1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * sparse memory mappings.
4   */
5  #include <linux/mm.h>
6  #include <linux/slab.h>
7  #include <linux/mmzone.h>
8  #include <linux/memblock.h>
9  #include <linux/compiler.h>
10  #include <linux/highmem.h>
11  #include <linux/export.h>
12  #include <linux/spinlock.h>
13  #include <linux/vmalloc.h>
14  #include <linux/swap.h>
15  #include <linux/swapops.h>
16  #include <linux/bootmem_info.h>
17  #include <linux/vmstat.h>
18  #include "internal.h"
19  #include <asm/dma.h>
20  
21  /*
22   * Permanent SPARSEMEM data:
23   *
24   * 1) mem_section	- memory sections, mem_map's for valid memory
25   */
26  #ifdef CONFIG_SPARSEMEM_EXTREME
27  struct mem_section **mem_section;
28  #else
29  struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30  	____cacheline_internodealigned_in_smp;
31  #endif
32  EXPORT_SYMBOL(mem_section);
33  
34  #ifdef NODE_NOT_IN_PAGE_FLAGS
35  /*
36   * If we did not store the node number in the page then we have to
37   * do a lookup in the section_to_node_table in order to find which
38   * node the page belongs to.
39   */
40  #if MAX_NUMNODES <= 256
41  static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42  #else
43  static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44  #endif
45  
page_to_nid(const struct page * page)46  int page_to_nid(const struct page *page)
47  {
48  	return section_to_node_table[page_to_section(page)];
49  }
50  EXPORT_SYMBOL(page_to_nid);
51  
set_section_nid(unsigned long section_nr,int nid)52  static void set_section_nid(unsigned long section_nr, int nid)
53  {
54  	section_to_node_table[section_nr] = nid;
55  }
56  #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)57  static inline void set_section_nid(unsigned long section_nr, int nid)
58  {
59  }
60  #endif
61  
62  #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)63  static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64  {
65  	struct mem_section *section = NULL;
66  	unsigned long array_size = SECTIONS_PER_ROOT *
67  				   sizeof(struct mem_section);
68  
69  	if (slab_is_available()) {
70  		section = kzalloc_node(array_size, GFP_KERNEL, nid);
71  	} else {
72  		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73  					      nid);
74  		if (!section)
75  			panic("%s: Failed to allocate %lu bytes nid=%d\n",
76  			      __func__, array_size, nid);
77  	}
78  
79  	return section;
80  }
81  
sparse_index_init(unsigned long section_nr,int nid)82  static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83  {
84  	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85  	struct mem_section *section;
86  
87  	/*
88  	 * An existing section is possible in the sub-section hotplug
89  	 * case. First hot-add instantiates, follow-on hot-add reuses
90  	 * the existing section.
91  	 *
92  	 * The mem_hotplug_lock resolves the apparent race below.
93  	 */
94  	if (mem_section[root])
95  		return 0;
96  
97  	section = sparse_index_alloc(nid);
98  	if (!section)
99  		return -ENOMEM;
100  
101  	mem_section[root] = section;
102  
103  	return 0;
104  }
105  #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)106  static inline int sparse_index_init(unsigned long section_nr, int nid)
107  {
108  	return 0;
109  }
110  #endif
111  
112  /*
113   * During early boot, before section_mem_map is used for an actual
114   * mem_map, we use section_mem_map to store the section's NUMA
115   * node.  This keeps us from having to use another data structure.  The
116   * node information is cleared just before we store the real mem_map.
117   */
sparse_encode_early_nid(int nid)118  static inline unsigned long sparse_encode_early_nid(int nid)
119  {
120  	return ((unsigned long)nid << SECTION_NID_SHIFT);
121  }
122  
sparse_early_nid(struct mem_section * section)123  static inline int sparse_early_nid(struct mem_section *section)
124  {
125  	return (section->section_mem_map >> SECTION_NID_SHIFT);
126  }
127  
128  /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)129  static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130  						unsigned long *end_pfn)
131  {
132  	unsigned long max_sparsemem_pfn = (PHYSMEM_END + 1) >> PAGE_SHIFT;
133  
134  	/*
135  	 * Sanity checks - do not allow an architecture to pass
136  	 * in larger pfns than the maximum scope of sparsemem:
137  	 */
138  	if (*start_pfn > max_sparsemem_pfn) {
139  		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140  			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141  			*start_pfn, *end_pfn, max_sparsemem_pfn);
142  		WARN_ON_ONCE(1);
143  		*start_pfn = max_sparsemem_pfn;
144  		*end_pfn = max_sparsemem_pfn;
145  	} else if (*end_pfn > max_sparsemem_pfn) {
146  		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147  			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148  			*start_pfn, *end_pfn, max_sparsemem_pfn);
149  		WARN_ON_ONCE(1);
150  		*end_pfn = max_sparsemem_pfn;
151  	}
152  }
153  
154  /*
155   * There are a number of times that we loop over NR_MEM_SECTIONS,
156   * looking for section_present() on each.  But, when we have very
157   * large physical address spaces, NR_MEM_SECTIONS can also be
158   * very large which makes the loops quite long.
159   *
160   * Keeping track of this gives us an easy way to break out of
161   * those loops early.
162   */
163  unsigned long __highest_present_section_nr;
__section_mark_present(struct mem_section * ms,unsigned long section_nr)164  static void __section_mark_present(struct mem_section *ms,
165  		unsigned long section_nr)
166  {
167  	if (section_nr > __highest_present_section_nr)
168  		__highest_present_section_nr = section_nr;
169  
170  	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171  }
172  
173  #define for_each_present_section_nr(start, section_nr)		\
174  	for (section_nr = next_present_section_nr(start-1);	\
175  	     section_nr != -1;								\
176  	     section_nr = next_present_section_nr(section_nr))
177  
first_present_section_nr(void)178  static inline unsigned long first_present_section_nr(void)
179  {
180  	return next_present_section_nr(-1);
181  }
182  
183  #ifdef CONFIG_SPARSEMEM_VMEMMAP
subsection_mask_set(unsigned long * map,unsigned long pfn,unsigned long nr_pages)184  static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185  		unsigned long nr_pages)
186  {
187  	int idx = subsection_map_index(pfn);
188  	int end = subsection_map_index(pfn + nr_pages - 1);
189  
190  	bitmap_set(map, idx, end - idx + 1);
191  }
192  
subsection_map_init(unsigned long pfn,unsigned long nr_pages)193  void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194  {
195  	int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196  	unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
197  
198  	for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199  		struct mem_section *ms;
200  		unsigned long pfns;
201  
202  		pfns = min(nr_pages, PAGES_PER_SECTION
203  				- (pfn & ~PAGE_SECTION_MASK));
204  		ms = __nr_to_section(nr);
205  		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206  
207  		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208  				pfns, subsection_map_index(pfn),
209  				subsection_map_index(pfn + pfns - 1));
210  
211  		pfn += pfns;
212  		nr_pages -= pfns;
213  	}
214  }
215  #else
subsection_map_init(unsigned long pfn,unsigned long nr_pages)216  void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217  {
218  }
219  #endif
220  
221  /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)222  static void __init memory_present(int nid, unsigned long start, unsigned long end)
223  {
224  	unsigned long pfn;
225  
226  	start &= PAGE_SECTION_MASK;
227  	mminit_validate_memmodel_limits(&start, &end);
228  	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229  		unsigned long section_nr = pfn_to_section_nr(pfn);
230  		struct mem_section *ms;
231  
232  		sparse_index_init(section_nr, nid);
233  		set_section_nid(section_nr, nid);
234  
235  		ms = __nr_to_section(section_nr);
236  		if (!ms->section_mem_map) {
237  			ms->section_mem_map = sparse_encode_early_nid(nid) |
238  							SECTION_IS_ONLINE;
239  			__section_mark_present(ms, section_nr);
240  		}
241  	}
242  }
243  
244  /*
245   * Mark all memblocks as present using memory_present().
246   * This is a convenience function that is useful to mark all of the systems
247   * memory as present during initialization.
248   */
memblocks_present(void)249  static void __init memblocks_present(void)
250  {
251  	unsigned long start, end;
252  	int i, nid;
253  
254  #ifdef CONFIG_SPARSEMEM_EXTREME
255  	if (unlikely(!mem_section)) {
256  		unsigned long size, align;
257  
258  		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259  		align = 1 << (INTERNODE_CACHE_SHIFT);
260  		mem_section = memblock_alloc(size, align);
261  		if (!mem_section)
262  			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
263  			      __func__, size, align);
264  	}
265  #endif
266  
267  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
268  		memory_present(nid, start, end);
269  }
270  
271  /*
272   * Subtle, we encode the real pfn into the mem_map such that
273   * the identity pfn - section_mem_map will return the actual
274   * physical page frame number.
275   */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)276  static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
277  {
278  	unsigned long coded_mem_map =
279  		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
280  	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
281  	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
282  	return coded_mem_map;
283  }
284  
285  #ifdef CONFIG_MEMORY_HOTPLUG
286  /*
287   * Decode mem_map from the coded memmap
288   */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)289  struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
290  {
291  	/* mask off the extra low bits of information */
292  	coded_mem_map &= SECTION_MAP_MASK;
293  	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
294  }
295  #endif /* CONFIG_MEMORY_HOTPLUG */
296  
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,struct mem_section_usage * usage,unsigned long flags)297  static void __meminit sparse_init_one_section(struct mem_section *ms,
298  		unsigned long pnum, struct page *mem_map,
299  		struct mem_section_usage *usage, unsigned long flags)
300  {
301  	ms->section_mem_map &= ~SECTION_MAP_MASK;
302  	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
303  		| SECTION_HAS_MEM_MAP | flags;
304  	ms->usage = usage;
305  }
306  
usemap_size(void)307  static unsigned long usemap_size(void)
308  {
309  	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
310  }
311  
mem_section_usage_size(void)312  size_t mem_section_usage_size(void)
313  {
314  	return sizeof(struct mem_section_usage) + usemap_size();
315  }
316  
317  #ifdef CONFIG_MEMORY_HOTREMOVE
pgdat_to_phys(struct pglist_data * pgdat)318  static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
319  {
320  #ifndef CONFIG_NUMA
321  	VM_BUG_ON(pgdat != &contig_page_data);
322  	return __pa_symbol(&contig_page_data);
323  #else
324  	return __pa(pgdat);
325  #endif
326  }
327  
328  static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)329  sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
330  					 unsigned long size)
331  {
332  	struct mem_section_usage *usage;
333  	unsigned long goal, limit;
334  	int nid;
335  	/*
336  	 * A page may contain usemaps for other sections preventing the
337  	 * page being freed and making a section unremovable while
338  	 * other sections referencing the usemap remain active. Similarly,
339  	 * a pgdat can prevent a section being removed. If section A
340  	 * contains a pgdat and section B contains the usemap, both
341  	 * sections become inter-dependent. This allocates usemaps
342  	 * from the same section as the pgdat where possible to avoid
343  	 * this problem.
344  	 */
345  	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
346  	limit = goal + (1UL << PA_SECTION_SHIFT);
347  	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
348  again:
349  	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
350  	if (!usage && limit) {
351  		limit = MEMBLOCK_ALLOC_ACCESSIBLE;
352  		goto again;
353  	}
354  	return usage;
355  }
356  
check_usemap_section_nr(int nid,struct mem_section_usage * usage)357  static void __init check_usemap_section_nr(int nid,
358  		struct mem_section_usage *usage)
359  {
360  	unsigned long usemap_snr, pgdat_snr;
361  	static unsigned long old_usemap_snr;
362  	static unsigned long old_pgdat_snr;
363  	struct pglist_data *pgdat = NODE_DATA(nid);
364  	int usemap_nid;
365  
366  	/* First call */
367  	if (!old_usemap_snr) {
368  		old_usemap_snr = NR_MEM_SECTIONS;
369  		old_pgdat_snr = NR_MEM_SECTIONS;
370  	}
371  
372  	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
373  	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
374  	if (usemap_snr == pgdat_snr)
375  		return;
376  
377  	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
378  		/* skip redundant message */
379  		return;
380  
381  	old_usemap_snr = usemap_snr;
382  	old_pgdat_snr = pgdat_snr;
383  
384  	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
385  	if (usemap_nid != nid) {
386  		pr_info("node %d must be removed before remove section %ld\n",
387  			nid, usemap_snr);
388  		return;
389  	}
390  	/*
391  	 * There is a circular dependency.
392  	 * Some platforms allow un-removable section because they will just
393  	 * gather other removable sections for dynamic partitioning.
394  	 * Just notify un-removable section's number here.
395  	 */
396  	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
397  		usemap_snr, pgdat_snr, nid);
398  }
399  #else
400  static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)401  sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
402  					 unsigned long size)
403  {
404  	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
405  }
406  
check_usemap_section_nr(int nid,struct mem_section_usage * usage)407  static void __init check_usemap_section_nr(int nid,
408  		struct mem_section_usage *usage)
409  {
410  }
411  #endif /* CONFIG_MEMORY_HOTREMOVE */
412  
413  #ifdef CONFIG_SPARSEMEM_VMEMMAP
section_map_size(void)414  static unsigned long __init section_map_size(void)
415  {
416  	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
417  }
418  
419  #else
section_map_size(void)420  static unsigned long __init section_map_size(void)
421  {
422  	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
423  }
424  
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)425  struct page __init *__populate_section_memmap(unsigned long pfn,
426  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
427  		struct dev_pagemap *pgmap)
428  {
429  	unsigned long size = section_map_size();
430  	struct page *map = sparse_buffer_alloc(size);
431  	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
432  
433  	if (map)
434  		return map;
435  
436  	map = memmap_alloc(size, size, addr, nid, false);
437  	if (!map)
438  		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
439  		      __func__, size, PAGE_SIZE, nid, &addr);
440  
441  	return map;
442  }
443  #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444  
445  static void *sparsemap_buf __meminitdata;
446  static void *sparsemap_buf_end __meminitdata;
447  
sparse_buffer_free(unsigned long size)448  static inline void __meminit sparse_buffer_free(unsigned long size)
449  {
450  	WARN_ON(!sparsemap_buf || size == 0);
451  	memblock_free(sparsemap_buf, size);
452  }
453  
sparse_buffer_init(unsigned long size,int nid)454  static void __init sparse_buffer_init(unsigned long size, int nid)
455  {
456  	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457  	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
458  	/*
459  	 * Pre-allocated buffer is mainly used by __populate_section_memmap
460  	 * and we want it to be properly aligned to the section size - this is
461  	 * especially the case for VMEMMAP which maps memmap to PMDs
462  	 */
463  	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
464  	sparsemap_buf_end = sparsemap_buf + size;
465  #ifndef CONFIG_SPARSEMEM_VMEMMAP
466  	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
467  #endif
468  }
469  
sparse_buffer_fini(void)470  static void __init sparse_buffer_fini(void)
471  {
472  	unsigned long size = sparsemap_buf_end - sparsemap_buf;
473  
474  	if (sparsemap_buf && size > 0)
475  		sparse_buffer_free(size);
476  	sparsemap_buf = NULL;
477  }
478  
sparse_buffer_alloc(unsigned long size)479  void * __meminit sparse_buffer_alloc(unsigned long size)
480  {
481  	void *ptr = NULL;
482  
483  	if (sparsemap_buf) {
484  		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
485  		if (ptr + size > sparsemap_buf_end)
486  			ptr = NULL;
487  		else {
488  			/* Free redundant aligned space */
489  			if ((unsigned long)(ptr - sparsemap_buf) > 0)
490  				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
491  			sparsemap_buf = ptr + size;
492  		}
493  	}
494  	return ptr;
495  }
496  
vmemmap_populate_print_last(void)497  void __weak __meminit vmemmap_populate_print_last(void)
498  {
499  }
500  
501  /*
502   * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503   * And number of present sections in this node is map_count.
504   */
sparse_init_nid(int nid,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count)505  static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
506  				   unsigned long pnum_end,
507  				   unsigned long map_count)
508  {
509  	struct mem_section_usage *usage;
510  	unsigned long pnum;
511  	struct page *map;
512  
513  	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
514  			mem_section_usage_size() * map_count);
515  	if (!usage) {
516  		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
517  		goto failed;
518  	}
519  	sparse_buffer_init(map_count * section_map_size(), nid);
520  	for_each_present_section_nr(pnum_begin, pnum) {
521  		unsigned long pfn = section_nr_to_pfn(pnum);
522  
523  		if (pnum >= pnum_end)
524  			break;
525  
526  		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
527  				nid, NULL, NULL);
528  		if (!map) {
529  			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
530  			       __func__, nid);
531  			pnum_begin = pnum;
532  			sparse_buffer_fini();
533  			goto failed;
534  		}
535  		check_usemap_section_nr(nid, usage);
536  		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
537  				SECTION_IS_EARLY);
538  		usage = (void *) usage + mem_section_usage_size();
539  	}
540  	sparse_buffer_fini();
541  	return;
542  failed:
543  	/* We failed to allocate, mark all the following pnums as not present */
544  	for_each_present_section_nr(pnum_begin, pnum) {
545  		struct mem_section *ms;
546  
547  		if (pnum >= pnum_end)
548  			break;
549  		ms = __nr_to_section(pnum);
550  		ms->section_mem_map = 0;
551  	}
552  }
553  
554  /*
555   * Allocate the accumulated non-linear sections, allocate a mem_map
556   * for each and record the physical to section mapping.
557   */
sparse_init(void)558  void __init sparse_init(void)
559  {
560  	unsigned long pnum_end, pnum_begin, map_count = 1;
561  	int nid_begin;
562  
563  	/* see include/linux/mmzone.h 'struct mem_section' definition */
564  	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565  	memblocks_present();
566  
567  	pnum_begin = first_present_section_nr();
568  	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
569  
570  	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571  	set_pageblock_order();
572  
573  	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
574  		int nid = sparse_early_nid(__nr_to_section(pnum_end));
575  
576  		if (nid == nid_begin) {
577  			map_count++;
578  			continue;
579  		}
580  		/* Init node with sections in range [pnum_begin, pnum_end) */
581  		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
582  		nid_begin = nid;
583  		pnum_begin = pnum_end;
584  		map_count = 1;
585  	}
586  	/* cover the last node */
587  	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
588  	vmemmap_populate_print_last();
589  }
590  
591  #ifdef CONFIG_MEMORY_HOTPLUG
592  
593  /* Mark all memory sections within the pfn range as online */
online_mem_sections(unsigned long start_pfn,unsigned long end_pfn)594  void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
595  {
596  	unsigned long pfn;
597  
598  	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
599  		unsigned long section_nr = pfn_to_section_nr(pfn);
600  		struct mem_section *ms;
601  
602  		/* onlining code should never touch invalid ranges */
603  		if (WARN_ON(!valid_section_nr(section_nr)))
604  			continue;
605  
606  		ms = __nr_to_section(section_nr);
607  		ms->section_mem_map |= SECTION_IS_ONLINE;
608  	}
609  }
610  
611  /* Mark all memory sections within the pfn range as offline */
offline_mem_sections(unsigned long start_pfn,unsigned long end_pfn)612  void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
613  {
614  	unsigned long pfn;
615  
616  	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
617  		unsigned long section_nr = pfn_to_section_nr(pfn);
618  		struct mem_section *ms;
619  
620  		/*
621  		 * TODO this needs some double checking. Offlining code makes
622  		 * sure to check pfn_valid but those checks might be just bogus
623  		 */
624  		if (WARN_ON(!valid_section_nr(section_nr)))
625  			continue;
626  
627  		ms = __nr_to_section(section_nr);
628  		ms->section_mem_map &= ~SECTION_IS_ONLINE;
629  	}
630  }
631  
632  #ifdef CONFIG_SPARSEMEM_VMEMMAP
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)633  static struct page * __meminit populate_section_memmap(unsigned long pfn,
634  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
635  		struct dev_pagemap *pgmap)
636  {
637  	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
638  }
639  
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)640  static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
641  		struct vmem_altmap *altmap)
642  {
643  	unsigned long start = (unsigned long) pfn_to_page(pfn);
644  	unsigned long end = start + nr_pages * sizeof(struct page);
645  
646  	memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
647  	vmemmap_free(start, end, altmap);
648  }
free_map_bootmem(struct page * memmap)649  static void free_map_bootmem(struct page *memmap)
650  {
651  	unsigned long start = (unsigned long)memmap;
652  	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
653  
654  	vmemmap_free(start, end, NULL);
655  }
656  
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)657  static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
658  {
659  	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
660  	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
661  	struct mem_section *ms = __pfn_to_section(pfn);
662  	unsigned long *subsection_map = ms->usage
663  		? &ms->usage->subsection_map[0] : NULL;
664  
665  	subsection_mask_set(map, pfn, nr_pages);
666  	if (subsection_map)
667  		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
668  
669  	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
670  				"section already deactivated (%#lx + %ld)\n",
671  				pfn, nr_pages))
672  		return -EINVAL;
673  
674  	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
675  	return 0;
676  }
677  
is_subsection_map_empty(struct mem_section * ms)678  static bool is_subsection_map_empty(struct mem_section *ms)
679  {
680  	return bitmap_empty(&ms->usage->subsection_map[0],
681  			    SUBSECTIONS_PER_SECTION);
682  }
683  
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)684  static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
685  {
686  	struct mem_section *ms = __pfn_to_section(pfn);
687  	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
688  	unsigned long *subsection_map;
689  	int rc = 0;
690  
691  	subsection_mask_set(map, pfn, nr_pages);
692  
693  	subsection_map = &ms->usage->subsection_map[0];
694  
695  	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
696  		rc = -EINVAL;
697  	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
698  		rc = -EEXIST;
699  	else
700  		bitmap_or(subsection_map, map, subsection_map,
701  				SUBSECTIONS_PER_SECTION);
702  
703  	return rc;
704  }
705  #else
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)706  static struct page * __meminit populate_section_memmap(unsigned long pfn,
707  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
708  		struct dev_pagemap *pgmap)
709  {
710  	return kvmalloc_node(array_size(sizeof(struct page),
711  					PAGES_PER_SECTION), GFP_KERNEL, nid);
712  }
713  
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)714  static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
715  		struct vmem_altmap *altmap)
716  {
717  	kvfree(pfn_to_page(pfn));
718  }
719  
free_map_bootmem(struct page * memmap)720  static void free_map_bootmem(struct page *memmap)
721  {
722  	unsigned long maps_section_nr, removing_section_nr, i;
723  	unsigned long magic, nr_pages;
724  	struct page *page = virt_to_page(memmap);
725  
726  	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727  		>> PAGE_SHIFT;
728  
729  	for (i = 0; i < nr_pages; i++, page++) {
730  		magic = page->index;
731  
732  		BUG_ON(magic == NODE_INFO);
733  
734  		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
735  		removing_section_nr = page_private(page);
736  
737  		/*
738  		 * When this function is called, the removing section is
739  		 * logical offlined state. This means all pages are isolated
740  		 * from page allocator. If removing section's memmap is placed
741  		 * on the same section, it must not be freed.
742  		 * If it is freed, page allocator may allocate it which will
743  		 * be removed physically soon.
744  		 */
745  		if (maps_section_nr != removing_section_nr)
746  			put_page_bootmem(page);
747  	}
748  }
749  
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)750  static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
751  {
752  	return 0;
753  }
754  
is_subsection_map_empty(struct mem_section * ms)755  static bool is_subsection_map_empty(struct mem_section *ms)
756  {
757  	return true;
758  }
759  
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)760  static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
761  {
762  	return 0;
763  }
764  #endif /* CONFIG_SPARSEMEM_VMEMMAP */
765  
766  /*
767   * To deactivate a memory region, there are 3 cases to handle across
768   * two configurations (SPARSEMEM_VMEMMAP={y,n}):
769   *
770   * 1. deactivation of a partial hot-added section (only possible in
771   *    the SPARSEMEM_VMEMMAP=y case).
772   *      a) section was present at memory init.
773   *      b) section was hot-added post memory init.
774   * 2. deactivation of a complete hot-added section.
775   * 3. deactivation of a complete section from memory init.
776   *
777   * For 1, when subsection_map does not empty we will not be freeing the
778   * usage map, but still need to free the vmemmap range.
779   *
780   * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
781   */
section_deactivate(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)782  static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
783  		struct vmem_altmap *altmap)
784  {
785  	struct mem_section *ms = __pfn_to_section(pfn);
786  	bool section_is_early = early_section(ms);
787  	struct page *memmap = NULL;
788  	bool empty;
789  
790  	if (clear_subsection_map(pfn, nr_pages))
791  		return;
792  
793  	empty = is_subsection_map_empty(ms);
794  	if (empty) {
795  		unsigned long section_nr = pfn_to_section_nr(pfn);
796  
797  		/*
798  		 * Mark the section invalid so that valid_section()
799  		 * return false. This prevents code from dereferencing
800  		 * ms->usage array.
801  		 */
802  		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
803  
804  		/*
805  		 * When removing an early section, the usage map is kept (as the
806  		 * usage maps of other sections fall into the same page). It
807  		 * will be re-used when re-adding the section - which is then no
808  		 * longer an early section. If the usage map is PageReserved, it
809  		 * was allocated during boot.
810  		 */
811  		if (!PageReserved(virt_to_page(ms->usage))) {
812  			kfree_rcu(ms->usage, rcu);
813  			WRITE_ONCE(ms->usage, NULL);
814  		}
815  		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
816  	}
817  
818  	/*
819  	 * The memmap of early sections is always fully populated. See
820  	 * section_activate() and pfn_valid() .
821  	 */
822  	if (!section_is_early)
823  		depopulate_section_memmap(pfn, nr_pages, altmap);
824  	else if (memmap)
825  		free_map_bootmem(memmap);
826  
827  	if (empty)
828  		ms->section_mem_map = (unsigned long)NULL;
829  }
830  
section_activate(int nid,unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)831  static struct page * __meminit section_activate(int nid, unsigned long pfn,
832  		unsigned long nr_pages, struct vmem_altmap *altmap,
833  		struct dev_pagemap *pgmap)
834  {
835  	struct mem_section *ms = __pfn_to_section(pfn);
836  	struct mem_section_usage *usage = NULL;
837  	struct page *memmap;
838  	int rc;
839  
840  	if (!ms->usage) {
841  		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
842  		if (!usage)
843  			return ERR_PTR(-ENOMEM);
844  		ms->usage = usage;
845  	}
846  
847  	rc = fill_subsection_map(pfn, nr_pages);
848  	if (rc) {
849  		if (usage)
850  			ms->usage = NULL;
851  		kfree(usage);
852  		return ERR_PTR(rc);
853  	}
854  
855  	/*
856  	 * The early init code does not consider partially populated
857  	 * initial sections, it simply assumes that memory will never be
858  	 * referenced.  If we hot-add memory into such a section then we
859  	 * do not need to populate the memmap and can simply reuse what
860  	 * is already there.
861  	 */
862  	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
863  		return pfn_to_page(pfn);
864  
865  	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
866  	if (!memmap) {
867  		section_deactivate(pfn, nr_pages, altmap);
868  		return ERR_PTR(-ENOMEM);
869  	}
870  
871  	return memmap;
872  }
873  
874  /**
875   * sparse_add_section - add a memory section, or populate an existing one
876   * @nid: The node to add section on
877   * @start_pfn: start pfn of the memory range
878   * @nr_pages: number of pfns to add in the section
879   * @altmap: alternate pfns to allocate the memmap backing store
880   * @pgmap: alternate compound page geometry for devmap mappings
881   *
882   * This is only intended for hotplug.
883   *
884   * Note that only VMEMMAP supports sub-section aligned hotplug,
885   * the proper alignment and size are gated by check_pfn_span().
886   *
887   *
888   * Return:
889   * * 0		- On success.
890   * * -EEXIST	- Section has been present.
891   * * -ENOMEM	- Out of memory.
892   */
sparse_add_section(int nid,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)893  int __meminit sparse_add_section(int nid, unsigned long start_pfn,
894  		unsigned long nr_pages, struct vmem_altmap *altmap,
895  		struct dev_pagemap *pgmap)
896  {
897  	unsigned long section_nr = pfn_to_section_nr(start_pfn);
898  	struct mem_section *ms;
899  	struct page *memmap;
900  	int ret;
901  
902  	ret = sparse_index_init(section_nr, nid);
903  	if (ret < 0)
904  		return ret;
905  
906  	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
907  	if (IS_ERR(memmap))
908  		return PTR_ERR(memmap);
909  
910  	/*
911  	 * Poison uninitialized struct pages in order to catch invalid flags
912  	 * combinations.
913  	 */
914  	if (!altmap || !altmap->inaccessible)
915  		page_init_poison(memmap, sizeof(struct page) * nr_pages);
916  
917  	ms = __nr_to_section(section_nr);
918  	set_section_nid(section_nr, nid);
919  	__section_mark_present(ms, section_nr);
920  
921  	/* Align memmap to section boundary in the subsection case */
922  	if (section_nr_to_pfn(section_nr) != start_pfn)
923  		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
924  	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
925  
926  	return 0;
927  }
928  
sparse_remove_section(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)929  void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
930  			   struct vmem_altmap *altmap)
931  {
932  	struct mem_section *ms = __pfn_to_section(pfn);
933  
934  	if (WARN_ON_ONCE(!valid_section(ms)))
935  		return;
936  
937  	section_deactivate(pfn, nr_pages, altmap);
938  }
939  #endif /* CONFIG_MEMORY_HOTPLUG */
940