_message *m) 1206 { 1207 INIT_LIST_HEAD(&m->transfers); 1208 INIT_LIST_HEAD(&m->resources); 1209 } 1210 spi_message_init(struct spi_message * m)1211 static inline void spi_message_init(struct spi_message *m) 1212 { 1213 memset(m, 0, sizeof *m); 1214 spi_message_init_no_memset(m); 1215 } 1216 1217 static inline void spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1218 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m) 1219 { 1220 list_add_tail(&t->transfer_list, &m->transfers); 1221 } 1222 1223 static inline void spi_transfer_del(struct spi_transfer * t)1224 spi_transfer_del(struct spi_transfer *t) 1225 { 1226 list_del(&t->transfer_list); 1227 } 1228 1229 static inline int spi_transfer_delay_exec(struct spi_transfer * t)1230 spi_transfer_delay_exec(struct spi_transfer *t) 1231 { 1232 return spi_delay_exec(&t->delay, t); 1233 } 1234 1235 /** 1236 * spi_message_init_with_transfers - Initialize spi_message and append transfers 1237 * @m: spi_message to be initialized 1238 * @xfers: An array of SPI transfers 1239 * @num_xfers: Number of items in the xfer array 1240 * 1241 * This function initializes the given spi_message and adds each spi_transfer in 1242 * the given array to the message. 1243 */ 1244 static inline void spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1245 spi_message_init_with_transfers(struct spi_message *m, 1246 struct spi_transfer *xfers, unsigned int num_xfers) 1247 { 1248 unsigned int i; 1249 1250 spi_message_init(m); 1251 for (i = 0; i < num_xfers; ++i) 1252 spi_message_add_tail(&xfers[i], m); 1253 } 1254 1255 /* 1256 * It's fine to embed message and transaction structures in other data 1257 * structures so long as you don't free them while they're in use. 1258 */ spi_message_alloc(unsigned ntrans,gfp_t flags)1259 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags) 1260 { 1261 struct spi_message_with_transfers { 1262 struct spi_message m; 1263 struct spi_transfer t[]; 1264 } *mwt; 1265 unsigned i; 1266 1267 mwt = kzalloc(struct_size(mwt, t, ntrans), flags); 1268 if (!mwt) 1269 return NULL; 1270 1271 spi_message_init_no_memset(&mwt->m); 1272 for (i = 0; i < ntrans; i++) 1273 spi_message_add_tail(&mwt->t[i], &mwt->m); 1274 1275 return &mwt->m; 1276 } 1277 spi_message_free(struct spi_message * m)1278 static inline void spi_message_free(struct spi_message *m) 1279 { 1280 kfree(m); 1281 } 1282 1283 extern int spi_optimize_message(struct spi_device *spi, struct spi_message *msg); 1284 extern void spi_unoptimize_message(struct spi_message *msg); 1285 extern int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 1286 struct spi_message *msg); 1287 1288 extern int spi_setup(struct spi_device *spi); 1289 extern int spi_async(struct spi_device *spi, struct spi_message *message); 1290 extern int spi_target_abort(struct spi_device *spi); 1291 1292 static inline size_t spi_max_message_size(struct spi_device * spi)1293 spi_max_message_size(struct spi_device *spi) 1294 { 1295 struct spi_controller *ctlr = spi->controller; 1296 1297 if (!ctlr->max_message_size) 1298 return SIZE_MAX; 1299 return ctlr->max_message_size(spi); 1300 } 1301 1302 static inline size_t spi_max_transfer_size(struct spi_device * spi)1303 spi_max_transfer_size(struct spi_device *spi) 1304 { 1305 struct spi_controller *ctlr = spi->controller; 1306 size_t tr_max = SIZE_MAX; 1307 size_t msg_max = spi_max_message_size(spi); 1308 1309 if (ctlr->max_transfer_size) 1310 tr_max = ctlr->max_transfer_size(spi); 1311 1312 /* Transfer size limit must not be greater than message size limit */ 1313 return min(tr_max, msg_max); 1314 } 1315 1316 /** 1317 * spi_is_bpw_supported - Check if bits per word is supported 1318 * @spi: SPI device 1319 * @bpw: Bits per word 1320 * 1321 * This function checks to see if the SPI controller supports @bpw. 1322 * 1323 * Returns: 1324 * True if @bpw is supported, false otherwise. 1325 */ spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1326 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw) 1327 { 1328 u32 bpw_mask = spi->controller->bits_per_word_mask; 1329 1330 if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw))) 1331 return true; 1332 1333 return false; 1334 } 1335 1336 /** 1337 * spi_controller_xfer_timeout - Compute a suitable timeout value 1338 * @ctlr: SPI device 1339 * @xfer: Transfer descriptor 1340 * 1341 * Compute a relevant timeout value for the given transfer. We derive the time 1342 * that it would take on a single data line and take twice this amount of time 1343 * with a minimum of 500ms to avoid false positives on loaded systems. 1344 * 1345 * Returns: Transfer timeout value in milliseconds. 1346 */ spi_controller_xfer_timeout(struct spi_controller * ctlr,struct spi_transfer * xfer)1347 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr, 1348 struct spi_transfer *xfer) 1349 { 1350 return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U); 1351 } 1352 1353 /*---------------------------------------------------------------------------*/ 1354 1355 /* SPI transfer replacement methods which make use of spi_res */ 1356 1357 struct spi_replaced_transfers; 1358 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr, 1359 struct spi_message *msg, 1360 struct spi_replaced_transfers *res); 1361 /** 1362 * struct spi_replaced_transfers - structure describing the spi_transfer 1363 * replacements that have occurred 1364 * so that they can get reverted 1365 * @release: some extra release code to get executed prior to 1366 * releasing this structure 1367 * @extradata: pointer to some extra data if requested or NULL 1368 * @replaced_transfers: transfers that have been replaced and which need 1369 * to get restored 1370 * @replaced_after: the transfer after which the @replaced_transfers 1371 * are to get re-inserted 1372 * @inserted: number of transfers inserted 1373 * @inserted_transfers: array of spi_transfers of array-size @inserted, 1374 * that have been replacing replaced_transfers 1375 * 1376 * Note: that @extradata will point to @inserted_transfers[@inserted] 1377 * if some extra allocation is requested, so alignment will be the same 1378 * as for spi_transfers. 1379 */ 1380 struct spi_replaced_transfers { 1381 spi_replaced_release_t release; 1382 void *extradata; 1383 struct list_head replaced_transfers; 1384 struct list_head *replaced_after; 1385 size_t inserted; 1386 struct spi_transfer inserted_transfers[]; 1387 }; 1388 1389 /*---------------------------------------------------------------------------*/ 1390 1391 /* SPI transfer transformation methods */ 1392 1393 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr, 1394 struct spi_message *msg, 1395 size_t maxsize); 1396 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr, 1397 struct spi_message *msg, 1398 size_t maxwords); 1399 1400 /*---------------------------------------------------------------------------*/ 1401 1402 /* 1403 * All these synchronous SPI transfer routines are utilities layered 1404 * over the core async transfer primitive. Here, "synchronous" means 1405 * they will sleep uninterruptibly until the async transfer completes. 1406 */ 1407 1408 extern int spi_sync(struct spi_device *spi, struct spi_message *message); 1409 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message); 1410 extern int spi_bus_lock(struct spi_controller *ctlr); 1411 extern int spi_bus_unlock(struct spi_controller *ctlr); 1412 1413 /** 1414 * spi_sync_transfer - synchronous SPI data transfer 1415 * @spi: device with which data will be exchanged 1416 * @xfers: An array of spi_transfers 1417 * @num_xfers: Number of items in the xfer array 1418 * Context: can sleep 1419 * 1420 * Does a synchronous SPI data transfer of the given spi_transfer array. 1421 * 1422 * For more specific semantics see spi_sync(). 1423 * 1424 * Return: zero on success, else a negative error code. 1425 */ 1426 static inline int spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1427 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers, 1428 unsigned int num_xfers) 1429 { 1430 struct spi_message msg; 1431 1432 spi_message_init_with_transfers(&msg, xfers, num_xfers); 1433 1434 return spi_sync(spi, &msg); 1435 } 1436 1437 /** 1438 * spi_write - SPI synchronous write 1439 * @spi: device to which data will be written 1440 * @buf: data buffer 1441 * @len: data buffer size 1442 * Context: can sleep 1443 * 1444 * This function writes the buffer @buf. 1445 * Callable only from contexts that can sleep. 1446 * 1447 * Return: zero on success, else a negative error code. 1448 */ 1449 static inline int spi_write(struct spi_device * spi,const void * buf,size_t len)1450 spi_write(struct spi_device *spi, const void *buf, size_t len) 1451 { 1452 struct spi_transfer t = { 1453 .tx_buf = buf, 1454 .len = len, 1455 }; 1456 1457 return spi_sync_transfer(spi, &t, 1); 1458 } 1459 1460 /** 1461 * spi_read - SPI synchronous read 1462 * @spi: device from which data will be read 1463 * @buf: data buffer 1464 * @len: data buffer size 1465 * Context: can sleep 1466 * 1467 * This function reads the buffer @buf. 1468 * Callable only from contexts that can sleep. 1469 * 1470 * Return: zero on success, else a negative error code. 1471 */ 1472 static inline int spi_read(struct spi_device * spi,void * buf,size_t len)1473 spi_read(struct spi_device *spi, void *buf, size_t len) 1474 { 1475 struct spi_transfer t = { 1476 .rx_buf = buf, 1477 .len = len, 1478 }; 1479 1480 return spi_sync_transfer(spi, &t, 1); 1481 } 1482 1483 /* This copies txbuf and rxbuf data; for small transfers only! */ 1484 extern int spi_write_then_read(struct spi_device *spi, 1485 const void *txbuf, unsigned n_tx, 1486 void *rxbuf, unsigned n_rx); 1487 1488 /** 1489 * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read 1490 * @spi: device with which data will be exchanged 1491 * @cmd: command to be written before data is read back 1492 * Context: can sleep 1493 * 1494 * Callable only from contexts that can sleep. 1495 * 1496 * Return: the (unsigned) eight bit number returned by the 1497 * device, or else a negative error code. 1498 */ spi_w8r8(struct spi_device * spi,u8 cmd)1499 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd) 1500 { 1501 ssize_t status; 1502 u8 result; 1503 1504 status = spi_write_then_read(spi, &cmd, 1, &result, 1); 1505 1506 /* Return negative errno or unsigned value */ 1507 return (status < 0) ? status : result; 1508 } 1509 1510 /** 1511 * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read 1512 * @spi: device with which data will be exchanged 1513 * @cmd: command to be written before data is read back 1514 * Context: can sleep 1515 * 1516 * The number is returned in wire-order, which is at least sometimes 1517 * big-endian. 1518 * 1519 * Callable only from contexts that can sleep. 1520 * 1521 * Return: the (unsigned) sixteen bit number returned by the 1522 * device, or else a negative error code. 1523 */ spi_w8r16(struct spi_device * spi,u8 cmd)1524 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd) 1525 { 1526 ssize_t status; 1527 u16 result; 1528 1529 status = spi_write_then_read(spi, &cmd, 1, &result, 2); 1530 1531 /* Return negative errno or unsigned value */ 1532 return (status < 0) ? status : result; 1533 } 1534 1535 /** 1536 * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read 1537 * @spi: device with which data will be exchanged 1538 * @cmd: command to be written before data is read back 1539 * Context: can sleep 1540 * 1541 * This function is similar to spi_w8r16, with the exception that it will 1542 * convert the read 16 bit data word from big-endian to native endianness. 1543 * 1544 * Callable only from contexts that can sleep. 1545 * 1546 * Return: the (unsigned) sixteen bit number returned by the device in CPU 1547 * endianness, or else a negative error code. 1548 */ spi_w8r16be(struct spi_device * spi,u8 cmd)1549 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd) 1550 1551 { 1552 ssize_t status; 1553 __be16 result; 1554 1555 status = spi_write_then_read(spi, &cmd, 1, &result, 2); 1556 if (status < 0) 1557 return status; 1558 1559 return be16_to_cpu(result); 1560 } 1561 1562 /*---------------------------------------------------------------------------*/ 1563 1564 /* 1565 * INTERFACE between board init code and SPI infrastructure. 1566 * 1567 * No SPI driver ever sees these SPI device table segments, but 1568 * it's how the SPI core (or adapters that get hotplugged) grows 1569 * the driver model tree. 1570 * 1571 * As a rule, SPI devices can't be probed. Instead, board init code 1572 * provides a table listing the devices which are present, with enough 1573 * information to bind and set up the device's driver. There's basic 1574 * support for non-static configurations too; enough to handle adding 1575 * parport adapters, or microcontrollers acting as USB-to-SPI bridges. 1576 */ 1577 1578 /** 1579 * struct spi_board_info - board-specific template for a SPI device 1580 * @modalias: Initializes spi_device.modalias; identifies the driver. 1581 * @platform_data: Initializes spi_device.platform_data; the particular 1582 * data stored there is driver-specific. 1583 * @swnode: Software node for the device. 1584 * @controller_data: Initializes spi_device.controller_data; some 1585 * controllers need hints about hardware setup, e.g. for DMA. 1586 * @irq: Initializes spi_device.irq; depends on how the board is wired. 1587 * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits 1588 * from the chip datasheet and board-specific signal quality issues. 1589 * @bus_num: Identifies which spi_controller parents the spi_device; unused 1590 * by spi_new_device(), and otherwise depends on board wiring. 1591 * @chip_select: Initializes spi_device.chip_select; depends on how 1592 * the board is wired. 1593 * @mode: Initializes spi_device.mode; based on the chip datasheet, board 1594 * wiring (some devices support both 3WIRE and standard modes), and 1595 * possibly presence of an inverter in the chipselect path. 1596 * 1597 * When adding new SPI devices to the device tree, these structures serve 1598 * as a partial device template. They hold information which can't always 1599 * be determined by drivers. Information that probe() can establish (such 1600 * as the default transfer wordsize) is not included here. 1601 * 1602 * These structures are used in two places. Their primary role is to 1603 * be stored in tables of board-specific device descriptors, which are 1604 * declared early in board initialization and then used (much later) to 1605 * populate a controller's device tree after the that controller's driver 1606 * initializes. A secondary (and atypical) role is as a parameter to 1607 * spi_new_device() call, which happens after those controller drivers 1608 * are active in some dynamic board configuration models. 1609 */ 1610 struct spi_board_info { 1611 /* 1612 * The device name and module name are coupled, like platform_bus; 1613 * "modalias" is normally the driver name. 1614 * 1615 * platform_data goes to spi_device.dev.platform_data, 1616 * controller_data goes to spi_device.controller_data, 1617 * IRQ is copied too. 1618 */ 1619 char modalias[SPI_NAME_SIZE]; 1620 const void *platform_data; 1621 const struct software_node *swnode; 1622 void *controller_data; 1623 int irq; 1624 1625 /* Slower signaling on noisy or low voltage boards */ 1626 u32 max_speed_hz; 1627 1628 1629 /* 1630 * bus_num is board specific and matches the bus_num of some 1631 * spi_controller that will probably be registered later. 1632 * 1633 * chip_select reflects how this chip is wired to that master; 1634 * it's less than num_chipselect. 1635 */ 1636 u16 bus_num; 1637 u16 chip_select; 1638 1639 /* 1640 * mode becomes spi_device.mode, and is essential for chips 1641 * where the default of SPI_CS_HIGH = 0 is wrong. 1642 */ 1643 u32 mode; 1644 1645 /* 1646 * ... may need additional spi_device chip config data here. 1647 * avoid stuff protocol drivers can set; but include stuff 1648 * needed to behave without being bound to a driver: 1649 * - quirks like clock rate mattering when not selected 1650 */ 1651 }; 1652 1653 #ifdef CONFIG_SPI 1654 extern int 1655 spi_register_board_info(struct spi_board_info const *info, unsigned n); 1656 #else 1657 /* Board init code may ignore whether SPI is configured or not */ 1658 static inline int spi_register_board_info(struct spi_board_info const * info,unsigned n)1659 spi_register_board_info(struct spi_board_info const *info, unsigned n) 1660 { return 0; } 1661 #endif 1662 1663 /* 1664 * If you're hotplugging an adapter with devices (parport, USB, etc) 1665 * use spi_new_device() to describe each device. You can also call 1666 * spi_unregister_device() to start making that device vanish, but 1667 * normally that would be handled by spi_unregister_controller(). 1668 * 1669 * You can also use spi_alloc_device() and spi_add_device() to use a two 1670 * stage registration sequence for each spi_device. This gives the caller 1671 * some more control over the spi_device structure before it is registered, 1672 * but requires that caller to initialize fields that would otherwise 1673 * be defined using the board info. 1674 */ 1675 extern struct spi_device * 1676 spi_alloc_device(struct spi_controller *ctlr); 1677 1678 extern int 1679 spi_add_device(struct spi_device *spi); 1680 1681 extern struct spi_device * 1682 spi_new_device(struct spi_controller *, struct spi_board_info *); 1683 1684 extern void spi_unregister_device(struct spi_device *spi); 1685 1686 extern const struct spi_device_id * 1687 spi_get_device_id(const struct spi_device *sdev); 1688 1689 extern const void * 1690 spi_get_device_match_data(const struct spi_device *sdev); 1691 1692 static inline bool spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1693 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer) 1694 { 1695 return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers); 1696 } 1697 1698 #endif /* __LINUX_SPI_H */ 1699