1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * SMP support for ppc.
4   *
5   * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6   * deal of code from the sparc and intel versions.
7   *
8   * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9   *
10   * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11   * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12   */
13  
14  #undef DEBUG
15  
16  #include <linux/kernel.h>
17  #include <linux/export.h>
18  #include <linux/sched/mm.h>
19  #include <linux/sched/task_stack.h>
20  #include <linux/sched/topology.h>
21  #include <linux/smp.h>
22  #include <linux/interrupt.h>
23  #include <linux/delay.h>
24  #include <linux/init.h>
25  #include <linux/spinlock.h>
26  #include <linux/cache.h>
27  #include <linux/err.h>
28  #include <linux/device.h>
29  #include <linux/cpu.h>
30  #include <linux/notifier.h>
31  #include <linux/topology.h>
32  #include <linux/profile.h>
33  #include <linux/processor.h>
34  #include <linux/random.h>
35  #include <linux/stackprotector.h>
36  #include <linux/pgtable.h>
37  #include <linux/clockchips.h>
38  #include <linux/kexec.h>
39  
40  #include <asm/ptrace.h>
41  #include <linux/atomic.h>
42  #include <asm/irq.h>
43  #include <asm/hw_irq.h>
44  #include <asm/kvm_ppc.h>
45  #include <asm/dbell.h>
46  #include <asm/page.h>
47  #include <asm/smp.h>
48  #include <asm/time.h>
49  #include <asm/machdep.h>
50  #include <asm/mmu_context.h>
51  #include <asm/cputhreads.h>
52  #include <asm/cputable.h>
53  #include <asm/mpic.h>
54  #include <asm/vdso_datapage.h>
55  #ifdef CONFIG_PPC64
56  #include <asm/paca.h>
57  #endif
58  #include <asm/vdso.h>
59  #include <asm/debug.h>
60  #include <asm/cpu_has_feature.h>
61  #include <asm/ftrace.h>
62  #include <asm/kup.h>
63  #include <asm/fadump.h>
64  
65  #include <trace/events/ipi.h>
66  
67  #ifdef DEBUG
68  #include <asm/udbg.h>
69  #define DBG(fmt...) udbg_printf(fmt)
70  #else
71  #define DBG(fmt...)
72  #endif
73  
74  #ifdef CONFIG_HOTPLUG_CPU
75  /* State of each CPU during hotplug phases */
76  static DEFINE_PER_CPU(int, cpu_state) = { 0 };
77  #endif
78  
79  struct task_struct *secondary_current;
80  bool has_big_cores __ro_after_init;
81  bool coregroup_enabled __ro_after_init;
82  bool thread_group_shares_l2 __ro_after_init;
83  bool thread_group_shares_l3 __ro_after_init;
84  
85  DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
86  DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
87  DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
88  DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
89  static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
90  
91  EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
92  EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
93  EXPORT_PER_CPU_SYMBOL(cpu_core_map);
94  EXPORT_SYMBOL_GPL(has_big_cores);
95  
96  #define MAX_THREAD_LIST_SIZE	8
97  #define THREAD_GROUP_SHARE_L1   1
98  #define THREAD_GROUP_SHARE_L2_L3 2
99  struct thread_groups {
100  	unsigned int property;
101  	unsigned int nr_groups;
102  	unsigned int threads_per_group;
103  	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
104  };
105  
106  /* Maximum number of properties that groups of threads within a core can share */
107  #define MAX_THREAD_GROUP_PROPERTIES 2
108  
109  struct thread_groups_list {
110  	unsigned int nr_properties;
111  	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
112  };
113  
114  static struct thread_groups_list tgl[NR_CPUS] __initdata;
115  /*
116   * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
117   * the set its siblings that share the L1-cache.
118   */
119  DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
120  
121  /*
122   * On some big-cores system, thread_group_l2_cache_map for each CPU
123   * corresponds to the set its siblings within the core that share the
124   * L2-cache.
125   */
126  DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
127  
128  /*
129   * On P10, thread_group_l3_cache_map for each CPU is equal to the
130   * thread_group_l2_cache_map
131   */
132  DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
133  
134  /* SMP operations for this machine */
135  struct smp_ops_t *smp_ops;
136  
137  /* Can't be static due to PowerMac hackery */
138  volatile unsigned int cpu_callin_map[NR_CPUS];
139  
140  int smt_enabled_at_boot = 1;
141  
142  /*
143   * Returns 1 if the specified cpu should be brought up during boot.
144   * Used to inhibit booting threads if they've been disabled or
145   * limited on the command line
146   */
smp_generic_cpu_bootable(unsigned int nr)147  int smp_generic_cpu_bootable(unsigned int nr)
148  {
149  	/* Special case - we inhibit secondary thread startup
150  	 * during boot if the user requests it.
151  	 */
152  	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
153  		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
154  			return 0;
155  		if (smt_enabled_at_boot
156  		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
157  			return 0;
158  	}
159  
160  	return 1;
161  }
162  
163  
164  #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)165  int smp_generic_kick_cpu(int nr)
166  {
167  	if (nr < 0 || nr >= nr_cpu_ids)
168  		return -EINVAL;
169  
170  	/*
171  	 * The processor is currently spinning, waiting for the
172  	 * cpu_start field to become non-zero After we set cpu_start,
173  	 * the processor will continue on to secondary_start
174  	 */
175  	if (!paca_ptrs[nr]->cpu_start) {
176  		paca_ptrs[nr]->cpu_start = 1;
177  		smp_mb();
178  		return 0;
179  	}
180  
181  #ifdef CONFIG_HOTPLUG_CPU
182  	/*
183  	 * Ok it's not there, so it might be soft-unplugged, let's
184  	 * try to bring it back
185  	 */
186  	generic_set_cpu_up(nr);
187  	smp_wmb();
188  	smp_send_reschedule(nr);
189  #endif /* CONFIG_HOTPLUG_CPU */
190  
191  	return 0;
192  }
193  #endif /* CONFIG_PPC64 */
194  
call_function_action(int irq,void * data)195  static irqreturn_t call_function_action(int irq, void *data)
196  {
197  	generic_smp_call_function_interrupt();
198  	return IRQ_HANDLED;
199  }
200  
reschedule_action(int irq,void * data)201  static irqreturn_t reschedule_action(int irq, void *data)
202  {
203  	scheduler_ipi();
204  	return IRQ_HANDLED;
205  }
206  
207  #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast_ipi_action(int irq,void * data)208  static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
209  {
210  	timer_broadcast_interrupt();
211  	return IRQ_HANDLED;
212  }
213  #endif
214  
215  #ifdef CONFIG_NMI_IPI
nmi_ipi_action(int irq,void * data)216  static irqreturn_t nmi_ipi_action(int irq, void *data)
217  {
218  	smp_handle_nmi_ipi(get_irq_regs());
219  	return IRQ_HANDLED;
220  }
221  #endif
222  
223  static irq_handler_t smp_ipi_action[] = {
224  	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
225  	[PPC_MSG_RESCHEDULE] = reschedule_action,
226  #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
227  	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
228  #endif
229  #ifdef CONFIG_NMI_IPI
230  	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
231  #endif
232  };
233  
234  /*
235   * The NMI IPI is a fallback and not truly non-maskable. It is simpler
236   * than going through the call function infrastructure, and strongly
237   * serialized, so it is more appropriate for debugging.
238   */
239  const char *smp_ipi_name[] = {
240  	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
241  	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
242  #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243  	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
244  #endif
245  #ifdef CONFIG_NMI_IPI
246  	[PPC_MSG_NMI_IPI] = "nmi ipi",
247  #endif
248  };
249  
250  /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)251  int smp_request_message_ipi(int virq, int msg)
252  {
253  	int err;
254  
255  	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
256  		return -EINVAL;
257  #ifndef CONFIG_NMI_IPI
258  	if (msg == PPC_MSG_NMI_IPI)
259  		return 1;
260  #endif
261  
262  	err = request_irq(virq, smp_ipi_action[msg],
263  			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
264  			  smp_ipi_name[msg], NULL);
265  	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
266  		virq, smp_ipi_name[msg], err);
267  
268  	return err;
269  }
270  
271  #ifdef CONFIG_PPC_SMP_MUXED_IPI
272  struct cpu_messages {
273  	long messages;			/* current messages */
274  };
275  static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
276  
smp_muxed_ipi_set_message(int cpu,int msg)277  void smp_muxed_ipi_set_message(int cpu, int msg)
278  {
279  	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
280  	char *message = (char *)&info->messages;
281  
282  	/*
283  	 * Order previous accesses before accesses in the IPI handler.
284  	 */
285  	smp_mb();
286  	WRITE_ONCE(message[msg], 1);
287  }
288  
smp_muxed_ipi_message_pass(int cpu,int msg)289  void smp_muxed_ipi_message_pass(int cpu, int msg)
290  {
291  	smp_muxed_ipi_set_message(cpu, msg);
292  
293  	/*
294  	 * cause_ipi functions are required to include a full barrier
295  	 * before doing whatever causes the IPI.
296  	 */
297  	smp_ops->cause_ipi(cpu);
298  }
299  
300  #ifdef __BIG_ENDIAN__
301  #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
302  #else
303  #define IPI_MESSAGE(A) (1uL << (8 * (A)))
304  #endif
305  
smp_ipi_demux(void)306  irqreturn_t smp_ipi_demux(void)
307  {
308  	mb();	/* order any irq clear */
309  
310  	return smp_ipi_demux_relaxed();
311  }
312  
313  /* sync-free variant. Callers should ensure synchronization */
smp_ipi_demux_relaxed(void)314  irqreturn_t smp_ipi_demux_relaxed(void)
315  {
316  	struct cpu_messages *info;
317  	unsigned long all;
318  
319  	info = this_cpu_ptr(&ipi_message);
320  	do {
321  		all = xchg(&info->messages, 0);
322  #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
323  		/*
324  		 * Must check for PPC_MSG_RM_HOST_ACTION messages
325  		 * before PPC_MSG_CALL_FUNCTION messages because when
326  		 * a VM is destroyed, we call kick_all_cpus_sync()
327  		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
328  		 * messages have completed before we free any VCPUs.
329  		 */
330  		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
331  			kvmppc_xics_ipi_action();
332  #endif
333  		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
334  			generic_smp_call_function_interrupt();
335  		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
336  			scheduler_ipi();
337  #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
338  		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
339  			timer_broadcast_interrupt();
340  #endif
341  #ifdef CONFIG_NMI_IPI
342  		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
343  			nmi_ipi_action(0, NULL);
344  #endif
345  	} while (READ_ONCE(info->messages));
346  
347  	return IRQ_HANDLED;
348  }
349  #endif /* CONFIG_PPC_SMP_MUXED_IPI */
350  
do_message_pass(int cpu,int msg)351  static inline void do_message_pass(int cpu, int msg)
352  {
353  	if (smp_ops->message_pass)
354  		smp_ops->message_pass(cpu, msg);
355  #ifdef CONFIG_PPC_SMP_MUXED_IPI
356  	else
357  		smp_muxed_ipi_message_pass(cpu, msg);
358  #endif
359  }
360  
arch_smp_send_reschedule(int cpu)361  void arch_smp_send_reschedule(int cpu)
362  {
363  	if (likely(smp_ops))
364  		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
365  }
366  EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
367  
arch_send_call_function_single_ipi(int cpu)368  void arch_send_call_function_single_ipi(int cpu)
369  {
370  	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
371  }
372  
arch_send_call_function_ipi_mask(const struct cpumask * mask)373  void arch_send_call_function_ipi_mask(const struct cpumask *mask)
374  {
375  	unsigned int cpu;
376  
377  	for_each_cpu(cpu, mask)
378  		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
379  }
380  
381  #ifdef CONFIG_NMI_IPI
382  
383  /*
384   * "NMI IPI" system.
385   *
386   * NMI IPIs may not be recoverable, so should not be used as ongoing part of
387   * a running system. They can be used for crash, debug, halt/reboot, etc.
388   *
389   * The IPI call waits with interrupts disabled until all targets enter the
390   * NMI handler, then returns. Subsequent IPIs can be issued before targets
391   * have returned from their handlers, so there is no guarantee about
392   * concurrency or re-entrancy.
393   *
394   * A new NMI can be issued before all targets exit the handler.
395   *
396   * The IPI call may time out without all targets entering the NMI handler.
397   * In that case, there is some logic to recover (and ignore subsequent
398   * NMI interrupts that may eventually be raised), but the platform interrupt
399   * handler may not be able to distinguish this from other exception causes,
400   * which may cause a crash.
401   */
402  
403  static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
404  static struct cpumask nmi_ipi_pending_mask;
405  static bool nmi_ipi_busy = false;
406  static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
407  
nmi_ipi_lock_start(unsigned long * flags)408  noinstr static void nmi_ipi_lock_start(unsigned long *flags)
409  {
410  	raw_local_irq_save(*flags);
411  	hard_irq_disable();
412  	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
413  		raw_local_irq_restore(*flags);
414  		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
415  		raw_local_irq_save(*flags);
416  		hard_irq_disable();
417  	}
418  }
419  
nmi_ipi_lock(void)420  noinstr static void nmi_ipi_lock(void)
421  {
422  	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
423  		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
424  }
425  
nmi_ipi_unlock(void)426  noinstr static void nmi_ipi_unlock(void)
427  {
428  	smp_mb();
429  	WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
430  	raw_atomic_set(&__nmi_ipi_lock, 0);
431  }
432  
nmi_ipi_unlock_end(unsigned long * flags)433  noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
434  {
435  	nmi_ipi_unlock();
436  	raw_local_irq_restore(*flags);
437  }
438  
439  /*
440   * Platform NMI handler calls this to ack
441   */
smp_handle_nmi_ipi(struct pt_regs * regs)442  noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
443  {
444  	void (*fn)(struct pt_regs *) = NULL;
445  	unsigned long flags;
446  	int me = raw_smp_processor_id();
447  	int ret = 0;
448  
449  	/*
450  	 * Unexpected NMIs are possible here because the interrupt may not
451  	 * be able to distinguish NMI IPIs from other types of NMIs, or
452  	 * because the caller may have timed out.
453  	 */
454  	nmi_ipi_lock_start(&flags);
455  	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
456  		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
457  		fn = READ_ONCE(nmi_ipi_function);
458  		WARN_ON_ONCE(!fn);
459  		ret = 1;
460  	}
461  	nmi_ipi_unlock_end(&flags);
462  
463  	if (fn)
464  		fn(regs);
465  
466  	return ret;
467  }
468  
do_smp_send_nmi_ipi(int cpu,bool safe)469  static void do_smp_send_nmi_ipi(int cpu, bool safe)
470  {
471  	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
472  		return;
473  
474  	if (cpu >= 0) {
475  		do_message_pass(cpu, PPC_MSG_NMI_IPI);
476  	} else {
477  		int c;
478  
479  		for_each_online_cpu(c) {
480  			if (c == raw_smp_processor_id())
481  				continue;
482  			do_message_pass(c, PPC_MSG_NMI_IPI);
483  		}
484  	}
485  }
486  
487  /*
488   * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
489   * - fn is the target callback function.
490   * - delay_us > 0 is the delay before giving up waiting for targets to
491   *   begin executing the handler, == 0 specifies indefinite delay.
492   */
__smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us,bool safe)493  static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
494  				u64 delay_us, bool safe)
495  {
496  	unsigned long flags;
497  	int me = raw_smp_processor_id();
498  	int ret = 1;
499  
500  	BUG_ON(cpu == me);
501  	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
502  
503  	if (unlikely(!smp_ops))
504  		return 0;
505  
506  	nmi_ipi_lock_start(&flags);
507  	while (nmi_ipi_busy) {
508  		nmi_ipi_unlock_end(&flags);
509  		spin_until_cond(!nmi_ipi_busy);
510  		nmi_ipi_lock_start(&flags);
511  	}
512  	nmi_ipi_busy = true;
513  	nmi_ipi_function = fn;
514  
515  	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
516  
517  	if (cpu < 0) {
518  		/* ALL_OTHERS */
519  		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
520  		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
521  	} else {
522  		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
523  	}
524  
525  	nmi_ipi_unlock();
526  
527  	/* Interrupts remain hard disabled */
528  
529  	do_smp_send_nmi_ipi(cpu, safe);
530  
531  	nmi_ipi_lock();
532  	/* nmi_ipi_busy is set here, so unlock/lock is okay */
533  	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
534  		nmi_ipi_unlock();
535  		udelay(1);
536  		nmi_ipi_lock();
537  		if (delay_us) {
538  			delay_us--;
539  			if (!delay_us)
540  				break;
541  		}
542  	}
543  
544  	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
545  		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
546  		ret = 0;
547  		cpumask_clear(&nmi_ipi_pending_mask);
548  	}
549  
550  	nmi_ipi_function = NULL;
551  	nmi_ipi_busy = false;
552  
553  	nmi_ipi_unlock_end(&flags);
554  
555  	return ret;
556  }
557  
smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)558  int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
559  {
560  	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
561  }
562  
smp_send_safe_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)563  int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
564  {
565  	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
566  }
567  #endif /* CONFIG_NMI_IPI */
568  
569  #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)570  void tick_broadcast(const struct cpumask *mask)
571  {
572  	unsigned int cpu;
573  
574  	for_each_cpu(cpu, mask)
575  		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
576  }
577  #endif
578  
579  #ifdef CONFIG_DEBUGGER
debugger_ipi_callback(struct pt_regs * regs)580  static void debugger_ipi_callback(struct pt_regs *regs)
581  {
582  	debugger_ipi(regs);
583  }
584  
smp_send_debugger_break(void)585  void smp_send_debugger_break(void)
586  {
587  	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
588  }
589  #endif
590  
591  #ifdef CONFIG_CRASH_DUMP
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))592  void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
593  {
594  	int cpu;
595  
596  	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
597  	if (kdump_in_progress() && crash_wake_offline) {
598  		for_each_present_cpu(cpu) {
599  			if (cpu_online(cpu))
600  				continue;
601  			/*
602  			 * crash_ipi_callback will wait for
603  			 * all cpus, including offline CPUs.
604  			 * We don't care about nmi_ipi_function.
605  			 * Offline cpus will jump straight into
606  			 * crash_ipi_callback, we can skip the
607  			 * entire NMI dance and waiting for
608  			 * cpus to clear pending mask, etc.
609  			 */
610  			do_smp_send_nmi_ipi(cpu, false);
611  		}
612  	}
613  }
614  #endif
615  
crash_smp_send_stop(void)616  void crash_smp_send_stop(void)
617  {
618  	static bool stopped = false;
619  
620  	/*
621  	 * In case of fadump, register data for all CPUs is captured by f/w
622  	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
623  	 * this rtas call to avoid tricky post processing of those CPUs'
624  	 * backtraces.
625  	 */
626  	if (should_fadump_crash())
627  		return;
628  
629  	if (stopped)
630  		return;
631  
632  	stopped = true;
633  
634  #ifdef CONFIG_CRASH_DUMP
635  	if (kexec_crash_image) {
636  		crash_kexec_prepare();
637  		return;
638  	}
639  #endif
640  
641  	smp_send_stop();
642  }
643  
644  #ifdef CONFIG_NMI_IPI
nmi_stop_this_cpu(struct pt_regs * regs)645  static void nmi_stop_this_cpu(struct pt_regs *regs)
646  {
647  	/*
648  	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
649  	 */
650  	set_cpu_online(smp_processor_id(), false);
651  
652  	spin_begin();
653  	while (1)
654  		spin_cpu_relax();
655  }
656  
smp_send_stop(void)657  void smp_send_stop(void)
658  {
659  	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
660  }
661  
662  #else /* CONFIG_NMI_IPI */
663  
stop_this_cpu(void * dummy)664  static void stop_this_cpu(void *dummy)
665  {
666  	hard_irq_disable();
667  
668  	/*
669  	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
670  	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
671  	 * to know other CPUs are offline before it breaks locks to flush
672  	 * printk buffers, in case we panic()ed while holding the lock.
673  	 */
674  	set_cpu_online(smp_processor_id(), false);
675  
676  	spin_begin();
677  	while (1)
678  		spin_cpu_relax();
679  }
680  
smp_send_stop(void)681  void smp_send_stop(void)
682  {
683  	static bool stopped = false;
684  
685  	/*
686  	 * Prevent waiting on csd lock from a previous smp_send_stop.
687  	 * This is racy, but in general callers try to do the right
688  	 * thing and only fire off one smp_send_stop (e.g., see
689  	 * kernel/panic.c)
690  	 */
691  	if (stopped)
692  		return;
693  
694  	stopped = true;
695  
696  	smp_call_function(stop_this_cpu, NULL, 0);
697  }
698  #endif /* CONFIG_NMI_IPI */
699  
700  static struct task_struct *current_set[NR_CPUS];
701  
smp_store_cpu_info(int id)702  static void smp_store_cpu_info(int id)
703  {
704  	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
705  #ifdef CONFIG_PPC_E500
706  	per_cpu(next_tlbcam_idx, id)
707  		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
708  #endif
709  }
710  
711  /*
712   * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
713   * rather than just passing around the cpumask we pass around a function that
714   * returns the that cpumask for the given CPU.
715   */
set_cpus_related(int i,int j,struct cpumask * (* get_cpumask)(int))716  static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
717  {
718  	cpumask_set_cpu(i, get_cpumask(j));
719  	cpumask_set_cpu(j, get_cpumask(i));
720  }
721  
722  #ifdef CONFIG_HOTPLUG_CPU
set_cpus_unrelated(int i,int j,struct cpumask * (* get_cpumask)(int))723  static void set_cpus_unrelated(int i, int j,
724  		struct cpumask *(*get_cpumask)(int))
725  {
726  	cpumask_clear_cpu(i, get_cpumask(j));
727  	cpumask_clear_cpu(j, get_cpumask(i));
728  }
729  #endif
730  
731  /*
732   * Extends set_cpus_related. Instead of setting one CPU at a time in
733   * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
734   */
or_cpumasks_related(int i,int j,struct cpumask * (* srcmask)(int),struct cpumask * (* dstmask)(int))735  static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
736  				struct cpumask *(*dstmask)(int))
737  {
738  	struct cpumask *mask;
739  	int k;
740  
741  	mask = srcmask(j);
742  	for_each_cpu(k, srcmask(i))
743  		cpumask_or(dstmask(k), dstmask(k), mask);
744  
745  	if (i == j)
746  		return;
747  
748  	mask = srcmask(i);
749  	for_each_cpu(k, srcmask(j))
750  		cpumask_or(dstmask(k), dstmask(k), mask);
751  }
752  
753  /*
754   * parse_thread_groups: Parses the "ibm,thread-groups" device tree
755   *                      property for the CPU device node @dn and stores
756   *                      the parsed output in the thread_groups_list
757   *                      structure @tglp.
758   *
759   * @dn: The device node of the CPU device.
760   * @tglp: Pointer to a thread group list structure into which the parsed
761   *      output of "ibm,thread-groups" is stored.
762   *
763   * ibm,thread-groups[0..N-1] array defines which group of threads in
764   * the CPU-device node can be grouped together based on the property.
765   *
766   * This array can represent thread groupings for multiple properties.
767   *
768   * ibm,thread-groups[i + 0] tells us the property based on which the
769   * threads are being grouped together. If this value is 1, it implies
770   * that the threads in the same group share L1, translation cache. If
771   * the value is 2, it implies that the threads in the same group share
772   * the same L2 cache.
773   *
774   * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
775   * property ibm,thread-groups[i]
776   *
777   * ibm,thread-groups[i+2] tells us the number of threads in each such
778   * group.
779   * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
780   *
781   * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
782   * "ibm,ppc-interrupt-server#s" arranged as per their membership in
783   * the grouping.
784   *
785   * Example:
786   * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
787   * This can be decomposed up into two consecutive arrays:
788   * a) [1,2,4,8,10,12,14,9,11,13,15]
789   * b) [2,2,4,8,10,12,14,9,11,13,15]
790   *
791   * where in,
792   *
793   * a) provides information of Property "1" being shared by "2" groups,
794   *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
795   *  the first group is {8,10,12,14} and the
796   *  "ibm,ppc-interrupt-server#s" of the second group is
797   *  {9,11,13,15}. Property "1" is indicative of the thread in the
798   *  group sharing L1 cache, translation cache and Instruction Data
799   *  flow.
800   *
801   * b) provides information of Property "2" being shared by "2" groups,
802   *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
803   *  the first group is {8,10,12,14} and the
804   *  "ibm,ppc-interrupt-server#s" of the second group is
805   *  {9,11,13,15}. Property "2" indicates that the threads in each
806   *  group share the L2-cache.
807   *
808   * Returns 0 on success, -EINVAL if the property does not exist,
809   * -ENODATA if property does not have a value, and -EOVERFLOW if the
810   * property data isn't large enough.
811   */
parse_thread_groups(struct device_node * dn,struct thread_groups_list * tglp)812  static int parse_thread_groups(struct device_node *dn,
813  			       struct thread_groups_list *tglp)
814  {
815  	unsigned int property_idx = 0;
816  	u32 *thread_group_array;
817  	size_t total_threads;
818  	int ret = 0, count;
819  	u32 *thread_list;
820  	int i = 0;
821  
822  	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
823  	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
824  	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
825  					 thread_group_array, count);
826  	if (ret)
827  		goto out_free;
828  
829  	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
830  		int j;
831  		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
832  
833  		tg->property = thread_group_array[i];
834  		tg->nr_groups = thread_group_array[i + 1];
835  		tg->threads_per_group = thread_group_array[i + 2];
836  		total_threads = tg->nr_groups * tg->threads_per_group;
837  
838  		thread_list = &thread_group_array[i + 3];
839  
840  		for (j = 0; j < total_threads; j++)
841  			tg->thread_list[j] = thread_list[j];
842  		i = i + 3 + total_threads;
843  	}
844  
845  	tglp->nr_properties = property_idx;
846  
847  out_free:
848  	kfree(thread_group_array);
849  	return ret;
850  }
851  
852  /*
853   * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
854   *                              that @cpu belongs to.
855   *
856   * @cpu : The logical CPU whose thread group is being searched.
857   * @tg : The thread-group structure of the CPU node which @cpu belongs
858   *       to.
859   *
860   * Returns the index to tg->thread_list that points to the start
861   * of the thread_group that @cpu belongs to.
862   *
863   * Returns -1 if cpu doesn't belong to any of the groups pointed to by
864   * tg->thread_list.
865   */
get_cpu_thread_group_start(int cpu,struct thread_groups * tg)866  static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
867  {
868  	int hw_cpu_id = get_hard_smp_processor_id(cpu);
869  	int i, j;
870  
871  	for (i = 0; i < tg->nr_groups; i++) {
872  		int group_start = i * tg->threads_per_group;
873  
874  		for (j = 0; j < tg->threads_per_group; j++) {
875  			int idx = group_start + j;
876  
877  			if (tg->thread_list[idx] == hw_cpu_id)
878  				return group_start;
879  		}
880  	}
881  
882  	return -1;
883  }
884  
get_thread_groups(int cpu,int group_property,int * err)885  static struct thread_groups *__init get_thread_groups(int cpu,
886  						      int group_property,
887  						      int *err)
888  {
889  	struct device_node *dn = of_get_cpu_node(cpu, NULL);
890  	struct thread_groups_list *cpu_tgl = &tgl[cpu];
891  	struct thread_groups *tg = NULL;
892  	int i;
893  	*err = 0;
894  
895  	if (!dn) {
896  		*err = -ENODATA;
897  		return NULL;
898  	}
899  
900  	if (!cpu_tgl->nr_properties) {
901  		*err = parse_thread_groups(dn, cpu_tgl);
902  		if (*err)
903  			goto out;
904  	}
905  
906  	for (i = 0; i < cpu_tgl->nr_properties; i++) {
907  		if (cpu_tgl->property_tgs[i].property == group_property) {
908  			tg = &cpu_tgl->property_tgs[i];
909  			break;
910  		}
911  	}
912  
913  	if (!tg)
914  		*err = -EINVAL;
915  out:
916  	of_node_put(dn);
917  	return tg;
918  }
919  
update_mask_from_threadgroup(cpumask_var_t * mask,struct thread_groups * tg,int cpu,int cpu_group_start)920  static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
921  					       int cpu, int cpu_group_start)
922  {
923  	int first_thread = cpu_first_thread_sibling(cpu);
924  	int i;
925  
926  	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
927  
928  	for (i = first_thread; i < first_thread + threads_per_core; i++) {
929  		int i_group_start = get_cpu_thread_group_start(i, tg);
930  
931  		if (unlikely(i_group_start == -1)) {
932  			WARN_ON_ONCE(1);
933  			return -ENODATA;
934  		}
935  
936  		if (i_group_start == cpu_group_start)
937  			cpumask_set_cpu(i, *mask);
938  	}
939  
940  	return 0;
941  }
942  
init_thread_group_cache_map(int cpu,int cache_property)943  static int __init init_thread_group_cache_map(int cpu, int cache_property)
944  
945  {
946  	int cpu_group_start = -1, err = 0;
947  	struct thread_groups *tg = NULL;
948  	cpumask_var_t *mask = NULL;
949  
950  	if (cache_property != THREAD_GROUP_SHARE_L1 &&
951  	    cache_property != THREAD_GROUP_SHARE_L2_L3)
952  		return -EINVAL;
953  
954  	tg = get_thread_groups(cpu, cache_property, &err);
955  
956  	if (!tg)
957  		return err;
958  
959  	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
960  
961  	if (unlikely(cpu_group_start == -1)) {
962  		WARN_ON_ONCE(1);
963  		return -ENODATA;
964  	}
965  
966  	if (cache_property == THREAD_GROUP_SHARE_L1) {
967  		mask = &per_cpu(thread_group_l1_cache_map, cpu);
968  		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
969  	}
970  	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
971  		mask = &per_cpu(thread_group_l2_cache_map, cpu);
972  		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
973  		mask = &per_cpu(thread_group_l3_cache_map, cpu);
974  		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
975  	}
976  
977  
978  	return 0;
979  }
980  
981  static bool shared_caches __ro_after_init;
982  
983  #ifdef CONFIG_SCHED_SMT
984  /* cpumask of CPUs with asymmetric SMT dependency */
powerpc_smt_flags(void)985  static int powerpc_smt_flags(void)
986  {
987  	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
988  
989  	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
990  		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
991  		flags |= SD_ASYM_PACKING;
992  	}
993  	return flags;
994  }
995  #endif
996  
997  /*
998   * On shared processor LPARs scheduled on a big core (which has two or more
999   * independent thread groups per core), prefer lower numbered CPUs, so
1000   * that workload consolidates to lesser number of cores.
1001   */
1002  static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack);
1003  
1004  /*
1005   * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1006   * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1007   * since the migrated task remains cache hot. We want to take advantage of this
1008   * at the scheduler level so an extra topology level is required.
1009   */
powerpc_shared_cache_flags(void)1010  static int powerpc_shared_cache_flags(void)
1011  {
1012  	if (static_branch_unlikely(&splpar_asym_pack))
1013  		return SD_SHARE_LLC | SD_ASYM_PACKING;
1014  
1015  	return SD_SHARE_LLC;
1016  }
1017  
powerpc_shared_proc_flags(void)1018  static int powerpc_shared_proc_flags(void)
1019  {
1020  	if (static_branch_unlikely(&splpar_asym_pack))
1021  		return SD_ASYM_PACKING;
1022  
1023  	return 0;
1024  }
1025  
1026  /*
1027   * We can't just pass cpu_l2_cache_mask() directly because
1028   * returns a non-const pointer and the compiler barfs on that.
1029   */
shared_cache_mask(int cpu)1030  static const struct cpumask *shared_cache_mask(int cpu)
1031  {
1032  	return per_cpu(cpu_l2_cache_map, cpu);
1033  }
1034  
1035  #ifdef CONFIG_SCHED_SMT
smallcore_smt_mask(int cpu)1036  static const struct cpumask *smallcore_smt_mask(int cpu)
1037  {
1038  	return cpu_smallcore_mask(cpu);
1039  }
1040  #endif
1041  
cpu_coregroup_mask(int cpu)1042  static struct cpumask *cpu_coregroup_mask(int cpu)
1043  {
1044  	return per_cpu(cpu_coregroup_map, cpu);
1045  }
1046  
has_coregroup_support(void)1047  static bool has_coregroup_support(void)
1048  {
1049  	/* Coregroup identification not available on shared systems */
1050  	if (is_shared_processor())
1051  		return 0;
1052  
1053  	return coregroup_enabled;
1054  }
1055  
cpu_mc_mask(int cpu)1056  static const struct cpumask *cpu_mc_mask(int cpu)
1057  {
1058  	return cpu_coregroup_mask(cpu);
1059  }
1060  
init_big_cores(void)1061  static int __init init_big_cores(void)
1062  {
1063  	int cpu;
1064  
1065  	for_each_possible_cpu(cpu) {
1066  		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1067  
1068  		if (err)
1069  			return err;
1070  
1071  		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1072  					GFP_KERNEL,
1073  					cpu_to_node(cpu));
1074  	}
1075  
1076  	has_big_cores = true;
1077  
1078  	for_each_possible_cpu(cpu) {
1079  		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1080  
1081  		if (err)
1082  			return err;
1083  	}
1084  
1085  	thread_group_shares_l2 = true;
1086  	thread_group_shares_l3 = true;
1087  	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1088  
1089  	return 0;
1090  }
1091  
smp_prepare_cpus(unsigned int max_cpus)1092  void __init smp_prepare_cpus(unsigned int max_cpus)
1093  {
1094  	unsigned int cpu, num_threads;
1095  
1096  	DBG("smp_prepare_cpus\n");
1097  
1098  	/*
1099  	 * setup_cpu may need to be called on the boot cpu. We haven't
1100  	 * spun any cpus up but lets be paranoid.
1101  	 */
1102  	BUG_ON(boot_cpuid != smp_processor_id());
1103  
1104  	/* Fixup boot cpu */
1105  	smp_store_cpu_info(boot_cpuid);
1106  	cpu_callin_map[boot_cpuid] = 1;
1107  
1108  	for_each_possible_cpu(cpu) {
1109  		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1110  					GFP_KERNEL, cpu_to_node(cpu));
1111  		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1112  					GFP_KERNEL, cpu_to_node(cpu));
1113  		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1114  					GFP_KERNEL, cpu_to_node(cpu));
1115  		if (has_coregroup_support())
1116  			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1117  						GFP_KERNEL, cpu_to_node(cpu));
1118  
1119  #ifdef CONFIG_NUMA
1120  		/*
1121  		 * numa_node_id() works after this.
1122  		 */
1123  		if (cpu_present(cpu)) {
1124  			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1125  			set_cpu_numa_mem(cpu,
1126  				local_memory_node(numa_cpu_lookup_table[cpu]));
1127  		}
1128  #endif
1129  	}
1130  
1131  	/* Init the cpumasks so the boot CPU is related to itself */
1132  	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1133  	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1134  	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1135  
1136  	if (has_coregroup_support())
1137  		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1138  
1139  	init_big_cores();
1140  	if (has_big_cores) {
1141  		cpumask_set_cpu(boot_cpuid,
1142  				cpu_smallcore_mask(boot_cpuid));
1143  	}
1144  
1145  	if (cpu_to_chip_id(boot_cpuid) != -1) {
1146  		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1147  
1148  		/*
1149  		 * All threads of a core will all belong to the same core,
1150  		 * chip_id_lookup_table will have one entry per core.
1151  		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1152  		 * other CPUs, will also not have chip-id.
1153  		 */
1154  		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1155  		if (chip_id_lookup_table)
1156  			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1157  	}
1158  
1159  	if (smp_ops && smp_ops->probe)
1160  		smp_ops->probe();
1161  
1162  	// Initalise the generic SMT topology support
1163  	num_threads = 1;
1164  	if (smt_enabled_at_boot)
1165  		num_threads = smt_enabled_at_boot;
1166  	cpu_smt_set_num_threads(num_threads, threads_per_core);
1167  }
1168  
smp_prepare_boot_cpu(void)1169  void __init smp_prepare_boot_cpu(void)
1170  {
1171  	BUG_ON(smp_processor_id() != boot_cpuid);
1172  #ifdef CONFIG_PPC64
1173  	paca_ptrs[boot_cpuid]->__current = current;
1174  #endif
1175  	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1176  	current_set[boot_cpuid] = current;
1177  }
1178  
1179  #ifdef CONFIG_HOTPLUG_CPU
1180  
generic_cpu_disable(void)1181  int generic_cpu_disable(void)
1182  {
1183  	unsigned int cpu = smp_processor_id();
1184  
1185  	if (cpu == boot_cpuid)
1186  		return -EBUSY;
1187  
1188  	set_cpu_online(cpu, false);
1189  #ifdef CONFIG_PPC64
1190  	vdso_data->processorCount--;
1191  #endif
1192  	/* Update affinity of all IRQs previously aimed at this CPU */
1193  	irq_migrate_all_off_this_cpu();
1194  
1195  	/*
1196  	 * Depending on the details of the interrupt controller, it's possible
1197  	 * that one of the interrupts we just migrated away from this CPU is
1198  	 * actually already pending on this CPU. If we leave it in that state
1199  	 * the interrupt will never be EOI'ed, and will never fire again. So
1200  	 * temporarily enable interrupts here, to allow any pending interrupt to
1201  	 * be received (and EOI'ed), before we take this CPU offline.
1202  	 */
1203  	local_irq_enable();
1204  	mdelay(1);
1205  	local_irq_disable();
1206  
1207  	return 0;
1208  }
1209  
generic_cpu_die(unsigned int cpu)1210  void generic_cpu_die(unsigned int cpu)
1211  {
1212  	int i;
1213  
1214  	for (i = 0; i < 100; i++) {
1215  		smp_rmb();
1216  		if (is_cpu_dead(cpu))
1217  			return;
1218  		msleep(100);
1219  	}
1220  	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1221  }
1222  
generic_set_cpu_dead(unsigned int cpu)1223  void generic_set_cpu_dead(unsigned int cpu)
1224  {
1225  	per_cpu(cpu_state, cpu) = CPU_DEAD;
1226  }
1227  
1228  /*
1229   * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1230   * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1231   * which makes the delay in generic_cpu_die() not happen.
1232   */
generic_set_cpu_up(unsigned int cpu)1233  void generic_set_cpu_up(unsigned int cpu)
1234  {
1235  	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1236  }
1237  
generic_check_cpu_restart(unsigned int cpu)1238  int generic_check_cpu_restart(unsigned int cpu)
1239  {
1240  	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1241  }
1242  
is_cpu_dead(unsigned int cpu)1243  int is_cpu_dead(unsigned int cpu)
1244  {
1245  	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1246  }
1247  
secondaries_inhibited(void)1248  static bool secondaries_inhibited(void)
1249  {
1250  	return kvm_hv_mode_active();
1251  }
1252  
1253  #else /* HOTPLUG_CPU */
1254  
1255  #define secondaries_inhibited()		0
1256  
1257  #endif
1258  
cpu_idle_thread_init(unsigned int cpu,struct task_struct * idle)1259  static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1260  {
1261  #ifdef CONFIG_PPC64
1262  	paca_ptrs[cpu]->__current = idle;
1263  	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1264  				 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1265  #endif
1266  	task_thread_info(idle)->cpu = cpu;
1267  	secondary_current = current_set[cpu] = idle;
1268  }
1269  
__cpu_up(unsigned int cpu,struct task_struct * tidle)1270  int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1271  {
1272  	const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1273  	const bool booting = system_state < SYSTEM_RUNNING;
1274  	const unsigned long hp_spin_ms = 1;
1275  	unsigned long deadline;
1276  	int rc;
1277  	const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1278  
1279  	/*
1280  	 * Don't allow secondary threads to come online if inhibited
1281  	 */
1282  	if (threads_per_core > 1 && secondaries_inhibited() &&
1283  	    cpu_thread_in_subcore(cpu))
1284  		return -EBUSY;
1285  
1286  	if (smp_ops == NULL ||
1287  	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1288  		return -EINVAL;
1289  
1290  	cpu_idle_thread_init(cpu, tidle);
1291  
1292  	/*
1293  	 * The platform might need to allocate resources prior to bringing
1294  	 * up the CPU
1295  	 */
1296  	if (smp_ops->prepare_cpu) {
1297  		rc = smp_ops->prepare_cpu(cpu);
1298  		if (rc)
1299  			return rc;
1300  	}
1301  
1302  	/* Make sure callin-map entry is 0 (can be leftover a CPU
1303  	 * hotplug
1304  	 */
1305  	cpu_callin_map[cpu] = 0;
1306  
1307  	/* The information for processor bringup must
1308  	 * be written out to main store before we release
1309  	 * the processor.
1310  	 */
1311  	smp_mb();
1312  
1313  	/* wake up cpus */
1314  	DBG("smp: kicking cpu %d\n", cpu);
1315  	rc = smp_ops->kick_cpu(cpu);
1316  	if (rc) {
1317  		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1318  		return rc;
1319  	}
1320  
1321  	/*
1322  	 * At boot time, simply spin on the callin word until the
1323  	 * deadline passes.
1324  	 *
1325  	 * At run time, spin for an optimistic amount of time to avoid
1326  	 * sleeping in the common case.
1327  	 */
1328  	deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1329  	spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1330  
1331  	if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1332  		const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1333  		const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1334  
1335  		deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1336  		while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1337  			fsleep(sleep_interval_us);
1338  	}
1339  
1340  	if (!cpu_callin_map[cpu]) {
1341  		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1342  		return -ENOENT;
1343  	}
1344  
1345  	DBG("Processor %u found.\n", cpu);
1346  
1347  	if (smp_ops->give_timebase)
1348  		smp_ops->give_timebase();
1349  
1350  	/* Wait until cpu puts itself in the online & active maps */
1351  	spin_until_cond(cpu_online(cpu));
1352  
1353  	return 0;
1354  }
1355  
1356  /* Return the value of the reg property corresponding to the given
1357   * logical cpu.
1358   */
cpu_to_core_id(int cpu)1359  int cpu_to_core_id(int cpu)
1360  {
1361  	struct device_node *np;
1362  	int id = -1;
1363  
1364  	np = of_get_cpu_node(cpu, NULL);
1365  	if (!np)
1366  		goto out;
1367  
1368  	id = of_get_cpu_hwid(np, 0);
1369  out:
1370  	of_node_put(np);
1371  	return id;
1372  }
1373  EXPORT_SYMBOL_GPL(cpu_to_core_id);
1374  
1375  /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)1376  int cpu_core_index_of_thread(int cpu)
1377  {
1378  	return cpu >> threads_shift;
1379  }
1380  EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1381  
cpu_first_thread_of_core(int core)1382  int cpu_first_thread_of_core(int core)
1383  {
1384  	return core << threads_shift;
1385  }
1386  EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1387  
1388  /* Must be called when no change can occur to cpu_present_mask,
1389   * i.e. during cpu online or offline.
1390   */
cpu_to_l2cache(int cpu)1391  static struct device_node *cpu_to_l2cache(int cpu)
1392  {
1393  	struct device_node *np;
1394  	struct device_node *cache;
1395  
1396  	if (!cpu_present(cpu))
1397  		return NULL;
1398  
1399  	np = of_get_cpu_node(cpu, NULL);
1400  	if (np == NULL)
1401  		return NULL;
1402  
1403  	cache = of_find_next_cache_node(np);
1404  
1405  	of_node_put(np);
1406  
1407  	return cache;
1408  }
1409  
update_mask_by_l2(int cpu,cpumask_var_t * mask)1410  static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1411  {
1412  	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1413  	struct device_node *l2_cache, *np;
1414  	int i;
1415  
1416  	if (has_big_cores)
1417  		submask_fn = cpu_smallcore_mask;
1418  
1419  	/*
1420  	 * If the threads in a thread-group share L2 cache, then the
1421  	 * L2-mask can be obtained from thread_group_l2_cache_map.
1422  	 */
1423  	if (thread_group_shares_l2) {
1424  		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1425  
1426  		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1427  			if (cpu_online(i))
1428  				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1429  		}
1430  
1431  		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1432  		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1433  		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1434  			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1435  				     cpu);
1436  		}
1437  
1438  		return true;
1439  	}
1440  
1441  	l2_cache = cpu_to_l2cache(cpu);
1442  	if (!l2_cache || !*mask) {
1443  		/* Assume only core siblings share cache with this CPU */
1444  		for_each_cpu(i, cpu_sibling_mask(cpu))
1445  			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1446  
1447  		return false;
1448  	}
1449  
1450  	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1451  
1452  	/* Update l2-cache mask with all the CPUs that are part of submask */
1453  	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1454  
1455  	/* Skip all CPUs already part of current CPU l2-cache mask */
1456  	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1457  
1458  	for_each_cpu(i, *mask) {
1459  		/*
1460  		 * when updating the marks the current CPU has not been marked
1461  		 * online, but we need to update the cache masks
1462  		 */
1463  		np = cpu_to_l2cache(i);
1464  
1465  		/* Skip all CPUs already part of current CPU l2-cache */
1466  		if (np == l2_cache) {
1467  			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1468  			cpumask_andnot(*mask, *mask, submask_fn(i));
1469  		} else {
1470  			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1471  		}
1472  
1473  		of_node_put(np);
1474  	}
1475  	of_node_put(l2_cache);
1476  
1477  	return true;
1478  }
1479  
1480  #ifdef CONFIG_HOTPLUG_CPU
remove_cpu_from_masks(int cpu)1481  static void remove_cpu_from_masks(int cpu)
1482  {
1483  	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1484  	int i;
1485  
1486  	unmap_cpu_from_node(cpu);
1487  
1488  	if (shared_caches)
1489  		mask_fn = cpu_l2_cache_mask;
1490  
1491  	for_each_cpu(i, mask_fn(cpu)) {
1492  		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1493  		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1494  		if (has_big_cores)
1495  			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1496  	}
1497  
1498  	for_each_cpu(i, cpu_core_mask(cpu))
1499  		set_cpus_unrelated(cpu, i, cpu_core_mask);
1500  
1501  	if (has_coregroup_support()) {
1502  		for_each_cpu(i, cpu_coregroup_mask(cpu))
1503  			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1504  	}
1505  }
1506  #endif
1507  
add_cpu_to_smallcore_masks(int cpu)1508  static inline void add_cpu_to_smallcore_masks(int cpu)
1509  {
1510  	int i;
1511  
1512  	if (!has_big_cores)
1513  		return;
1514  
1515  	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1516  
1517  	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1518  		if (cpu_online(i))
1519  			set_cpus_related(i, cpu, cpu_smallcore_mask);
1520  	}
1521  }
1522  
update_coregroup_mask(int cpu,cpumask_var_t * mask)1523  static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1524  {
1525  	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1526  	int coregroup_id = cpu_to_coregroup_id(cpu);
1527  	int i;
1528  
1529  	if (shared_caches)
1530  		submask_fn = cpu_l2_cache_mask;
1531  
1532  	if (!*mask) {
1533  		/* Assume only siblings are part of this CPU's coregroup */
1534  		for_each_cpu(i, submask_fn(cpu))
1535  			set_cpus_related(cpu, i, cpu_coregroup_mask);
1536  
1537  		return;
1538  	}
1539  
1540  	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1541  
1542  	/* Update coregroup mask with all the CPUs that are part of submask */
1543  	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1544  
1545  	/* Skip all CPUs already part of coregroup mask */
1546  	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1547  
1548  	for_each_cpu(i, *mask) {
1549  		/* Skip all CPUs not part of this coregroup */
1550  		if (coregroup_id == cpu_to_coregroup_id(i)) {
1551  			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1552  			cpumask_andnot(*mask, *mask, submask_fn(i));
1553  		} else {
1554  			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1555  		}
1556  	}
1557  }
1558  
add_cpu_to_masks(int cpu)1559  static void add_cpu_to_masks(int cpu)
1560  {
1561  	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1562  	int first_thread = cpu_first_thread_sibling(cpu);
1563  	cpumask_var_t mask;
1564  	int chip_id = -1;
1565  	bool ret;
1566  	int i;
1567  
1568  	/*
1569  	 * This CPU will not be in the online mask yet so we need to manually
1570  	 * add it to its own thread sibling mask.
1571  	 */
1572  	map_cpu_to_node(cpu, cpu_to_node(cpu));
1573  	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1574  	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1575  
1576  	for (i = first_thread; i < first_thread + threads_per_core; i++)
1577  		if (cpu_online(i))
1578  			set_cpus_related(i, cpu, cpu_sibling_mask);
1579  
1580  	add_cpu_to_smallcore_masks(cpu);
1581  
1582  	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1583  	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1584  	update_mask_by_l2(cpu, &mask);
1585  
1586  	if (has_coregroup_support())
1587  		update_coregroup_mask(cpu, &mask);
1588  
1589  	if (chip_id_lookup_table && ret)
1590  		chip_id = cpu_to_chip_id(cpu);
1591  
1592  	if (shared_caches)
1593  		submask_fn = cpu_l2_cache_mask;
1594  
1595  	/* Update core_mask with all the CPUs that are part of submask */
1596  	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1597  
1598  	/* Skip all CPUs already part of current CPU core mask */
1599  	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1600  
1601  	/* If chip_id is -1; limit the cpu_core_mask to within PKG */
1602  	if (chip_id == -1)
1603  		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1604  
1605  	for_each_cpu(i, mask) {
1606  		if (chip_id == cpu_to_chip_id(i)) {
1607  			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1608  			cpumask_andnot(mask, mask, submask_fn(i));
1609  		} else {
1610  			cpumask_andnot(mask, mask, cpu_core_mask(i));
1611  		}
1612  	}
1613  
1614  	free_cpumask_var(mask);
1615  }
1616  
1617  /* Activate a secondary processor. */
1618  __no_stack_protector
start_secondary(void * unused)1619  void start_secondary(void *unused)
1620  {
1621  	unsigned int cpu = raw_smp_processor_id();
1622  
1623  	/* PPC64 calls setup_kup() in early_setup_secondary() */
1624  	if (IS_ENABLED(CONFIG_PPC32))
1625  		setup_kup();
1626  
1627  	mmgrab_lazy_tlb(&init_mm);
1628  	current->active_mm = &init_mm;
1629  	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
1630  	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
1631  	inc_mm_active_cpus(&init_mm);
1632  
1633  	smp_store_cpu_info(cpu);
1634  	set_dec(tb_ticks_per_jiffy);
1635  	rcutree_report_cpu_starting(cpu);
1636  	cpu_callin_map[cpu] = 1;
1637  
1638  	if (smp_ops->setup_cpu)
1639  		smp_ops->setup_cpu(cpu);
1640  	if (smp_ops->take_timebase)
1641  		smp_ops->take_timebase();
1642  
1643  	secondary_cpu_time_init();
1644  
1645  #ifdef CONFIG_PPC64
1646  	if (system_state == SYSTEM_RUNNING)
1647  		vdso_data->processorCount++;
1648  
1649  	vdso_getcpu_init();
1650  #endif
1651  	set_numa_node(numa_cpu_lookup_table[cpu]);
1652  	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1653  
1654  	/* Update topology CPU masks */
1655  	add_cpu_to_masks(cpu);
1656  
1657  	/*
1658  	 * Check for any shared caches. Note that this must be done on a
1659  	 * per-core basis because one core in the pair might be disabled.
1660  	 */
1661  	if (!shared_caches) {
1662  		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1663  		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1664  
1665  		if (has_big_cores)
1666  			sibling_mask = cpu_smallcore_mask;
1667  
1668  		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1669  			shared_caches = true;
1670  	}
1671  
1672  	smp_wmb();
1673  	notify_cpu_starting(cpu);
1674  	set_cpu_online(cpu, true);
1675  
1676  	boot_init_stack_canary();
1677  
1678  	local_irq_enable();
1679  
1680  	/* We can enable ftrace for secondary cpus now */
1681  	this_cpu_enable_ftrace();
1682  
1683  	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1684  
1685  	BUG();
1686  }
1687  
1688  static struct sched_domain_topology_level powerpc_topology[6];
1689  
build_sched_topology(void)1690  static void __init build_sched_topology(void)
1691  {
1692  	int i = 0;
1693  
1694  	if (is_shared_processor() && has_big_cores)
1695  		static_branch_enable(&splpar_asym_pack);
1696  
1697  #ifdef CONFIG_SCHED_SMT
1698  	if (has_big_cores) {
1699  		pr_info("Big cores detected but using small core scheduling\n");
1700  		powerpc_topology[i++] = (struct sched_domain_topology_level){
1701  			smallcore_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1702  		};
1703  	} else {
1704  		powerpc_topology[i++] = (struct sched_domain_topology_level){
1705  			cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1706  		};
1707  	}
1708  #endif
1709  	if (shared_caches) {
1710  		powerpc_topology[i++] = (struct sched_domain_topology_level){
1711  			shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE)
1712  		};
1713  	}
1714  	if (has_coregroup_support()) {
1715  		powerpc_topology[i++] = (struct sched_domain_topology_level){
1716  			cpu_mc_mask, powerpc_shared_proc_flags, SD_INIT_NAME(MC)
1717  		};
1718  	}
1719  	powerpc_topology[i++] = (struct sched_domain_topology_level){
1720  		cpu_cpu_mask, powerpc_shared_proc_flags, SD_INIT_NAME(PKG)
1721  	};
1722  
1723  	/* There must be one trailing NULL entry left.  */
1724  	BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1);
1725  
1726  	set_sched_topology(powerpc_topology);
1727  }
1728  
smp_cpus_done(unsigned int max_cpus)1729  void __init smp_cpus_done(unsigned int max_cpus)
1730  {
1731  	/*
1732  	 * We are running pinned to the boot CPU, see rest_init().
1733  	 */
1734  	if (smp_ops && smp_ops->setup_cpu)
1735  		smp_ops->setup_cpu(boot_cpuid);
1736  
1737  	if (smp_ops && smp_ops->bringup_done)
1738  		smp_ops->bringup_done();
1739  
1740  	dump_numa_cpu_topology();
1741  	build_sched_topology();
1742  }
1743  
1744  /*
1745   * For asym packing, by default lower numbered CPU has higher priority.
1746   * On shared processors, pack to lower numbered core. However avoid moving
1747   * between thread_groups within the same core.
1748   */
arch_asym_cpu_priority(int cpu)1749  int arch_asym_cpu_priority(int cpu)
1750  {
1751  	if (static_branch_unlikely(&splpar_asym_pack))
1752  		return -cpu / threads_per_core;
1753  
1754  	return -cpu;
1755  }
1756  
1757  #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)1758  int __cpu_disable(void)
1759  {
1760  	int cpu = smp_processor_id();
1761  	int err;
1762  
1763  	if (!smp_ops->cpu_disable)
1764  		return -ENOSYS;
1765  
1766  	this_cpu_disable_ftrace();
1767  
1768  	err = smp_ops->cpu_disable();
1769  	if (err)
1770  		return err;
1771  
1772  	/* Update sibling maps */
1773  	remove_cpu_from_masks(cpu);
1774  
1775  	return 0;
1776  }
1777  
__cpu_die(unsigned int cpu)1778  void __cpu_die(unsigned int cpu)
1779  {
1780  	/*
1781  	 * This could perhaps be a generic call in idlea_task_dead(), but
1782  	 * that requires testing from all archs, so first put it here to
1783  	 */
1784  	VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
1785  	dec_mm_active_cpus(&init_mm);
1786  	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
1787  
1788  	if (smp_ops->cpu_die)
1789  		smp_ops->cpu_die(cpu);
1790  }
1791  
arch_cpu_idle_dead(void)1792  void __noreturn arch_cpu_idle_dead(void)
1793  {
1794  	/*
1795  	 * Disable on the down path. This will be re-enabled by
1796  	 * start_secondary() via start_secondary_resume() below
1797  	 */
1798  	this_cpu_disable_ftrace();
1799  
1800  	if (smp_ops->cpu_offline_self)
1801  		smp_ops->cpu_offline_self();
1802  
1803  	/* If we return, we re-enter start_secondary */
1804  	start_secondary_resume();
1805  }
1806  
1807  #endif
1808