1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * Symmetric key ciphers.
4   *
5   * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6   */
7  
8  #ifndef _CRYPTO_SKCIPHER_H
9  #define _CRYPTO_SKCIPHER_H
10  
11  #include <linux/atomic.h>
12  #include <linux/container_of.h>
13  #include <linux/crypto.h>
14  #include <linux/slab.h>
15  #include <linux/string.h>
16  #include <linux/types.h>
17  
18  /* Set this bit if the lskcipher operation is a continuation. */
19  #define CRYPTO_LSKCIPHER_FLAG_CONT	0x00000001
20  /* Set this bit if the lskcipher operation is final. */
21  #define CRYPTO_LSKCIPHER_FLAG_FINAL	0x00000002
22  /* The bit CRYPTO_TFM_REQ_MAY_SLEEP can also be set if needed. */
23  
24  /* Set this bit if the skcipher operation is a continuation. */
25  #define CRYPTO_SKCIPHER_REQ_CONT	0x00000001
26  /* Set this bit if the skcipher operation is not final. */
27  #define CRYPTO_SKCIPHER_REQ_NOTFINAL	0x00000002
28  
29  struct scatterlist;
30  
31  /**
32   *	struct skcipher_request - Symmetric key cipher request
33   *	@cryptlen: Number of bytes to encrypt or decrypt
34   *	@iv: Initialisation Vector
35   *	@src: Source SG list
36   *	@dst: Destination SG list
37   *	@base: Underlying async request
38   *	@__ctx: Start of private context data
39   */
40  struct skcipher_request {
41  	unsigned int cryptlen;
42  
43  	u8 *iv;
44  
45  	struct scatterlist *src;
46  	struct scatterlist *dst;
47  
48  	struct crypto_async_request base;
49  
50  	void *__ctx[] CRYPTO_MINALIGN_ATTR;
51  };
52  
53  struct crypto_skcipher {
54  	unsigned int reqsize;
55  
56  	struct crypto_tfm base;
57  };
58  
59  struct crypto_sync_skcipher {
60  	struct crypto_skcipher base;
61  };
62  
63  struct crypto_lskcipher {
64  	struct crypto_tfm base;
65  };
66  
67  /*
68   * struct skcipher_alg_common - common properties of skcipher_alg
69   * @min_keysize: Minimum key size supported by the transformation. This is the
70   *		 smallest key length supported by this transformation algorithm.
71   *		 This must be set to one of the pre-defined values as this is
72   *		 not hardware specific. Possible values for this field can be
73   *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
74   * @max_keysize: Maximum key size supported by the transformation. This is the
75   *		 largest key length supported by this transformation algorithm.
76   *		 This must be set to one of the pre-defined values as this is
77   *		 not hardware specific. Possible values for this field can be
78   *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
79   * @ivsize: IV size applicable for transformation. The consumer must provide an
80   *	    IV of exactly that size to perform the encrypt or decrypt operation.
81   * @chunksize: Equal to the block size except for stream ciphers such as
82   *	       CTR where it is set to the underlying block size.
83   * @statesize: Size of the internal state for the algorithm.
84   * @base: Definition of a generic crypto algorithm.
85   */
86  #define SKCIPHER_ALG_COMMON {		\
87  	unsigned int min_keysize;	\
88  	unsigned int max_keysize;	\
89  	unsigned int ivsize;		\
90  	unsigned int chunksize;		\
91  	unsigned int statesize;		\
92  					\
93  	struct crypto_alg base;		\
94  }
95  struct skcipher_alg_common SKCIPHER_ALG_COMMON;
96  
97  /**
98   * struct skcipher_alg - symmetric key cipher definition
99   * @setkey: Set key for the transformation. This function is used to either
100   *	    program a supplied key into the hardware or store the key in the
101   *	    transformation context for programming it later. Note that this
102   *	    function does modify the transformation context. This function can
103   *	    be called multiple times during the existence of the transformation
104   *	    object, so one must make sure the key is properly reprogrammed into
105   *	    the hardware. This function is also responsible for checking the key
106   *	    length for validity. In case a software fallback was put in place in
107   *	    the @cra_init call, this function might need to use the fallback if
108   *	    the algorithm doesn't support all of the key sizes.
109   * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
110   *	     the supplied scatterlist containing the blocks of data. The crypto
111   *	     API consumer is responsible for aligning the entries of the
112   *	     scatterlist properly and making sure the chunks are correctly
113   *	     sized. In case a software fallback was put in place in the
114   *	     @cra_init call, this function might need to use the fallback if
115   *	     the algorithm doesn't support all of the key sizes. In case the
116   *	     key was stored in transformation context, the key might need to be
117   *	     re-programmed into the hardware in this function. This function
118   *	     shall not modify the transformation context, as this function may
119   *	     be called in parallel with the same transformation object.
120   * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
121   *	     and the conditions are exactly the same.
122   * @export: Export partial state of the transformation. This function dumps the
123   *	    entire state of the ongoing transformation into a provided block of
124   *	    data so it can be @import 'ed back later on. This is useful in case
125   *	    you want to save partial result of the transformation after
126   *	    processing certain amount of data and reload this partial result
127   *	    multiple times later on for multiple re-use. No data processing
128   *	    happens at this point.
129   * @import: Import partial state of the transformation. This function loads the
130   *	    entire state of the ongoing transformation from a provided block of
131   *	    data so the transformation can continue from this point onward. No
132   *	    data processing happens at this point.
133   * @init: Initialize the cryptographic transformation object. This function
134   *	  is used to initialize the cryptographic transformation object.
135   *	  This function is called only once at the instantiation time, right
136   *	  after the transformation context was allocated. In case the
137   *	  cryptographic hardware has some special requirements which need to
138   *	  be handled by software, this function shall check for the precise
139   *	  requirement of the transformation and put any software fallbacks
140   *	  in place.
141   * @exit: Deinitialize the cryptographic transformation object. This is a
142   *	  counterpart to @init, used to remove various changes set in
143   *	  @init.
144   * @walksize: Equal to the chunk size except in cases where the algorithm is
145   * 	      considerably more efficient if it can operate on multiple chunks
146   * 	      in parallel. Should be a multiple of chunksize.
147   * @co: see struct skcipher_alg_common
148   *
149   * All fields except @ivsize are mandatory and must be filled.
150   */
151  struct skcipher_alg {
152  	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
153  	              unsigned int keylen);
154  	int (*encrypt)(struct skcipher_request *req);
155  	int (*decrypt)(struct skcipher_request *req);
156  	int (*export)(struct skcipher_request *req, void *out);
157  	int (*import)(struct skcipher_request *req, const void *in);
158  	int (*init)(struct crypto_skcipher *tfm);
159  	void (*exit)(struct crypto_skcipher *tfm);
160  
161  	unsigned int walksize;
162  
163  	union {
164  		struct SKCIPHER_ALG_COMMON;
165  		struct skcipher_alg_common co;
166  	};
167  };
168  
169  /**
170   * struct lskcipher_alg - linear symmetric key cipher definition
171   * @setkey: Set key for the transformation. This function is used to either
172   *	    program a supplied key into the hardware or store the key in the
173   *	    transformation context for programming it later. Note that this
174   *	    function does modify the transformation context. This function can
175   *	    be called multiple times during the existence of the transformation
176   *	    object, so one must make sure the key is properly reprogrammed into
177   *	    the hardware. This function is also responsible for checking the key
178   *	    length for validity. In case a software fallback was put in place in
179   *	    the @cra_init call, this function might need to use the fallback if
180   *	    the algorithm doesn't support all of the key sizes.
181   * @encrypt: Encrypt a number of bytes. This function is used to encrypt
182   *	     the supplied data.  This function shall not modify
183   *	     the transformation context, as this function may be called
184   *	     in parallel with the same transformation object.  Data
185   *	     may be left over if length is not a multiple of blocks
186   *	     and there is more to come (final == false).  The number of
187   *	     left-over bytes should be returned in case of success.
188   *	     The siv field shall be as long as ivsize + statesize with
189   *	     the IV placed at the front.  The state will be used by the
190   *	     algorithm internally.
191   * @decrypt: Decrypt a number of bytes. This is a reverse counterpart to
192   *	     @encrypt and the conditions are exactly the same.
193   * @init: Initialize the cryptographic transformation object. This function
194   *	  is used to initialize the cryptographic transformation object.
195   *	  This function is called only once at the instantiation time, right
196   *	  after the transformation context was allocated.
197   * @exit: Deinitialize the cryptographic transformation object. This is a
198   *	  counterpart to @init, used to remove various changes set in
199   *	  @init.
200   * @co: see struct skcipher_alg_common
201   */
202  struct lskcipher_alg {
203  	int (*setkey)(struct crypto_lskcipher *tfm, const u8 *key,
204  	              unsigned int keylen);
205  	int (*encrypt)(struct crypto_lskcipher *tfm, const u8 *src,
206  		       u8 *dst, unsigned len, u8 *siv, u32 flags);
207  	int (*decrypt)(struct crypto_lskcipher *tfm, const u8 *src,
208  		       u8 *dst, unsigned len, u8 *siv, u32 flags);
209  	int (*init)(struct crypto_lskcipher *tfm);
210  	void (*exit)(struct crypto_lskcipher *tfm);
211  
212  	struct skcipher_alg_common co;
213  };
214  
215  #define MAX_SYNC_SKCIPHER_REQSIZE      384
216  /*
217   * This performs a type-check against the "tfm" argument to make sure
218   * all users have the correct skcipher tfm for doing on-stack requests.
219   */
220  #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
221  	char __##name##_desc[sizeof(struct skcipher_request) + \
222  			     MAX_SYNC_SKCIPHER_REQSIZE + \
223  			     (!(sizeof((struct crypto_sync_skcipher *)1 == \
224  				       (typeof(tfm))1))) \
225  			    ] CRYPTO_MINALIGN_ATTR; \
226  	struct skcipher_request *name = (void *)__##name##_desc
227  
228  /**
229   * DOC: Symmetric Key Cipher API
230   *
231   * Symmetric key cipher API is used with the ciphers of type
232   * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
233   *
234   * Asynchronous cipher operations imply that the function invocation for a
235   * cipher request returns immediately before the completion of the operation.
236   * The cipher request is scheduled as a separate kernel thread and therefore
237   * load-balanced on the different CPUs via the process scheduler. To allow
238   * the kernel crypto API to inform the caller about the completion of a cipher
239   * request, the caller must provide a callback function. That function is
240   * invoked with the cipher handle when the request completes.
241   *
242   * To support the asynchronous operation, additional information than just the
243   * cipher handle must be supplied to the kernel crypto API. That additional
244   * information is given by filling in the skcipher_request data structure.
245   *
246   * For the symmetric key cipher API, the state is maintained with the tfm
247   * cipher handle. A single tfm can be used across multiple calls and in
248   * parallel. For asynchronous block cipher calls, context data supplied and
249   * only used by the caller can be referenced the request data structure in
250   * addition to the IV used for the cipher request. The maintenance of such
251   * state information would be important for a crypto driver implementer to
252   * have, because when calling the callback function upon completion of the
253   * cipher operation, that callback function may need some information about
254   * which operation just finished if it invoked multiple in parallel. This
255   * state information is unused by the kernel crypto API.
256   */
257  
__crypto_skcipher_cast(struct crypto_tfm * tfm)258  static inline struct crypto_skcipher *__crypto_skcipher_cast(
259  	struct crypto_tfm *tfm)
260  {
261  	return container_of(tfm, struct crypto_skcipher, base);
262  }
263  
264  /**
265   * crypto_alloc_skcipher() - allocate symmetric key cipher handle
266   * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
267   *	      skcipher cipher
268   * @type: specifies the type of the cipher
269   * @mask: specifies the mask for the cipher
270   *
271   * Allocate a cipher handle for an skcipher. The returned struct
272   * crypto_skcipher is the cipher handle that is required for any subsequent
273   * API invocation for that skcipher.
274   *
275   * Return: allocated cipher handle in case of success; IS_ERR() is true in case
276   *	   of an error, PTR_ERR() returns the error code.
277   */
278  struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
279  					      u32 type, u32 mask);
280  
281  struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
282  					      u32 type, u32 mask);
283  
284  
285  /**
286   * crypto_alloc_lskcipher() - allocate linear symmetric key cipher handle
287   * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
288   *	      lskcipher
289   * @type: specifies the type of the cipher
290   * @mask: specifies the mask for the cipher
291   *
292   * Allocate a cipher handle for an lskcipher. The returned struct
293   * crypto_lskcipher is the cipher handle that is required for any subsequent
294   * API invocation for that lskcipher.
295   *
296   * Return: allocated cipher handle in case of success; IS_ERR() is true in case
297   *	   of an error, PTR_ERR() returns the error code.
298   */
299  struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name,
300  						u32 type, u32 mask);
301  
crypto_skcipher_tfm(struct crypto_skcipher * tfm)302  static inline struct crypto_tfm *crypto_skcipher_tfm(
303  	struct crypto_skcipher *tfm)
304  {
305  	return &tfm->base;
306  }
307  
crypto_lskcipher_tfm(struct crypto_lskcipher * tfm)308  static inline struct crypto_tfm *crypto_lskcipher_tfm(
309  	struct crypto_lskcipher *tfm)
310  {
311  	return &tfm->base;
312  }
313  
314  /**
315   * crypto_free_skcipher() - zeroize and free cipher handle
316   * @tfm: cipher handle to be freed
317   *
318   * If @tfm is a NULL or error pointer, this function does nothing.
319   */
crypto_free_skcipher(struct crypto_skcipher * tfm)320  static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
321  {
322  	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
323  }
324  
crypto_free_sync_skcipher(struct crypto_sync_skcipher * tfm)325  static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
326  {
327  	crypto_free_skcipher(&tfm->base);
328  }
329  
330  /**
331   * crypto_free_lskcipher() - zeroize and free cipher handle
332   * @tfm: cipher handle to be freed
333   *
334   * If @tfm is a NULL or error pointer, this function does nothing.
335   */
crypto_free_lskcipher(struct crypto_lskcipher * tfm)336  static inline void crypto_free_lskcipher(struct crypto_lskcipher *tfm)
337  {
338  	crypto_destroy_tfm(tfm, crypto_lskcipher_tfm(tfm));
339  }
340  
341  /**
342   * crypto_has_skcipher() - Search for the availability of an skcipher.
343   * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
344   *	      skcipher
345   * @type: specifies the type of the skcipher
346   * @mask: specifies the mask for the skcipher
347   *
348   * Return: true when the skcipher is known to the kernel crypto API; false
349   *	   otherwise
350   */
351  int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
352  
crypto_skcipher_driver_name(struct crypto_skcipher * tfm)353  static inline const char *crypto_skcipher_driver_name(
354  	struct crypto_skcipher *tfm)
355  {
356  	return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
357  }
358  
crypto_lskcipher_driver_name(struct crypto_lskcipher * tfm)359  static inline const char *crypto_lskcipher_driver_name(
360  	struct crypto_lskcipher *tfm)
361  {
362  	return crypto_tfm_alg_driver_name(crypto_lskcipher_tfm(tfm));
363  }
364  
crypto_skcipher_alg_common(struct crypto_skcipher * tfm)365  static inline struct skcipher_alg_common *crypto_skcipher_alg_common(
366  	struct crypto_skcipher *tfm)
367  {
368  	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
369  			    struct skcipher_alg_common, base);
370  }
371  
crypto_skcipher_alg(struct crypto_skcipher * tfm)372  static inline struct skcipher_alg *crypto_skcipher_alg(
373  	struct crypto_skcipher *tfm)
374  {
375  	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
376  			    struct skcipher_alg, base);
377  }
378  
crypto_lskcipher_alg(struct crypto_lskcipher * tfm)379  static inline struct lskcipher_alg *crypto_lskcipher_alg(
380  	struct crypto_lskcipher *tfm)
381  {
382  	return container_of(crypto_lskcipher_tfm(tfm)->__crt_alg,
383  			    struct lskcipher_alg, co.base);
384  }
385  
386  /**
387   * crypto_skcipher_ivsize() - obtain IV size
388   * @tfm: cipher handle
389   *
390   * The size of the IV for the skcipher referenced by the cipher handle is
391   * returned. This IV size may be zero if the cipher does not need an IV.
392   *
393   * Return: IV size in bytes
394   */
crypto_skcipher_ivsize(struct crypto_skcipher * tfm)395  static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
396  {
397  	return crypto_skcipher_alg_common(tfm)->ivsize;
398  }
399  
crypto_sync_skcipher_ivsize(struct crypto_sync_skcipher * tfm)400  static inline unsigned int crypto_sync_skcipher_ivsize(
401  	struct crypto_sync_skcipher *tfm)
402  {
403  	return crypto_skcipher_ivsize(&tfm->base);
404  }
405  
406  /**
407   * crypto_lskcipher_ivsize() - obtain IV size
408   * @tfm: cipher handle
409   *
410   * The size of the IV for the lskcipher referenced by the cipher handle is
411   * returned. This IV size may be zero if the cipher does not need an IV.
412   *
413   * Return: IV size in bytes
414   */
crypto_lskcipher_ivsize(struct crypto_lskcipher * tfm)415  static inline unsigned int crypto_lskcipher_ivsize(
416  	struct crypto_lskcipher *tfm)
417  {
418  	return crypto_lskcipher_alg(tfm)->co.ivsize;
419  }
420  
421  /**
422   * crypto_skcipher_blocksize() - obtain block size of cipher
423   * @tfm: cipher handle
424   *
425   * The block size for the skcipher referenced with the cipher handle is
426   * returned. The caller may use that information to allocate appropriate
427   * memory for the data returned by the encryption or decryption operation
428   *
429   * Return: block size of cipher
430   */
crypto_skcipher_blocksize(struct crypto_skcipher * tfm)431  static inline unsigned int crypto_skcipher_blocksize(
432  	struct crypto_skcipher *tfm)
433  {
434  	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
435  }
436  
437  /**
438   * crypto_lskcipher_blocksize() - obtain block size of cipher
439   * @tfm: cipher handle
440   *
441   * The block size for the lskcipher referenced with the cipher handle is
442   * returned. The caller may use that information to allocate appropriate
443   * memory for the data returned by the encryption or decryption operation
444   *
445   * Return: block size of cipher
446   */
crypto_lskcipher_blocksize(struct crypto_lskcipher * tfm)447  static inline unsigned int crypto_lskcipher_blocksize(
448  	struct crypto_lskcipher *tfm)
449  {
450  	return crypto_tfm_alg_blocksize(crypto_lskcipher_tfm(tfm));
451  }
452  
453  /**
454   * crypto_skcipher_chunksize() - obtain chunk size
455   * @tfm: cipher handle
456   *
457   * The block size is set to one for ciphers such as CTR.  However,
458   * you still need to provide incremental updates in multiples of
459   * the underlying block size as the IV does not have sub-block
460   * granularity.  This is known in this API as the chunk size.
461   *
462   * Return: chunk size in bytes
463   */
crypto_skcipher_chunksize(struct crypto_skcipher * tfm)464  static inline unsigned int crypto_skcipher_chunksize(
465  	struct crypto_skcipher *tfm)
466  {
467  	return crypto_skcipher_alg_common(tfm)->chunksize;
468  }
469  
470  /**
471   * crypto_lskcipher_chunksize() - obtain chunk size
472   * @tfm: cipher handle
473   *
474   * The block size is set to one for ciphers such as CTR.  However,
475   * you still need to provide incremental updates in multiples of
476   * the underlying block size as the IV does not have sub-block
477   * granularity.  This is known in this API as the chunk size.
478   *
479   * Return: chunk size in bytes
480   */
crypto_lskcipher_chunksize(struct crypto_lskcipher * tfm)481  static inline unsigned int crypto_lskcipher_chunksize(
482  	struct crypto_lskcipher *tfm)
483  {
484  	return crypto_lskcipher_alg(tfm)->co.chunksize;
485  }
486  
487  /**
488   * crypto_skcipher_statesize() - obtain state size
489   * @tfm: cipher handle
490   *
491   * Some algorithms cannot be chained with the IV alone.  They carry
492   * internal state which must be replicated if data is to be processed
493   * incrementally.  The size of that state can be obtained with this
494   * function.
495   *
496   * Return: state size in bytes
497   */
crypto_skcipher_statesize(struct crypto_skcipher * tfm)498  static inline unsigned int crypto_skcipher_statesize(
499  	struct crypto_skcipher *tfm)
500  {
501  	return crypto_skcipher_alg_common(tfm)->statesize;
502  }
503  
504  /**
505   * crypto_lskcipher_statesize() - obtain state size
506   * @tfm: cipher handle
507   *
508   * Some algorithms cannot be chained with the IV alone.  They carry
509   * internal state which must be replicated if data is to be processed
510   * incrementally.  The size of that state can be obtained with this
511   * function.
512   *
513   * Return: state size in bytes
514   */
crypto_lskcipher_statesize(struct crypto_lskcipher * tfm)515  static inline unsigned int crypto_lskcipher_statesize(
516  	struct crypto_lskcipher *tfm)
517  {
518  	return crypto_lskcipher_alg(tfm)->co.statesize;
519  }
520  
crypto_sync_skcipher_blocksize(struct crypto_sync_skcipher * tfm)521  static inline unsigned int crypto_sync_skcipher_blocksize(
522  	struct crypto_sync_skcipher *tfm)
523  {
524  	return crypto_skcipher_blocksize(&tfm->base);
525  }
526  
crypto_skcipher_alignmask(struct crypto_skcipher * tfm)527  static inline unsigned int crypto_skcipher_alignmask(
528  	struct crypto_skcipher *tfm)
529  {
530  	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
531  }
532  
crypto_lskcipher_alignmask(struct crypto_lskcipher * tfm)533  static inline unsigned int crypto_lskcipher_alignmask(
534  	struct crypto_lskcipher *tfm)
535  {
536  	return crypto_tfm_alg_alignmask(crypto_lskcipher_tfm(tfm));
537  }
538  
crypto_skcipher_get_flags(struct crypto_skcipher * tfm)539  static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
540  {
541  	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
542  }
543  
crypto_skcipher_set_flags(struct crypto_skcipher * tfm,u32 flags)544  static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
545  					       u32 flags)
546  {
547  	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
548  }
549  
crypto_skcipher_clear_flags(struct crypto_skcipher * tfm,u32 flags)550  static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
551  						 u32 flags)
552  {
553  	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
554  }
555  
crypto_sync_skcipher_get_flags(struct crypto_sync_skcipher * tfm)556  static inline u32 crypto_sync_skcipher_get_flags(
557  	struct crypto_sync_skcipher *tfm)
558  {
559  	return crypto_skcipher_get_flags(&tfm->base);
560  }
561  
crypto_sync_skcipher_set_flags(struct crypto_sync_skcipher * tfm,u32 flags)562  static inline void crypto_sync_skcipher_set_flags(
563  	struct crypto_sync_skcipher *tfm, u32 flags)
564  {
565  	crypto_skcipher_set_flags(&tfm->base, flags);
566  }
567  
crypto_sync_skcipher_clear_flags(struct crypto_sync_skcipher * tfm,u32 flags)568  static inline void crypto_sync_skcipher_clear_flags(
569  	struct crypto_sync_skcipher *tfm, u32 flags)
570  {
571  	crypto_skcipher_clear_flags(&tfm->base, flags);
572  }
573  
crypto_lskcipher_get_flags(struct crypto_lskcipher * tfm)574  static inline u32 crypto_lskcipher_get_flags(struct crypto_lskcipher *tfm)
575  {
576  	return crypto_tfm_get_flags(crypto_lskcipher_tfm(tfm));
577  }
578  
crypto_lskcipher_set_flags(struct crypto_lskcipher * tfm,u32 flags)579  static inline void crypto_lskcipher_set_flags(struct crypto_lskcipher *tfm,
580  					       u32 flags)
581  {
582  	crypto_tfm_set_flags(crypto_lskcipher_tfm(tfm), flags);
583  }
584  
crypto_lskcipher_clear_flags(struct crypto_lskcipher * tfm,u32 flags)585  static inline void crypto_lskcipher_clear_flags(struct crypto_lskcipher *tfm,
586  						 u32 flags)
587  {
588  	crypto_tfm_clear_flags(crypto_lskcipher_tfm(tfm), flags);
589  }
590  
591  /**
592   * crypto_skcipher_setkey() - set key for cipher
593   * @tfm: cipher handle
594   * @key: buffer holding the key
595   * @keylen: length of the key in bytes
596   *
597   * The caller provided key is set for the skcipher referenced by the cipher
598   * handle.
599   *
600   * Note, the key length determines the cipher type. Many block ciphers implement
601   * different cipher modes depending on the key size, such as AES-128 vs AES-192
602   * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
603   * is performed.
604   *
605   * Return: 0 if the setting of the key was successful; < 0 if an error occurred
606   */
607  int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
608  			   const u8 *key, unsigned int keylen);
609  
crypto_sync_skcipher_setkey(struct crypto_sync_skcipher * tfm,const u8 * key,unsigned int keylen)610  static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
611  					 const u8 *key, unsigned int keylen)
612  {
613  	return crypto_skcipher_setkey(&tfm->base, key, keylen);
614  }
615  
616  /**
617   * crypto_lskcipher_setkey() - set key for cipher
618   * @tfm: cipher handle
619   * @key: buffer holding the key
620   * @keylen: length of the key in bytes
621   *
622   * The caller provided key is set for the lskcipher referenced by the cipher
623   * handle.
624   *
625   * Note, the key length determines the cipher type. Many block ciphers implement
626   * different cipher modes depending on the key size, such as AES-128 vs AES-192
627   * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
628   * is performed.
629   *
630   * Return: 0 if the setting of the key was successful; < 0 if an error occurred
631   */
632  int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm,
633  			    const u8 *key, unsigned int keylen);
634  
crypto_skcipher_min_keysize(struct crypto_skcipher * tfm)635  static inline unsigned int crypto_skcipher_min_keysize(
636  	struct crypto_skcipher *tfm)
637  {
638  	return crypto_skcipher_alg_common(tfm)->min_keysize;
639  }
640  
crypto_skcipher_max_keysize(struct crypto_skcipher * tfm)641  static inline unsigned int crypto_skcipher_max_keysize(
642  	struct crypto_skcipher *tfm)
643  {
644  	return crypto_skcipher_alg_common(tfm)->max_keysize;
645  }
646  
crypto_lskcipher_min_keysize(struct crypto_lskcipher * tfm)647  static inline unsigned int crypto_lskcipher_min_keysize(
648  	struct crypto_lskcipher *tfm)
649  {
650  	return crypto_lskcipher_alg(tfm)->co.min_keysize;
651  }
652  
crypto_lskcipher_max_keysize(struct crypto_lskcipher * tfm)653  static inline unsigned int crypto_lskcipher_max_keysize(
654  	struct crypto_lskcipher *tfm)
655  {
656  	return crypto_lskcipher_alg(tfm)->co.max_keysize;
657  }
658  
659  /**
660   * crypto_skcipher_reqtfm() - obtain cipher handle from request
661   * @req: skcipher_request out of which the cipher handle is to be obtained
662   *
663   * Return the crypto_skcipher handle when furnishing an skcipher_request
664   * data structure.
665   *
666   * Return: crypto_skcipher handle
667   */
crypto_skcipher_reqtfm(struct skcipher_request * req)668  static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
669  	struct skcipher_request *req)
670  {
671  	return __crypto_skcipher_cast(req->base.tfm);
672  }
673  
crypto_sync_skcipher_reqtfm(struct skcipher_request * req)674  static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
675  	struct skcipher_request *req)
676  {
677  	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
678  
679  	return container_of(tfm, struct crypto_sync_skcipher, base);
680  }
681  
682  /**
683   * crypto_skcipher_encrypt() - encrypt plaintext
684   * @req: reference to the skcipher_request handle that holds all information
685   *	 needed to perform the cipher operation
686   *
687   * Encrypt plaintext data using the skcipher_request handle. That data
688   * structure and how it is filled with data is discussed with the
689   * skcipher_request_* functions.
690   *
691   * Return: 0 if the cipher operation was successful; < 0 if an error occurred
692   */
693  int crypto_skcipher_encrypt(struct skcipher_request *req);
694  
695  /**
696   * crypto_skcipher_decrypt() - decrypt ciphertext
697   * @req: reference to the skcipher_request handle that holds all information
698   *	 needed to perform the cipher operation
699   *
700   * Decrypt ciphertext data using the skcipher_request handle. That data
701   * structure and how it is filled with data is discussed with the
702   * skcipher_request_* functions.
703   *
704   * Return: 0 if the cipher operation was successful; < 0 if an error occurred
705   */
706  int crypto_skcipher_decrypt(struct skcipher_request *req);
707  
708  /**
709   * crypto_skcipher_export() - export partial state
710   * @req: reference to the skcipher_request handle that holds all information
711   *	 needed to perform the operation
712   * @out: output buffer of sufficient size that can hold the state
713   *
714   * Export partial state of the transformation. This function dumps the
715   * entire state of the ongoing transformation into a provided block of
716   * data so it can be @import 'ed back later on. This is useful in case
717   * you want to save partial result of the transformation after
718   * processing certain amount of data and reload this partial result
719   * multiple times later on for multiple re-use. No data processing
720   * happens at this point.
721   *
722   * Return: 0 if the cipher operation was successful; < 0 if an error occurred
723   */
724  int crypto_skcipher_export(struct skcipher_request *req, void *out);
725  
726  /**
727   * crypto_skcipher_import() - import partial state
728   * @req: reference to the skcipher_request handle that holds all information
729   *	 needed to perform the operation
730   * @in: buffer holding the state
731   *
732   * Import partial state of the transformation. This function loads the
733   * entire state of the ongoing transformation from a provided block of
734   * data so the transformation can continue from this point onward. No
735   * data processing happens at this point.
736   *
737   * Return: 0 if the cipher operation was successful; < 0 if an error occurred
738   */
739  int crypto_skcipher_import(struct skcipher_request *req, const void *in);
740  
741  /**
742   * crypto_lskcipher_encrypt() - encrypt plaintext
743   * @tfm: lskcipher handle
744   * @src: source buffer
745   * @dst: destination buffer
746   * @len: number of bytes to process
747   * @siv: IV + state for the cipher operation.  The length of the IV must
748   *	 comply with the IV size defined by crypto_lskcipher_ivsize.  The
749   *	 IV is then followed with a buffer with the length as specified by
750   *	 crypto_lskcipher_statesize.
751   * Encrypt plaintext data using the lskcipher handle.
752   *
753   * Return: >=0 if the cipher operation was successful, if positive
754   *	   then this many bytes have been left unprocessed;
755   *	   < 0 if an error occurred
756   */
757  int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src,
758  			     u8 *dst, unsigned len, u8 *siv);
759  
760  /**
761   * crypto_lskcipher_decrypt() - decrypt ciphertext
762   * @tfm: lskcipher handle
763   * @src: source buffer
764   * @dst: destination buffer
765   * @len: number of bytes to process
766   * @siv: IV + state for the cipher operation.  The length of the IV must
767   *	 comply with the IV size defined by crypto_lskcipher_ivsize.  The
768   *	 IV is then followed with a buffer with the length as specified by
769   *	 crypto_lskcipher_statesize.
770   *
771   * Decrypt ciphertext data using the lskcipher handle.
772   *
773   * Return: >=0 if the cipher operation was successful, if positive
774   *	   then this many bytes have been left unprocessed;
775   *	   < 0 if an error occurred
776   */
777  int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src,
778  			     u8 *dst, unsigned len, u8 *siv);
779  
780  /**
781   * DOC: Symmetric Key Cipher Request Handle
782   *
783   * The skcipher_request data structure contains all pointers to data
784   * required for the symmetric key cipher operation. This includes the cipher
785   * handle (which can be used by multiple skcipher_request instances), pointer
786   * to plaintext and ciphertext, asynchronous callback function, etc. It acts
787   * as a handle to the skcipher_request_* API calls in a similar way as
788   * skcipher handle to the crypto_skcipher_* API calls.
789   */
790  
791  /**
792   * crypto_skcipher_reqsize() - obtain size of the request data structure
793   * @tfm: cipher handle
794   *
795   * Return: number of bytes
796   */
crypto_skcipher_reqsize(struct crypto_skcipher * tfm)797  static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
798  {
799  	return tfm->reqsize;
800  }
801  
802  /**
803   * skcipher_request_set_tfm() - update cipher handle reference in request
804   * @req: request handle to be modified
805   * @tfm: cipher handle that shall be added to the request handle
806   *
807   * Allow the caller to replace the existing skcipher handle in the request
808   * data structure with a different one.
809   */
skcipher_request_set_tfm(struct skcipher_request * req,struct crypto_skcipher * tfm)810  static inline void skcipher_request_set_tfm(struct skcipher_request *req,
811  					    struct crypto_skcipher *tfm)
812  {
813  	req->base.tfm = crypto_skcipher_tfm(tfm);
814  }
815  
skcipher_request_set_sync_tfm(struct skcipher_request * req,struct crypto_sync_skcipher * tfm)816  static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
817  					    struct crypto_sync_skcipher *tfm)
818  {
819  	skcipher_request_set_tfm(req, &tfm->base);
820  }
821  
skcipher_request_cast(struct crypto_async_request * req)822  static inline struct skcipher_request *skcipher_request_cast(
823  	struct crypto_async_request *req)
824  {
825  	return container_of(req, struct skcipher_request, base);
826  }
827  
828  /**
829   * skcipher_request_alloc() - allocate request data structure
830   * @tfm: cipher handle to be registered with the request
831   * @gfp: memory allocation flag that is handed to kmalloc by the API call.
832   *
833   * Allocate the request data structure that must be used with the skcipher
834   * encrypt and decrypt API calls. During the allocation, the provided skcipher
835   * handle is registered in the request data structure.
836   *
837   * Return: allocated request handle in case of success, or NULL if out of memory
838   */
skcipher_request_alloc_noprof(struct crypto_skcipher * tfm,gfp_t gfp)839  static inline struct skcipher_request *skcipher_request_alloc_noprof(
840  	struct crypto_skcipher *tfm, gfp_t gfp)
841  {
842  	struct skcipher_request *req;
843  
844  	req = kmalloc_noprof(sizeof(struct skcipher_request) +
845  			     crypto_skcipher_reqsize(tfm), gfp);
846  
847  	if (likely(req))
848  		skcipher_request_set_tfm(req, tfm);
849  
850  	return req;
851  }
852  #define skcipher_request_alloc(...)	alloc_hooks(skcipher_request_alloc_noprof(__VA_ARGS__))
853  
854  /**
855   * skcipher_request_free() - zeroize and free request data structure
856   * @req: request data structure cipher handle to be freed
857   */
skcipher_request_free(struct skcipher_request * req)858  static inline void skcipher_request_free(struct skcipher_request *req)
859  {
860  	kfree_sensitive(req);
861  }
862  
skcipher_request_zero(struct skcipher_request * req)863  static inline void skcipher_request_zero(struct skcipher_request *req)
864  {
865  	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
866  
867  	memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
868  }
869  
870  /**
871   * skcipher_request_set_callback() - set asynchronous callback function
872   * @req: request handle
873   * @flags: specify zero or an ORing of the flags
874   *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
875   *	   increase the wait queue beyond the initial maximum size;
876   *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
877   * @compl: callback function pointer to be registered with the request handle
878   * @data: The data pointer refers to memory that is not used by the kernel
879   *	  crypto API, but provided to the callback function for it to use. Here,
880   *	  the caller can provide a reference to memory the callback function can
881   *	  operate on. As the callback function is invoked asynchronously to the
882   *	  related functionality, it may need to access data structures of the
883   *	  related functionality which can be referenced using this pointer. The
884   *	  callback function can access the memory via the "data" field in the
885   *	  crypto_async_request data structure provided to the callback function.
886   *
887   * This function allows setting the callback function that is triggered once the
888   * cipher operation completes.
889   *
890   * The callback function is registered with the skcipher_request handle and
891   * must comply with the following template::
892   *
893   *	void callback_function(struct crypto_async_request *req, int error)
894   */
skcipher_request_set_callback(struct skcipher_request * req,u32 flags,crypto_completion_t compl,void * data)895  static inline void skcipher_request_set_callback(struct skcipher_request *req,
896  						 u32 flags,
897  						 crypto_completion_t compl,
898  						 void *data)
899  {
900  	req->base.complete = compl;
901  	req->base.data = data;
902  	req->base.flags = flags;
903  }
904  
905  /**
906   * skcipher_request_set_crypt() - set data buffers
907   * @req: request handle
908   * @src: source scatter / gather list
909   * @dst: destination scatter / gather list
910   * @cryptlen: number of bytes to process from @src
911   * @iv: IV for the cipher operation which must comply with the IV size defined
912   *      by crypto_skcipher_ivsize
913   *
914   * This function allows setting of the source data and destination data
915   * scatter / gather lists.
916   *
917   * For encryption, the source is treated as the plaintext and the
918   * destination is the ciphertext. For a decryption operation, the use is
919   * reversed - the source is the ciphertext and the destination is the plaintext.
920   */
skcipher_request_set_crypt(struct skcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,void * iv)921  static inline void skcipher_request_set_crypt(
922  	struct skcipher_request *req,
923  	struct scatterlist *src, struct scatterlist *dst,
924  	unsigned int cryptlen, void *iv)
925  {
926  	req->src = src;
927  	req->dst = dst;
928  	req->cryptlen = cryptlen;
929  	req->iv = iv;
930  }
931  
932  #endif	/* _CRYPTO_SKCIPHER_H */
933  
934