1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
2
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
5
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
8
9 Please submit bugs to http://bugzilla.kernel.org/ .
10 */
11
12 #define pr_fmt(fmt) "tulip: " fmt
13
14 #define DRV_NAME "tulip"
15
16 #include <linux/module.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include "tulip.h"
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/etherdevice.h>
23 #include <linux/delay.h>
24 #include <linux/mii.h>
25 #include <linux/crc32.h>
26 #include <linux/unaligned.h>
27 #include <linux/uaccess.h>
28
29 #ifdef CONFIG_SPARC
30 #include <asm/prom.h>
31 #endif
32
33 /* A few user-configurable values. */
34
35 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
36 static unsigned int max_interrupt_work = 25;
37
38 #define MAX_UNITS 8
39 /* Used to pass the full-duplex flag, etc. */
40 static int full_duplex[MAX_UNITS];
41 static int options[MAX_UNITS];
42 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
43
44 /* The possible media types that can be set in options[] are: */
45 const char * const medianame[32] = {
46 "10baseT", "10base2", "AUI", "100baseTx",
47 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
48 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
49 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
50 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
51 "","","","", "","","","", "","","","Transceiver reset",
52 };
53
54 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
55 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
56 defined(CONFIG_SPARC) || defined(__ia64__) || \
57 defined(__sh__) || defined(__mips__)
58 static int rx_copybreak = 1518;
59 #else
60 static int rx_copybreak = 100;
61 #endif
62
63 /*
64 Set the bus performance register.
65 Typical: Set 16 longword cache alignment, no burst limit.
66 Cache alignment bits 15:14 Burst length 13:8
67 0000 No alignment 0x00000000 unlimited 0800 8 longwords
68 4000 8 longwords 0100 1 longword 1000 16 longwords
69 8000 16 longwords 0200 2 longwords 2000 32 longwords
70 C000 32 longwords 0400 4 longwords
71 Warning: many older 486 systems are broken and require setting 0x00A04800
72 8 longword cache alignment, 8 longword burst.
73 ToDo: Non-Intel setting could be better.
74 */
75
76 #if defined(__alpha__) || defined(__ia64__)
77 static int csr0 = 0x01A00000 | 0xE000;
78 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
79 static int csr0 = 0x01A00000 | 0x8000;
80 #elif defined(CONFIG_SPARC) || defined(__hppa__)
81 /* The UltraSparc PCI controllers will disconnect at every 64-byte
82 * crossing anyways so it makes no sense to tell Tulip to burst
83 * any more than that.
84 */
85 static int csr0 = 0x01A00000 | 0x9000;
86 #elif defined(__arm__) || defined(__sh__)
87 static int csr0 = 0x01A00000 | 0x4800;
88 #elif defined(__mips__)
89 static int csr0 = 0x00200000 | 0x4000;
90 #else
91 static int csr0;
92 #endif
93
94 /* Operational parameters that usually are not changed. */
95 /* Time in jiffies before concluding the transmitter is hung. */
96 #define TX_TIMEOUT (4*HZ)
97
98
99 MODULE_AUTHOR("The Linux Kernel Team");
100 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
101 MODULE_LICENSE("GPL");
102 module_param(tulip_debug, int, 0);
103 module_param(max_interrupt_work, int, 0);
104 module_param(rx_copybreak, int, 0);
105 module_param(csr0, int, 0);
106 module_param_array(options, int, NULL, 0);
107 module_param_array(full_duplex, int, NULL, 0);
108
109 #ifdef TULIP_DEBUG
110 int tulip_debug = TULIP_DEBUG;
111 #else
112 int tulip_debug = 1;
113 #endif
114
tulip_timer(struct timer_list * t)115 static void tulip_timer(struct timer_list *t)
116 {
117 struct tulip_private *tp = from_timer(tp, t, timer);
118 struct net_device *dev = tp->dev;
119
120 if (netif_running(dev))
121 schedule_work(&tp->media_work);
122 }
123
124 /*
125 * This table use during operation for capabilities and media timer.
126 *
127 * It is indexed via the values in 'enum chips'
128 */
129
130 const struct tulip_chip_table tulip_tbl[] = {
131 { }, /* placeholder for array, slot unused currently */
132 { }, /* placeholder for array, slot unused currently */
133
134 /* DC21140 */
135 { "Digital DS21140 Tulip", 128, 0x0001ebef,
136 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
137 tulip_media_task },
138
139 /* DC21142, DC21143 */
140 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
141 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
142 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
143
144 /* LC82C168 */
145 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
146 HAS_MII | HAS_PNICNWAY, pnic_timer, },
147
148 /* MX98713 */
149 { "Macronix 98713 PMAC", 128, 0x0001ebef,
150 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
151
152 /* MX98715 */
153 { "Macronix 98715 PMAC", 256, 0x0001ebef,
154 HAS_MEDIA_TABLE, mxic_timer, },
155
156 /* MX98725 */
157 { "Macronix 98725 PMAC", 256, 0x0001ebef,
158 HAS_MEDIA_TABLE, mxic_timer, },
159
160 /* AX88140 */
161 { "ASIX AX88140", 128, 0x0001fbff,
162 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
163 | IS_ASIX, tulip_timer, tulip_media_task },
164
165 /* PNIC2 */
166 { "Lite-On PNIC-II", 256, 0x0801fbff,
167 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
168
169 /* COMET */
170 { "ADMtek Comet", 256, 0x0001abef,
171 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
172
173 /* COMPEX9881 */
174 { "Compex 9881 PMAC", 128, 0x0001ebef,
175 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
176
177 /* I21145 */
178 { "Intel DS21145 Tulip", 128, 0x0801fbff,
179 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
180 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
181
182 /* DM910X */
183 #ifdef CONFIG_TULIP_DM910X
184 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
185 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
186 tulip_timer, tulip_media_task },
187 #else
188 { NULL },
189 #endif
190
191 /* RS7112 */
192 { "Conexant LANfinity", 256, 0x0001ebef,
193 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
194
195 };
196
197
198 static const struct pci_device_id tulip_pci_tbl[] = {
199 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
200 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
201 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
202 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
203 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
204 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
205 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
206 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
207 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
208 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
209 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
210 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
211 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
212 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
213 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
214 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
215 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
216 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
217 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
218 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
219 #ifdef CONFIG_TULIP_DM910X
220 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
221 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
222 #endif
223 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
225 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
230 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
232 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
233 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
234 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
235 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
236 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
237 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { } /* terminate list */
239 };
240 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
241
242
243 /* A full-duplex map for media types. */
244 const char tulip_media_cap[32] =
245 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
246
247 static void tulip_tx_timeout(struct net_device *dev, unsigned int txqueue);
248 static void tulip_init_ring(struct net_device *dev);
249 static void tulip_free_ring(struct net_device *dev);
250 static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
251 struct net_device *dev);
252 static int tulip_open(struct net_device *dev);
253 static int tulip_close(struct net_device *dev);
254 static void tulip_up(struct net_device *dev);
255 static void tulip_down(struct net_device *dev);
256 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
257 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
258 static void set_rx_mode(struct net_device *dev);
259 static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
260 #ifdef CONFIG_NET_POLL_CONTROLLER
261 static void poll_tulip(struct net_device *dev);
262 #endif
263
tulip_set_power_state(struct tulip_private * tp,int sleep,int snooze)264 static void tulip_set_power_state (struct tulip_private *tp,
265 int sleep, int snooze)
266 {
267 if (tp->flags & HAS_ACPI) {
268 u32 tmp, newtmp;
269 pci_read_config_dword (tp->pdev, CFDD, &tmp);
270 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
271 if (sleep)
272 newtmp |= CFDD_Sleep;
273 else if (snooze)
274 newtmp |= CFDD_Snooze;
275 if (tmp != newtmp)
276 pci_write_config_dword (tp->pdev, CFDD, newtmp);
277 }
278
279 }
280
281
tulip_up(struct net_device * dev)282 static void tulip_up(struct net_device *dev)
283 {
284 struct tulip_private *tp = netdev_priv(dev);
285 void __iomem *ioaddr = tp->base_addr;
286 int next_tick = 3*HZ;
287 u32 reg;
288 int i;
289
290 #ifdef CONFIG_TULIP_NAPI
291 napi_enable(&tp->napi);
292 #endif
293
294 /* Wake the chip from sleep/snooze mode. */
295 tulip_set_power_state (tp, 0, 0);
296
297 /* Disable all WOL events */
298 pci_enable_wake(tp->pdev, PCI_D3hot, 0);
299 pci_enable_wake(tp->pdev, PCI_D3cold, 0);
300 tulip_set_wolopts(tp->pdev, 0);
301
302 /* On some chip revs we must set the MII/SYM port before the reset!? */
303 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
304 iowrite32(0x00040000, ioaddr + CSR6);
305
306 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
307 iowrite32(0x00000001, ioaddr + CSR0);
308 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
309 udelay(100);
310
311 /* Deassert reset.
312 Wait the specified 50 PCI cycles after a reset by initializing
313 Tx and Rx queues and the address filter list. */
314 iowrite32(tp->csr0, ioaddr + CSR0);
315 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
316 udelay(100);
317
318 if (tulip_debug > 1)
319 netdev_dbg(dev, "tulip_up(), irq==%d\n", tp->pdev->irq);
320
321 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
322 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
323 tp->cur_rx = tp->cur_tx = 0;
324 tp->dirty_rx = tp->dirty_tx = 0;
325
326 if (tp->flags & MC_HASH_ONLY) {
327 u32 addr_low = get_unaligned_le32(dev->dev_addr);
328 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
329 if (tp->chip_id == AX88140) {
330 iowrite32(0, ioaddr + CSR13);
331 iowrite32(addr_low, ioaddr + CSR14);
332 iowrite32(1, ioaddr + CSR13);
333 iowrite32(addr_high, ioaddr + CSR14);
334 } else if (tp->flags & COMET_MAC_ADDR) {
335 iowrite32(addr_low, ioaddr + 0xA4);
336 iowrite32(addr_high, ioaddr + 0xA8);
337 iowrite32(0, ioaddr + CSR27);
338 iowrite32(0, ioaddr + CSR28);
339 }
340 } else {
341 /* This is set_rx_mode(), but without starting the transmitter. */
342 const u16 *eaddrs = (const u16 *)dev->dev_addr;
343 u16 *setup_frm = &tp->setup_frame[15*6];
344 dma_addr_t mapping;
345
346 /* 21140 bug: you must add the broadcast address. */
347 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
348 /* Fill the final entry of the table with our physical address. */
349 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
350 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
351 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
352
353 mapping = dma_map_single(&tp->pdev->dev, tp->setup_frame,
354 sizeof(tp->setup_frame),
355 DMA_TO_DEVICE);
356 tp->tx_buffers[tp->cur_tx].skb = NULL;
357 tp->tx_buffers[tp->cur_tx].mapping = mapping;
358
359 /* Put the setup frame on the Tx list. */
360 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
361 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
362 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
363
364 tp->cur_tx++;
365 }
366
367 tp->saved_if_port = dev->if_port;
368 if (dev->if_port == 0)
369 dev->if_port = tp->default_port;
370
371 /* Allow selecting a default media. */
372 i = 0;
373 if (tp->mtable == NULL)
374 goto media_picked;
375 if (dev->if_port) {
376 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
377 (dev->if_port == 12 ? 0 : dev->if_port);
378 for (i = 0; i < tp->mtable->leafcount; i++)
379 if (tp->mtable->mleaf[i].media == looking_for) {
380 dev_info(&dev->dev,
381 "Using user-specified media %s\n",
382 medianame[dev->if_port]);
383 goto media_picked;
384 }
385 }
386 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
387 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
388 for (i = 0; i < tp->mtable->leafcount; i++)
389 if (tp->mtable->mleaf[i].media == looking_for) {
390 dev_info(&dev->dev,
391 "Using EEPROM-set media %s\n",
392 medianame[looking_for]);
393 goto media_picked;
394 }
395 }
396 /* Start sensing first non-full-duplex media. */
397 for (i = tp->mtable->leafcount - 1;
398 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
399 ;
400 media_picked:
401
402 tp->csr6 = 0;
403 tp->cur_index = i;
404 tp->nwayset = 0;
405
406 if (dev->if_port) {
407 if (tp->chip_id == DC21143 &&
408 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
409 /* We must reset the media CSRs when we force-select MII mode. */
410 iowrite32(0x0000, ioaddr + CSR13);
411 iowrite32(0x0000, ioaddr + CSR14);
412 iowrite32(0x0008, ioaddr + CSR15);
413 }
414 tulip_select_media(dev, 1);
415 } else if (tp->chip_id == DC21142) {
416 if (tp->mii_cnt) {
417 tulip_select_media(dev, 1);
418 if (tulip_debug > 1)
419 dev_info(&dev->dev,
420 "Using MII transceiver %d, status %04x\n",
421 tp->phys[0],
422 tulip_mdio_read(dev, tp->phys[0], 1));
423 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
424 tp->csr6 = csr6_mask_hdcap;
425 dev->if_port = 11;
426 iowrite32(0x0000, ioaddr + CSR13);
427 iowrite32(0x0000, ioaddr + CSR14);
428 } else
429 t21142_start_nway(dev);
430 } else if (tp->chip_id == PNIC2) {
431 /* for initial startup advertise 10/100 Full and Half */
432 tp->sym_advertise = 0x01E0;
433 /* enable autonegotiate end interrupt */
434 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
435 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
436 pnic2_start_nway(dev);
437 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
438 if (tp->mii_cnt) {
439 dev->if_port = 11;
440 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
441 iowrite32(0x0001, ioaddr + CSR15);
442 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
443 pnic_do_nway(dev);
444 else {
445 /* Start with 10mbps to do autonegotiation. */
446 iowrite32(0x32, ioaddr + CSR12);
447 tp->csr6 = 0x00420000;
448 iowrite32(0x0001B078, ioaddr + 0xB8);
449 iowrite32(0x0201B078, ioaddr + 0xB8);
450 next_tick = 1*HZ;
451 }
452 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
453 ! tp->medialock) {
454 dev->if_port = 0;
455 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
456 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
457 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
458 /* Provided by BOLO, Macronix - 12/10/1998. */
459 dev->if_port = 0;
460 tp->csr6 = 0x01a80200;
461 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
462 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
463 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
464 /* Enable automatic Tx underrun recovery. */
465 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
466 dev->if_port = tp->mii_cnt ? 11 : 0;
467 tp->csr6 = 0x00040000;
468 } else if (tp->chip_id == AX88140) {
469 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
470 } else
471 tulip_select_media(dev, 1);
472
473 /* Start the chip's Tx to process setup frame. */
474 tulip_stop_rxtx(tp);
475 barrier();
476 udelay(5);
477 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
478
479 /* Enable interrupts by setting the interrupt mask. */
480 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
481 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
482 tulip_start_rxtx(tp);
483 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
484
485 if (tulip_debug > 2) {
486 netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
487 ioread32(ioaddr + CSR0),
488 ioread32(ioaddr + CSR5),
489 ioread32(ioaddr + CSR6));
490 }
491
492 /* Set the timer to switch to check for link beat and perhaps switch
493 to an alternate media type. */
494 tp->timer.expires = RUN_AT(next_tick);
495 add_timer(&tp->timer);
496 #ifdef CONFIG_TULIP_NAPI
497 timer_setup(&tp->oom_timer, oom_timer, 0);
498 #endif
499 }
500
501 static int
tulip_open(struct net_device * dev)502 tulip_open(struct net_device *dev)
503 {
504 struct tulip_private *tp = netdev_priv(dev);
505 int retval;
506
507 tulip_init_ring (dev);
508
509 retval = request_irq(tp->pdev->irq, tulip_interrupt, IRQF_SHARED,
510 dev->name, dev);
511 if (retval)
512 goto free_ring;
513
514 tulip_up (dev);
515
516 netif_start_queue (dev);
517
518 return 0;
519
520 free_ring:
521 tulip_free_ring (dev);
522 return retval;
523 }
524
525
tulip_tx_timeout(struct net_device * dev,unsigned int txqueue)526 static void tulip_tx_timeout(struct net_device *dev, unsigned int txqueue)
527 {
528 struct tulip_private *tp = netdev_priv(dev);
529 void __iomem *ioaddr = tp->base_addr;
530 unsigned long flags;
531
532 spin_lock_irqsave (&tp->lock, flags);
533
534 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
535 /* Do nothing -- the media monitor should handle this. */
536 if (tulip_debug > 1)
537 dev_warn(&dev->dev,
538 "Transmit timeout using MII device\n");
539 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
540 tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
541 tp->chip_id == DM910X) {
542 dev_warn(&dev->dev,
543 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
544 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
545 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
546 ioread32(ioaddr + CSR15));
547 tp->timeout_recovery = 1;
548 schedule_work(&tp->media_work);
549 goto out_unlock;
550 } else if (tp->chip_id == PNIC2) {
551 dev_warn(&dev->dev,
552 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
553 (int)ioread32(ioaddr + CSR5),
554 (int)ioread32(ioaddr + CSR6),
555 (int)ioread32(ioaddr + CSR7),
556 (int)ioread32(ioaddr + CSR12));
557 } else {
558 dev_warn(&dev->dev,
559 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
560 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
561 dev->if_port = 0;
562 }
563
564 #if defined(way_too_many_messages)
565 if (tulip_debug > 3) {
566 int i;
567 for (i = 0; i < RX_RING_SIZE; i++) {
568 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
569 int j;
570 printk(KERN_DEBUG
571 "%2d: %08x %08x %08x %08x %02x %02x %02x\n",
572 i,
573 (unsigned int)tp->rx_ring[i].status,
574 (unsigned int)tp->rx_ring[i].length,
575 (unsigned int)tp->rx_ring[i].buffer1,
576 (unsigned int)tp->rx_ring[i].buffer2,
577 buf[0], buf[1], buf[2]);
578 for (j = 0; ((j < 1600) && buf[j] != 0xee); j++)
579 if (j < 100)
580 pr_cont(" %02x", buf[j]);
581 pr_cont(" j=%d\n", j);
582 }
583 printk(KERN_DEBUG " Rx ring %p: ", tp->rx_ring);
584 for (i = 0; i < RX_RING_SIZE; i++)
585 pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
586 printk(KERN_DEBUG " Tx ring %p: ", tp->tx_ring);
587 for (i = 0; i < TX_RING_SIZE; i++)
588 pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
589 pr_cont("\n");
590 }
591 #endif
592
593 tulip_tx_timeout_complete(tp, ioaddr);
594
595 out_unlock:
596 spin_unlock_irqrestore (&tp->lock, flags);
597 netif_trans_update(dev); /* prevent tx timeout */
598 netif_wake_queue (dev);
599 }
600
601
602 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
tulip_init_ring(struct net_device * dev)603 static void tulip_init_ring(struct net_device *dev)
604 {
605 struct tulip_private *tp = netdev_priv(dev);
606 int i;
607
608 tp->susp_rx = 0;
609 tp->ttimer = 0;
610 tp->nir = 0;
611
612 for (i = 0; i < RX_RING_SIZE; i++) {
613 tp->rx_ring[i].status = 0x00000000;
614 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
615 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
616 tp->rx_buffers[i].skb = NULL;
617 tp->rx_buffers[i].mapping = 0;
618 }
619 /* Mark the last entry as wrapping the ring. */
620 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
621 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
622
623 for (i = 0; i < RX_RING_SIZE; i++) {
624 dma_addr_t mapping;
625
626 /* Note the receive buffer must be longword aligned.
627 netdev_alloc_skb() provides 16 byte alignment. But do *not*
628 use skb_reserve() to align the IP header! */
629 struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
630 tp->rx_buffers[i].skb = skb;
631 if (skb == NULL)
632 break;
633 mapping = dma_map_single(&tp->pdev->dev, skb->data,
634 PKT_BUF_SZ, DMA_FROM_DEVICE);
635 tp->rx_buffers[i].mapping = mapping;
636 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
637 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
638 }
639 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
640
641 /* The Tx buffer descriptor is filled in as needed, but we
642 do need to clear the ownership bit. */
643 for (i = 0; i < TX_RING_SIZE; i++) {
644 tp->tx_buffers[i].skb = NULL;
645 tp->tx_buffers[i].mapping = 0;
646 tp->tx_ring[i].status = 0x00000000;
647 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
648 }
649 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
650 }
651
652 static netdev_tx_t
tulip_start_xmit(struct sk_buff * skb,struct net_device * dev)653 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
654 {
655 struct tulip_private *tp = netdev_priv(dev);
656 int entry;
657 u32 flag;
658 dma_addr_t mapping;
659 unsigned long flags;
660
661 spin_lock_irqsave(&tp->lock, flags);
662
663 /* Calculate the next Tx descriptor entry. */
664 entry = tp->cur_tx % TX_RING_SIZE;
665
666 tp->tx_buffers[entry].skb = skb;
667 mapping = dma_map_single(&tp->pdev->dev, skb->data, skb->len,
668 DMA_TO_DEVICE);
669 tp->tx_buffers[entry].mapping = mapping;
670 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
671
672 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
673 flag = 0x60000000; /* No interrupt */
674 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
675 flag = 0xe0000000; /* Tx-done intr. */
676 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
677 flag = 0x60000000; /* No Tx-done intr. */
678 } else { /* Leave room for set_rx_mode() to fill entries. */
679 flag = 0xe0000000; /* Tx-done intr. */
680 netif_stop_queue(dev);
681 }
682 if (entry == TX_RING_SIZE-1)
683 flag = 0xe0000000 | DESC_RING_WRAP;
684
685 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
686 /* if we were using Transmit Automatic Polling, we would need a
687 * wmb() here. */
688 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
689 wmb();
690
691 tp->cur_tx++;
692
693 /* Trigger an immediate transmit demand. */
694 iowrite32(0, tp->base_addr + CSR1);
695
696 spin_unlock_irqrestore(&tp->lock, flags);
697
698 return NETDEV_TX_OK;
699 }
700
tulip_clean_tx_ring(struct tulip_private * tp)701 static void tulip_clean_tx_ring(struct tulip_private *tp)
702 {
703 unsigned int dirty_tx;
704
705 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
706 dirty_tx++) {
707 int entry = dirty_tx % TX_RING_SIZE;
708 int status = le32_to_cpu(tp->tx_ring[entry].status);
709
710 if (status < 0) {
711 tp->dev->stats.tx_errors++; /* It wasn't Txed */
712 tp->tx_ring[entry].status = 0;
713 }
714
715 /* Check for Tx filter setup frames. */
716 if (tp->tx_buffers[entry].skb == NULL) {
717 /* test because dummy frames not mapped */
718 if (tp->tx_buffers[entry].mapping)
719 dma_unmap_single(&tp->pdev->dev,
720 tp->tx_buffers[entry].mapping,
721 sizeof(tp->setup_frame),
722 DMA_TO_DEVICE);
723 continue;
724 }
725
726 dma_unmap_single(&tp->pdev->dev,
727 tp->tx_buffers[entry].mapping,
728 tp->tx_buffers[entry].skb->len,
729 DMA_TO_DEVICE);
730
731 /* Free the original skb. */
732 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
733 tp->tx_buffers[entry].skb = NULL;
734 tp->tx_buffers[entry].mapping = 0;
735 }
736 }
737
tulip_down(struct net_device * dev)738 static void tulip_down (struct net_device *dev)
739 {
740 struct tulip_private *tp = netdev_priv(dev);
741 void __iomem *ioaddr = tp->base_addr;
742 unsigned long flags;
743
744 cancel_work_sync(&tp->media_work);
745
746 #ifdef CONFIG_TULIP_NAPI
747 napi_disable(&tp->napi);
748 #endif
749
750 del_timer_sync (&tp->timer);
751 #ifdef CONFIG_TULIP_NAPI
752 del_timer_sync (&tp->oom_timer);
753 #endif
754 spin_lock_irqsave (&tp->lock, flags);
755
756 /* Disable interrupts by clearing the interrupt mask. */
757 iowrite32 (0x00000000, ioaddr + CSR7);
758
759 /* Stop the Tx and Rx processes. */
760 tulip_stop_rxtx(tp);
761
762 /* prepare receive buffers */
763 tulip_refill_rx(dev);
764
765 /* release any unconsumed transmit buffers */
766 tulip_clean_tx_ring(tp);
767
768 if (ioread32(ioaddr + CSR6) != 0xffffffff)
769 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
770
771 spin_unlock_irqrestore (&tp->lock, flags);
772
773 timer_setup(&tp->timer, tulip_tbl[tp->chip_id].media_timer, 0);
774
775 dev->if_port = tp->saved_if_port;
776
777 /* Leave the driver in snooze, not sleep, mode. */
778 tulip_set_power_state (tp, 0, 1);
779 }
780
tulip_free_ring(struct net_device * dev)781 static void tulip_free_ring (struct net_device *dev)
782 {
783 struct tulip_private *tp = netdev_priv(dev);
784 int i;
785
786 /* Free all the skbuffs in the Rx queue. */
787 for (i = 0; i < RX_RING_SIZE; i++) {
788 struct sk_buff *skb = tp->rx_buffers[i].skb;
789 dma_addr_t mapping = tp->rx_buffers[i].mapping;
790
791 tp->rx_buffers[i].skb = NULL;
792 tp->rx_buffers[i].mapping = 0;
793
794 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
795 tp->rx_ring[i].length = 0;
796 /* An invalid address. */
797 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
798 if (skb) {
799 dma_unmap_single(&tp->pdev->dev, mapping, PKT_BUF_SZ,
800 DMA_FROM_DEVICE);
801 dev_kfree_skb (skb);
802 }
803 }
804
805 for (i = 0; i < TX_RING_SIZE; i++) {
806 struct sk_buff *skb = tp->tx_buffers[i].skb;
807
808 if (skb != NULL) {
809 dma_unmap_single(&tp->pdev->dev,
810 tp->tx_buffers[i].mapping, skb->len,
811 DMA_TO_DEVICE);
812 dev_kfree_skb (skb);
813 }
814 tp->tx_buffers[i].skb = NULL;
815 tp->tx_buffers[i].mapping = 0;
816 }
817 }
818
tulip_close(struct net_device * dev)819 static int tulip_close (struct net_device *dev)
820 {
821 struct tulip_private *tp = netdev_priv(dev);
822 void __iomem *ioaddr = tp->base_addr;
823
824 netif_stop_queue (dev);
825
826 tulip_down (dev);
827
828 if (tulip_debug > 1)
829 netdev_dbg(dev, "Shutting down ethercard, status was %02x\n",
830 ioread32 (ioaddr + CSR5));
831
832 free_irq (tp->pdev->irq, dev);
833
834 tulip_free_ring (dev);
835
836 return 0;
837 }
838
tulip_get_stats(struct net_device * dev)839 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
840 {
841 struct tulip_private *tp = netdev_priv(dev);
842 void __iomem *ioaddr = tp->base_addr;
843
844 if (netif_running(dev)) {
845 unsigned long flags;
846
847 spin_lock_irqsave (&tp->lock, flags);
848
849 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
850
851 spin_unlock_irqrestore(&tp->lock, flags);
852 }
853
854 return &dev->stats;
855 }
856
857
tulip_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)858 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
859 {
860 struct tulip_private *np = netdev_priv(dev);
861 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
862 strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
863 }
864
865
tulip_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)866 static int tulip_ethtool_set_wol(struct net_device *dev,
867 struct ethtool_wolinfo *wolinfo)
868 {
869 struct tulip_private *tp = netdev_priv(dev);
870
871 if (wolinfo->wolopts & (~tp->wolinfo.supported))
872 return -EOPNOTSUPP;
873
874 tp->wolinfo.wolopts = wolinfo->wolopts;
875 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
876 return 0;
877 }
878
tulip_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wolinfo)879 static void tulip_ethtool_get_wol(struct net_device *dev,
880 struct ethtool_wolinfo *wolinfo)
881 {
882 struct tulip_private *tp = netdev_priv(dev);
883
884 wolinfo->supported = tp->wolinfo.supported;
885 wolinfo->wolopts = tp->wolinfo.wolopts;
886 return;
887 }
888
889
890 static const struct ethtool_ops ops = {
891 .get_drvinfo = tulip_get_drvinfo,
892 .set_wol = tulip_ethtool_set_wol,
893 .get_wol = tulip_ethtool_get_wol,
894 };
895
896 /* Provide ioctl() calls to examine the MII xcvr state. */
private_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)897 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
898 {
899 struct tulip_private *tp = netdev_priv(dev);
900 void __iomem *ioaddr = tp->base_addr;
901 struct mii_ioctl_data *data = if_mii(rq);
902 const unsigned int phy_idx = 0;
903 int phy = tp->phys[phy_idx] & 0x1f;
904 unsigned int regnum = data->reg_num;
905
906 switch (cmd) {
907 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
908 if (tp->mii_cnt)
909 data->phy_id = phy;
910 else if (tp->flags & HAS_NWAY)
911 data->phy_id = 32;
912 else if (tp->chip_id == COMET)
913 data->phy_id = 1;
914 else
915 return -ENODEV;
916 fallthrough;
917
918 case SIOCGMIIREG: /* Read MII PHY register. */
919 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
920 int csr12 = ioread32 (ioaddr + CSR12);
921 int csr14 = ioread32 (ioaddr + CSR14);
922 switch (regnum) {
923 case 0:
924 if (((csr14<<5) & 0x1000) ||
925 (dev->if_port == 5 && tp->nwayset))
926 data->val_out = 0x1000;
927 else
928 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
929 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
930 break;
931 case 1:
932 data->val_out =
933 0x1848 +
934 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
935 ((csr12&0x06) == 6 ? 0 : 4);
936 data->val_out |= 0x6048;
937 break;
938 case 4:
939 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
940 data->val_out =
941 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
942 ((csr14 >> 1) & 0x20) + 1;
943 data->val_out |= ((csr14 >> 9) & 0x03C0);
944 break;
945 case 5: data->val_out = tp->lpar; break;
946 default: data->val_out = 0; break;
947 }
948 } else {
949 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
950 }
951 return 0;
952
953 case SIOCSMIIREG: /* Write MII PHY register. */
954 if (regnum & ~0x1f)
955 return -EINVAL;
956 if (data->phy_id == phy) {
957 u16 value = data->val_in;
958 switch (regnum) {
959 case 0: /* Check for autonegotiation on or reset. */
960 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
961 if (tp->full_duplex_lock)
962 tp->full_duplex = (value & 0x0100) ? 1 : 0;
963 break;
964 case 4:
965 tp->advertising[phy_idx] =
966 tp->mii_advertise = data->val_in;
967 break;
968 }
969 }
970 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
971 u16 value = data->val_in;
972 if (regnum == 0) {
973 if ((value & 0x1200) == 0x1200) {
974 if (tp->chip_id == PNIC2) {
975 pnic2_start_nway (dev);
976 } else {
977 t21142_start_nway (dev);
978 }
979 }
980 } else if (regnum == 4)
981 tp->sym_advertise = value;
982 } else {
983 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
984 }
985 return 0;
986 default:
987 return -EOPNOTSUPP;
988 }
989
990 return -EOPNOTSUPP;
991 }
992
993
994 /* Set or clear the multicast filter for this adaptor.
995 Note that we only use exclusion around actually queueing the
996 new frame, not around filling tp->setup_frame. This is non-deterministic
997 when re-entered but still correct. */
998
build_setup_frame_hash(u16 * setup_frm,struct net_device * dev)999 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
1000 {
1001 struct tulip_private *tp = netdev_priv(dev);
1002 u16 hash_table[32];
1003 struct netdev_hw_addr *ha;
1004 const u16 *eaddrs;
1005 int i;
1006
1007 memset(hash_table, 0, sizeof(hash_table));
1008 __set_bit_le(255, hash_table); /* Broadcast entry */
1009 /* This should work on big-endian machines as well. */
1010 netdev_for_each_mc_addr(ha, dev) {
1011 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
1012
1013 __set_bit_le(index, hash_table);
1014 }
1015 for (i = 0; i < 32; i++) {
1016 *setup_frm++ = hash_table[i];
1017 *setup_frm++ = hash_table[i];
1018 }
1019 setup_frm = &tp->setup_frame[13*6];
1020
1021 /* Fill the final entry with our physical address. */
1022 eaddrs = (const u16 *)dev->dev_addr;
1023 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1024 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1025 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1026 }
1027
build_setup_frame_perfect(u16 * setup_frm,struct net_device * dev)1028 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1029 {
1030 struct tulip_private *tp = netdev_priv(dev);
1031 struct netdev_hw_addr *ha;
1032 const u16 *eaddrs;
1033
1034 /* We have <= 14 addresses so we can use the wonderful
1035 16 address perfect filtering of the Tulip. */
1036 netdev_for_each_mc_addr(ha, dev) {
1037 eaddrs = (u16 *) ha->addr;
1038 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1039 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1040 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1041 }
1042 /* Fill the unused entries with the broadcast address. */
1043 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
1044 setup_frm = &tp->setup_frame[15*6];
1045
1046 /* Fill the final entry with our physical address. */
1047 eaddrs = (const u16 *)dev->dev_addr;
1048 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1049 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1050 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1051 }
1052
1053
set_rx_mode(struct net_device * dev)1054 static void set_rx_mode(struct net_device *dev)
1055 {
1056 struct tulip_private *tp = netdev_priv(dev);
1057 void __iomem *ioaddr = tp->base_addr;
1058 int csr6;
1059
1060 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1061
1062 tp->csr6 &= ~0x00D5;
1063 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1064 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1065 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1066 } else if ((netdev_mc_count(dev) > 1000) ||
1067 (dev->flags & IFF_ALLMULTI)) {
1068 /* Too many to filter well -- accept all multicasts. */
1069 tp->csr6 |= AcceptAllMulticast;
1070 csr6 |= AcceptAllMulticast;
1071 } else if (tp->flags & MC_HASH_ONLY) {
1072 /* Some work-alikes have only a 64-entry hash filter table. */
1073 /* Should verify correctness on big-endian/__powerpc__ */
1074 struct netdev_hw_addr *ha;
1075 if (netdev_mc_count(dev) > 64) {
1076 /* Arbitrary non-effective limit. */
1077 tp->csr6 |= AcceptAllMulticast;
1078 csr6 |= AcceptAllMulticast;
1079 } else {
1080 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1081 int filterbit;
1082 netdev_for_each_mc_addr(ha, dev) {
1083 if (tp->flags & COMET_MAC_ADDR)
1084 filterbit = ether_crc_le(ETH_ALEN,
1085 ha->addr);
1086 else
1087 filterbit = ether_crc(ETH_ALEN,
1088 ha->addr) >> 26;
1089 filterbit &= 0x3f;
1090 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1091 if (tulip_debug > 2)
1092 dev_info(&dev->dev,
1093 "Added filter for %pM %08x bit %d\n",
1094 ha->addr,
1095 ether_crc(ETH_ALEN, ha->addr),
1096 filterbit);
1097 }
1098 if (mc_filter[0] == tp->mc_filter[0] &&
1099 mc_filter[1] == tp->mc_filter[1])
1100 ; /* No change. */
1101 else if (tp->flags & IS_ASIX) {
1102 iowrite32(2, ioaddr + CSR13);
1103 iowrite32(mc_filter[0], ioaddr + CSR14);
1104 iowrite32(3, ioaddr + CSR13);
1105 iowrite32(mc_filter[1], ioaddr + CSR14);
1106 } else if (tp->flags & COMET_MAC_ADDR) {
1107 iowrite32(mc_filter[0], ioaddr + CSR27);
1108 iowrite32(mc_filter[1], ioaddr + CSR28);
1109 }
1110 tp->mc_filter[0] = mc_filter[0];
1111 tp->mc_filter[1] = mc_filter[1];
1112 }
1113 } else {
1114 unsigned long flags;
1115 u32 tx_flags = 0x08000000 | 192;
1116
1117 /* Note that only the low-address shortword of setup_frame is valid!
1118 The values are doubled for big-endian architectures. */
1119 if (netdev_mc_count(dev) > 14) {
1120 /* Must use a multicast hash table. */
1121 build_setup_frame_hash(tp->setup_frame, dev);
1122 tx_flags = 0x08400000 | 192;
1123 } else {
1124 build_setup_frame_perfect(tp->setup_frame, dev);
1125 }
1126
1127 spin_lock_irqsave(&tp->lock, flags);
1128
1129 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1130 /* Same setup recently queued, we need not add it. */
1131 } else {
1132 unsigned int entry;
1133 int dummy = -1;
1134
1135 /* Now add this frame to the Tx list. */
1136
1137 entry = tp->cur_tx++ % TX_RING_SIZE;
1138
1139 if (entry != 0) {
1140 /* Avoid a chip errata by prefixing a dummy entry. */
1141 tp->tx_buffers[entry].skb = NULL;
1142 tp->tx_buffers[entry].mapping = 0;
1143 tp->tx_ring[entry].length =
1144 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1145 tp->tx_ring[entry].buffer1 = 0;
1146 /* Must set DescOwned later to avoid race with chip */
1147 dummy = entry;
1148 entry = tp->cur_tx++ % TX_RING_SIZE;
1149
1150 }
1151
1152 tp->tx_buffers[entry].skb = NULL;
1153 tp->tx_buffers[entry].mapping =
1154 dma_map_single(&tp->pdev->dev,
1155 tp->setup_frame,
1156 sizeof(tp->setup_frame),
1157 DMA_TO_DEVICE);
1158 /* Put the setup frame on the Tx list. */
1159 if (entry == TX_RING_SIZE-1)
1160 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1161 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1162 tp->tx_ring[entry].buffer1 =
1163 cpu_to_le32(tp->tx_buffers[entry].mapping);
1164 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1165 if (dummy >= 0)
1166 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1167 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1168 netif_stop_queue(dev);
1169
1170 /* Trigger an immediate transmit demand. */
1171 iowrite32(0, ioaddr + CSR1);
1172 }
1173
1174 spin_unlock_irqrestore(&tp->lock, flags);
1175 }
1176
1177 iowrite32(csr6, ioaddr + CSR6);
1178 }
1179
1180 #ifdef CONFIG_TULIP_MWI
tulip_mwi_config(struct pci_dev * pdev,struct net_device * dev)1181 static void tulip_mwi_config(struct pci_dev *pdev, struct net_device *dev)
1182 {
1183 struct tulip_private *tp = netdev_priv(dev);
1184 u8 cache;
1185 u16 pci_command;
1186 u32 csr0;
1187
1188 if (tulip_debug > 3)
1189 netdev_dbg(dev, "tulip_mwi_config()\n");
1190
1191 tp->csr0 = csr0 = 0;
1192
1193 /* if we have any cache line size at all, we can do MRM and MWI */
1194 csr0 |= MRM | MWI;
1195
1196 /* Enable MWI in the standard PCI command bit.
1197 * Check for the case where MWI is desired but not available
1198 */
1199 pci_try_set_mwi(pdev);
1200
1201 /* read result from hardware (in case bit refused to enable) */
1202 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1203 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1204 csr0 &= ~MWI;
1205
1206 /* if cache line size hardwired to zero, no MWI */
1207 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1208 if ((csr0 & MWI) && (cache == 0)) {
1209 csr0 &= ~MWI;
1210 pci_clear_mwi(pdev);
1211 }
1212
1213 /* assign per-cacheline-size cache alignment and
1214 * burst length values
1215 */
1216 switch (cache) {
1217 case 8:
1218 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1219 break;
1220 case 16:
1221 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1222 break;
1223 case 32:
1224 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1225 break;
1226 default:
1227 cache = 0;
1228 break;
1229 }
1230
1231 /* if we have a good cache line size, we by now have a good
1232 * csr0, so save it and exit
1233 */
1234 if (cache)
1235 goto out;
1236
1237 /* we don't have a good csr0 or cache line size, disable MWI */
1238 if (csr0 & MWI) {
1239 pci_clear_mwi(pdev);
1240 csr0 &= ~MWI;
1241 }
1242
1243 /* sane defaults for burst length and cache alignment
1244 * originally from de4x5 driver
1245 */
1246 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1247
1248 out:
1249 tp->csr0 = csr0;
1250 if (tulip_debug > 2)
1251 netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n",
1252 cache, csr0);
1253 }
1254 #endif
1255
1256 /*
1257 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1258 * is the DM910X and the on chip ULi devices
1259 */
1260
tulip_uli_dm_quirk(struct pci_dev * pdev)1261 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1262 {
1263 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1264 return 1;
1265 return 0;
1266 }
1267
1268 static const struct net_device_ops tulip_netdev_ops = {
1269 .ndo_open = tulip_open,
1270 .ndo_start_xmit = tulip_start_xmit,
1271 .ndo_tx_timeout = tulip_tx_timeout,
1272 .ndo_stop = tulip_close,
1273 .ndo_get_stats = tulip_get_stats,
1274 .ndo_eth_ioctl = private_ioctl,
1275 .ndo_set_rx_mode = set_rx_mode,
1276 .ndo_set_mac_address = eth_mac_addr,
1277 .ndo_validate_addr = eth_validate_addr,
1278 #ifdef CONFIG_NET_POLL_CONTROLLER
1279 .ndo_poll_controller = poll_tulip,
1280 #endif
1281 };
1282
1283 static const struct pci_device_id early_486_chipsets[] = {
1284 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1285 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1286 { },
1287 };
1288
tulip_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1289 static int tulip_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1290 {
1291 struct tulip_private *tp;
1292 /* See note below on the multiport cards. */
1293 static unsigned char last_phys_addr[ETH_ALEN] = {
1294 0x00, 'L', 'i', 'n', 'u', 'x'
1295 };
1296 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1297 static int last_irq;
1298 #endif
1299 int i, irq;
1300 unsigned short sum;
1301 unsigned char *ee_data;
1302 struct net_device *dev;
1303 void __iomem *ioaddr;
1304 static int board_idx = -1;
1305 int chip_idx = ent->driver_data;
1306 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1307 unsigned int eeprom_missing = 0;
1308 u8 addr[ETH_ALEN] __aligned(2);
1309 unsigned int force_csr0 = 0;
1310
1311 board_idx++;
1312
1313 /*
1314 * Lan media wire a tulip chip to a wan interface. Needs a very
1315 * different driver (lmc driver)
1316 */
1317
1318 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1319 pr_err("skipping LMC card\n");
1320 return -ENODEV;
1321 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
1322 (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
1323 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
1324 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
1325 pr_err("skipping SBE T3E3 port\n");
1326 return -ENODEV;
1327 }
1328
1329 /*
1330 * DM910x chips should be handled by the dmfe driver, except
1331 * on-board chips on SPARC systems. Also, early DM9100s need
1332 * software CRC which only the dmfe driver supports.
1333 */
1334
1335 #ifdef CONFIG_TULIP_DM910X
1336 if (chip_idx == DM910X) {
1337 struct device_node *dp;
1338
1339 if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
1340 pdev->revision < 0x30) {
1341 pr_info("skipping early DM9100 with Crc bug (use dmfe)\n");
1342 return -ENODEV;
1343 }
1344
1345 dp = pci_device_to_OF_node(pdev);
1346 if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
1347 pr_info("skipping DM910x expansion card (use dmfe)\n");
1348 return -ENODEV;
1349 }
1350 }
1351 #endif
1352
1353 /*
1354 * Looks for early PCI chipsets where people report hangs
1355 * without the workarounds being on.
1356 */
1357
1358 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1359 aligned. Aries might need this too. The Saturn errata are not
1360 pretty reading but thankfully it's an old 486 chipset.
1361
1362 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1363 Saturn.
1364 */
1365
1366 if (pci_dev_present(early_486_chipsets)) {
1367 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1368 force_csr0 = 1;
1369 }
1370
1371 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1372 if (chip_idx == AX88140) {
1373 if ((csr0 & 0x3f00) == 0)
1374 csr0 |= 0x2000;
1375 }
1376
1377 /* PNIC doesn't have MWI/MRL/MRM... */
1378 if (chip_idx == LC82C168)
1379 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1380
1381 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1382 if (tulip_uli_dm_quirk(pdev)) {
1383 csr0 &= ~0x01f100ff;
1384 #if defined(CONFIG_SPARC)
1385 csr0 = (csr0 & ~0xff00) | 0xe000;
1386 #endif
1387 }
1388 /*
1389 * And back to business
1390 */
1391
1392 i = pcim_enable_device(pdev);
1393 if (i) {
1394 pr_err("Cannot enable tulip board #%d, aborting\n", board_idx);
1395 return i;
1396 }
1397
1398 irq = pdev->irq;
1399
1400 /* alloc_etherdev ensures aligned and zeroed private structures */
1401 dev = devm_alloc_etherdev(&pdev->dev, sizeof(*tp));
1402 if (!dev)
1403 return -ENOMEM;
1404
1405 SET_NETDEV_DEV(dev, &pdev->dev);
1406 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1407 pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
1408 pci_name(pdev),
1409 (unsigned long long)pci_resource_len (pdev, 0),
1410 (unsigned long long)pci_resource_start (pdev, 0));
1411 return -ENODEV;
1412 }
1413
1414 /* grab all resources from both PIO and MMIO regions, as we
1415 * don't want anyone else messing around with our hardware */
1416 if (pci_request_regions(pdev, DRV_NAME))
1417 return -ENODEV;
1418
1419 ioaddr = pcim_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1420
1421 if (!ioaddr)
1422 return -ENODEV;
1423
1424 /*
1425 * initialize private data structure 'tp'
1426 * it is zeroed and aligned in alloc_etherdev
1427 */
1428 tp = netdev_priv(dev);
1429 tp->dev = dev;
1430
1431 tp->rx_ring = dmam_alloc_coherent(&pdev->dev,
1432 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1433 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1434 &tp->rx_ring_dma, GFP_KERNEL);
1435 if (!tp->rx_ring)
1436 return -ENODEV;
1437 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1438 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1439
1440 tp->chip_id = chip_idx;
1441 tp->flags = tulip_tbl[chip_idx].flags;
1442
1443 tp->wolinfo.supported = 0;
1444 tp->wolinfo.wolopts = 0;
1445 /* COMET: Enable power management only for AN983B */
1446 if (chip_idx == COMET ) {
1447 u32 sig;
1448 pci_read_config_dword (pdev, 0x80, &sig);
1449 if (sig == 0x09811317) {
1450 tp->flags |= COMET_PM;
1451 tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
1452 pr_info("%s: Enabled WOL support for AN983B\n",
1453 __func__);
1454 }
1455 }
1456 tp->pdev = pdev;
1457 tp->base_addr = ioaddr;
1458 tp->revision = pdev->revision;
1459 tp->csr0 = csr0;
1460 spin_lock_init(&tp->lock);
1461 spin_lock_init(&tp->mii_lock);
1462 timer_setup(&tp->timer, tulip_tbl[tp->chip_id].media_timer, 0);
1463
1464 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1465
1466 #ifdef CONFIG_TULIP_MWI
1467 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1468 tulip_mwi_config (pdev, dev);
1469 #endif
1470
1471 /* Stop the chip's Tx and Rx processes. */
1472 tulip_stop_rxtx(tp);
1473
1474 pci_set_master(pdev);
1475
1476 #ifdef CONFIG_GSC
1477 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1478 switch (pdev->subsystem_device) {
1479 default:
1480 break;
1481 case 0x1061:
1482 case 0x1062:
1483 case 0x1063:
1484 case 0x1098:
1485 case 0x1099:
1486 case 0x10EE:
1487 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1488 chip_name = "GSC DS21140 Tulip";
1489 }
1490 }
1491 #endif
1492
1493 /* Clear the missed-packet counter. */
1494 ioread32(ioaddr + CSR8);
1495
1496 /* The station address ROM is read byte serially. The register must
1497 be polled, waiting for the value to be read bit serially from the
1498 EEPROM.
1499 */
1500 ee_data = tp->eeprom;
1501 memset(ee_data, 0, sizeof(tp->eeprom));
1502 sum = 0;
1503 if (chip_idx == LC82C168) {
1504 for (i = 0; i < 3; i++) {
1505 int value, boguscnt = 100000;
1506 iowrite32(0x600 | i, ioaddr + 0x98);
1507 do {
1508 value = ioread32(ioaddr + CSR9);
1509 } while (value < 0 && --boguscnt > 0);
1510 put_unaligned_le16(value, ((__le16 *)addr) + i);
1511 sum += value & 0xffff;
1512 }
1513 eth_hw_addr_set(dev, addr);
1514 } else if (chip_idx == COMET) {
1515 /* No need to read the EEPROM. */
1516 put_unaligned_le32(ioread32(ioaddr + 0xA4), addr);
1517 put_unaligned_le16(ioread32(ioaddr + 0xA8), addr + 4);
1518 eth_hw_addr_set(dev, addr);
1519 for (i = 0; i < 6; i ++)
1520 sum += dev->dev_addr[i];
1521 } else {
1522 /* A serial EEPROM interface, we read now and sort it out later. */
1523 int sa_offset = 0;
1524 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1525 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1526
1527 if (ee_max_addr > sizeof(tp->eeprom))
1528 ee_max_addr = sizeof(tp->eeprom);
1529
1530 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1531 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1532 ee_data[i] = data & 0xff;
1533 ee_data[i + 1] = data >> 8;
1534 }
1535
1536 /* DEC now has a specification (see Notes) but early board makers
1537 just put the address in the first EEPROM locations. */
1538 /* This does memcmp(ee_data, ee_data+16, 8) */
1539 for (i = 0; i < 8; i ++)
1540 if (ee_data[i] != ee_data[16+i])
1541 sa_offset = 20;
1542 if (chip_idx == CONEXANT) {
1543 /* Check that the tuple type and length is correct. */
1544 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1545 sa_offset = 0x19A;
1546 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1547 ee_data[2] == 0) {
1548 sa_offset = 2; /* Grrr, damn Matrox boards. */
1549 }
1550 #ifdef CONFIG_MIPS_COBALT
1551 if ((pdev->bus->number == 0) &&
1552 ((PCI_SLOT(pdev->devfn) == 7) ||
1553 (PCI_SLOT(pdev->devfn) == 12))) {
1554 /* Cobalt MAC address in first EEPROM locations. */
1555 sa_offset = 0;
1556 /* Ensure our media table fixup get's applied */
1557 memcpy(ee_data + 16, ee_data, 8);
1558 }
1559 #endif
1560 #ifdef CONFIG_GSC
1561 /* Check to see if we have a broken srom */
1562 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1563 /* pci_vendor_id and subsystem_id are swapped */
1564 ee_data[0] = ee_data[2];
1565 ee_data[1] = ee_data[3];
1566 ee_data[2] = 0x61;
1567 ee_data[3] = 0x10;
1568
1569 /* HSC-PCI boards need to be byte-swaped and shifted
1570 * up 1 word. This shift needs to happen at the end
1571 * of the MAC first because of the 2 byte overlap.
1572 */
1573 for (i = 4; i >= 0; i -= 2) {
1574 ee_data[17 + i + 3] = ee_data[17 + i];
1575 ee_data[16 + i + 5] = ee_data[16 + i];
1576 }
1577 }
1578 #endif
1579
1580 for (i = 0; i < 6; i ++) {
1581 addr[i] = ee_data[i + sa_offset];
1582 sum += ee_data[i + sa_offset];
1583 }
1584 eth_hw_addr_set(dev, addr);
1585 }
1586 /* Lite-On boards have the address byte-swapped. */
1587 if ((dev->dev_addr[0] == 0xA0 ||
1588 dev->dev_addr[0] == 0xC0 ||
1589 dev->dev_addr[0] == 0x02) &&
1590 dev->dev_addr[1] == 0x00) {
1591 for (i = 0; i < 6; i+=2) {
1592 addr[i] = dev->dev_addr[i+1];
1593 addr[i+1] = dev->dev_addr[i];
1594 }
1595 eth_hw_addr_set(dev, addr);
1596 }
1597
1598 /* On the Zynx 315 Etherarray and other multiport boards only the
1599 first Tulip has an EEPROM.
1600 On Sparc systems the mac address is held in the OBP property
1601 "local-mac-address".
1602 The addresses of the subsequent ports are derived from the first.
1603 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1604 that here as well. */
1605 if (sum == 0 || sum == 6*0xff) {
1606 #if defined(CONFIG_SPARC)
1607 struct device_node *dp = pci_device_to_OF_node(pdev);
1608 const unsigned char *addr2;
1609 int len;
1610 #endif
1611 eeprom_missing = 1;
1612 for (i = 0; i < 5; i++)
1613 addr[i] = last_phys_addr[i];
1614 addr[i] = last_phys_addr[i] + 1;
1615 eth_hw_addr_set(dev, addr);
1616 #if defined(CONFIG_SPARC)
1617 addr2 = of_get_property(dp, "local-mac-address", &len);
1618 if (addr2 && len == ETH_ALEN)
1619 eth_hw_addr_set(dev, addr2);
1620 #endif
1621 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1622 if (last_irq)
1623 irq = last_irq;
1624 #endif
1625 }
1626
1627 for (i = 0; i < 6; i++)
1628 last_phys_addr[i] = dev->dev_addr[i];
1629 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1630 last_irq = irq;
1631 #endif
1632
1633 /* The lower four bits are the media type. */
1634 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1635 if (options[board_idx] & MEDIA_MASK)
1636 tp->default_port = options[board_idx] & MEDIA_MASK;
1637 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1638 tp->full_duplex = 1;
1639 if (mtu[board_idx] > 0)
1640 dev->mtu = mtu[board_idx];
1641 }
1642 if (dev->mem_start & MEDIA_MASK)
1643 tp->default_port = dev->mem_start & MEDIA_MASK;
1644 if (tp->default_port) {
1645 pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
1646 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1647 tp->medialock = 1;
1648 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1649 tp->full_duplex = 1;
1650 }
1651 if (tp->full_duplex)
1652 tp->full_duplex_lock = 1;
1653
1654 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1655 static const u16 media2advert[] = {
1656 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200
1657 };
1658 tp->mii_advertise = media2advert[tp->default_port - 9];
1659 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1660 }
1661
1662 if (tp->flags & HAS_MEDIA_TABLE) {
1663 sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */
1664 tulip_parse_eeprom(dev);
1665 strcpy(dev->name, "eth%d"); /* un-hack */
1666 }
1667
1668 if ((tp->flags & ALWAYS_CHECK_MII) ||
1669 (tp->mtable && tp->mtable->has_mii) ||
1670 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1671 if (tp->mtable && tp->mtable->has_mii) {
1672 for (i = 0; i < tp->mtable->leafcount; i++)
1673 if (tp->mtable->mleaf[i].media == 11) {
1674 tp->cur_index = i;
1675 tp->saved_if_port = dev->if_port;
1676 tulip_select_media(dev, 2);
1677 dev->if_port = tp->saved_if_port;
1678 break;
1679 }
1680 }
1681
1682 /* Find the connected MII xcvrs.
1683 Doing this in open() would allow detecting external xcvrs
1684 later, but takes much time. */
1685 tulip_find_mii (dev, board_idx);
1686 }
1687
1688 /* The Tulip-specific entries in the device structure. */
1689 dev->netdev_ops = &tulip_netdev_ops;
1690 dev->watchdog_timeo = TX_TIMEOUT;
1691 #ifdef CONFIG_TULIP_NAPI
1692 netif_napi_add_weight(dev, &tp->napi, tulip_poll, 16);
1693 #endif
1694 dev->ethtool_ops = &ops;
1695
1696 i = register_netdev(dev);
1697 if (i)
1698 return i;
1699
1700 pci_set_drvdata(pdev, dev);
1701
1702 dev_info(&dev->dev,
1703 #ifdef CONFIG_TULIP_MMIO
1704 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
1705 #else
1706 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
1707 #endif
1708 chip_name, pdev->revision,
1709 (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
1710 eeprom_missing ? " EEPROM not present," : "",
1711 dev->dev_addr, irq);
1712
1713 if (tp->chip_id == PNIC2)
1714 tp->link_change = pnic2_lnk_change;
1715 else if (tp->flags & HAS_NWAY)
1716 tp->link_change = t21142_lnk_change;
1717 else if (tp->flags & HAS_PNICNWAY)
1718 tp->link_change = pnic_lnk_change;
1719
1720 /* Reset the xcvr interface and turn on heartbeat. */
1721 switch (chip_idx) {
1722 case DC21140:
1723 case DM910X:
1724 default:
1725 if (tp->mtable)
1726 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1727 break;
1728 case DC21142:
1729 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1730 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1731 iowrite32(0x0000, ioaddr + CSR13);
1732 iowrite32(0x0000, ioaddr + CSR14);
1733 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1734 } else
1735 t21142_start_nway(dev);
1736 break;
1737 case PNIC2:
1738 /* just do a reset for sanity sake */
1739 iowrite32(0x0000, ioaddr + CSR13);
1740 iowrite32(0x0000, ioaddr + CSR14);
1741 break;
1742 case LC82C168:
1743 if ( ! tp->mii_cnt) {
1744 tp->nway = 1;
1745 tp->nwayset = 0;
1746 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1747 iowrite32(0x30, ioaddr + CSR12);
1748 iowrite32(0x0001F078, ioaddr + CSR6);
1749 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1750 }
1751 break;
1752 case MX98713:
1753 case COMPEX9881:
1754 iowrite32(0x00000000, ioaddr + CSR6);
1755 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1756 iowrite32(0x00000001, ioaddr + CSR13);
1757 break;
1758 case MX98715:
1759 case MX98725:
1760 iowrite32(0x01a80000, ioaddr + CSR6);
1761 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1762 iowrite32(0x00001000, ioaddr + CSR12);
1763 break;
1764 case COMET:
1765 /* No initialization necessary. */
1766 break;
1767 }
1768
1769 /* put the chip in snooze mode until opened */
1770 tulip_set_power_state (tp, 0, 1);
1771
1772 return 0;
1773 }
1774
1775
1776 /* set the registers according to the given wolopts */
tulip_set_wolopts(struct pci_dev * pdev,u32 wolopts)1777 static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
1778 {
1779 struct net_device *dev = pci_get_drvdata(pdev);
1780 struct tulip_private *tp = netdev_priv(dev);
1781 void __iomem *ioaddr = tp->base_addr;
1782
1783 if (tp->flags & COMET_PM) {
1784 unsigned int tmp;
1785
1786 tmp = ioread32(ioaddr + CSR18);
1787 tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
1788 tmp |= comet_csr18_pm_mode;
1789 iowrite32(tmp, ioaddr + CSR18);
1790
1791 /* Set the Wake-up Control/Status Register to the given WOL options*/
1792 tmp = ioread32(ioaddr + CSR13);
1793 tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
1794 if (wolopts & WAKE_MAGIC)
1795 tmp |= comet_csr13_mpre;
1796 if (wolopts & WAKE_PHY)
1797 tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
1798 /* Clear the event flags */
1799 tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
1800 iowrite32(tmp, ioaddr + CSR13);
1801 }
1802 }
1803
tulip_suspend(struct device * dev_d)1804 static int __maybe_unused tulip_suspend(struct device *dev_d)
1805 {
1806 struct net_device *dev = dev_get_drvdata(dev_d);
1807 struct tulip_private *tp = netdev_priv(dev);
1808
1809 if (!dev)
1810 return -EINVAL;
1811
1812 if (!netif_running(dev))
1813 goto save_state;
1814
1815 tulip_down(dev);
1816
1817 netif_device_detach(dev);
1818 /* FIXME: it needlessly adds an error path. */
1819 free_irq(tp->pdev->irq, dev);
1820
1821 save_state:
1822 tulip_set_wolopts(to_pci_dev(dev_d), tp->wolinfo.wolopts);
1823 device_set_wakeup_enable(dev_d, !!tp->wolinfo.wolopts);
1824
1825 return 0;
1826 }
1827
tulip_resume(struct device * dev_d)1828 static int __maybe_unused tulip_resume(struct device *dev_d)
1829 {
1830 struct pci_dev *pdev = to_pci_dev(dev_d);
1831 struct net_device *dev = dev_get_drvdata(dev_d);
1832 struct tulip_private *tp = netdev_priv(dev);
1833 void __iomem *ioaddr = tp->base_addr;
1834 unsigned int tmp;
1835 int retval = 0;
1836
1837 if (!dev)
1838 return -EINVAL;
1839
1840 if (!netif_running(dev))
1841 return 0;
1842
1843 retval = request_irq(pdev->irq, tulip_interrupt, IRQF_SHARED,
1844 dev->name, dev);
1845 if (retval) {
1846 pr_err("request_irq failed in resume\n");
1847 return retval;
1848 }
1849
1850 if (tp->flags & COMET_PM) {
1851 device_set_wakeup_enable(dev_d, 0);
1852
1853 /* Clear the PMES flag */
1854 tmp = ioread32(ioaddr + CSR20);
1855 tmp |= comet_csr20_pmes;
1856 iowrite32(tmp, ioaddr + CSR20);
1857
1858 /* Disable all wake-up events */
1859 tulip_set_wolopts(pdev, 0);
1860 }
1861 netif_device_attach(dev);
1862
1863 if (netif_running(dev))
1864 tulip_up(dev);
1865
1866 return 0;
1867 }
1868
tulip_remove_one(struct pci_dev * pdev)1869 static void tulip_remove_one(struct pci_dev *pdev)
1870 {
1871 struct net_device *dev = pci_get_drvdata (pdev);
1872
1873 if (!dev)
1874 return;
1875
1876 unregister_netdev(dev);
1877 }
1878
1879 #ifdef CONFIG_NET_POLL_CONTROLLER
1880 /*
1881 * Polling 'interrupt' - used by things like netconsole to send skbs
1882 * without having to re-enable interrupts. It's not called while
1883 * the interrupt routine is executing.
1884 */
1885
poll_tulip(struct net_device * dev)1886 static void poll_tulip (struct net_device *dev)
1887 {
1888 struct tulip_private *tp = netdev_priv(dev);
1889 const int irq = tp->pdev->irq;
1890
1891 /* disable_irq here is not very nice, but with the lockless
1892 interrupt handler we have no other choice. */
1893 disable_irq(irq);
1894 tulip_interrupt (irq, dev);
1895 enable_irq(irq);
1896 }
1897 #endif
1898
1899 static SIMPLE_DEV_PM_OPS(tulip_pm_ops, tulip_suspend, tulip_resume);
1900
1901 static struct pci_driver tulip_driver = {
1902 .name = DRV_NAME,
1903 .id_table = tulip_pci_tbl,
1904 .probe = tulip_init_one,
1905 .remove = tulip_remove_one,
1906 .driver.pm = &tulip_pm_ops,
1907 };
1908
1909
tulip_init(void)1910 static int __init tulip_init (void)
1911 {
1912 if (!csr0) {
1913 pr_warn("tulip: unknown CPU architecture, using default csr0\n");
1914 /* default to 8 longword cache line alignment */
1915 csr0 = 0x00A00000 | 0x4800;
1916 }
1917
1918 /* copy module parms into globals */
1919 tulip_rx_copybreak = rx_copybreak;
1920 tulip_max_interrupt_work = max_interrupt_work;
1921
1922 /* probe for and init boards */
1923 return pci_register_driver(&tulip_driver);
1924 }
1925
1926
tulip_cleanup(void)1927 static void __exit tulip_cleanup (void)
1928 {
1929 pci_unregister_driver (&tulip_driver);
1930 }
1931
1932
1933 module_init(tulip_init);
1934 module_exit(tulip_cleanup);
1935