1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic helpers for smp ipi calls
4  *
5  * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/irq_work.h>
11 #include <linux/rcupdate.h>
12 #include <linux/rculist.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/gfp.h>
19 #include <linux/smp.h>
20 #include <linux/cpu.h>
21 #include <linux/sched.h>
22 #include <linux/sched/idle.h>
23 #include <linux/hypervisor.h>
24 #include <linux/sched/clock.h>
25 #include <linux/nmi.h>
26 #include <linux/sched/debug.h>
27 #include <linux/jump_label.h>
28 #include <linux/string_choices.h>
29 
30 #include <trace/events/ipi.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/csd.h>
33 #undef CREATE_TRACE_POINTS
34 
35 #include "smpboot.h"
36 #include "sched/smp.h"
37 
38 #define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
39 
40 struct call_function_data {
41 	call_single_data_t	__percpu *csd;
42 	cpumask_var_t		cpumask;
43 	cpumask_var_t		cpumask_ipi;
44 };
45 
46 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
47 
48 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
49 
50 static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1);
51 
52 static void __flush_smp_call_function_queue(bool warn_cpu_offline);
53 
smpcfd_prepare_cpu(unsigned int cpu)54 int smpcfd_prepare_cpu(unsigned int cpu)
55 {
56 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
57 
58 	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
59 				     cpu_to_node(cpu)))
60 		return -ENOMEM;
61 	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
62 				     cpu_to_node(cpu))) {
63 		free_cpumask_var(cfd->cpumask);
64 		return -ENOMEM;
65 	}
66 	cfd->csd = alloc_percpu(call_single_data_t);
67 	if (!cfd->csd) {
68 		free_cpumask_var(cfd->cpumask);
69 		free_cpumask_var(cfd->cpumask_ipi);
70 		return -ENOMEM;
71 	}
72 
73 	return 0;
74 }
75 
smpcfd_dead_cpu(unsigned int cpu)76 int smpcfd_dead_cpu(unsigned int cpu)
77 {
78 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
79 
80 	free_cpumask_var(cfd->cpumask);
81 	free_cpumask_var(cfd->cpumask_ipi);
82 	free_percpu(cfd->csd);
83 	return 0;
84 }
85 
smpcfd_dying_cpu(unsigned int cpu)86 int smpcfd_dying_cpu(unsigned int cpu)
87 {
88 	/*
89 	 * The IPIs for the smp-call-function callbacks queued by other
90 	 * CPUs might arrive late, either due to hardware latencies or
91 	 * because this CPU disabled interrupts (inside stop-machine)
92 	 * before the IPIs were sent. So flush out any pending callbacks
93 	 * explicitly (without waiting for the IPIs to arrive), to
94 	 * ensure that the outgoing CPU doesn't go offline with work
95 	 * still pending.
96 	 */
97 	__flush_smp_call_function_queue(false);
98 	irq_work_run();
99 	return 0;
100 }
101 
call_function_init(void)102 void __init call_function_init(void)
103 {
104 	int i;
105 
106 	for_each_possible_cpu(i)
107 		init_llist_head(&per_cpu(call_single_queue, i));
108 
109 	smpcfd_prepare_cpu(smp_processor_id());
110 }
111 
112 static __always_inline void
send_call_function_single_ipi(int cpu)113 send_call_function_single_ipi(int cpu)
114 {
115 	if (call_function_single_prep_ipi(cpu)) {
116 		trace_ipi_send_cpu(cpu, _RET_IP_,
117 				   generic_smp_call_function_single_interrupt);
118 		arch_send_call_function_single_ipi(cpu);
119 	}
120 }
121 
122 static __always_inline void
send_call_function_ipi_mask(struct cpumask * mask)123 send_call_function_ipi_mask(struct cpumask *mask)
124 {
125 	trace_ipi_send_cpumask(mask, _RET_IP_,
126 			       generic_smp_call_function_single_interrupt);
127 	arch_send_call_function_ipi_mask(mask);
128 }
129 
130 static __always_inline void
csd_do_func(smp_call_func_t func,void * info,call_single_data_t * csd)131 csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd)
132 {
133 	trace_csd_function_entry(func, csd);
134 	func(info);
135 	trace_csd_function_exit(func, csd);
136 }
137 
138 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
139 
140 static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled);
141 
142 /*
143  * Parse the csdlock_debug= kernel boot parameter.
144  *
145  * If you need to restore the old "ext" value that once provided
146  * additional debugging information, reapply the following commits:
147  *
148  * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging")
149  * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging")
150  */
csdlock_debug(char * str)151 static int __init csdlock_debug(char *str)
152 {
153 	int ret;
154 	unsigned int val = 0;
155 
156 	ret = get_option(&str, &val);
157 	if (ret) {
158 		if (val)
159 			static_branch_enable(&csdlock_debug_enabled);
160 		else
161 			static_branch_disable(&csdlock_debug_enabled);
162 	}
163 
164 	return 1;
165 }
166 __setup("csdlock_debug=", csdlock_debug);
167 
168 static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
169 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
170 static DEFINE_PER_CPU(void *, cur_csd_info);
171 
172 static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
173 module_param(csd_lock_timeout, ulong, 0444);
174 static int panic_on_ipistall;  /* CSD panic timeout in milliseconds, 300000 for five minutes. */
175 module_param(panic_on_ipistall, int, 0444);
176 
177 static atomic_t csd_bug_count = ATOMIC_INIT(0);
178 
179 /* Record current CSD work for current CPU, NULL to erase. */
__csd_lock_record(call_single_data_t * csd)180 static void __csd_lock_record(call_single_data_t *csd)
181 {
182 	if (!csd) {
183 		smp_mb(); /* NULL cur_csd after unlock. */
184 		__this_cpu_write(cur_csd, NULL);
185 		return;
186 	}
187 	__this_cpu_write(cur_csd_func, csd->func);
188 	__this_cpu_write(cur_csd_info, csd->info);
189 	smp_wmb(); /* func and info before csd. */
190 	__this_cpu_write(cur_csd, csd);
191 	smp_mb(); /* Update cur_csd before function call. */
192 		  /* Or before unlock, as the case may be. */
193 }
194 
csd_lock_record(call_single_data_t * csd)195 static __always_inline void csd_lock_record(call_single_data_t *csd)
196 {
197 	if (static_branch_unlikely(&csdlock_debug_enabled))
198 		__csd_lock_record(csd);
199 }
200 
csd_lock_wait_getcpu(call_single_data_t * csd)201 static int csd_lock_wait_getcpu(call_single_data_t *csd)
202 {
203 	unsigned int csd_type;
204 
205 	csd_type = CSD_TYPE(csd);
206 	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
207 		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
208 	return -1;
209 }
210 
211 static atomic_t n_csd_lock_stuck;
212 
213 /**
214  * csd_lock_is_stuck - Has a CSD-lock acquisition been stuck too long?
215  *
216  * Returns @true if a CSD-lock acquisition is stuck and has been stuck
217  * long enough for a "non-responsive CSD lock" message to be printed.
218  */
csd_lock_is_stuck(void)219 bool csd_lock_is_stuck(void)
220 {
221 	return !!atomic_read(&n_csd_lock_stuck);
222 }
223 
224 /*
225  * Complain if too much time spent waiting.  Note that only
226  * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
227  * so waiting on other types gets much less information.
228  */
csd_lock_wait_toolong(call_single_data_t * csd,u64 ts0,u64 * ts1,int * bug_id,unsigned long * nmessages)229 static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id, unsigned long *nmessages)
230 {
231 	int cpu = -1;
232 	int cpux;
233 	bool firsttime;
234 	u64 ts2, ts_delta;
235 	call_single_data_t *cpu_cur_csd;
236 	unsigned int flags = READ_ONCE(csd->node.u_flags);
237 	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
238 
239 	if (!(flags & CSD_FLAG_LOCK)) {
240 		if (!unlikely(*bug_id))
241 			return true;
242 		cpu = csd_lock_wait_getcpu(csd);
243 		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
244 			 *bug_id, raw_smp_processor_id(), cpu);
245 		atomic_dec(&n_csd_lock_stuck);
246 		return true;
247 	}
248 
249 	ts2 = sched_clock();
250 	/* How long since we last checked for a stuck CSD lock.*/
251 	ts_delta = ts2 - *ts1;
252 	if (likely(ts_delta <= csd_lock_timeout_ns * (*nmessages + 1) *
253 			       (!*nmessages ? 1 : (ilog2(num_online_cpus()) / 2 + 1)) ||
254 		   csd_lock_timeout_ns == 0))
255 		return false;
256 
257 	if (ts0 > ts2) {
258 		/* Our own sched_clock went backward; don't blame another CPU. */
259 		ts_delta = ts0 - ts2;
260 		pr_alert("sched_clock on CPU %d went backward by %llu ns\n", raw_smp_processor_id(), ts_delta);
261 		*ts1 = ts2;
262 		return false;
263 	}
264 
265 	firsttime = !*bug_id;
266 	if (firsttime)
267 		*bug_id = atomic_inc_return(&csd_bug_count);
268 	cpu = csd_lock_wait_getcpu(csd);
269 	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
270 		cpux = 0;
271 	else
272 		cpux = cpu;
273 	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
274 	/* How long since this CSD lock was stuck. */
275 	ts_delta = ts2 - ts0;
276 	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %lld ns for CPU#%02d %pS(%ps).\n",
277 		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), (s64)ts_delta,
278 		 cpu, csd->func, csd->info);
279 	(*nmessages)++;
280 	if (firsttime)
281 		atomic_inc(&n_csd_lock_stuck);
282 	/*
283 	 * If the CSD lock is still stuck after 5 minutes, it is unlikely
284 	 * to become unstuck. Use a signed comparison to avoid triggering
285 	 * on underflows when the TSC is out of sync between sockets.
286 	 */
287 	BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC));
288 	if (cpu_cur_csd && csd != cpu_cur_csd) {
289 		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
290 			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
291 			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
292 	} else {
293 		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
294 			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
295 	}
296 	if (cpu >= 0) {
297 		if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0))
298 			dump_cpu_task(cpu);
299 		if (!cpu_cur_csd) {
300 			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
301 			arch_send_call_function_single_ipi(cpu);
302 		}
303 	}
304 	if (firsttime)
305 		dump_stack();
306 	*ts1 = ts2;
307 
308 	return false;
309 }
310 
311 /*
312  * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
313  *
314  * For non-synchronous ipi calls the csd can still be in use by the
315  * previous function call. For multi-cpu calls its even more interesting
316  * as we'll have to ensure no other cpu is observing our csd.
317  */
__csd_lock_wait(call_single_data_t * csd)318 static void __csd_lock_wait(call_single_data_t *csd)
319 {
320 	unsigned long nmessages = 0;
321 	int bug_id = 0;
322 	u64 ts0, ts1;
323 
324 	ts1 = ts0 = sched_clock();
325 	for (;;) {
326 		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id, &nmessages))
327 			break;
328 		cpu_relax();
329 	}
330 	smp_acquire__after_ctrl_dep();
331 }
332 
csd_lock_wait(call_single_data_t * csd)333 static __always_inline void csd_lock_wait(call_single_data_t *csd)
334 {
335 	if (static_branch_unlikely(&csdlock_debug_enabled)) {
336 		__csd_lock_wait(csd);
337 		return;
338 	}
339 
340 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
341 }
342 #else
csd_lock_record(call_single_data_t * csd)343 static void csd_lock_record(call_single_data_t *csd)
344 {
345 }
346 
csd_lock_wait(call_single_data_t * csd)347 static __always_inline void csd_lock_wait(call_single_data_t *csd)
348 {
349 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
350 }
351 #endif
352 
csd_lock(call_single_data_t * csd)353 static __always_inline void csd_lock(call_single_data_t *csd)
354 {
355 	csd_lock_wait(csd);
356 	csd->node.u_flags |= CSD_FLAG_LOCK;
357 
358 	/*
359 	 * prevent CPU from reordering the above assignment
360 	 * to ->flags with any subsequent assignments to other
361 	 * fields of the specified call_single_data_t structure:
362 	 */
363 	smp_wmb();
364 }
365 
csd_unlock(call_single_data_t * csd)366 static __always_inline void csd_unlock(call_single_data_t *csd)
367 {
368 	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
369 
370 	/*
371 	 * ensure we're all done before releasing data:
372 	 */
373 	smp_store_release(&csd->node.u_flags, 0);
374 }
375 
376 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
377 
__smp_call_single_queue(int cpu,struct llist_node * node)378 void __smp_call_single_queue(int cpu, struct llist_node *node)
379 {
380 	/*
381 	 * We have to check the type of the CSD before queueing it, because
382 	 * once queued it can have its flags cleared by
383 	 *   flush_smp_call_function_queue()
384 	 * even if we haven't sent the smp_call IPI yet (e.g. the stopper
385 	 * executes migration_cpu_stop() on the remote CPU).
386 	 */
387 	if (trace_csd_queue_cpu_enabled()) {
388 		call_single_data_t *csd;
389 		smp_call_func_t func;
390 
391 		csd = container_of(node, call_single_data_t, node.llist);
392 		func = CSD_TYPE(csd) == CSD_TYPE_TTWU ?
393 			sched_ttwu_pending : csd->func;
394 
395 		trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
396 	}
397 
398 	/*
399 	 * The list addition should be visible to the target CPU when it pops
400 	 * the head of the list to pull the entry off it in the IPI handler
401 	 * because of normal cache coherency rules implied by the underlying
402 	 * llist ops.
403 	 *
404 	 * If IPIs can go out of order to the cache coherency protocol
405 	 * in an architecture, sufficient synchronisation should be added
406 	 * to arch code to make it appear to obey cache coherency WRT
407 	 * locking and barrier primitives. Generic code isn't really
408 	 * equipped to do the right thing...
409 	 */
410 	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
411 		send_call_function_single_ipi(cpu);
412 }
413 
414 /*
415  * Insert a previously allocated call_single_data_t element
416  * for execution on the given CPU. data must already have
417  * ->func, ->info, and ->flags set.
418  */
generic_exec_single(int cpu,call_single_data_t * csd)419 static int generic_exec_single(int cpu, call_single_data_t *csd)
420 {
421 	if (cpu == smp_processor_id()) {
422 		smp_call_func_t func = csd->func;
423 		void *info = csd->info;
424 		unsigned long flags;
425 
426 		/*
427 		 * We can unlock early even for the synchronous on-stack case,
428 		 * since we're doing this from the same CPU..
429 		 */
430 		csd_lock_record(csd);
431 		csd_unlock(csd);
432 		local_irq_save(flags);
433 		csd_do_func(func, info, NULL);
434 		csd_lock_record(NULL);
435 		local_irq_restore(flags);
436 		return 0;
437 	}
438 
439 	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
440 		csd_unlock(csd);
441 		return -ENXIO;
442 	}
443 
444 	__smp_call_single_queue(cpu, &csd->node.llist);
445 
446 	return 0;
447 }
448 
449 /**
450  * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
451  *
452  * Invoked by arch to handle an IPI for call function single.
453  * Must be called with interrupts disabled.
454  */
generic_smp_call_function_single_interrupt(void)455 void generic_smp_call_function_single_interrupt(void)
456 {
457 	__flush_smp_call_function_queue(true);
458 }
459 
460 /**
461  * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
462  *
463  * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
464  *		      offline CPU. Skip this check if set to 'false'.
465  *
466  * Flush any pending smp-call-function callbacks queued on this CPU. This is
467  * invoked by the generic IPI handler, as well as by a CPU about to go offline,
468  * to ensure that all pending IPI callbacks are run before it goes completely
469  * offline.
470  *
471  * Loop through the call_single_queue and run all the queued callbacks.
472  * Must be called with interrupts disabled.
473  */
__flush_smp_call_function_queue(bool warn_cpu_offline)474 static void __flush_smp_call_function_queue(bool warn_cpu_offline)
475 {
476 	call_single_data_t *csd, *csd_next;
477 	struct llist_node *entry, *prev;
478 	struct llist_head *head;
479 	static bool warned;
480 	atomic_t *tbt;
481 
482 	lockdep_assert_irqs_disabled();
483 
484 	/* Allow waiters to send backtrace NMI from here onwards */
485 	tbt = this_cpu_ptr(&trigger_backtrace);
486 	atomic_set_release(tbt, 1);
487 
488 	head = this_cpu_ptr(&call_single_queue);
489 	entry = llist_del_all(head);
490 	entry = llist_reverse_order(entry);
491 
492 	/* There shouldn't be any pending callbacks on an offline CPU. */
493 	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
494 		     !warned && entry != NULL)) {
495 		warned = true;
496 		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
497 
498 		/*
499 		 * We don't have to use the _safe() variant here
500 		 * because we are not invoking the IPI handlers yet.
501 		 */
502 		llist_for_each_entry(csd, entry, node.llist) {
503 			switch (CSD_TYPE(csd)) {
504 			case CSD_TYPE_ASYNC:
505 			case CSD_TYPE_SYNC:
506 			case CSD_TYPE_IRQ_WORK:
507 				pr_warn("IPI callback %pS sent to offline CPU\n",
508 					csd->func);
509 				break;
510 
511 			case CSD_TYPE_TTWU:
512 				pr_warn("IPI task-wakeup sent to offline CPU\n");
513 				break;
514 
515 			default:
516 				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
517 					CSD_TYPE(csd));
518 				break;
519 			}
520 		}
521 	}
522 
523 	/*
524 	 * First; run all SYNC callbacks, people are waiting for us.
525 	 */
526 	prev = NULL;
527 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
528 		/* Do we wait until *after* callback? */
529 		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
530 			smp_call_func_t func = csd->func;
531 			void *info = csd->info;
532 
533 			if (prev) {
534 				prev->next = &csd_next->node.llist;
535 			} else {
536 				entry = &csd_next->node.llist;
537 			}
538 
539 			csd_lock_record(csd);
540 			csd_do_func(func, info, csd);
541 			csd_unlock(csd);
542 			csd_lock_record(NULL);
543 		} else {
544 			prev = &csd->node.llist;
545 		}
546 	}
547 
548 	if (!entry)
549 		return;
550 
551 	/*
552 	 * Second; run all !SYNC callbacks.
553 	 */
554 	prev = NULL;
555 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
556 		int type = CSD_TYPE(csd);
557 
558 		if (type != CSD_TYPE_TTWU) {
559 			if (prev) {
560 				prev->next = &csd_next->node.llist;
561 			} else {
562 				entry = &csd_next->node.llist;
563 			}
564 
565 			if (type == CSD_TYPE_ASYNC) {
566 				smp_call_func_t func = csd->func;
567 				void *info = csd->info;
568 
569 				csd_lock_record(csd);
570 				csd_unlock(csd);
571 				csd_do_func(func, info, csd);
572 				csd_lock_record(NULL);
573 			} else if (type == CSD_TYPE_IRQ_WORK) {
574 				irq_work_single(csd);
575 			}
576 
577 		} else {
578 			prev = &csd->node.llist;
579 		}
580 	}
581 
582 	/*
583 	 * Third; only CSD_TYPE_TTWU is left, issue those.
584 	 */
585 	if (entry) {
586 		csd = llist_entry(entry, typeof(*csd), node.llist);
587 		csd_do_func(sched_ttwu_pending, entry, csd);
588 	}
589 }
590 
591 
592 /**
593  * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
594  *				   from task context (idle, migration thread)
595  *
596  * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
597  * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
598  * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
599  * handle queued SMP function calls before scheduling.
600  *
601  * The migration thread has to ensure that an eventually pending wakeup has
602  * been handled before it migrates a task.
603  */
flush_smp_call_function_queue(void)604 void flush_smp_call_function_queue(void)
605 {
606 	unsigned int was_pending;
607 	unsigned long flags;
608 
609 	if (llist_empty(this_cpu_ptr(&call_single_queue)))
610 		return;
611 
612 	local_irq_save(flags);
613 	/* Get the already pending soft interrupts for RT enabled kernels */
614 	was_pending = local_softirq_pending();
615 	__flush_smp_call_function_queue(true);
616 	if (local_softirq_pending())
617 		do_softirq_post_smp_call_flush(was_pending);
618 
619 	local_irq_restore(flags);
620 }
621 
622 /*
623  * smp_call_function_single - Run a function on a specific CPU
624  * @func: The function to run. This must be fast and non-blocking.
625  * @info: An arbitrary pointer to pass to the function.
626  * @wait: If true, wait until function has completed on other CPUs.
627  *
628  * Returns 0 on success, else a negative status code.
629  */
smp_call_function_single(int cpu,smp_call_func_t func,void * info,int wait)630 int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
631 			     int wait)
632 {
633 	call_single_data_t *csd;
634 	call_single_data_t csd_stack = {
635 		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
636 	};
637 	int this_cpu;
638 	int err;
639 
640 	/*
641 	 * prevent preemption and reschedule on another processor,
642 	 * as well as CPU removal
643 	 */
644 	this_cpu = get_cpu();
645 
646 	/*
647 	 * Can deadlock when called with interrupts disabled.
648 	 * We allow cpu's that are not yet online though, as no one else can
649 	 * send smp call function interrupt to this cpu and as such deadlocks
650 	 * can't happen.
651 	 */
652 	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
653 		     && !oops_in_progress);
654 
655 	/*
656 	 * When @wait we can deadlock when we interrupt between llist_add() and
657 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
658 	 * csd_lock() on because the interrupt context uses the same csd
659 	 * storage.
660 	 */
661 	WARN_ON_ONCE(!in_task());
662 
663 	csd = &csd_stack;
664 	if (!wait) {
665 		csd = this_cpu_ptr(&csd_data);
666 		csd_lock(csd);
667 	}
668 
669 	csd->func = func;
670 	csd->info = info;
671 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
672 	csd->node.src = smp_processor_id();
673 	csd->node.dst = cpu;
674 #endif
675 
676 	err = generic_exec_single(cpu, csd);
677 
678 	if (wait)
679 		csd_lock_wait(csd);
680 
681 	put_cpu();
682 
683 	return err;
684 }
685 EXPORT_SYMBOL(smp_call_function_single);
686 
687 /**
688  * smp_call_function_single_async() - Run an asynchronous function on a
689  * 			         specific CPU.
690  * @cpu: The CPU to run on.
691  * @csd: Pre-allocated and setup data structure
692  *
693  * Like smp_call_function_single(), but the call is asynchonous and
694  * can thus be done from contexts with disabled interrupts.
695  *
696  * The caller passes his own pre-allocated data structure
697  * (ie: embedded in an object) and is responsible for synchronizing it
698  * such that the IPIs performed on the @csd are strictly serialized.
699  *
700  * If the function is called with one csd which has not yet been
701  * processed by previous call to smp_call_function_single_async(), the
702  * function will return immediately with -EBUSY showing that the csd
703  * object is still in progress.
704  *
705  * NOTE: Be careful, there is unfortunately no current debugging facility to
706  * validate the correctness of this serialization.
707  *
708  * Return: %0 on success or negative errno value on error
709  */
smp_call_function_single_async(int cpu,call_single_data_t * csd)710 int smp_call_function_single_async(int cpu, call_single_data_t *csd)
711 {
712 	int err = 0;
713 
714 	preempt_disable();
715 
716 	if (csd->node.u_flags & CSD_FLAG_LOCK) {
717 		err = -EBUSY;
718 		goto out;
719 	}
720 
721 	csd->node.u_flags = CSD_FLAG_LOCK;
722 	smp_wmb();
723 
724 	err = generic_exec_single(cpu, csd);
725 
726 out:
727 	preempt_enable();
728 
729 	return err;
730 }
731 EXPORT_SYMBOL_GPL(smp_call_function_single_async);
732 
733 /*
734  * smp_call_function_any - Run a function on any of the given cpus
735  * @mask: The mask of cpus it can run on.
736  * @func: The function to run. This must be fast and non-blocking.
737  * @info: An arbitrary pointer to pass to the function.
738  * @wait: If true, wait until function has completed.
739  *
740  * Returns 0 on success, else a negative status code (if no cpus were online).
741  *
742  * Selection preference:
743  *	1) current cpu if in @mask
744  *	2) any cpu of current node if in @mask
745  *	3) any other online cpu in @mask
746  */
smp_call_function_any(const struct cpumask * mask,smp_call_func_t func,void * info,int wait)747 int smp_call_function_any(const struct cpumask *mask,
748 			  smp_call_func_t func, void *info, int wait)
749 {
750 	unsigned int cpu;
751 	const struct cpumask *nodemask;
752 	int ret;
753 
754 	/* Try for same CPU (cheapest) */
755 	cpu = get_cpu();
756 	if (cpumask_test_cpu(cpu, mask))
757 		goto call;
758 
759 	/* Try for same node. */
760 	nodemask = cpumask_of_node(cpu_to_node(cpu));
761 	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
762 	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
763 		if (cpu_online(cpu))
764 			goto call;
765 	}
766 
767 	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
768 	cpu = cpumask_any_and(mask, cpu_online_mask);
769 call:
770 	ret = smp_call_function_single(cpu, func, info, wait);
771 	put_cpu();
772 	return ret;
773 }
774 EXPORT_SYMBOL_GPL(smp_call_function_any);
775 
776 /*
777  * Flags to be used as scf_flags argument of smp_call_function_many_cond().
778  *
779  * %SCF_WAIT:		Wait until function execution is completed
780  * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
781  */
782 #define SCF_WAIT	(1U << 0)
783 #define SCF_RUN_LOCAL	(1U << 1)
784 
smp_call_function_many_cond(const struct cpumask * mask,smp_call_func_t func,void * info,unsigned int scf_flags,smp_cond_func_t cond_func)785 static void smp_call_function_many_cond(const struct cpumask *mask,
786 					smp_call_func_t func, void *info,
787 					unsigned int scf_flags,
788 					smp_cond_func_t cond_func)
789 {
790 	int cpu, last_cpu, this_cpu = smp_processor_id();
791 	struct call_function_data *cfd;
792 	bool wait = scf_flags & SCF_WAIT;
793 	int nr_cpus = 0;
794 	bool run_remote = false;
795 	bool run_local = false;
796 
797 	lockdep_assert_preemption_disabled();
798 
799 	/*
800 	 * Can deadlock when called with interrupts disabled.
801 	 * We allow cpu's that are not yet online though, as no one else can
802 	 * send smp call function interrupt to this cpu and as such deadlocks
803 	 * can't happen.
804 	 */
805 	if (cpu_online(this_cpu) && !oops_in_progress &&
806 	    !early_boot_irqs_disabled)
807 		lockdep_assert_irqs_enabled();
808 
809 	/*
810 	 * When @wait we can deadlock when we interrupt between llist_add() and
811 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
812 	 * csd_lock() on because the interrupt context uses the same csd
813 	 * storage.
814 	 */
815 	WARN_ON_ONCE(!in_task());
816 
817 	/* Check if we need local execution. */
818 	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
819 		run_local = true;
820 
821 	/* Check if we need remote execution, i.e., any CPU excluding this one. */
822 	cpu = cpumask_first_and(mask, cpu_online_mask);
823 	if (cpu == this_cpu)
824 		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
825 	if (cpu < nr_cpu_ids)
826 		run_remote = true;
827 
828 	if (run_remote) {
829 		cfd = this_cpu_ptr(&cfd_data);
830 		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
831 		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
832 
833 		cpumask_clear(cfd->cpumask_ipi);
834 		for_each_cpu(cpu, cfd->cpumask) {
835 			call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
836 
837 			if (cond_func && !cond_func(cpu, info)) {
838 				__cpumask_clear_cpu(cpu, cfd->cpumask);
839 				continue;
840 			}
841 
842 			csd_lock(csd);
843 			if (wait)
844 				csd->node.u_flags |= CSD_TYPE_SYNC;
845 			csd->func = func;
846 			csd->info = info;
847 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
848 			csd->node.src = smp_processor_id();
849 			csd->node.dst = cpu;
850 #endif
851 			trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
852 
853 			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
854 				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
855 				nr_cpus++;
856 				last_cpu = cpu;
857 			}
858 		}
859 
860 		/*
861 		 * Choose the most efficient way to send an IPI. Note that the
862 		 * number of CPUs might be zero due to concurrent changes to the
863 		 * provided mask.
864 		 */
865 		if (nr_cpus == 1)
866 			send_call_function_single_ipi(last_cpu);
867 		else if (likely(nr_cpus > 1))
868 			send_call_function_ipi_mask(cfd->cpumask_ipi);
869 	}
870 
871 	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
872 		unsigned long flags;
873 
874 		local_irq_save(flags);
875 		csd_do_func(func, info, NULL);
876 		local_irq_restore(flags);
877 	}
878 
879 	if (run_remote && wait) {
880 		for_each_cpu(cpu, cfd->cpumask) {
881 			call_single_data_t *csd;
882 
883 			csd = per_cpu_ptr(cfd->csd, cpu);
884 			csd_lock_wait(csd);
885 		}
886 	}
887 }
888 
889 /**
890  * smp_call_function_many(): Run a function on a set of CPUs.
891  * @mask: The set of cpus to run on (only runs on online subset).
892  * @func: The function to run. This must be fast and non-blocking.
893  * @info: An arbitrary pointer to pass to the function.
894  * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
895  *        (atomically) until function has completed on other CPUs. If
896  *        %SCF_RUN_LOCAL is set, the function will also be run locally
897  *        if the local CPU is set in the @cpumask.
898  *
899  * If @wait is true, then returns once @func has returned.
900  *
901  * You must not call this function with disabled interrupts or from a
902  * hardware interrupt handler or from a bottom half handler. Preemption
903  * must be disabled when calling this function.
904  */
smp_call_function_many(const struct cpumask * mask,smp_call_func_t func,void * info,bool wait)905 void smp_call_function_many(const struct cpumask *mask,
906 			    smp_call_func_t func, void *info, bool wait)
907 {
908 	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
909 }
910 EXPORT_SYMBOL(smp_call_function_many);
911 
912 /**
913  * smp_call_function(): Run a function on all other CPUs.
914  * @func: The function to run. This must be fast and non-blocking.
915  * @info: An arbitrary pointer to pass to the function.
916  * @wait: If true, wait (atomically) until function has completed
917  *        on other CPUs.
918  *
919  * Returns 0.
920  *
921  * If @wait is true, then returns once @func has returned; otherwise
922  * it returns just before the target cpu calls @func.
923  *
924  * You must not call this function with disabled interrupts or from a
925  * hardware interrupt handler or from a bottom half handler.
926  */
smp_call_function(smp_call_func_t func,void * info,int wait)927 void smp_call_function(smp_call_func_t func, void *info, int wait)
928 {
929 	preempt_disable();
930 	smp_call_function_many(cpu_online_mask, func, info, wait);
931 	preempt_enable();
932 }
933 EXPORT_SYMBOL(smp_call_function);
934 
935 /* Setup configured maximum number of CPUs to activate */
936 unsigned int setup_max_cpus = NR_CPUS;
937 EXPORT_SYMBOL(setup_max_cpus);
938 
939 
940 /*
941  * Setup routine for controlling SMP activation
942  *
943  * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
944  * activation entirely (the MPS table probe still happens, though).
945  *
946  * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
947  * greater than 0, limits the maximum number of CPUs activated in
948  * SMP mode to <NUM>.
949  */
950 
arch_disable_smp_support(void)951 void __weak __init arch_disable_smp_support(void) { }
952 
nosmp(char * str)953 static int __init nosmp(char *str)
954 {
955 	setup_max_cpus = 0;
956 	arch_disable_smp_support();
957 
958 	return 0;
959 }
960 
961 early_param("nosmp", nosmp);
962 
963 /* this is hard limit */
nrcpus(char * str)964 static int __init nrcpus(char *str)
965 {
966 	int nr_cpus;
967 
968 	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
969 		set_nr_cpu_ids(nr_cpus);
970 
971 	return 0;
972 }
973 
974 early_param("nr_cpus", nrcpus);
975 
maxcpus(char * str)976 static int __init maxcpus(char *str)
977 {
978 	get_option(&str, &setup_max_cpus);
979 	if (setup_max_cpus == 0)
980 		arch_disable_smp_support();
981 
982 	return 0;
983 }
984 
985 early_param("maxcpus", maxcpus);
986 
987 #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
988 /* Setup number of possible processor ids */
989 unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
990 EXPORT_SYMBOL(nr_cpu_ids);
991 #endif
992 
993 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
setup_nr_cpu_ids(void)994 void __init setup_nr_cpu_ids(void)
995 {
996 	set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
997 }
998 
999 /* Called by boot processor to activate the rest. */
smp_init(void)1000 void __init smp_init(void)
1001 {
1002 	int num_nodes, num_cpus;
1003 
1004 	idle_threads_init();
1005 	cpuhp_threads_init();
1006 
1007 	pr_info("Bringing up secondary CPUs ...\n");
1008 
1009 	bringup_nonboot_cpus(setup_max_cpus);
1010 
1011 	num_nodes = num_online_nodes();
1012 	num_cpus  = num_online_cpus();
1013 	pr_info("Brought up %d node%s, %d CPU%s\n",
1014 		num_nodes, str_plural(num_nodes), num_cpus, str_plural(num_cpus));
1015 
1016 	/* Any cleanup work */
1017 	smp_cpus_done(setup_max_cpus);
1018 }
1019 
1020 /*
1021  * on_each_cpu_cond(): Call a function on each processor for which
1022  * the supplied function cond_func returns true, optionally waiting
1023  * for all the required CPUs to finish. This may include the local
1024  * processor.
1025  * @cond_func:	A callback function that is passed a cpu id and
1026  *		the info parameter. The function is called
1027  *		with preemption disabled. The function should
1028  *		return a blooean value indicating whether to IPI
1029  *		the specified CPU.
1030  * @func:	The function to run on all applicable CPUs.
1031  *		This must be fast and non-blocking.
1032  * @info:	An arbitrary pointer to pass to both functions.
1033  * @wait:	If true, wait (atomically) until function has
1034  *		completed on other CPUs.
1035  *
1036  * Preemption is disabled to protect against CPUs going offline but not online.
1037  * CPUs going online during the call will not be seen or sent an IPI.
1038  *
1039  * You must not call this function with disabled interrupts or
1040  * from a hardware interrupt handler or from a bottom half handler.
1041  */
on_each_cpu_cond_mask(smp_cond_func_t cond_func,smp_call_func_t func,void * info,bool wait,const struct cpumask * mask)1042 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1043 			   void *info, bool wait, const struct cpumask *mask)
1044 {
1045 	unsigned int scf_flags = SCF_RUN_LOCAL;
1046 
1047 	if (wait)
1048 		scf_flags |= SCF_WAIT;
1049 
1050 	preempt_disable();
1051 	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1052 	preempt_enable();
1053 }
1054 EXPORT_SYMBOL(on_each_cpu_cond_mask);
1055 
do_nothing(void * unused)1056 static void do_nothing(void *unused)
1057 {
1058 }
1059 
1060 /**
1061  * kick_all_cpus_sync - Force all cpus out of idle
1062  *
1063  * Used to synchronize the update of pm_idle function pointer. It's
1064  * called after the pointer is updated and returns after the dummy
1065  * callback function has been executed on all cpus. The execution of
1066  * the function can only happen on the remote cpus after they have
1067  * left the idle function which had been called via pm_idle function
1068  * pointer. So it's guaranteed that nothing uses the previous pointer
1069  * anymore.
1070  */
kick_all_cpus_sync(void)1071 void kick_all_cpus_sync(void)
1072 {
1073 	/* Make sure the change is visible before we kick the cpus */
1074 	smp_mb();
1075 	smp_call_function(do_nothing, NULL, 1);
1076 }
1077 EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1078 
1079 /**
1080  * wake_up_all_idle_cpus - break all cpus out of idle
1081  * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1082  * including idle polling cpus, for non-idle cpus, we will do nothing
1083  * for them.
1084  */
wake_up_all_idle_cpus(void)1085 void wake_up_all_idle_cpus(void)
1086 {
1087 	int cpu;
1088 
1089 	for_each_possible_cpu(cpu) {
1090 		preempt_disable();
1091 		if (cpu != smp_processor_id() && cpu_online(cpu))
1092 			wake_up_if_idle(cpu);
1093 		preempt_enable();
1094 	}
1095 }
1096 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1097 
1098 /**
1099  * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1100  * @work: &work_struct
1101  * @done: &completion to signal
1102  * @func: function to call
1103  * @data: function's data argument
1104  * @ret: return value from @func
1105  * @cpu: target CPU (%-1 for any CPU)
1106  *
1107  * Used to call a function on a specific cpu and wait for it to return.
1108  * Optionally make sure the call is done on a specified physical cpu via vcpu
1109  * pinning in order to support virtualized environments.
1110  */
1111 struct smp_call_on_cpu_struct {
1112 	struct work_struct	work;
1113 	struct completion	done;
1114 	int			(*func)(void *);
1115 	void			*data;
1116 	int			ret;
1117 	int			cpu;
1118 };
1119 
smp_call_on_cpu_callback(struct work_struct * work)1120 static void smp_call_on_cpu_callback(struct work_struct *work)
1121 {
1122 	struct smp_call_on_cpu_struct *sscs;
1123 
1124 	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1125 	if (sscs->cpu >= 0)
1126 		hypervisor_pin_vcpu(sscs->cpu);
1127 	sscs->ret = sscs->func(sscs->data);
1128 	if (sscs->cpu >= 0)
1129 		hypervisor_pin_vcpu(-1);
1130 
1131 	complete(&sscs->done);
1132 }
1133 
smp_call_on_cpu(unsigned int cpu,int (* func)(void *),void * par,bool phys)1134 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1135 {
1136 	struct smp_call_on_cpu_struct sscs = {
1137 		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1138 		.func = func,
1139 		.data = par,
1140 		.cpu  = phys ? cpu : -1,
1141 	};
1142 
1143 	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1144 
1145 	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1146 		return -ENXIO;
1147 
1148 	queue_work_on(cpu, system_wq, &sscs.work);
1149 	wait_for_completion(&sscs.done);
1150 	destroy_work_on_stack(&sscs.work);
1151 
1152 	return sscs.ret;
1153 }
1154 EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1155