1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *      NET3    Protocol independent device support routines.
4   *
5   *	Derived from the non IP parts of dev.c 1.0.19
6   *              Authors:	Ross Biro
7   *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8   *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9   *
10   *	Additional Authors:
11   *		Florian la Roche <rzsfl@rz.uni-sb.de>
12   *		Alan Cox <gw4pts@gw4pts.ampr.org>
13   *		David Hinds <dahinds@users.sourceforge.net>
14   *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15   *		Adam Sulmicki <adam@cfar.umd.edu>
16   *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17   *
18   *	Changes:
19   *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20   *                                      to 2 if register_netdev gets called
21   *                                      before net_dev_init & also removed a
22   *                                      few lines of code in the process.
23   *		Alan Cox	:	device private ioctl copies fields back.
24   *		Alan Cox	:	Transmit queue code does relevant
25   *					stunts to keep the queue safe.
26   *		Alan Cox	:	Fixed double lock.
27   *		Alan Cox	:	Fixed promisc NULL pointer trap
28   *		????????	:	Support the full private ioctl range
29   *		Alan Cox	:	Moved ioctl permission check into
30   *					drivers
31   *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32   *		Alan Cox	:	100 backlog just doesn't cut it when
33   *					you start doing multicast video 8)
34   *		Alan Cox	:	Rewrote net_bh and list manager.
35   *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36   *		Alan Cox	:	Took out transmit every packet pass
37   *					Saved a few bytes in the ioctl handler
38   *		Alan Cox	:	Network driver sets packet type before
39   *					calling netif_rx. Saves a function
40   *					call a packet.
41   *		Alan Cox	:	Hashed net_bh()
42   *		Richard Kooijman:	Timestamp fixes.
43   *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44   *		Alan Cox	:	Device lock protection.
45   *              Alan Cox        :       Fixed nasty side effect of device close
46   *					changes.
47   *		Rudi Cilibrasi	:	Pass the right thing to
48   *					set_mac_address()
49   *		Dave Miller	:	32bit quantity for the device lock to
50   *					make it work out on a Sparc.
51   *		Bjorn Ekwall	:	Added KERNELD hack.
52   *		Alan Cox	:	Cleaned up the backlog initialise.
53   *		Craig Metz	:	SIOCGIFCONF fix if space for under
54   *					1 device.
55   *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56   *					is no device open function.
57   *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58   *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59   *		Cyrus Durgin	:	Cleaned for KMOD
60   *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61   *					A network device unload needs to purge
62   *					the backlog queue.
63   *	Paul Rusty Russell	:	SIOCSIFNAME
64   *              Pekka Riikonen  :	Netdev boot-time settings code
65   *              Andrew Morton   :       Make unregister_netdevice wait
66   *                                      indefinitely on dev->refcnt
67   *              J Hadi Salim    :       - Backlog queue sampling
68   *				        - netif_rx() feedback
69   */
70  
71  #include <linux/uaccess.h>
72  #include <linux/bitmap.h>
73  #include <linux/capability.h>
74  #include <linux/cpu.h>
75  #include <linux/types.h>
76  #include <linux/kernel.h>
77  #include <linux/hash.h>
78  #include <linux/slab.h>
79  #include <linux/sched.h>
80  #include <linux/sched/isolation.h>
81  #include <linux/sched/mm.h>
82  #include <linux/smpboot.h>
83  #include <linux/mutex.h>
84  #include <linux/rwsem.h>
85  #include <linux/string.h>
86  #include <linux/mm.h>
87  #include <linux/socket.h>
88  #include <linux/sockios.h>
89  #include <linux/errno.h>
90  #include <linux/interrupt.h>
91  #include <linux/if_ether.h>
92  #include <linux/netdevice.h>
93  #include <linux/etherdevice.h>
94  #include <linux/ethtool.h>
95  #include <linux/skbuff.h>
96  #include <linux/kthread.h>
97  #include <linux/bpf.h>
98  #include <linux/bpf_trace.h>
99  #include <net/net_namespace.h>
100  #include <net/sock.h>
101  #include <net/busy_poll.h>
102  #include <linux/rtnetlink.h>
103  #include <linux/stat.h>
104  #include <net/dsa.h>
105  #include <net/dst.h>
106  #include <net/dst_metadata.h>
107  #include <net/gro.h>
108  #include <net/pkt_sched.h>
109  #include <net/pkt_cls.h>
110  #include <net/checksum.h>
111  #include <net/xfrm.h>
112  #include <net/tcx.h>
113  #include <linux/highmem.h>
114  #include <linux/init.h>
115  #include <linux/module.h>
116  #include <linux/netpoll.h>
117  #include <linux/rcupdate.h>
118  #include <linux/delay.h>
119  #include <net/iw_handler.h>
120  #include <asm/current.h>
121  #include <linux/audit.h>
122  #include <linux/dmaengine.h>
123  #include <linux/err.h>
124  #include <linux/ctype.h>
125  #include <linux/if_arp.h>
126  #include <linux/if_vlan.h>
127  #include <linux/ip.h>
128  #include <net/ip.h>
129  #include <net/mpls.h>
130  #include <linux/ipv6.h>
131  #include <linux/in.h>
132  #include <linux/jhash.h>
133  #include <linux/random.h>
134  #include <trace/events/napi.h>
135  #include <trace/events/net.h>
136  #include <trace/events/skb.h>
137  #include <trace/events/qdisc.h>
138  #include <trace/events/xdp.h>
139  #include <linux/inetdevice.h>
140  #include <linux/cpu_rmap.h>
141  #include <linux/static_key.h>
142  #include <linux/hashtable.h>
143  #include <linux/vmalloc.h>
144  #include <linux/if_macvlan.h>
145  #include <linux/errqueue.h>
146  #include <linux/hrtimer.h>
147  #include <linux/netfilter_netdev.h>
148  #include <linux/crash_dump.h>
149  #include <linux/sctp.h>
150  #include <net/udp_tunnel.h>
151  #include <linux/net_namespace.h>
152  #include <linux/indirect_call_wrapper.h>
153  #include <net/devlink.h>
154  #include <linux/pm_runtime.h>
155  #include <linux/prandom.h>
156  #include <linux/once_lite.h>
157  #include <net/netdev_rx_queue.h>
158  #include <net/page_pool/types.h>
159  #include <net/page_pool/helpers.h>
160  #include <net/rps.h>
161  #include <linux/phy_link_topology.h>
162  
163  #include "dev.h"
164  #include "devmem.h"
165  #include "net-sysfs.h"
166  
167  static DEFINE_SPINLOCK(ptype_lock);
168  struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169  
170  static int netif_rx_internal(struct sk_buff *skb);
171  static int call_netdevice_notifiers_extack(unsigned long val,
172  					   struct net_device *dev,
173  					   struct netlink_ext_ack *extack);
174  
175  static DEFINE_MUTEX(ifalias_mutex);
176  
177  /* protects napi_hash addition/deletion and napi_gen_id */
178  static DEFINE_SPINLOCK(napi_hash_lock);
179  
180  static unsigned int napi_gen_id = NR_CPUS;
181  static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182  
183  static DECLARE_RWSEM(devnet_rename_sem);
184  
dev_base_seq_inc(struct net * net)185  static inline void dev_base_seq_inc(struct net *net)
186  {
187  	unsigned int val = net->dev_base_seq + 1;
188  
189  	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190  }
191  
dev_name_hash(struct net * net,const char * name)192  static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193  {
194  	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195  
196  	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197  }
198  
dev_index_hash(struct net * net,int ifindex)199  static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200  {
201  	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202  }
203  
204  #ifndef CONFIG_PREEMPT_RT
205  
206  static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207  
setup_backlog_napi_threads(char * arg)208  static int __init setup_backlog_napi_threads(char *arg)
209  {
210  	static_branch_enable(&use_backlog_threads_key);
211  	return 0;
212  }
213  early_param("thread_backlog_napi", setup_backlog_napi_threads);
214  
use_backlog_threads(void)215  static bool use_backlog_threads(void)
216  {
217  	return static_branch_unlikely(&use_backlog_threads_key);
218  }
219  
220  #else
221  
use_backlog_threads(void)222  static bool use_backlog_threads(void)
223  {
224  	return true;
225  }
226  
227  #endif
228  
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)229  static inline void backlog_lock_irq_save(struct softnet_data *sd,
230  					 unsigned long *flags)
231  {
232  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233  		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234  	else
235  		local_irq_save(*flags);
236  }
237  
backlog_lock_irq_disable(struct softnet_data * sd)238  static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239  {
240  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241  		spin_lock_irq(&sd->input_pkt_queue.lock);
242  	else
243  		local_irq_disable();
244  }
245  
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)246  static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247  					      unsigned long *flags)
248  {
249  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250  		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251  	else
252  		local_irq_restore(*flags);
253  }
254  
backlog_unlock_irq_enable(struct softnet_data * sd)255  static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256  {
257  	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258  		spin_unlock_irq(&sd->input_pkt_queue.lock);
259  	else
260  		local_irq_enable();
261  }
262  
netdev_name_node_alloc(struct net_device * dev,const char * name)263  static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264  						       const char *name)
265  {
266  	struct netdev_name_node *name_node;
267  
268  	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269  	if (!name_node)
270  		return NULL;
271  	INIT_HLIST_NODE(&name_node->hlist);
272  	name_node->dev = dev;
273  	name_node->name = name;
274  	return name_node;
275  }
276  
277  static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)278  netdev_name_node_head_alloc(struct net_device *dev)
279  {
280  	struct netdev_name_node *name_node;
281  
282  	name_node = netdev_name_node_alloc(dev, dev->name);
283  	if (!name_node)
284  		return NULL;
285  	INIT_LIST_HEAD(&name_node->list);
286  	return name_node;
287  }
288  
netdev_name_node_free(struct netdev_name_node * name_node)289  static void netdev_name_node_free(struct netdev_name_node *name_node)
290  {
291  	kfree(name_node);
292  }
293  
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)294  static void netdev_name_node_add(struct net *net,
295  				 struct netdev_name_node *name_node)
296  {
297  	hlist_add_head_rcu(&name_node->hlist,
298  			   dev_name_hash(net, name_node->name));
299  }
300  
netdev_name_node_del(struct netdev_name_node * name_node)301  static void netdev_name_node_del(struct netdev_name_node *name_node)
302  {
303  	hlist_del_rcu(&name_node->hlist);
304  }
305  
netdev_name_node_lookup(struct net * net,const char * name)306  static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307  							const char *name)
308  {
309  	struct hlist_head *head = dev_name_hash(net, name);
310  	struct netdev_name_node *name_node;
311  
312  	hlist_for_each_entry(name_node, head, hlist)
313  		if (!strcmp(name_node->name, name))
314  			return name_node;
315  	return NULL;
316  }
317  
netdev_name_node_lookup_rcu(struct net * net,const char * name)318  static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319  							    const char *name)
320  {
321  	struct hlist_head *head = dev_name_hash(net, name);
322  	struct netdev_name_node *name_node;
323  
324  	hlist_for_each_entry_rcu(name_node, head, hlist)
325  		if (!strcmp(name_node->name, name))
326  			return name_node;
327  	return NULL;
328  }
329  
netdev_name_in_use(struct net * net,const char * name)330  bool netdev_name_in_use(struct net *net, const char *name)
331  {
332  	return netdev_name_node_lookup(net, name);
333  }
334  EXPORT_SYMBOL(netdev_name_in_use);
335  
netdev_name_node_alt_create(struct net_device * dev,const char * name)336  int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337  {
338  	struct netdev_name_node *name_node;
339  	struct net *net = dev_net(dev);
340  
341  	name_node = netdev_name_node_lookup(net, name);
342  	if (name_node)
343  		return -EEXIST;
344  	name_node = netdev_name_node_alloc(dev, name);
345  	if (!name_node)
346  		return -ENOMEM;
347  	netdev_name_node_add(net, name_node);
348  	/* The node that holds dev->name acts as a head of per-device list. */
349  	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350  
351  	return 0;
352  }
353  
netdev_name_node_alt_free(struct rcu_head * head)354  static void netdev_name_node_alt_free(struct rcu_head *head)
355  {
356  	struct netdev_name_node *name_node =
357  		container_of(head, struct netdev_name_node, rcu);
358  
359  	kfree(name_node->name);
360  	netdev_name_node_free(name_node);
361  }
362  
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)363  static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364  {
365  	netdev_name_node_del(name_node);
366  	list_del(&name_node->list);
367  	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368  }
369  
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)370  int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371  {
372  	struct netdev_name_node *name_node;
373  	struct net *net = dev_net(dev);
374  
375  	name_node = netdev_name_node_lookup(net, name);
376  	if (!name_node)
377  		return -ENOENT;
378  	/* lookup might have found our primary name or a name belonging
379  	 * to another device.
380  	 */
381  	if (name_node == dev->name_node || name_node->dev != dev)
382  		return -EINVAL;
383  
384  	__netdev_name_node_alt_destroy(name_node);
385  	return 0;
386  }
387  
netdev_name_node_alt_flush(struct net_device * dev)388  static void netdev_name_node_alt_flush(struct net_device *dev)
389  {
390  	struct netdev_name_node *name_node, *tmp;
391  
392  	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393  		list_del(&name_node->list);
394  		netdev_name_node_alt_free(&name_node->rcu);
395  	}
396  }
397  
398  /* Device list insertion */
list_netdevice(struct net_device * dev)399  static void list_netdevice(struct net_device *dev)
400  {
401  	struct netdev_name_node *name_node;
402  	struct net *net = dev_net(dev);
403  
404  	ASSERT_RTNL();
405  
406  	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407  	netdev_name_node_add(net, dev->name_node);
408  	hlist_add_head_rcu(&dev->index_hlist,
409  			   dev_index_hash(net, dev->ifindex));
410  
411  	netdev_for_each_altname(dev, name_node)
412  		netdev_name_node_add(net, name_node);
413  
414  	/* We reserved the ifindex, this can't fail */
415  	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416  
417  	dev_base_seq_inc(net);
418  }
419  
420  /* Device list removal
421   * caller must respect a RCU grace period before freeing/reusing dev
422   */
unlist_netdevice(struct net_device * dev)423  static void unlist_netdevice(struct net_device *dev)
424  {
425  	struct netdev_name_node *name_node;
426  	struct net *net = dev_net(dev);
427  
428  	ASSERT_RTNL();
429  
430  	xa_erase(&net->dev_by_index, dev->ifindex);
431  
432  	netdev_for_each_altname(dev, name_node)
433  		netdev_name_node_del(name_node);
434  
435  	/* Unlink dev from the device chain */
436  	list_del_rcu(&dev->dev_list);
437  	netdev_name_node_del(dev->name_node);
438  	hlist_del_rcu(&dev->index_hlist);
439  
440  	dev_base_seq_inc(dev_net(dev));
441  }
442  
443  /*
444   *	Our notifier list
445   */
446  
447  static RAW_NOTIFIER_HEAD(netdev_chain);
448  
449  /*
450   *	Device drivers call our routines to queue packets here. We empty the
451   *	queue in the local softnet handler.
452   */
453  
454  DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455  	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456  };
457  EXPORT_PER_CPU_SYMBOL(softnet_data);
458  
459  /* Page_pool has a lockless array/stack to alloc/recycle pages.
460   * PP consumers must pay attention to run APIs in the appropriate context
461   * (e.g. NAPI context).
462   */
463  static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464  
465  #ifdef CONFIG_LOCKDEP
466  /*
467   * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468   * according to dev->type
469   */
470  static const unsigned short netdev_lock_type[] = {
471  	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472  	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473  	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474  	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475  	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476  	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477  	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478  	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479  	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480  	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481  	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482  	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483  	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484  	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485  	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486  
487  static const char *const netdev_lock_name[] = {
488  	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489  	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490  	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491  	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492  	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493  	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494  	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495  	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496  	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497  	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498  	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499  	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500  	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501  	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502  	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503  
504  static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505  static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506  
netdev_lock_pos(unsigned short dev_type)507  static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508  {
509  	int i;
510  
511  	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512  		if (netdev_lock_type[i] == dev_type)
513  			return i;
514  	/* the last key is used by default */
515  	return ARRAY_SIZE(netdev_lock_type) - 1;
516  }
517  
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)518  static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519  						 unsigned short dev_type)
520  {
521  	int i;
522  
523  	i = netdev_lock_pos(dev_type);
524  	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525  				   netdev_lock_name[i]);
526  }
527  
netdev_set_addr_lockdep_class(struct net_device * dev)528  static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529  {
530  	int i;
531  
532  	i = netdev_lock_pos(dev->type);
533  	lockdep_set_class_and_name(&dev->addr_list_lock,
534  				   &netdev_addr_lock_key[i],
535  				   netdev_lock_name[i]);
536  }
537  #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)538  static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539  						 unsigned short dev_type)
540  {
541  }
542  
netdev_set_addr_lockdep_class(struct net_device * dev)543  static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544  {
545  }
546  #endif
547  
548  /*******************************************************************************
549   *
550   *		Protocol management and registration routines
551   *
552   *******************************************************************************/
553  
554  
555  /*
556   *	Add a protocol ID to the list. Now that the input handler is
557   *	smarter we can dispense with all the messy stuff that used to be
558   *	here.
559   *
560   *	BEWARE!!! Protocol handlers, mangling input packets,
561   *	MUST BE last in hash buckets and checking protocol handlers
562   *	MUST start from promiscuous ptype_all chain in net_bh.
563   *	It is true now, do not change it.
564   *	Explanation follows: if protocol handler, mangling packet, will
565   *	be the first on list, it is not able to sense, that packet
566   *	is cloned and should be copied-on-write, so that it will
567   *	change it and subsequent readers will get broken packet.
568   *							--ANK (980803)
569   */
570  
ptype_head(const struct packet_type * pt)571  static inline struct list_head *ptype_head(const struct packet_type *pt)
572  {
573  	if (pt->type == htons(ETH_P_ALL))
574  		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575  	else
576  		return pt->dev ? &pt->dev->ptype_specific :
577  				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578  }
579  
580  /**
581   *	dev_add_pack - add packet handler
582   *	@pt: packet type declaration
583   *
584   *	Add a protocol handler to the networking stack. The passed &packet_type
585   *	is linked into kernel lists and may not be freed until it has been
586   *	removed from the kernel lists.
587   *
588   *	This call does not sleep therefore it can not
589   *	guarantee all CPU's that are in middle of receiving packets
590   *	will see the new packet type (until the next received packet).
591   */
592  
dev_add_pack(struct packet_type * pt)593  void dev_add_pack(struct packet_type *pt)
594  {
595  	struct list_head *head = ptype_head(pt);
596  
597  	spin_lock(&ptype_lock);
598  	list_add_rcu(&pt->list, head);
599  	spin_unlock(&ptype_lock);
600  }
601  EXPORT_SYMBOL(dev_add_pack);
602  
603  /**
604   *	__dev_remove_pack	 - remove packet handler
605   *	@pt: packet type declaration
606   *
607   *	Remove a protocol handler that was previously added to the kernel
608   *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609   *	from the kernel lists and can be freed or reused once this function
610   *	returns.
611   *
612   *      The packet type might still be in use by receivers
613   *	and must not be freed until after all the CPU's have gone
614   *	through a quiescent state.
615   */
__dev_remove_pack(struct packet_type * pt)616  void __dev_remove_pack(struct packet_type *pt)
617  {
618  	struct list_head *head = ptype_head(pt);
619  	struct packet_type *pt1;
620  
621  	spin_lock(&ptype_lock);
622  
623  	list_for_each_entry(pt1, head, list) {
624  		if (pt == pt1) {
625  			list_del_rcu(&pt->list);
626  			goto out;
627  		}
628  	}
629  
630  	pr_warn("dev_remove_pack: %p not found\n", pt);
631  out:
632  	spin_unlock(&ptype_lock);
633  }
634  EXPORT_SYMBOL(__dev_remove_pack);
635  
636  /**
637   *	dev_remove_pack	 - remove packet handler
638   *	@pt: packet type declaration
639   *
640   *	Remove a protocol handler that was previously added to the kernel
641   *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642   *	from the kernel lists and can be freed or reused once this function
643   *	returns.
644   *
645   *	This call sleeps to guarantee that no CPU is looking at the packet
646   *	type after return.
647   */
dev_remove_pack(struct packet_type * pt)648  void dev_remove_pack(struct packet_type *pt)
649  {
650  	__dev_remove_pack(pt);
651  
652  	synchronize_net();
653  }
654  EXPORT_SYMBOL(dev_remove_pack);
655  
656  
657  /*******************************************************************************
658   *
659   *			    Device Interface Subroutines
660   *
661   *******************************************************************************/
662  
663  /**
664   *	dev_get_iflink	- get 'iflink' value of a interface
665   *	@dev: targeted interface
666   *
667   *	Indicates the ifindex the interface is linked to.
668   *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669   */
670  
dev_get_iflink(const struct net_device * dev)671  int dev_get_iflink(const struct net_device *dev)
672  {
673  	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674  		return dev->netdev_ops->ndo_get_iflink(dev);
675  
676  	return READ_ONCE(dev->ifindex);
677  }
678  EXPORT_SYMBOL(dev_get_iflink);
679  
680  /**
681   *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682   *	@dev: targeted interface
683   *	@skb: The packet.
684   *
685   *	For better visibility of tunnel traffic OVS needs to retrieve
686   *	egress tunnel information for a packet. Following API allows
687   *	user to get this info.
688   */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)689  int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690  {
691  	struct ip_tunnel_info *info;
692  
693  	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694  		return -EINVAL;
695  
696  	info = skb_tunnel_info_unclone(skb);
697  	if (!info)
698  		return -ENOMEM;
699  	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700  		return -EINVAL;
701  
702  	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703  }
704  EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705  
dev_fwd_path(struct net_device_path_stack * stack)706  static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707  {
708  	int k = stack->num_paths++;
709  
710  	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711  		return NULL;
712  
713  	return &stack->path[k];
714  }
715  
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)716  int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717  			  struct net_device_path_stack *stack)
718  {
719  	const struct net_device *last_dev;
720  	struct net_device_path_ctx ctx = {
721  		.dev	= dev,
722  	};
723  	struct net_device_path *path;
724  	int ret = 0;
725  
726  	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727  	stack->num_paths = 0;
728  	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729  		last_dev = ctx.dev;
730  		path = dev_fwd_path(stack);
731  		if (!path)
732  			return -1;
733  
734  		memset(path, 0, sizeof(struct net_device_path));
735  		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736  		if (ret < 0)
737  			return -1;
738  
739  		if (WARN_ON_ONCE(last_dev == ctx.dev))
740  			return -1;
741  	}
742  
743  	if (!ctx.dev)
744  		return ret;
745  
746  	path = dev_fwd_path(stack);
747  	if (!path)
748  		return -1;
749  	path->type = DEV_PATH_ETHERNET;
750  	path->dev = ctx.dev;
751  
752  	return ret;
753  }
754  EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755  
756  /**
757   *	__dev_get_by_name	- find a device by its name
758   *	@net: the applicable net namespace
759   *	@name: name to find
760   *
761   *	Find an interface by name. Must be called under RTNL semaphore.
762   *	If the name is found a pointer to the device is returned.
763   *	If the name is not found then %NULL is returned. The
764   *	reference counters are not incremented so the caller must be
765   *	careful with locks.
766   */
767  
__dev_get_by_name(struct net * net,const char * name)768  struct net_device *__dev_get_by_name(struct net *net, const char *name)
769  {
770  	struct netdev_name_node *node_name;
771  
772  	node_name = netdev_name_node_lookup(net, name);
773  	return node_name ? node_name->dev : NULL;
774  }
775  EXPORT_SYMBOL(__dev_get_by_name);
776  
777  /**
778   * dev_get_by_name_rcu	- find a device by its name
779   * @net: the applicable net namespace
780   * @name: name to find
781   *
782   * Find an interface by name.
783   * If the name is found a pointer to the device is returned.
784   * If the name is not found then %NULL is returned.
785   * The reference counters are not incremented so the caller must be
786   * careful with locks. The caller must hold RCU lock.
787   */
788  
dev_get_by_name_rcu(struct net * net,const char * name)789  struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790  {
791  	struct netdev_name_node *node_name;
792  
793  	node_name = netdev_name_node_lookup_rcu(net, name);
794  	return node_name ? node_name->dev : NULL;
795  }
796  EXPORT_SYMBOL(dev_get_by_name_rcu);
797  
798  /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)799  struct net_device *dev_get_by_name(struct net *net, const char *name)
800  {
801  	struct net_device *dev;
802  
803  	rcu_read_lock();
804  	dev = dev_get_by_name_rcu(net, name);
805  	dev_hold(dev);
806  	rcu_read_unlock();
807  	return dev;
808  }
809  EXPORT_SYMBOL(dev_get_by_name);
810  
811  /**
812   *	netdev_get_by_name() - find a device by its name
813   *	@net: the applicable net namespace
814   *	@name: name to find
815   *	@tracker: tracking object for the acquired reference
816   *	@gfp: allocation flags for the tracker
817   *
818   *	Find an interface by name. This can be called from any
819   *	context and does its own locking. The returned handle has
820   *	the usage count incremented and the caller must use netdev_put() to
821   *	release it when it is no longer needed. %NULL is returned if no
822   *	matching device is found.
823   */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)824  struct net_device *netdev_get_by_name(struct net *net, const char *name,
825  				      netdevice_tracker *tracker, gfp_t gfp)
826  {
827  	struct net_device *dev;
828  
829  	dev = dev_get_by_name(net, name);
830  	if (dev)
831  		netdev_tracker_alloc(dev, tracker, gfp);
832  	return dev;
833  }
834  EXPORT_SYMBOL(netdev_get_by_name);
835  
836  /**
837   *	__dev_get_by_index - find a device by its ifindex
838   *	@net: the applicable net namespace
839   *	@ifindex: index of device
840   *
841   *	Search for an interface by index. Returns %NULL if the device
842   *	is not found or a pointer to the device. The device has not
843   *	had its reference counter increased so the caller must be careful
844   *	about locking. The caller must hold the RTNL semaphore.
845   */
846  
__dev_get_by_index(struct net * net,int ifindex)847  struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848  {
849  	struct net_device *dev;
850  	struct hlist_head *head = dev_index_hash(net, ifindex);
851  
852  	hlist_for_each_entry(dev, head, index_hlist)
853  		if (dev->ifindex == ifindex)
854  			return dev;
855  
856  	return NULL;
857  }
858  EXPORT_SYMBOL(__dev_get_by_index);
859  
860  /**
861   *	dev_get_by_index_rcu - find a device by its ifindex
862   *	@net: the applicable net namespace
863   *	@ifindex: index of device
864   *
865   *	Search for an interface by index. Returns %NULL if the device
866   *	is not found or a pointer to the device. The device has not
867   *	had its reference counter increased so the caller must be careful
868   *	about locking. The caller must hold RCU lock.
869   */
870  
dev_get_by_index_rcu(struct net * net,int ifindex)871  struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872  {
873  	struct net_device *dev;
874  	struct hlist_head *head = dev_index_hash(net, ifindex);
875  
876  	hlist_for_each_entry_rcu(dev, head, index_hlist)
877  		if (dev->ifindex == ifindex)
878  			return dev;
879  
880  	return NULL;
881  }
882  EXPORT_SYMBOL(dev_get_by_index_rcu);
883  
884  /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)885  struct net_device *dev_get_by_index(struct net *net, int ifindex)
886  {
887  	struct net_device *dev;
888  
889  	rcu_read_lock();
890  	dev = dev_get_by_index_rcu(net, ifindex);
891  	dev_hold(dev);
892  	rcu_read_unlock();
893  	return dev;
894  }
895  EXPORT_SYMBOL(dev_get_by_index);
896  
897  /**
898   *	netdev_get_by_index() - find a device by its ifindex
899   *	@net: the applicable net namespace
900   *	@ifindex: index of device
901   *	@tracker: tracking object for the acquired reference
902   *	@gfp: allocation flags for the tracker
903   *
904   *	Search for an interface by index. Returns NULL if the device
905   *	is not found or a pointer to the device. The device returned has
906   *	had a reference added and the pointer is safe until the user calls
907   *	netdev_put() to indicate they have finished with it.
908   */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)909  struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910  				       netdevice_tracker *tracker, gfp_t gfp)
911  {
912  	struct net_device *dev;
913  
914  	dev = dev_get_by_index(net, ifindex);
915  	if (dev)
916  		netdev_tracker_alloc(dev, tracker, gfp);
917  	return dev;
918  }
919  EXPORT_SYMBOL(netdev_get_by_index);
920  
921  /**
922   *	dev_get_by_napi_id - find a device by napi_id
923   *	@napi_id: ID of the NAPI struct
924   *
925   *	Search for an interface by NAPI ID. Returns %NULL if the device
926   *	is not found or a pointer to the device. The device has not had
927   *	its reference counter increased so the caller must be careful
928   *	about locking. The caller must hold RCU lock.
929   */
930  
dev_get_by_napi_id(unsigned int napi_id)931  struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932  {
933  	struct napi_struct *napi;
934  
935  	WARN_ON_ONCE(!rcu_read_lock_held());
936  
937  	if (napi_id < MIN_NAPI_ID)
938  		return NULL;
939  
940  	napi = napi_by_id(napi_id);
941  
942  	return napi ? napi->dev : NULL;
943  }
944  EXPORT_SYMBOL(dev_get_by_napi_id);
945  
946  static DEFINE_SEQLOCK(netdev_rename_lock);
947  
netdev_copy_name(struct net_device * dev,char * name)948  void netdev_copy_name(struct net_device *dev, char *name)
949  {
950  	unsigned int seq;
951  
952  	do {
953  		seq = read_seqbegin(&netdev_rename_lock);
954  		strscpy(name, dev->name, IFNAMSIZ);
955  	} while (read_seqretry(&netdev_rename_lock, seq));
956  }
957  
958  /**
959   *	netdev_get_name - get a netdevice name, knowing its ifindex.
960   *	@net: network namespace
961   *	@name: a pointer to the buffer where the name will be stored.
962   *	@ifindex: the ifindex of the interface to get the name from.
963   */
netdev_get_name(struct net * net,char * name,int ifindex)964  int netdev_get_name(struct net *net, char *name, int ifindex)
965  {
966  	struct net_device *dev;
967  	int ret;
968  
969  	rcu_read_lock();
970  
971  	dev = dev_get_by_index_rcu(net, ifindex);
972  	if (!dev) {
973  		ret = -ENODEV;
974  		goto out;
975  	}
976  
977  	netdev_copy_name(dev, name);
978  
979  	ret = 0;
980  out:
981  	rcu_read_unlock();
982  	return ret;
983  }
984  
985  /**
986   *	dev_getbyhwaddr_rcu - find a device by its hardware address
987   *	@net: the applicable net namespace
988   *	@type: media type of device
989   *	@ha: hardware address
990   *
991   *	Search for an interface by MAC address. Returns NULL if the device
992   *	is not found or a pointer to the device.
993   *	The caller must hold RCU or RTNL.
994   *	The returned device has not had its ref count increased
995   *	and the caller must therefore be careful about locking
996   *
997   */
998  
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)999  struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000  				       const char *ha)
1001  {
1002  	struct net_device *dev;
1003  
1004  	for_each_netdev_rcu(net, dev)
1005  		if (dev->type == type &&
1006  		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1007  			return dev;
1008  
1009  	return NULL;
1010  }
1011  EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012  
dev_getfirstbyhwtype(struct net * net,unsigned short type)1013  struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014  {
1015  	struct net_device *dev, *ret = NULL;
1016  
1017  	rcu_read_lock();
1018  	for_each_netdev_rcu(net, dev)
1019  		if (dev->type == type) {
1020  			dev_hold(dev);
1021  			ret = dev;
1022  			break;
1023  		}
1024  	rcu_read_unlock();
1025  	return ret;
1026  }
1027  EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028  
1029  /**
1030   *	__dev_get_by_flags - find any device with given flags
1031   *	@net: the applicable net namespace
1032   *	@if_flags: IFF_* values
1033   *	@mask: bitmask of bits in if_flags to check
1034   *
1035   *	Search for any interface with the given flags. Returns NULL if a device
1036   *	is not found or a pointer to the device. Must be called inside
1037   *	rtnl_lock(), and result refcount is unchanged.
1038   */
1039  
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1040  struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041  				      unsigned short mask)
1042  {
1043  	struct net_device *dev, *ret;
1044  
1045  	ASSERT_RTNL();
1046  
1047  	ret = NULL;
1048  	for_each_netdev(net, dev) {
1049  		if (((dev->flags ^ if_flags) & mask) == 0) {
1050  			ret = dev;
1051  			break;
1052  		}
1053  	}
1054  	return ret;
1055  }
1056  EXPORT_SYMBOL(__dev_get_by_flags);
1057  
1058  /**
1059   *	dev_valid_name - check if name is okay for network device
1060   *	@name: name string
1061   *
1062   *	Network device names need to be valid file names to
1063   *	allow sysfs to work.  We also disallow any kind of
1064   *	whitespace.
1065   */
dev_valid_name(const char * name)1066  bool dev_valid_name(const char *name)
1067  {
1068  	if (*name == '\0')
1069  		return false;
1070  	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071  		return false;
1072  	if (!strcmp(name, ".") || !strcmp(name, ".."))
1073  		return false;
1074  
1075  	while (*name) {
1076  		if (*name == '/' || *name == ':' || isspace(*name))
1077  			return false;
1078  		name++;
1079  	}
1080  	return true;
1081  }
1082  EXPORT_SYMBOL(dev_valid_name);
1083  
1084  /**
1085   *	__dev_alloc_name - allocate a name for a device
1086   *	@net: network namespace to allocate the device name in
1087   *	@name: name format string
1088   *	@res: result name string
1089   *
1090   *	Passed a format string - eg "lt%d" it will try and find a suitable
1091   *	id. It scans list of devices to build up a free map, then chooses
1092   *	the first empty slot. The caller must hold the dev_base or rtnl lock
1093   *	while allocating the name and adding the device in order to avoid
1094   *	duplicates.
1095   *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096   *	Returns the number of the unit assigned or a negative errno code.
1097   */
1098  
__dev_alloc_name(struct net * net,const char * name,char * res)1099  static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100  {
1101  	int i = 0;
1102  	const char *p;
1103  	const int max_netdevices = 8*PAGE_SIZE;
1104  	unsigned long *inuse;
1105  	struct net_device *d;
1106  	char buf[IFNAMSIZ];
1107  
1108  	/* Verify the string as this thing may have come from the user.
1109  	 * There must be one "%d" and no other "%" characters.
1110  	 */
1111  	p = strchr(name, '%');
1112  	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113  		return -EINVAL;
1114  
1115  	/* Use one page as a bit array of possible slots */
1116  	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117  	if (!inuse)
1118  		return -ENOMEM;
1119  
1120  	for_each_netdev(net, d) {
1121  		struct netdev_name_node *name_node;
1122  
1123  		netdev_for_each_altname(d, name_node) {
1124  			if (!sscanf(name_node->name, name, &i))
1125  				continue;
1126  			if (i < 0 || i >= max_netdevices)
1127  				continue;
1128  
1129  			/* avoid cases where sscanf is not exact inverse of printf */
1130  			snprintf(buf, IFNAMSIZ, name, i);
1131  			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132  				__set_bit(i, inuse);
1133  		}
1134  		if (!sscanf(d->name, name, &i))
1135  			continue;
1136  		if (i < 0 || i >= max_netdevices)
1137  			continue;
1138  
1139  		/* avoid cases where sscanf is not exact inverse of printf */
1140  		snprintf(buf, IFNAMSIZ, name, i);
1141  		if (!strncmp(buf, d->name, IFNAMSIZ))
1142  			__set_bit(i, inuse);
1143  	}
1144  
1145  	i = find_first_zero_bit(inuse, max_netdevices);
1146  	bitmap_free(inuse);
1147  	if (i == max_netdevices)
1148  		return -ENFILE;
1149  
1150  	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151  	strscpy(buf, name, IFNAMSIZ);
1152  	snprintf(res, IFNAMSIZ, buf, i);
1153  	return i;
1154  }
1155  
1156  /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1157  static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158  			       const char *want_name, char *out_name,
1159  			       int dup_errno)
1160  {
1161  	if (!dev_valid_name(want_name))
1162  		return -EINVAL;
1163  
1164  	if (strchr(want_name, '%'))
1165  		return __dev_alloc_name(net, want_name, out_name);
1166  
1167  	if (netdev_name_in_use(net, want_name))
1168  		return -dup_errno;
1169  	if (out_name != want_name)
1170  		strscpy(out_name, want_name, IFNAMSIZ);
1171  	return 0;
1172  }
1173  
1174  /**
1175   *	dev_alloc_name - allocate a name for a device
1176   *	@dev: device
1177   *	@name: name format string
1178   *
1179   *	Passed a format string - eg "lt%d" it will try and find a suitable
1180   *	id. It scans list of devices to build up a free map, then chooses
1181   *	the first empty slot. The caller must hold the dev_base or rtnl lock
1182   *	while allocating the name and adding the device in order to avoid
1183   *	duplicates.
1184   *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185   *	Returns the number of the unit assigned or a negative errno code.
1186   */
1187  
dev_alloc_name(struct net_device * dev,const char * name)1188  int dev_alloc_name(struct net_device *dev, const char *name)
1189  {
1190  	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191  }
1192  EXPORT_SYMBOL(dev_alloc_name);
1193  
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1194  static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195  			      const char *name)
1196  {
1197  	int ret;
1198  
1199  	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200  	return ret < 0 ? ret : 0;
1201  }
1202  
1203  /**
1204   *	dev_change_name - change name of a device
1205   *	@dev: device
1206   *	@newname: name (or format string) must be at least IFNAMSIZ
1207   *
1208   *	Change name of a device, can pass format strings "eth%d".
1209   *	for wildcarding.
1210   */
dev_change_name(struct net_device * dev,const char * newname)1211  int dev_change_name(struct net_device *dev, const char *newname)
1212  {
1213  	unsigned char old_assign_type;
1214  	char oldname[IFNAMSIZ];
1215  	int err = 0;
1216  	int ret;
1217  	struct net *net;
1218  
1219  	ASSERT_RTNL();
1220  	BUG_ON(!dev_net(dev));
1221  
1222  	net = dev_net(dev);
1223  
1224  	down_write(&devnet_rename_sem);
1225  
1226  	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227  		up_write(&devnet_rename_sem);
1228  		return 0;
1229  	}
1230  
1231  	memcpy(oldname, dev->name, IFNAMSIZ);
1232  
1233  	write_seqlock_bh(&netdev_rename_lock);
1234  	err = dev_get_valid_name(net, dev, newname);
1235  	write_sequnlock_bh(&netdev_rename_lock);
1236  
1237  	if (err < 0) {
1238  		up_write(&devnet_rename_sem);
1239  		return err;
1240  	}
1241  
1242  	if (oldname[0] && !strchr(oldname, '%'))
1243  		netdev_info(dev, "renamed from %s%s\n", oldname,
1244  			    dev->flags & IFF_UP ? " (while UP)" : "");
1245  
1246  	old_assign_type = dev->name_assign_type;
1247  	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248  
1249  rollback:
1250  	ret = device_rename(&dev->dev, dev->name);
1251  	if (ret) {
1252  		memcpy(dev->name, oldname, IFNAMSIZ);
1253  		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254  		up_write(&devnet_rename_sem);
1255  		return ret;
1256  	}
1257  
1258  	up_write(&devnet_rename_sem);
1259  
1260  	netdev_adjacent_rename_links(dev, oldname);
1261  
1262  	netdev_name_node_del(dev->name_node);
1263  
1264  	synchronize_net();
1265  
1266  	netdev_name_node_add(net, dev->name_node);
1267  
1268  	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269  	ret = notifier_to_errno(ret);
1270  
1271  	if (ret) {
1272  		/* err >= 0 after dev_alloc_name() or stores the first errno */
1273  		if (err >= 0) {
1274  			err = ret;
1275  			down_write(&devnet_rename_sem);
1276  			write_seqlock_bh(&netdev_rename_lock);
1277  			memcpy(dev->name, oldname, IFNAMSIZ);
1278  			write_sequnlock_bh(&netdev_rename_lock);
1279  			memcpy(oldname, newname, IFNAMSIZ);
1280  			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281  			old_assign_type = NET_NAME_RENAMED;
1282  			goto rollback;
1283  		} else {
1284  			netdev_err(dev, "name change rollback failed: %d\n",
1285  				   ret);
1286  		}
1287  	}
1288  
1289  	return err;
1290  }
1291  
1292  /**
1293   *	dev_set_alias - change ifalias of a device
1294   *	@dev: device
1295   *	@alias: name up to IFALIASZ
1296   *	@len: limit of bytes to copy from info
1297   *
1298   *	Set ifalias for a device,
1299   */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1300  int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301  {
1302  	struct dev_ifalias *new_alias = NULL;
1303  
1304  	if (len >= IFALIASZ)
1305  		return -EINVAL;
1306  
1307  	if (len) {
1308  		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309  		if (!new_alias)
1310  			return -ENOMEM;
1311  
1312  		memcpy(new_alias->ifalias, alias, len);
1313  		new_alias->ifalias[len] = 0;
1314  	}
1315  
1316  	mutex_lock(&ifalias_mutex);
1317  	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318  					mutex_is_locked(&ifalias_mutex));
1319  	mutex_unlock(&ifalias_mutex);
1320  
1321  	if (new_alias)
1322  		kfree_rcu(new_alias, rcuhead);
1323  
1324  	return len;
1325  }
1326  EXPORT_SYMBOL(dev_set_alias);
1327  
1328  /**
1329   *	dev_get_alias - get ifalias of a device
1330   *	@dev: device
1331   *	@name: buffer to store name of ifalias
1332   *	@len: size of buffer
1333   *
1334   *	get ifalias for a device.  Caller must make sure dev cannot go
1335   *	away,  e.g. rcu read lock or own a reference count to device.
1336   */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1337  int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338  {
1339  	const struct dev_ifalias *alias;
1340  	int ret = 0;
1341  
1342  	rcu_read_lock();
1343  	alias = rcu_dereference(dev->ifalias);
1344  	if (alias)
1345  		ret = snprintf(name, len, "%s", alias->ifalias);
1346  	rcu_read_unlock();
1347  
1348  	return ret;
1349  }
1350  
1351  /**
1352   *	netdev_features_change - device changes features
1353   *	@dev: device to cause notification
1354   *
1355   *	Called to indicate a device has changed features.
1356   */
netdev_features_change(struct net_device * dev)1357  void netdev_features_change(struct net_device *dev)
1358  {
1359  	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360  }
1361  EXPORT_SYMBOL(netdev_features_change);
1362  
1363  /**
1364   *	netdev_state_change - device changes state
1365   *	@dev: device to cause notification
1366   *
1367   *	Called to indicate a device has changed state. This function calls
1368   *	the notifier chains for netdev_chain and sends a NEWLINK message
1369   *	to the routing socket.
1370   */
netdev_state_change(struct net_device * dev)1371  void netdev_state_change(struct net_device *dev)
1372  {
1373  	if (dev->flags & IFF_UP) {
1374  		struct netdev_notifier_change_info change_info = {
1375  			.info.dev = dev,
1376  		};
1377  
1378  		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379  					      &change_info.info);
1380  		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381  	}
1382  }
1383  EXPORT_SYMBOL(netdev_state_change);
1384  
1385  /**
1386   * __netdev_notify_peers - notify network peers about existence of @dev,
1387   * to be called when rtnl lock is already held.
1388   * @dev: network device
1389   *
1390   * Generate traffic such that interested network peers are aware of
1391   * @dev, such as by generating a gratuitous ARP. This may be used when
1392   * a device wants to inform the rest of the network about some sort of
1393   * reconfiguration such as a failover event or virtual machine
1394   * migration.
1395   */
__netdev_notify_peers(struct net_device * dev)1396  void __netdev_notify_peers(struct net_device *dev)
1397  {
1398  	ASSERT_RTNL();
1399  	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400  	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401  }
1402  EXPORT_SYMBOL(__netdev_notify_peers);
1403  
1404  /**
1405   * netdev_notify_peers - notify network peers about existence of @dev
1406   * @dev: network device
1407   *
1408   * Generate traffic such that interested network peers are aware of
1409   * @dev, such as by generating a gratuitous ARP. This may be used when
1410   * a device wants to inform the rest of the network about some sort of
1411   * reconfiguration such as a failover event or virtual machine
1412   * migration.
1413   */
netdev_notify_peers(struct net_device * dev)1414  void netdev_notify_peers(struct net_device *dev)
1415  {
1416  	rtnl_lock();
1417  	__netdev_notify_peers(dev);
1418  	rtnl_unlock();
1419  }
1420  EXPORT_SYMBOL(netdev_notify_peers);
1421  
1422  static int napi_threaded_poll(void *data);
1423  
napi_kthread_create(struct napi_struct * n)1424  static int napi_kthread_create(struct napi_struct *n)
1425  {
1426  	int err = 0;
1427  
1428  	/* Create and wake up the kthread once to put it in
1429  	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430  	 * warning and work with loadavg.
1431  	 */
1432  	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433  				n->dev->name, n->napi_id);
1434  	if (IS_ERR(n->thread)) {
1435  		err = PTR_ERR(n->thread);
1436  		pr_err("kthread_run failed with err %d\n", err);
1437  		n->thread = NULL;
1438  	}
1439  
1440  	return err;
1441  }
1442  
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1443  static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444  {
1445  	const struct net_device_ops *ops = dev->netdev_ops;
1446  	int ret;
1447  
1448  	ASSERT_RTNL();
1449  	dev_addr_check(dev);
1450  
1451  	if (!netif_device_present(dev)) {
1452  		/* may be detached because parent is runtime-suspended */
1453  		if (dev->dev.parent)
1454  			pm_runtime_resume(dev->dev.parent);
1455  		if (!netif_device_present(dev))
1456  			return -ENODEV;
1457  	}
1458  
1459  	/* Block netpoll from trying to do any rx path servicing.
1460  	 * If we don't do this there is a chance ndo_poll_controller
1461  	 * or ndo_poll may be running while we open the device
1462  	 */
1463  	netpoll_poll_disable(dev);
1464  
1465  	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466  	ret = notifier_to_errno(ret);
1467  	if (ret)
1468  		return ret;
1469  
1470  	set_bit(__LINK_STATE_START, &dev->state);
1471  
1472  	if (ops->ndo_validate_addr)
1473  		ret = ops->ndo_validate_addr(dev);
1474  
1475  	if (!ret && ops->ndo_open)
1476  		ret = ops->ndo_open(dev);
1477  
1478  	netpoll_poll_enable(dev);
1479  
1480  	if (ret)
1481  		clear_bit(__LINK_STATE_START, &dev->state);
1482  	else {
1483  		dev->flags |= IFF_UP;
1484  		dev_set_rx_mode(dev);
1485  		dev_activate(dev);
1486  		add_device_randomness(dev->dev_addr, dev->addr_len);
1487  	}
1488  
1489  	return ret;
1490  }
1491  
1492  /**
1493   *	dev_open	- prepare an interface for use.
1494   *	@dev: device to open
1495   *	@extack: netlink extended ack
1496   *
1497   *	Takes a device from down to up state. The device's private open
1498   *	function is invoked and then the multicast lists are loaded. Finally
1499   *	the device is moved into the up state and a %NETDEV_UP message is
1500   *	sent to the netdev notifier chain.
1501   *
1502   *	Calling this function on an active interface is a nop. On a failure
1503   *	a negative errno code is returned.
1504   */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1505  int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506  {
1507  	int ret;
1508  
1509  	if (dev->flags & IFF_UP)
1510  		return 0;
1511  
1512  	ret = __dev_open(dev, extack);
1513  	if (ret < 0)
1514  		return ret;
1515  
1516  	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517  	call_netdevice_notifiers(NETDEV_UP, dev);
1518  
1519  	return ret;
1520  }
1521  EXPORT_SYMBOL(dev_open);
1522  
__dev_close_many(struct list_head * head)1523  static void __dev_close_many(struct list_head *head)
1524  {
1525  	struct net_device *dev;
1526  
1527  	ASSERT_RTNL();
1528  	might_sleep();
1529  
1530  	list_for_each_entry(dev, head, close_list) {
1531  		/* Temporarily disable netpoll until the interface is down */
1532  		netpoll_poll_disable(dev);
1533  
1534  		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535  
1536  		clear_bit(__LINK_STATE_START, &dev->state);
1537  
1538  		/* Synchronize to scheduled poll. We cannot touch poll list, it
1539  		 * can be even on different cpu. So just clear netif_running().
1540  		 *
1541  		 * dev->stop() will invoke napi_disable() on all of it's
1542  		 * napi_struct instances on this device.
1543  		 */
1544  		smp_mb__after_atomic(); /* Commit netif_running(). */
1545  	}
1546  
1547  	dev_deactivate_many(head);
1548  
1549  	list_for_each_entry(dev, head, close_list) {
1550  		const struct net_device_ops *ops = dev->netdev_ops;
1551  
1552  		/*
1553  		 *	Call the device specific close. This cannot fail.
1554  		 *	Only if device is UP
1555  		 *
1556  		 *	We allow it to be called even after a DETACH hot-plug
1557  		 *	event.
1558  		 */
1559  		if (ops->ndo_stop)
1560  			ops->ndo_stop(dev);
1561  
1562  		dev->flags &= ~IFF_UP;
1563  		netpoll_poll_enable(dev);
1564  	}
1565  }
1566  
__dev_close(struct net_device * dev)1567  static void __dev_close(struct net_device *dev)
1568  {
1569  	LIST_HEAD(single);
1570  
1571  	list_add(&dev->close_list, &single);
1572  	__dev_close_many(&single);
1573  	list_del(&single);
1574  }
1575  
dev_close_many(struct list_head * head,bool unlink)1576  void dev_close_many(struct list_head *head, bool unlink)
1577  {
1578  	struct net_device *dev, *tmp;
1579  
1580  	/* Remove the devices that don't need to be closed */
1581  	list_for_each_entry_safe(dev, tmp, head, close_list)
1582  		if (!(dev->flags & IFF_UP))
1583  			list_del_init(&dev->close_list);
1584  
1585  	__dev_close_many(head);
1586  
1587  	list_for_each_entry_safe(dev, tmp, head, close_list) {
1588  		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589  		call_netdevice_notifiers(NETDEV_DOWN, dev);
1590  		if (unlink)
1591  			list_del_init(&dev->close_list);
1592  	}
1593  }
1594  EXPORT_SYMBOL(dev_close_many);
1595  
1596  /**
1597   *	dev_close - shutdown an interface.
1598   *	@dev: device to shutdown
1599   *
1600   *	This function moves an active device into down state. A
1601   *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602   *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603   *	chain.
1604   */
dev_close(struct net_device * dev)1605  void dev_close(struct net_device *dev)
1606  {
1607  	if (dev->flags & IFF_UP) {
1608  		LIST_HEAD(single);
1609  
1610  		list_add(&dev->close_list, &single);
1611  		dev_close_many(&single, true);
1612  		list_del(&single);
1613  	}
1614  }
1615  EXPORT_SYMBOL(dev_close);
1616  
1617  
1618  /**
1619   *	dev_disable_lro - disable Large Receive Offload on a device
1620   *	@dev: device
1621   *
1622   *	Disable Large Receive Offload (LRO) on a net device.  Must be
1623   *	called under RTNL.  This is needed if received packets may be
1624   *	forwarded to another interface.
1625   */
dev_disable_lro(struct net_device * dev)1626  void dev_disable_lro(struct net_device *dev)
1627  {
1628  	struct net_device *lower_dev;
1629  	struct list_head *iter;
1630  
1631  	dev->wanted_features &= ~NETIF_F_LRO;
1632  	netdev_update_features(dev);
1633  
1634  	if (unlikely(dev->features & NETIF_F_LRO))
1635  		netdev_WARN(dev, "failed to disable LRO!\n");
1636  
1637  	netdev_for_each_lower_dev(dev, lower_dev, iter)
1638  		dev_disable_lro(lower_dev);
1639  }
1640  EXPORT_SYMBOL(dev_disable_lro);
1641  
1642  /**
1643   *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644   *	@dev: device
1645   *
1646   *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647   *	called under RTNL.  This is needed if Generic XDP is installed on
1648   *	the device.
1649   */
dev_disable_gro_hw(struct net_device * dev)1650  static void dev_disable_gro_hw(struct net_device *dev)
1651  {
1652  	dev->wanted_features &= ~NETIF_F_GRO_HW;
1653  	netdev_update_features(dev);
1654  
1655  	if (unlikely(dev->features & NETIF_F_GRO_HW))
1656  		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657  }
1658  
netdev_cmd_to_name(enum netdev_cmd cmd)1659  const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660  {
1661  #define N(val) 						\
1662  	case NETDEV_##val:				\
1663  		return "NETDEV_" __stringify(val);
1664  	switch (cmd) {
1665  	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666  	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667  	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668  	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669  	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670  	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671  	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672  	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673  	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674  	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675  	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676  	N(XDP_FEAT_CHANGE)
1677  	}
1678  #undef N
1679  	return "UNKNOWN_NETDEV_EVENT";
1680  }
1681  EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682  
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1683  static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684  				   struct net_device *dev)
1685  {
1686  	struct netdev_notifier_info info = {
1687  		.dev = dev,
1688  	};
1689  
1690  	return nb->notifier_call(nb, val, &info);
1691  }
1692  
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1693  static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694  					     struct net_device *dev)
1695  {
1696  	int err;
1697  
1698  	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699  	err = notifier_to_errno(err);
1700  	if (err)
1701  		return err;
1702  
1703  	if (!(dev->flags & IFF_UP))
1704  		return 0;
1705  
1706  	call_netdevice_notifier(nb, NETDEV_UP, dev);
1707  	return 0;
1708  }
1709  
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1710  static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711  						struct net_device *dev)
1712  {
1713  	if (dev->flags & IFF_UP) {
1714  		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715  					dev);
1716  		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717  	}
1718  	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719  }
1720  
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1721  static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722  						 struct net *net)
1723  {
1724  	struct net_device *dev;
1725  	int err;
1726  
1727  	for_each_netdev(net, dev) {
1728  		err = call_netdevice_register_notifiers(nb, dev);
1729  		if (err)
1730  			goto rollback;
1731  	}
1732  	return 0;
1733  
1734  rollback:
1735  	for_each_netdev_continue_reverse(net, dev)
1736  		call_netdevice_unregister_notifiers(nb, dev);
1737  	return err;
1738  }
1739  
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1740  static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741  						    struct net *net)
1742  {
1743  	struct net_device *dev;
1744  
1745  	for_each_netdev(net, dev)
1746  		call_netdevice_unregister_notifiers(nb, dev);
1747  }
1748  
1749  static int dev_boot_phase = 1;
1750  
1751  /**
1752   * register_netdevice_notifier - register a network notifier block
1753   * @nb: notifier
1754   *
1755   * Register a notifier to be called when network device events occur.
1756   * The notifier passed is linked into the kernel structures and must
1757   * not be reused until it has been unregistered. A negative errno code
1758   * is returned on a failure.
1759   *
1760   * When registered all registration and up events are replayed
1761   * to the new notifier to allow device to have a race free
1762   * view of the network device list.
1763   */
1764  
register_netdevice_notifier(struct notifier_block * nb)1765  int register_netdevice_notifier(struct notifier_block *nb)
1766  {
1767  	struct net *net;
1768  	int err;
1769  
1770  	/* Close race with setup_net() and cleanup_net() */
1771  	down_write(&pernet_ops_rwsem);
1772  	rtnl_lock();
1773  	err = raw_notifier_chain_register(&netdev_chain, nb);
1774  	if (err)
1775  		goto unlock;
1776  	if (dev_boot_phase)
1777  		goto unlock;
1778  	for_each_net(net) {
1779  		err = call_netdevice_register_net_notifiers(nb, net);
1780  		if (err)
1781  			goto rollback;
1782  	}
1783  
1784  unlock:
1785  	rtnl_unlock();
1786  	up_write(&pernet_ops_rwsem);
1787  	return err;
1788  
1789  rollback:
1790  	for_each_net_continue_reverse(net)
1791  		call_netdevice_unregister_net_notifiers(nb, net);
1792  
1793  	raw_notifier_chain_unregister(&netdev_chain, nb);
1794  	goto unlock;
1795  }
1796  EXPORT_SYMBOL(register_netdevice_notifier);
1797  
1798  /**
1799   * unregister_netdevice_notifier - unregister a network notifier block
1800   * @nb: notifier
1801   *
1802   * Unregister a notifier previously registered by
1803   * register_netdevice_notifier(). The notifier is unlinked into the
1804   * kernel structures and may then be reused. A negative errno code
1805   * is returned on a failure.
1806   *
1807   * After unregistering unregister and down device events are synthesized
1808   * for all devices on the device list to the removed notifier to remove
1809   * the need for special case cleanup code.
1810   */
1811  
unregister_netdevice_notifier(struct notifier_block * nb)1812  int unregister_netdevice_notifier(struct notifier_block *nb)
1813  {
1814  	struct net *net;
1815  	int err;
1816  
1817  	/* Close race with setup_net() and cleanup_net() */
1818  	down_write(&pernet_ops_rwsem);
1819  	rtnl_lock();
1820  	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821  	if (err)
1822  		goto unlock;
1823  
1824  	for_each_net(net)
1825  		call_netdevice_unregister_net_notifiers(nb, net);
1826  
1827  unlock:
1828  	rtnl_unlock();
1829  	up_write(&pernet_ops_rwsem);
1830  	return err;
1831  }
1832  EXPORT_SYMBOL(unregister_netdevice_notifier);
1833  
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1834  static int __register_netdevice_notifier_net(struct net *net,
1835  					     struct notifier_block *nb,
1836  					     bool ignore_call_fail)
1837  {
1838  	int err;
1839  
1840  	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841  	if (err)
1842  		return err;
1843  	if (dev_boot_phase)
1844  		return 0;
1845  
1846  	err = call_netdevice_register_net_notifiers(nb, net);
1847  	if (err && !ignore_call_fail)
1848  		goto chain_unregister;
1849  
1850  	return 0;
1851  
1852  chain_unregister:
1853  	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854  	return err;
1855  }
1856  
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1857  static int __unregister_netdevice_notifier_net(struct net *net,
1858  					       struct notifier_block *nb)
1859  {
1860  	int err;
1861  
1862  	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863  	if (err)
1864  		return err;
1865  
1866  	call_netdevice_unregister_net_notifiers(nb, net);
1867  	return 0;
1868  }
1869  
1870  /**
1871   * register_netdevice_notifier_net - register a per-netns network notifier block
1872   * @net: network namespace
1873   * @nb: notifier
1874   *
1875   * Register a notifier to be called when network device events occur.
1876   * The notifier passed is linked into the kernel structures and must
1877   * not be reused until it has been unregistered. A negative errno code
1878   * is returned on a failure.
1879   *
1880   * When registered all registration and up events are replayed
1881   * to the new notifier to allow device to have a race free
1882   * view of the network device list.
1883   */
1884  
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1885  int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886  {
1887  	int err;
1888  
1889  	rtnl_lock();
1890  	err = __register_netdevice_notifier_net(net, nb, false);
1891  	rtnl_unlock();
1892  	return err;
1893  }
1894  EXPORT_SYMBOL(register_netdevice_notifier_net);
1895  
1896  /**
1897   * unregister_netdevice_notifier_net - unregister a per-netns
1898   *                                     network notifier block
1899   * @net: network namespace
1900   * @nb: notifier
1901   *
1902   * Unregister a notifier previously registered by
1903   * register_netdevice_notifier_net(). The notifier is unlinked from the
1904   * kernel structures and may then be reused. A negative errno code
1905   * is returned on a failure.
1906   *
1907   * After unregistering unregister and down device events are synthesized
1908   * for all devices on the device list to the removed notifier to remove
1909   * the need for special case cleanup code.
1910   */
1911  
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1912  int unregister_netdevice_notifier_net(struct net *net,
1913  				      struct notifier_block *nb)
1914  {
1915  	int err;
1916  
1917  	rtnl_lock();
1918  	err = __unregister_netdevice_notifier_net(net, nb);
1919  	rtnl_unlock();
1920  	return err;
1921  }
1922  EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923  
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1924  static void __move_netdevice_notifier_net(struct net *src_net,
1925  					  struct net *dst_net,
1926  					  struct notifier_block *nb)
1927  {
1928  	__unregister_netdevice_notifier_net(src_net, nb);
1929  	__register_netdevice_notifier_net(dst_net, nb, true);
1930  }
1931  
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1932  int register_netdevice_notifier_dev_net(struct net_device *dev,
1933  					struct notifier_block *nb,
1934  					struct netdev_net_notifier *nn)
1935  {
1936  	int err;
1937  
1938  	rtnl_lock();
1939  	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940  	if (!err) {
1941  		nn->nb = nb;
1942  		list_add(&nn->list, &dev->net_notifier_list);
1943  	}
1944  	rtnl_unlock();
1945  	return err;
1946  }
1947  EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948  
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1949  int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950  					  struct notifier_block *nb,
1951  					  struct netdev_net_notifier *nn)
1952  {
1953  	int err;
1954  
1955  	rtnl_lock();
1956  	list_del(&nn->list);
1957  	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958  	rtnl_unlock();
1959  	return err;
1960  }
1961  EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962  
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1963  static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964  					     struct net *net)
1965  {
1966  	struct netdev_net_notifier *nn;
1967  
1968  	list_for_each_entry(nn, &dev->net_notifier_list, list)
1969  		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970  }
1971  
1972  /**
1973   *	call_netdevice_notifiers_info - call all network notifier blocks
1974   *	@val: value passed unmodified to notifier function
1975   *	@info: notifier information data
1976   *
1977   *	Call all network notifier blocks.  Parameters and return value
1978   *	are as for raw_notifier_call_chain().
1979   */
1980  
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1981  int call_netdevice_notifiers_info(unsigned long val,
1982  				  struct netdev_notifier_info *info)
1983  {
1984  	struct net *net = dev_net(info->dev);
1985  	int ret;
1986  
1987  	ASSERT_RTNL();
1988  
1989  	/* Run per-netns notifier block chain first, then run the global one.
1990  	 * Hopefully, one day, the global one is going to be removed after
1991  	 * all notifier block registrators get converted to be per-netns.
1992  	 */
1993  	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994  	if (ret & NOTIFY_STOP_MASK)
1995  		return ret;
1996  	return raw_notifier_call_chain(&netdev_chain, val, info);
1997  }
1998  
1999  /**
2000   *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001   *	                                       for and rollback on error
2002   *	@val_up: value passed unmodified to notifier function
2003   *	@val_down: value passed unmodified to the notifier function when
2004   *	           recovering from an error on @val_up
2005   *	@info: notifier information data
2006   *
2007   *	Call all per-netns network notifier blocks, but not notifier blocks on
2008   *	the global notifier chain. Parameters and return value are as for
2009   *	raw_notifier_call_chain_robust().
2010   */
2011  
2012  static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2013  call_netdevice_notifiers_info_robust(unsigned long val_up,
2014  				     unsigned long val_down,
2015  				     struct netdev_notifier_info *info)
2016  {
2017  	struct net *net = dev_net(info->dev);
2018  
2019  	ASSERT_RTNL();
2020  
2021  	return raw_notifier_call_chain_robust(&net->netdev_chain,
2022  					      val_up, val_down, info);
2023  }
2024  
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2025  static int call_netdevice_notifiers_extack(unsigned long val,
2026  					   struct net_device *dev,
2027  					   struct netlink_ext_ack *extack)
2028  {
2029  	struct netdev_notifier_info info = {
2030  		.dev = dev,
2031  		.extack = extack,
2032  	};
2033  
2034  	return call_netdevice_notifiers_info(val, &info);
2035  }
2036  
2037  /**
2038   *	call_netdevice_notifiers - call all network notifier blocks
2039   *      @val: value passed unmodified to notifier function
2040   *      @dev: net_device pointer passed unmodified to notifier function
2041   *
2042   *	Call all network notifier blocks.  Parameters and return value
2043   *	are as for raw_notifier_call_chain().
2044   */
2045  
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2046  int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047  {
2048  	return call_netdevice_notifiers_extack(val, dev, NULL);
2049  }
2050  EXPORT_SYMBOL(call_netdevice_notifiers);
2051  
2052  /**
2053   *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054   *	@val: value passed unmodified to notifier function
2055   *	@dev: net_device pointer passed unmodified to notifier function
2056   *	@arg: additional u32 argument passed to the notifier function
2057   *
2058   *	Call all network notifier blocks.  Parameters and return value
2059   *	are as for raw_notifier_call_chain().
2060   */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2061  static int call_netdevice_notifiers_mtu(unsigned long val,
2062  					struct net_device *dev, u32 arg)
2063  {
2064  	struct netdev_notifier_info_ext info = {
2065  		.info.dev = dev,
2066  		.ext.mtu = arg,
2067  	};
2068  
2069  	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070  
2071  	return call_netdevice_notifiers_info(val, &info.info);
2072  }
2073  
2074  #ifdef CONFIG_NET_INGRESS
2075  static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076  
net_inc_ingress_queue(void)2077  void net_inc_ingress_queue(void)
2078  {
2079  	static_branch_inc(&ingress_needed_key);
2080  }
2081  EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082  
net_dec_ingress_queue(void)2083  void net_dec_ingress_queue(void)
2084  {
2085  	static_branch_dec(&ingress_needed_key);
2086  }
2087  EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088  #endif
2089  
2090  #ifdef CONFIG_NET_EGRESS
2091  static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092  
net_inc_egress_queue(void)2093  void net_inc_egress_queue(void)
2094  {
2095  	static_branch_inc(&egress_needed_key);
2096  }
2097  EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098  
net_dec_egress_queue(void)2099  void net_dec_egress_queue(void)
2100  {
2101  	static_branch_dec(&egress_needed_key);
2102  }
2103  EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104  #endif
2105  
2106  #ifdef CONFIG_NET_CLS_ACT
2107  DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108  EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109  #endif
2110  
2111  DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112  EXPORT_SYMBOL(netstamp_needed_key);
2113  #ifdef CONFIG_JUMP_LABEL
2114  static atomic_t netstamp_needed_deferred;
2115  static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2116  static void netstamp_clear(struct work_struct *work)
2117  {
2118  	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119  	int wanted;
2120  
2121  	wanted = atomic_add_return(deferred, &netstamp_wanted);
2122  	if (wanted > 0)
2123  		static_branch_enable(&netstamp_needed_key);
2124  	else
2125  		static_branch_disable(&netstamp_needed_key);
2126  }
2127  static DECLARE_WORK(netstamp_work, netstamp_clear);
2128  #endif
2129  
net_enable_timestamp(void)2130  void net_enable_timestamp(void)
2131  {
2132  #ifdef CONFIG_JUMP_LABEL
2133  	int wanted = atomic_read(&netstamp_wanted);
2134  
2135  	while (wanted > 0) {
2136  		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137  			return;
2138  	}
2139  	atomic_inc(&netstamp_needed_deferred);
2140  	schedule_work(&netstamp_work);
2141  #else
2142  	static_branch_inc(&netstamp_needed_key);
2143  #endif
2144  }
2145  EXPORT_SYMBOL(net_enable_timestamp);
2146  
net_disable_timestamp(void)2147  void net_disable_timestamp(void)
2148  {
2149  #ifdef CONFIG_JUMP_LABEL
2150  	int wanted = atomic_read(&netstamp_wanted);
2151  
2152  	while (wanted > 1) {
2153  		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154  			return;
2155  	}
2156  	atomic_dec(&netstamp_needed_deferred);
2157  	schedule_work(&netstamp_work);
2158  #else
2159  	static_branch_dec(&netstamp_needed_key);
2160  #endif
2161  }
2162  EXPORT_SYMBOL(net_disable_timestamp);
2163  
net_timestamp_set(struct sk_buff * skb)2164  static inline void net_timestamp_set(struct sk_buff *skb)
2165  {
2166  	skb->tstamp = 0;
2167  	skb->tstamp_type = SKB_CLOCK_REALTIME;
2168  	if (static_branch_unlikely(&netstamp_needed_key))
2169  		skb->tstamp = ktime_get_real();
2170  }
2171  
2172  #define net_timestamp_check(COND, SKB)				\
2173  	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2174  		if ((COND) && !(SKB)->tstamp)			\
2175  			(SKB)->tstamp = ktime_get_real();	\
2176  	}							\
2177  
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2178  bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179  {
2180  	return __is_skb_forwardable(dev, skb, true);
2181  }
2182  EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183  
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2184  static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185  			      bool check_mtu)
2186  {
2187  	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188  
2189  	if (likely(!ret)) {
2190  		skb->protocol = eth_type_trans(skb, dev);
2191  		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192  	}
2193  
2194  	return ret;
2195  }
2196  
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2197  int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198  {
2199  	return __dev_forward_skb2(dev, skb, true);
2200  }
2201  EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202  
2203  /**
2204   * dev_forward_skb - loopback an skb to another netif
2205   *
2206   * @dev: destination network device
2207   * @skb: buffer to forward
2208   *
2209   * return values:
2210   *	NET_RX_SUCCESS	(no congestion)
2211   *	NET_RX_DROP     (packet was dropped, but freed)
2212   *
2213   * dev_forward_skb can be used for injecting an skb from the
2214   * start_xmit function of one device into the receive queue
2215   * of another device.
2216   *
2217   * The receiving device may be in another namespace, so
2218   * we have to clear all information in the skb that could
2219   * impact namespace isolation.
2220   */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2221  int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222  {
2223  	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224  }
2225  EXPORT_SYMBOL_GPL(dev_forward_skb);
2226  
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2227  int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228  {
2229  	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230  }
2231  
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2232  static inline int deliver_skb(struct sk_buff *skb,
2233  			      struct packet_type *pt_prev,
2234  			      struct net_device *orig_dev)
2235  {
2236  	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237  		return -ENOMEM;
2238  	refcount_inc(&skb->users);
2239  	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240  }
2241  
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2242  static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243  					  struct packet_type **pt,
2244  					  struct net_device *orig_dev,
2245  					  __be16 type,
2246  					  struct list_head *ptype_list)
2247  {
2248  	struct packet_type *ptype, *pt_prev = *pt;
2249  
2250  	list_for_each_entry_rcu(ptype, ptype_list, list) {
2251  		if (ptype->type != type)
2252  			continue;
2253  		if (pt_prev)
2254  			deliver_skb(skb, pt_prev, orig_dev);
2255  		pt_prev = ptype;
2256  	}
2257  	*pt = pt_prev;
2258  }
2259  
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2260  static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261  {
2262  	if (!ptype->af_packet_priv || !skb->sk)
2263  		return false;
2264  
2265  	if (ptype->id_match)
2266  		return ptype->id_match(ptype, skb->sk);
2267  	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268  		return true;
2269  
2270  	return false;
2271  }
2272  
2273  /**
2274   * dev_nit_active - return true if any network interface taps are in use
2275   *
2276   * @dev: network device to check for the presence of taps
2277   */
dev_nit_active(struct net_device * dev)2278  bool dev_nit_active(struct net_device *dev)
2279  {
2280  	return !list_empty(&net_hotdata.ptype_all) ||
2281  	       !list_empty(&dev->ptype_all);
2282  }
2283  EXPORT_SYMBOL_GPL(dev_nit_active);
2284  
2285  /*
2286   *	Support routine. Sends outgoing frames to any network
2287   *	taps currently in use.
2288   */
2289  
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2290  void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291  {
2292  	struct list_head *ptype_list = &net_hotdata.ptype_all;
2293  	struct packet_type *ptype, *pt_prev = NULL;
2294  	struct sk_buff *skb2 = NULL;
2295  
2296  	rcu_read_lock();
2297  again:
2298  	list_for_each_entry_rcu(ptype, ptype_list, list) {
2299  		if (READ_ONCE(ptype->ignore_outgoing))
2300  			continue;
2301  
2302  		/* Never send packets back to the socket
2303  		 * they originated from - MvS (miquels@drinkel.ow.org)
2304  		 */
2305  		if (skb_loop_sk(ptype, skb))
2306  			continue;
2307  
2308  		if (pt_prev) {
2309  			deliver_skb(skb2, pt_prev, skb->dev);
2310  			pt_prev = ptype;
2311  			continue;
2312  		}
2313  
2314  		/* need to clone skb, done only once */
2315  		skb2 = skb_clone(skb, GFP_ATOMIC);
2316  		if (!skb2)
2317  			goto out_unlock;
2318  
2319  		net_timestamp_set(skb2);
2320  
2321  		/* skb->nh should be correctly
2322  		 * set by sender, so that the second statement is
2323  		 * just protection against buggy protocols.
2324  		 */
2325  		skb_reset_mac_header(skb2);
2326  
2327  		if (skb_network_header(skb2) < skb2->data ||
2328  		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329  			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330  					     ntohs(skb2->protocol),
2331  					     dev->name);
2332  			skb_reset_network_header(skb2);
2333  		}
2334  
2335  		skb2->transport_header = skb2->network_header;
2336  		skb2->pkt_type = PACKET_OUTGOING;
2337  		pt_prev = ptype;
2338  	}
2339  
2340  	if (ptype_list == &net_hotdata.ptype_all) {
2341  		ptype_list = &dev->ptype_all;
2342  		goto again;
2343  	}
2344  out_unlock:
2345  	if (pt_prev) {
2346  		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347  			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348  		else
2349  			kfree_skb(skb2);
2350  	}
2351  	rcu_read_unlock();
2352  }
2353  EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354  
2355  /**
2356   * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357   * @dev: Network device
2358   * @txq: number of queues available
2359   *
2360   * If real_num_tx_queues is changed the tc mappings may no longer be
2361   * valid. To resolve this verify the tc mapping remains valid and if
2362   * not NULL the mapping. With no priorities mapping to this
2363   * offset/count pair it will no longer be used. In the worst case TC0
2364   * is invalid nothing can be done so disable priority mappings. If is
2365   * expected that drivers will fix this mapping if they can before
2366   * calling netif_set_real_num_tx_queues.
2367   */
netif_setup_tc(struct net_device * dev,unsigned int txq)2368  static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369  {
2370  	int i;
2371  	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372  
2373  	/* If TC0 is invalidated disable TC mapping */
2374  	if (tc->offset + tc->count > txq) {
2375  		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376  		dev->num_tc = 0;
2377  		return;
2378  	}
2379  
2380  	/* Invalidated prio to tc mappings set to TC0 */
2381  	for (i = 1; i < TC_BITMASK + 1; i++) {
2382  		int q = netdev_get_prio_tc_map(dev, i);
2383  
2384  		tc = &dev->tc_to_txq[q];
2385  		if (tc->offset + tc->count > txq) {
2386  			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387  				    i, q);
2388  			netdev_set_prio_tc_map(dev, i, 0);
2389  		}
2390  	}
2391  }
2392  
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2393  int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394  {
2395  	if (dev->num_tc) {
2396  		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397  		int i;
2398  
2399  		/* walk through the TCs and see if it falls into any of them */
2400  		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401  			if ((txq - tc->offset) < tc->count)
2402  				return i;
2403  		}
2404  
2405  		/* didn't find it, just return -1 to indicate no match */
2406  		return -1;
2407  	}
2408  
2409  	return 0;
2410  }
2411  EXPORT_SYMBOL(netdev_txq_to_tc);
2412  
2413  #ifdef CONFIG_XPS
2414  static struct static_key xps_needed __read_mostly;
2415  static struct static_key xps_rxqs_needed __read_mostly;
2416  static DEFINE_MUTEX(xps_map_mutex);
2417  #define xmap_dereference(P)		\
2418  	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419  
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2420  static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421  			     struct xps_dev_maps *old_maps, int tci, u16 index)
2422  {
2423  	struct xps_map *map = NULL;
2424  	int pos;
2425  
2426  	map = xmap_dereference(dev_maps->attr_map[tci]);
2427  	if (!map)
2428  		return false;
2429  
2430  	for (pos = map->len; pos--;) {
2431  		if (map->queues[pos] != index)
2432  			continue;
2433  
2434  		if (map->len > 1) {
2435  			map->queues[pos] = map->queues[--map->len];
2436  			break;
2437  		}
2438  
2439  		if (old_maps)
2440  			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441  		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442  		kfree_rcu(map, rcu);
2443  		return false;
2444  	}
2445  
2446  	return true;
2447  }
2448  
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2449  static bool remove_xps_queue_cpu(struct net_device *dev,
2450  				 struct xps_dev_maps *dev_maps,
2451  				 int cpu, u16 offset, u16 count)
2452  {
2453  	int num_tc = dev_maps->num_tc;
2454  	bool active = false;
2455  	int tci;
2456  
2457  	for (tci = cpu * num_tc; num_tc--; tci++) {
2458  		int i, j;
2459  
2460  		for (i = count, j = offset; i--; j++) {
2461  			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462  				break;
2463  		}
2464  
2465  		active |= i < 0;
2466  	}
2467  
2468  	return active;
2469  }
2470  
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2471  static void reset_xps_maps(struct net_device *dev,
2472  			   struct xps_dev_maps *dev_maps,
2473  			   enum xps_map_type type)
2474  {
2475  	static_key_slow_dec_cpuslocked(&xps_needed);
2476  	if (type == XPS_RXQS)
2477  		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478  
2479  	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480  
2481  	kfree_rcu(dev_maps, rcu);
2482  }
2483  
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2484  static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485  			   u16 offset, u16 count)
2486  {
2487  	struct xps_dev_maps *dev_maps;
2488  	bool active = false;
2489  	int i, j;
2490  
2491  	dev_maps = xmap_dereference(dev->xps_maps[type]);
2492  	if (!dev_maps)
2493  		return;
2494  
2495  	for (j = 0; j < dev_maps->nr_ids; j++)
2496  		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497  	if (!active)
2498  		reset_xps_maps(dev, dev_maps, type);
2499  
2500  	if (type == XPS_CPUS) {
2501  		for (i = offset + (count - 1); count--; i--)
2502  			netdev_queue_numa_node_write(
2503  				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504  	}
2505  }
2506  
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2507  static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508  				   u16 count)
2509  {
2510  	if (!static_key_false(&xps_needed))
2511  		return;
2512  
2513  	cpus_read_lock();
2514  	mutex_lock(&xps_map_mutex);
2515  
2516  	if (static_key_false(&xps_rxqs_needed))
2517  		clean_xps_maps(dev, XPS_RXQS, offset, count);
2518  
2519  	clean_xps_maps(dev, XPS_CPUS, offset, count);
2520  
2521  	mutex_unlock(&xps_map_mutex);
2522  	cpus_read_unlock();
2523  }
2524  
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2525  static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526  {
2527  	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528  }
2529  
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2530  static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531  				      u16 index, bool is_rxqs_map)
2532  {
2533  	struct xps_map *new_map;
2534  	int alloc_len = XPS_MIN_MAP_ALLOC;
2535  	int i, pos;
2536  
2537  	for (pos = 0; map && pos < map->len; pos++) {
2538  		if (map->queues[pos] != index)
2539  			continue;
2540  		return map;
2541  	}
2542  
2543  	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544  	if (map) {
2545  		if (pos < map->alloc_len)
2546  			return map;
2547  
2548  		alloc_len = map->alloc_len * 2;
2549  	}
2550  
2551  	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552  	 *  map
2553  	 */
2554  	if (is_rxqs_map)
2555  		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556  	else
2557  		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558  				       cpu_to_node(attr_index));
2559  	if (!new_map)
2560  		return NULL;
2561  
2562  	for (i = 0; i < pos; i++)
2563  		new_map->queues[i] = map->queues[i];
2564  	new_map->alloc_len = alloc_len;
2565  	new_map->len = pos;
2566  
2567  	return new_map;
2568  }
2569  
2570  /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2571  static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572  			      struct xps_dev_maps *new_dev_maps, int index,
2573  			      int tc, bool skip_tc)
2574  {
2575  	int i, tci = index * dev_maps->num_tc;
2576  	struct xps_map *map;
2577  
2578  	/* copy maps belonging to foreign traffic classes */
2579  	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580  		if (i == tc && skip_tc)
2581  			continue;
2582  
2583  		/* fill in the new device map from the old device map */
2584  		map = xmap_dereference(dev_maps->attr_map[tci]);
2585  		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586  	}
2587  }
2588  
2589  /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2590  int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591  			  u16 index, enum xps_map_type type)
2592  {
2593  	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594  	const unsigned long *online_mask = NULL;
2595  	bool active = false, copy = false;
2596  	int i, j, tci, numa_node_id = -2;
2597  	int maps_sz, num_tc = 1, tc = 0;
2598  	struct xps_map *map, *new_map;
2599  	unsigned int nr_ids;
2600  
2601  	WARN_ON_ONCE(index >= dev->num_tx_queues);
2602  
2603  	if (dev->num_tc) {
2604  		/* Do not allow XPS on subordinate device directly */
2605  		num_tc = dev->num_tc;
2606  		if (num_tc < 0)
2607  			return -EINVAL;
2608  
2609  		/* If queue belongs to subordinate dev use its map */
2610  		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611  
2612  		tc = netdev_txq_to_tc(dev, index);
2613  		if (tc < 0)
2614  			return -EINVAL;
2615  	}
2616  
2617  	mutex_lock(&xps_map_mutex);
2618  
2619  	dev_maps = xmap_dereference(dev->xps_maps[type]);
2620  	if (type == XPS_RXQS) {
2621  		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622  		nr_ids = dev->num_rx_queues;
2623  	} else {
2624  		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625  		if (num_possible_cpus() > 1)
2626  			online_mask = cpumask_bits(cpu_online_mask);
2627  		nr_ids = nr_cpu_ids;
2628  	}
2629  
2630  	if (maps_sz < L1_CACHE_BYTES)
2631  		maps_sz = L1_CACHE_BYTES;
2632  
2633  	/* The old dev_maps could be larger or smaller than the one we're
2634  	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635  	 * between. We could try to be smart, but let's be safe instead and only
2636  	 * copy foreign traffic classes if the two map sizes match.
2637  	 */
2638  	if (dev_maps &&
2639  	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640  		copy = true;
2641  
2642  	/* allocate memory for queue storage */
2643  	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644  	     j < nr_ids;) {
2645  		if (!new_dev_maps) {
2646  			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647  			if (!new_dev_maps) {
2648  				mutex_unlock(&xps_map_mutex);
2649  				return -ENOMEM;
2650  			}
2651  
2652  			new_dev_maps->nr_ids = nr_ids;
2653  			new_dev_maps->num_tc = num_tc;
2654  		}
2655  
2656  		tci = j * num_tc + tc;
2657  		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658  
2659  		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660  		if (!map)
2661  			goto error;
2662  
2663  		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664  	}
2665  
2666  	if (!new_dev_maps)
2667  		goto out_no_new_maps;
2668  
2669  	if (!dev_maps) {
2670  		/* Increment static keys at most once per type */
2671  		static_key_slow_inc_cpuslocked(&xps_needed);
2672  		if (type == XPS_RXQS)
2673  			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674  	}
2675  
2676  	for (j = 0; j < nr_ids; j++) {
2677  		bool skip_tc = false;
2678  
2679  		tci = j * num_tc + tc;
2680  		if (netif_attr_test_mask(j, mask, nr_ids) &&
2681  		    netif_attr_test_online(j, online_mask, nr_ids)) {
2682  			/* add tx-queue to CPU/rx-queue maps */
2683  			int pos = 0;
2684  
2685  			skip_tc = true;
2686  
2687  			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688  			while ((pos < map->len) && (map->queues[pos] != index))
2689  				pos++;
2690  
2691  			if (pos == map->len)
2692  				map->queues[map->len++] = index;
2693  #ifdef CONFIG_NUMA
2694  			if (type == XPS_CPUS) {
2695  				if (numa_node_id == -2)
2696  					numa_node_id = cpu_to_node(j);
2697  				else if (numa_node_id != cpu_to_node(j))
2698  					numa_node_id = -1;
2699  			}
2700  #endif
2701  		}
2702  
2703  		if (copy)
2704  			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705  					  skip_tc);
2706  	}
2707  
2708  	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709  
2710  	/* Cleanup old maps */
2711  	if (!dev_maps)
2712  		goto out_no_old_maps;
2713  
2714  	for (j = 0; j < dev_maps->nr_ids; j++) {
2715  		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716  			map = xmap_dereference(dev_maps->attr_map[tci]);
2717  			if (!map)
2718  				continue;
2719  
2720  			if (copy) {
2721  				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722  				if (map == new_map)
2723  					continue;
2724  			}
2725  
2726  			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727  			kfree_rcu(map, rcu);
2728  		}
2729  	}
2730  
2731  	old_dev_maps = dev_maps;
2732  
2733  out_no_old_maps:
2734  	dev_maps = new_dev_maps;
2735  	active = true;
2736  
2737  out_no_new_maps:
2738  	if (type == XPS_CPUS)
2739  		/* update Tx queue numa node */
2740  		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741  					     (numa_node_id >= 0) ?
2742  					     numa_node_id : NUMA_NO_NODE);
2743  
2744  	if (!dev_maps)
2745  		goto out_no_maps;
2746  
2747  	/* removes tx-queue from unused CPUs/rx-queues */
2748  	for (j = 0; j < dev_maps->nr_ids; j++) {
2749  		tci = j * dev_maps->num_tc;
2750  
2751  		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752  			if (i == tc &&
2753  			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754  			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755  				continue;
2756  
2757  			active |= remove_xps_queue(dev_maps,
2758  						   copy ? old_dev_maps : NULL,
2759  						   tci, index);
2760  		}
2761  	}
2762  
2763  	if (old_dev_maps)
2764  		kfree_rcu(old_dev_maps, rcu);
2765  
2766  	/* free map if not active */
2767  	if (!active)
2768  		reset_xps_maps(dev, dev_maps, type);
2769  
2770  out_no_maps:
2771  	mutex_unlock(&xps_map_mutex);
2772  
2773  	return 0;
2774  error:
2775  	/* remove any maps that we added */
2776  	for (j = 0; j < nr_ids; j++) {
2777  		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778  			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779  			map = copy ?
2780  			      xmap_dereference(dev_maps->attr_map[tci]) :
2781  			      NULL;
2782  			if (new_map && new_map != map)
2783  				kfree(new_map);
2784  		}
2785  	}
2786  
2787  	mutex_unlock(&xps_map_mutex);
2788  
2789  	kfree(new_dev_maps);
2790  	return -ENOMEM;
2791  }
2792  EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793  
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2794  int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795  			u16 index)
2796  {
2797  	int ret;
2798  
2799  	cpus_read_lock();
2800  	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801  	cpus_read_unlock();
2802  
2803  	return ret;
2804  }
2805  EXPORT_SYMBOL(netif_set_xps_queue);
2806  
2807  #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2808  static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809  {
2810  	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811  
2812  	/* Unbind any subordinate channels */
2813  	while (txq-- != &dev->_tx[0]) {
2814  		if (txq->sb_dev)
2815  			netdev_unbind_sb_channel(dev, txq->sb_dev);
2816  	}
2817  }
2818  
netdev_reset_tc(struct net_device * dev)2819  void netdev_reset_tc(struct net_device *dev)
2820  {
2821  #ifdef CONFIG_XPS
2822  	netif_reset_xps_queues_gt(dev, 0);
2823  #endif
2824  	netdev_unbind_all_sb_channels(dev);
2825  
2826  	/* Reset TC configuration of device */
2827  	dev->num_tc = 0;
2828  	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829  	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830  }
2831  EXPORT_SYMBOL(netdev_reset_tc);
2832  
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2833  int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834  {
2835  	if (tc >= dev->num_tc)
2836  		return -EINVAL;
2837  
2838  #ifdef CONFIG_XPS
2839  	netif_reset_xps_queues(dev, offset, count);
2840  #endif
2841  	dev->tc_to_txq[tc].count = count;
2842  	dev->tc_to_txq[tc].offset = offset;
2843  	return 0;
2844  }
2845  EXPORT_SYMBOL(netdev_set_tc_queue);
2846  
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2847  int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848  {
2849  	if (num_tc > TC_MAX_QUEUE)
2850  		return -EINVAL;
2851  
2852  #ifdef CONFIG_XPS
2853  	netif_reset_xps_queues_gt(dev, 0);
2854  #endif
2855  	netdev_unbind_all_sb_channels(dev);
2856  
2857  	dev->num_tc = num_tc;
2858  	return 0;
2859  }
2860  EXPORT_SYMBOL(netdev_set_num_tc);
2861  
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2862  void netdev_unbind_sb_channel(struct net_device *dev,
2863  			      struct net_device *sb_dev)
2864  {
2865  	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866  
2867  #ifdef CONFIG_XPS
2868  	netif_reset_xps_queues_gt(sb_dev, 0);
2869  #endif
2870  	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871  	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872  
2873  	while (txq-- != &dev->_tx[0]) {
2874  		if (txq->sb_dev == sb_dev)
2875  			txq->sb_dev = NULL;
2876  	}
2877  }
2878  EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879  
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2880  int netdev_bind_sb_channel_queue(struct net_device *dev,
2881  				 struct net_device *sb_dev,
2882  				 u8 tc, u16 count, u16 offset)
2883  {
2884  	/* Make certain the sb_dev and dev are already configured */
2885  	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886  		return -EINVAL;
2887  
2888  	/* We cannot hand out queues we don't have */
2889  	if ((offset + count) > dev->real_num_tx_queues)
2890  		return -EINVAL;
2891  
2892  	/* Record the mapping */
2893  	sb_dev->tc_to_txq[tc].count = count;
2894  	sb_dev->tc_to_txq[tc].offset = offset;
2895  
2896  	/* Provide a way for Tx queue to find the tc_to_txq map or
2897  	 * XPS map for itself.
2898  	 */
2899  	while (count--)
2900  		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901  
2902  	return 0;
2903  }
2904  EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905  
netdev_set_sb_channel(struct net_device * dev,u16 channel)2906  int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907  {
2908  	/* Do not use a multiqueue device to represent a subordinate channel */
2909  	if (netif_is_multiqueue(dev))
2910  		return -ENODEV;
2911  
2912  	/* We allow channels 1 - 32767 to be used for subordinate channels.
2913  	 * Channel 0 is meant to be "native" mode and used only to represent
2914  	 * the main root device. We allow writing 0 to reset the device back
2915  	 * to normal mode after being used as a subordinate channel.
2916  	 */
2917  	if (channel > S16_MAX)
2918  		return -EINVAL;
2919  
2920  	dev->num_tc = -channel;
2921  
2922  	return 0;
2923  }
2924  EXPORT_SYMBOL(netdev_set_sb_channel);
2925  
2926  /*
2927   * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928   * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929   */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2930  int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931  {
2932  	bool disabling;
2933  	int rc;
2934  
2935  	disabling = txq < dev->real_num_tx_queues;
2936  
2937  	if (txq < 1 || txq > dev->num_tx_queues)
2938  		return -EINVAL;
2939  
2940  	if (dev->reg_state == NETREG_REGISTERED ||
2941  	    dev->reg_state == NETREG_UNREGISTERING) {
2942  		ASSERT_RTNL();
2943  
2944  		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945  						  txq);
2946  		if (rc)
2947  			return rc;
2948  
2949  		if (dev->num_tc)
2950  			netif_setup_tc(dev, txq);
2951  
2952  		dev_qdisc_change_real_num_tx(dev, txq);
2953  
2954  		dev->real_num_tx_queues = txq;
2955  
2956  		if (disabling) {
2957  			synchronize_net();
2958  			qdisc_reset_all_tx_gt(dev, txq);
2959  #ifdef CONFIG_XPS
2960  			netif_reset_xps_queues_gt(dev, txq);
2961  #endif
2962  		}
2963  	} else {
2964  		dev->real_num_tx_queues = txq;
2965  	}
2966  
2967  	return 0;
2968  }
2969  EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2970  
2971  #ifdef CONFIG_SYSFS
2972  /**
2973   *	netif_set_real_num_rx_queues - set actual number of RX queues used
2974   *	@dev: Network device
2975   *	@rxq: Actual number of RX queues
2976   *
2977   *	This must be called either with the rtnl_lock held or before
2978   *	registration of the net device.  Returns 0 on success, or a
2979   *	negative error code.  If called before registration, it always
2980   *	succeeds.
2981   */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2982  int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2983  {
2984  	int rc;
2985  
2986  	if (rxq < 1 || rxq > dev->num_rx_queues)
2987  		return -EINVAL;
2988  
2989  	if (dev->reg_state == NETREG_REGISTERED) {
2990  		ASSERT_RTNL();
2991  
2992  		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2993  						  rxq);
2994  		if (rc)
2995  			return rc;
2996  	}
2997  
2998  	dev->real_num_rx_queues = rxq;
2999  	return 0;
3000  }
3001  EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3002  #endif
3003  
3004  /**
3005   *	netif_set_real_num_queues - set actual number of RX and TX queues used
3006   *	@dev: Network device
3007   *	@txq: Actual number of TX queues
3008   *	@rxq: Actual number of RX queues
3009   *
3010   *	Set the real number of both TX and RX queues.
3011   *	Does nothing if the number of queues is already correct.
3012   */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3013  int netif_set_real_num_queues(struct net_device *dev,
3014  			      unsigned int txq, unsigned int rxq)
3015  {
3016  	unsigned int old_rxq = dev->real_num_rx_queues;
3017  	int err;
3018  
3019  	if (txq < 1 || txq > dev->num_tx_queues ||
3020  	    rxq < 1 || rxq > dev->num_rx_queues)
3021  		return -EINVAL;
3022  
3023  	/* Start from increases, so the error path only does decreases -
3024  	 * decreases can't fail.
3025  	 */
3026  	if (rxq > dev->real_num_rx_queues) {
3027  		err = netif_set_real_num_rx_queues(dev, rxq);
3028  		if (err)
3029  			return err;
3030  	}
3031  	if (txq > dev->real_num_tx_queues) {
3032  		err = netif_set_real_num_tx_queues(dev, txq);
3033  		if (err)
3034  			goto undo_rx;
3035  	}
3036  	if (rxq < dev->real_num_rx_queues)
3037  		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3038  	if (txq < dev->real_num_tx_queues)
3039  		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3040  
3041  	return 0;
3042  undo_rx:
3043  	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3044  	return err;
3045  }
3046  EXPORT_SYMBOL(netif_set_real_num_queues);
3047  
3048  /**
3049   * netif_set_tso_max_size() - set the max size of TSO frames supported
3050   * @dev:	netdev to update
3051   * @size:	max skb->len of a TSO frame
3052   *
3053   * Set the limit on the size of TSO super-frames the device can handle.
3054   * Unless explicitly set the stack will assume the value of
3055   * %GSO_LEGACY_MAX_SIZE.
3056   */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3057  void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3058  {
3059  	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3060  	if (size < READ_ONCE(dev->gso_max_size))
3061  		netif_set_gso_max_size(dev, size);
3062  	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3063  		netif_set_gso_ipv4_max_size(dev, size);
3064  }
3065  EXPORT_SYMBOL(netif_set_tso_max_size);
3066  
3067  /**
3068   * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3069   * @dev:	netdev to update
3070   * @segs:	max number of TCP segments
3071   *
3072   * Set the limit on the number of TCP segments the device can generate from
3073   * a single TSO super-frame.
3074   * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3075   */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3076  void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3077  {
3078  	dev->tso_max_segs = segs;
3079  	if (segs < READ_ONCE(dev->gso_max_segs))
3080  		netif_set_gso_max_segs(dev, segs);
3081  }
3082  EXPORT_SYMBOL(netif_set_tso_max_segs);
3083  
3084  /**
3085   * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3086   * @to:		netdev to update
3087   * @from:	netdev from which to copy the limits
3088   */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3089  void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3090  {
3091  	netif_set_tso_max_size(to, from->tso_max_size);
3092  	netif_set_tso_max_segs(to, from->tso_max_segs);
3093  }
3094  EXPORT_SYMBOL(netif_inherit_tso_max);
3095  
3096  /**
3097   * netif_get_num_default_rss_queues - default number of RSS queues
3098   *
3099   * Default value is the number of physical cores if there are only 1 or 2, or
3100   * divided by 2 if there are more.
3101   */
netif_get_num_default_rss_queues(void)3102  int netif_get_num_default_rss_queues(void)
3103  {
3104  	cpumask_var_t cpus;
3105  	int cpu, count = 0;
3106  
3107  	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3108  		return 1;
3109  
3110  	cpumask_copy(cpus, cpu_online_mask);
3111  	for_each_cpu(cpu, cpus) {
3112  		++count;
3113  		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3114  	}
3115  	free_cpumask_var(cpus);
3116  
3117  	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3118  }
3119  EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3120  
__netif_reschedule(struct Qdisc * q)3121  static void __netif_reschedule(struct Qdisc *q)
3122  {
3123  	struct softnet_data *sd;
3124  	unsigned long flags;
3125  
3126  	local_irq_save(flags);
3127  	sd = this_cpu_ptr(&softnet_data);
3128  	q->next_sched = NULL;
3129  	*sd->output_queue_tailp = q;
3130  	sd->output_queue_tailp = &q->next_sched;
3131  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3132  	local_irq_restore(flags);
3133  }
3134  
__netif_schedule(struct Qdisc * q)3135  void __netif_schedule(struct Qdisc *q)
3136  {
3137  	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3138  		__netif_reschedule(q);
3139  }
3140  EXPORT_SYMBOL(__netif_schedule);
3141  
3142  struct dev_kfree_skb_cb {
3143  	enum skb_drop_reason reason;
3144  };
3145  
get_kfree_skb_cb(const struct sk_buff * skb)3146  static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3147  {
3148  	return (struct dev_kfree_skb_cb *)skb->cb;
3149  }
3150  
netif_schedule_queue(struct netdev_queue * txq)3151  void netif_schedule_queue(struct netdev_queue *txq)
3152  {
3153  	rcu_read_lock();
3154  	if (!netif_xmit_stopped(txq)) {
3155  		struct Qdisc *q = rcu_dereference(txq->qdisc);
3156  
3157  		__netif_schedule(q);
3158  	}
3159  	rcu_read_unlock();
3160  }
3161  EXPORT_SYMBOL(netif_schedule_queue);
3162  
netif_tx_wake_queue(struct netdev_queue * dev_queue)3163  void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3164  {
3165  	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3166  		struct Qdisc *q;
3167  
3168  		rcu_read_lock();
3169  		q = rcu_dereference(dev_queue->qdisc);
3170  		__netif_schedule(q);
3171  		rcu_read_unlock();
3172  	}
3173  }
3174  EXPORT_SYMBOL(netif_tx_wake_queue);
3175  
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3176  void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3177  {
3178  	unsigned long flags;
3179  
3180  	if (unlikely(!skb))
3181  		return;
3182  
3183  	if (likely(refcount_read(&skb->users) == 1)) {
3184  		smp_rmb();
3185  		refcount_set(&skb->users, 0);
3186  	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3187  		return;
3188  	}
3189  	get_kfree_skb_cb(skb)->reason = reason;
3190  	local_irq_save(flags);
3191  	skb->next = __this_cpu_read(softnet_data.completion_queue);
3192  	__this_cpu_write(softnet_data.completion_queue, skb);
3193  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3194  	local_irq_restore(flags);
3195  }
3196  EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3197  
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3198  void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3199  {
3200  	if (in_hardirq() || irqs_disabled())
3201  		dev_kfree_skb_irq_reason(skb, reason);
3202  	else
3203  		kfree_skb_reason(skb, reason);
3204  }
3205  EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3206  
3207  
3208  /**
3209   * netif_device_detach - mark device as removed
3210   * @dev: network device
3211   *
3212   * Mark device as removed from system and therefore no longer available.
3213   */
netif_device_detach(struct net_device * dev)3214  void netif_device_detach(struct net_device *dev)
3215  {
3216  	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3217  	    netif_running(dev)) {
3218  		netif_tx_stop_all_queues(dev);
3219  	}
3220  }
3221  EXPORT_SYMBOL(netif_device_detach);
3222  
3223  /**
3224   * netif_device_attach - mark device as attached
3225   * @dev: network device
3226   *
3227   * Mark device as attached from system and restart if needed.
3228   */
netif_device_attach(struct net_device * dev)3229  void netif_device_attach(struct net_device *dev)
3230  {
3231  	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3232  	    netif_running(dev)) {
3233  		netif_tx_wake_all_queues(dev);
3234  		__netdev_watchdog_up(dev);
3235  	}
3236  }
3237  EXPORT_SYMBOL(netif_device_attach);
3238  
3239  /*
3240   * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3241   * to be used as a distribution range.
3242   */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3243  static u16 skb_tx_hash(const struct net_device *dev,
3244  		       const struct net_device *sb_dev,
3245  		       struct sk_buff *skb)
3246  {
3247  	u32 hash;
3248  	u16 qoffset = 0;
3249  	u16 qcount = dev->real_num_tx_queues;
3250  
3251  	if (dev->num_tc) {
3252  		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3253  
3254  		qoffset = sb_dev->tc_to_txq[tc].offset;
3255  		qcount = sb_dev->tc_to_txq[tc].count;
3256  		if (unlikely(!qcount)) {
3257  			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3258  					     sb_dev->name, qoffset, tc);
3259  			qoffset = 0;
3260  			qcount = dev->real_num_tx_queues;
3261  		}
3262  	}
3263  
3264  	if (skb_rx_queue_recorded(skb)) {
3265  		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3266  		hash = skb_get_rx_queue(skb);
3267  		if (hash >= qoffset)
3268  			hash -= qoffset;
3269  		while (unlikely(hash >= qcount))
3270  			hash -= qcount;
3271  		return hash + qoffset;
3272  	}
3273  
3274  	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3275  }
3276  
skb_warn_bad_offload(const struct sk_buff * skb)3277  void skb_warn_bad_offload(const struct sk_buff *skb)
3278  {
3279  	static const netdev_features_t null_features;
3280  	struct net_device *dev = skb->dev;
3281  	const char *name = "";
3282  
3283  	if (!net_ratelimit())
3284  		return;
3285  
3286  	if (dev) {
3287  		if (dev->dev.parent)
3288  			name = dev_driver_string(dev->dev.parent);
3289  		else
3290  			name = netdev_name(dev);
3291  	}
3292  	skb_dump(KERN_WARNING, skb, false);
3293  	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3294  	     name, dev ? &dev->features : &null_features,
3295  	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3296  }
3297  
3298  /*
3299   * Invalidate hardware checksum when packet is to be mangled, and
3300   * complete checksum manually on outgoing path.
3301   */
skb_checksum_help(struct sk_buff * skb)3302  int skb_checksum_help(struct sk_buff *skb)
3303  {
3304  	__wsum csum;
3305  	int ret = 0, offset;
3306  
3307  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3308  		goto out_set_summed;
3309  
3310  	if (unlikely(skb_is_gso(skb))) {
3311  		skb_warn_bad_offload(skb);
3312  		return -EINVAL;
3313  	}
3314  
3315  	if (!skb_frags_readable(skb)) {
3316  		return -EFAULT;
3317  	}
3318  
3319  	/* Before computing a checksum, we should make sure no frag could
3320  	 * be modified by an external entity : checksum could be wrong.
3321  	 */
3322  	if (skb_has_shared_frag(skb)) {
3323  		ret = __skb_linearize(skb);
3324  		if (ret)
3325  			goto out;
3326  	}
3327  
3328  	offset = skb_checksum_start_offset(skb);
3329  	ret = -EINVAL;
3330  	if (unlikely(offset >= skb_headlen(skb))) {
3331  		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3332  		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3333  			  offset, skb_headlen(skb));
3334  		goto out;
3335  	}
3336  	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3337  
3338  	offset += skb->csum_offset;
3339  	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3340  		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3341  		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3342  			  offset + sizeof(__sum16), skb_headlen(skb));
3343  		goto out;
3344  	}
3345  	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3346  	if (ret)
3347  		goto out;
3348  
3349  	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3350  out_set_summed:
3351  	skb->ip_summed = CHECKSUM_NONE;
3352  out:
3353  	return ret;
3354  }
3355  EXPORT_SYMBOL(skb_checksum_help);
3356  
skb_crc32c_csum_help(struct sk_buff * skb)3357  int skb_crc32c_csum_help(struct sk_buff *skb)
3358  {
3359  	__le32 crc32c_csum;
3360  	int ret = 0, offset, start;
3361  
3362  	if (skb->ip_summed != CHECKSUM_PARTIAL)
3363  		goto out;
3364  
3365  	if (unlikely(skb_is_gso(skb)))
3366  		goto out;
3367  
3368  	/* Before computing a checksum, we should make sure no frag could
3369  	 * be modified by an external entity : checksum could be wrong.
3370  	 */
3371  	if (unlikely(skb_has_shared_frag(skb))) {
3372  		ret = __skb_linearize(skb);
3373  		if (ret)
3374  			goto out;
3375  	}
3376  	start = skb_checksum_start_offset(skb);
3377  	offset = start + offsetof(struct sctphdr, checksum);
3378  	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3379  		ret = -EINVAL;
3380  		goto out;
3381  	}
3382  
3383  	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3384  	if (ret)
3385  		goto out;
3386  
3387  	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3388  						  skb->len - start, ~(__u32)0,
3389  						  crc32c_csum_stub));
3390  	*(__le32 *)(skb->data + offset) = crc32c_csum;
3391  	skb_reset_csum_not_inet(skb);
3392  out:
3393  	return ret;
3394  }
3395  EXPORT_SYMBOL(skb_crc32c_csum_help);
3396  
skb_network_protocol(struct sk_buff * skb,int * depth)3397  __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3398  {
3399  	__be16 type = skb->protocol;
3400  
3401  	/* Tunnel gso handlers can set protocol to ethernet. */
3402  	if (type == htons(ETH_P_TEB)) {
3403  		struct ethhdr *eth;
3404  
3405  		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3406  			return 0;
3407  
3408  		eth = (struct ethhdr *)skb->data;
3409  		type = eth->h_proto;
3410  	}
3411  
3412  	return vlan_get_protocol_and_depth(skb, type, depth);
3413  }
3414  
3415  
3416  /* Take action when hardware reception checksum errors are detected. */
3417  #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3418  static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419  {
3420  	netdev_err(dev, "hw csum failure\n");
3421  	skb_dump(KERN_ERR, skb, true);
3422  	dump_stack();
3423  }
3424  
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3425  void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426  {
3427  	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3428  }
3429  EXPORT_SYMBOL(netdev_rx_csum_fault);
3430  #endif
3431  
3432  /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3433  static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3434  {
3435  #ifdef CONFIG_HIGHMEM
3436  	int i;
3437  
3438  	if (!(dev->features & NETIF_F_HIGHDMA)) {
3439  		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3440  			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3441  			struct page *page = skb_frag_page(frag);
3442  
3443  			if (page && PageHighMem(page))
3444  				return 1;
3445  		}
3446  	}
3447  #endif
3448  	return 0;
3449  }
3450  
3451  /* If MPLS offload request, verify we are testing hardware MPLS features
3452   * instead of standard features for the netdev.
3453   */
3454  #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3455  static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456  					   netdev_features_t features,
3457  					   __be16 type)
3458  {
3459  	if (eth_p_mpls(type))
3460  		features &= skb->dev->mpls_features;
3461  
3462  	return features;
3463  }
3464  #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3465  static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466  					   netdev_features_t features,
3467  					   __be16 type)
3468  {
3469  	return features;
3470  }
3471  #endif
3472  
harmonize_features(struct sk_buff * skb,netdev_features_t features)3473  static netdev_features_t harmonize_features(struct sk_buff *skb,
3474  	netdev_features_t features)
3475  {
3476  	__be16 type;
3477  
3478  	type = skb_network_protocol(skb, NULL);
3479  	features = net_mpls_features(skb, features, type);
3480  
3481  	if (skb->ip_summed != CHECKSUM_NONE &&
3482  	    !can_checksum_protocol(features, type)) {
3483  		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3484  	}
3485  	if (illegal_highdma(skb->dev, skb))
3486  		features &= ~NETIF_F_SG;
3487  
3488  	return features;
3489  }
3490  
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3491  netdev_features_t passthru_features_check(struct sk_buff *skb,
3492  					  struct net_device *dev,
3493  					  netdev_features_t features)
3494  {
3495  	return features;
3496  }
3497  EXPORT_SYMBOL(passthru_features_check);
3498  
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3499  static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500  					     struct net_device *dev,
3501  					     netdev_features_t features)
3502  {
3503  	return vlan_features_check(skb, features);
3504  }
3505  
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3506  static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507  					    struct net_device *dev,
3508  					    netdev_features_t features)
3509  {
3510  	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3511  
3512  	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513  		return features & ~NETIF_F_GSO_MASK;
3514  
3515  	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3516  		return features & ~NETIF_F_GSO_MASK;
3517  
3518  	if (!skb_shinfo(skb)->gso_type) {
3519  		skb_warn_bad_offload(skb);
3520  		return features & ~NETIF_F_GSO_MASK;
3521  	}
3522  
3523  	/* Support for GSO partial features requires software
3524  	 * intervention before we can actually process the packets
3525  	 * so we need to strip support for any partial features now
3526  	 * and we can pull them back in after we have partially
3527  	 * segmented the frame.
3528  	 */
3529  	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530  		features &= ~dev->gso_partial_features;
3531  
3532  	/* Make sure to clear the IPv4 ID mangling feature if the
3533  	 * IPv4 header has the potential to be fragmented.
3534  	 */
3535  	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536  		struct iphdr *iph = skb->encapsulation ?
3537  				    inner_ip_hdr(skb) : ip_hdr(skb);
3538  
3539  		if (!(iph->frag_off & htons(IP_DF)))
3540  			features &= ~NETIF_F_TSO_MANGLEID;
3541  	}
3542  
3543  	return features;
3544  }
3545  
netif_skb_features(struct sk_buff * skb)3546  netdev_features_t netif_skb_features(struct sk_buff *skb)
3547  {
3548  	struct net_device *dev = skb->dev;
3549  	netdev_features_t features = dev->features;
3550  
3551  	if (skb_is_gso(skb))
3552  		features = gso_features_check(skb, dev, features);
3553  
3554  	/* If encapsulation offload request, verify we are testing
3555  	 * hardware encapsulation features instead of standard
3556  	 * features for the netdev
3557  	 */
3558  	if (skb->encapsulation)
3559  		features &= dev->hw_enc_features;
3560  
3561  	if (skb_vlan_tagged(skb))
3562  		features = netdev_intersect_features(features,
3563  						     dev->vlan_features |
3564  						     NETIF_F_HW_VLAN_CTAG_TX |
3565  						     NETIF_F_HW_VLAN_STAG_TX);
3566  
3567  	if (dev->netdev_ops->ndo_features_check)
3568  		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569  								features);
3570  	else
3571  		features &= dflt_features_check(skb, dev, features);
3572  
3573  	return harmonize_features(skb, features);
3574  }
3575  EXPORT_SYMBOL(netif_skb_features);
3576  
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3577  static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578  		    struct netdev_queue *txq, bool more)
3579  {
3580  	unsigned int len;
3581  	int rc;
3582  
3583  	if (dev_nit_active(dev))
3584  		dev_queue_xmit_nit(skb, dev);
3585  
3586  	len = skb->len;
3587  	trace_net_dev_start_xmit(skb, dev);
3588  	rc = netdev_start_xmit(skb, dev, txq, more);
3589  	trace_net_dev_xmit(skb, rc, dev, len);
3590  
3591  	return rc;
3592  }
3593  
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3594  struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595  				    struct netdev_queue *txq, int *ret)
3596  {
3597  	struct sk_buff *skb = first;
3598  	int rc = NETDEV_TX_OK;
3599  
3600  	while (skb) {
3601  		struct sk_buff *next = skb->next;
3602  
3603  		skb_mark_not_on_list(skb);
3604  		rc = xmit_one(skb, dev, txq, next != NULL);
3605  		if (unlikely(!dev_xmit_complete(rc))) {
3606  			skb->next = next;
3607  			goto out;
3608  		}
3609  
3610  		skb = next;
3611  		if (netif_tx_queue_stopped(txq) && skb) {
3612  			rc = NETDEV_TX_BUSY;
3613  			break;
3614  		}
3615  	}
3616  
3617  out:
3618  	*ret = rc;
3619  	return skb;
3620  }
3621  
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3622  static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623  					  netdev_features_t features)
3624  {
3625  	if (skb_vlan_tag_present(skb) &&
3626  	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3627  		skb = __vlan_hwaccel_push_inside(skb);
3628  	return skb;
3629  }
3630  
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3631  int skb_csum_hwoffload_help(struct sk_buff *skb,
3632  			    const netdev_features_t features)
3633  {
3634  	if (unlikely(skb_csum_is_sctp(skb)))
3635  		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636  			skb_crc32c_csum_help(skb);
3637  
3638  	if (features & NETIF_F_HW_CSUM)
3639  		return 0;
3640  
3641  	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642  		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3643  		    skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3644  			goto sw_checksum;
3645  		switch (skb->csum_offset) {
3646  		case offsetof(struct tcphdr, check):
3647  		case offsetof(struct udphdr, check):
3648  			return 0;
3649  		}
3650  	}
3651  
3652  sw_checksum:
3653  	return skb_checksum_help(skb);
3654  }
3655  EXPORT_SYMBOL(skb_csum_hwoffload_help);
3656  
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3657  static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3658  {
3659  	netdev_features_t features;
3660  
3661  	features = netif_skb_features(skb);
3662  	skb = validate_xmit_vlan(skb, features);
3663  	if (unlikely(!skb))
3664  		goto out_null;
3665  
3666  	skb = sk_validate_xmit_skb(skb, dev);
3667  	if (unlikely(!skb))
3668  		goto out_null;
3669  
3670  	if (netif_needs_gso(skb, features)) {
3671  		struct sk_buff *segs;
3672  
3673  		segs = skb_gso_segment(skb, features);
3674  		if (IS_ERR(segs)) {
3675  			goto out_kfree_skb;
3676  		} else if (segs) {
3677  			consume_skb(skb);
3678  			skb = segs;
3679  		}
3680  	} else {
3681  		if (skb_needs_linearize(skb, features) &&
3682  		    __skb_linearize(skb))
3683  			goto out_kfree_skb;
3684  
3685  		/* If packet is not checksummed and device does not
3686  		 * support checksumming for this protocol, complete
3687  		 * checksumming here.
3688  		 */
3689  		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3690  			if (skb->encapsulation)
3691  				skb_set_inner_transport_header(skb,
3692  							       skb_checksum_start_offset(skb));
3693  			else
3694  				skb_set_transport_header(skb,
3695  							 skb_checksum_start_offset(skb));
3696  			if (skb_csum_hwoffload_help(skb, features))
3697  				goto out_kfree_skb;
3698  		}
3699  	}
3700  
3701  	skb = validate_xmit_xfrm(skb, features, again);
3702  
3703  	return skb;
3704  
3705  out_kfree_skb:
3706  	kfree_skb(skb);
3707  out_null:
3708  	dev_core_stats_tx_dropped_inc(dev);
3709  	return NULL;
3710  }
3711  
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3712  struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3713  {
3714  	struct sk_buff *next, *head = NULL, *tail;
3715  
3716  	for (; skb != NULL; skb = next) {
3717  		next = skb->next;
3718  		skb_mark_not_on_list(skb);
3719  
3720  		/* in case skb won't be segmented, point to itself */
3721  		skb->prev = skb;
3722  
3723  		skb = validate_xmit_skb(skb, dev, again);
3724  		if (!skb)
3725  			continue;
3726  
3727  		if (!head)
3728  			head = skb;
3729  		else
3730  			tail->next = skb;
3731  		/* If skb was segmented, skb->prev points to
3732  		 * the last segment. If not, it still contains skb.
3733  		 */
3734  		tail = skb->prev;
3735  	}
3736  	return head;
3737  }
3738  EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3739  
qdisc_pkt_len_init(struct sk_buff * skb)3740  static void qdisc_pkt_len_init(struct sk_buff *skb)
3741  {
3742  	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3743  
3744  	qdisc_skb_cb(skb)->pkt_len = skb->len;
3745  
3746  	/* To get more precise estimation of bytes sent on wire,
3747  	 * we add to pkt_len the headers size of all segments
3748  	 */
3749  	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3750  		u16 gso_segs = shinfo->gso_segs;
3751  		unsigned int hdr_len;
3752  
3753  		/* mac layer + network layer */
3754  		hdr_len = skb_transport_offset(skb);
3755  
3756  		/* + transport layer */
3757  		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3758  			const struct tcphdr *th;
3759  			struct tcphdr _tcphdr;
3760  
3761  			th = skb_header_pointer(skb, hdr_len,
3762  						sizeof(_tcphdr), &_tcphdr);
3763  			if (likely(th))
3764  				hdr_len += __tcp_hdrlen(th);
3765  		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3766  			struct udphdr _udphdr;
3767  
3768  			if (skb_header_pointer(skb, hdr_len,
3769  					       sizeof(_udphdr), &_udphdr))
3770  				hdr_len += sizeof(struct udphdr);
3771  		}
3772  
3773  		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3774  			int payload = skb->len - hdr_len;
3775  
3776  			/* Malicious packet. */
3777  			if (payload <= 0)
3778  				return;
3779  			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3780  		}
3781  		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3782  	}
3783  }
3784  
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3785  static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3786  			     struct sk_buff **to_free,
3787  			     struct netdev_queue *txq)
3788  {
3789  	int rc;
3790  
3791  	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3792  	if (rc == NET_XMIT_SUCCESS)
3793  		trace_qdisc_enqueue(q, txq, skb);
3794  	return rc;
3795  }
3796  
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3797  static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3798  				 struct net_device *dev,
3799  				 struct netdev_queue *txq)
3800  {
3801  	spinlock_t *root_lock = qdisc_lock(q);
3802  	struct sk_buff *to_free = NULL;
3803  	bool contended;
3804  	int rc;
3805  
3806  	qdisc_calculate_pkt_len(skb, q);
3807  
3808  	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3809  
3810  	if (q->flags & TCQ_F_NOLOCK) {
3811  		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3812  		    qdisc_run_begin(q)) {
3813  			/* Retest nolock_qdisc_is_empty() within the protection
3814  			 * of q->seqlock to protect from racing with requeuing.
3815  			 */
3816  			if (unlikely(!nolock_qdisc_is_empty(q))) {
3817  				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818  				__qdisc_run(q);
3819  				qdisc_run_end(q);
3820  
3821  				goto no_lock_out;
3822  			}
3823  
3824  			qdisc_bstats_cpu_update(q, skb);
3825  			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3826  			    !nolock_qdisc_is_empty(q))
3827  				__qdisc_run(q);
3828  
3829  			qdisc_run_end(q);
3830  			return NET_XMIT_SUCCESS;
3831  		}
3832  
3833  		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834  		qdisc_run(q);
3835  
3836  no_lock_out:
3837  		if (unlikely(to_free))
3838  			kfree_skb_list_reason(to_free,
3839  					      tcf_get_drop_reason(to_free));
3840  		return rc;
3841  	}
3842  
3843  	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3844  		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3845  		return NET_XMIT_DROP;
3846  	}
3847  	/*
3848  	 * Heuristic to force contended enqueues to serialize on a
3849  	 * separate lock before trying to get qdisc main lock.
3850  	 * This permits qdisc->running owner to get the lock more
3851  	 * often and dequeue packets faster.
3852  	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3853  	 * and then other tasks will only enqueue packets. The packets will be
3854  	 * sent after the qdisc owner is scheduled again. To prevent this
3855  	 * scenario the task always serialize on the lock.
3856  	 */
3857  	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3858  	if (unlikely(contended))
3859  		spin_lock(&q->busylock);
3860  
3861  	spin_lock(root_lock);
3862  	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3863  		__qdisc_drop(skb, &to_free);
3864  		rc = NET_XMIT_DROP;
3865  	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3866  		   qdisc_run_begin(q)) {
3867  		/*
3868  		 * This is a work-conserving queue; there are no old skbs
3869  		 * waiting to be sent out; and the qdisc is not running -
3870  		 * xmit the skb directly.
3871  		 */
3872  
3873  		qdisc_bstats_update(q, skb);
3874  
3875  		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3876  			if (unlikely(contended)) {
3877  				spin_unlock(&q->busylock);
3878  				contended = false;
3879  			}
3880  			__qdisc_run(q);
3881  		}
3882  
3883  		qdisc_run_end(q);
3884  		rc = NET_XMIT_SUCCESS;
3885  	} else {
3886  		WRITE_ONCE(q->owner, smp_processor_id());
3887  		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3888  		WRITE_ONCE(q->owner, -1);
3889  		if (qdisc_run_begin(q)) {
3890  			if (unlikely(contended)) {
3891  				spin_unlock(&q->busylock);
3892  				contended = false;
3893  			}
3894  			__qdisc_run(q);
3895  			qdisc_run_end(q);
3896  		}
3897  	}
3898  	spin_unlock(root_lock);
3899  	if (unlikely(to_free))
3900  		kfree_skb_list_reason(to_free,
3901  				      tcf_get_drop_reason(to_free));
3902  	if (unlikely(contended))
3903  		spin_unlock(&q->busylock);
3904  	return rc;
3905  }
3906  
3907  #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3908  static void skb_update_prio(struct sk_buff *skb)
3909  {
3910  	const struct netprio_map *map;
3911  	const struct sock *sk;
3912  	unsigned int prioidx;
3913  
3914  	if (skb->priority)
3915  		return;
3916  	map = rcu_dereference_bh(skb->dev->priomap);
3917  	if (!map)
3918  		return;
3919  	sk = skb_to_full_sk(skb);
3920  	if (!sk)
3921  		return;
3922  
3923  	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3924  
3925  	if (prioidx < map->priomap_len)
3926  		skb->priority = map->priomap[prioidx];
3927  }
3928  #else
3929  #define skb_update_prio(skb)
3930  #endif
3931  
3932  /**
3933   *	dev_loopback_xmit - loop back @skb
3934   *	@net: network namespace this loopback is happening in
3935   *	@sk:  sk needed to be a netfilter okfn
3936   *	@skb: buffer to transmit
3937   */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3938  int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3939  {
3940  	skb_reset_mac_header(skb);
3941  	__skb_pull(skb, skb_network_offset(skb));
3942  	skb->pkt_type = PACKET_LOOPBACK;
3943  	if (skb->ip_summed == CHECKSUM_NONE)
3944  		skb->ip_summed = CHECKSUM_UNNECESSARY;
3945  	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3946  	skb_dst_force(skb);
3947  	netif_rx(skb);
3948  	return 0;
3949  }
3950  EXPORT_SYMBOL(dev_loopback_xmit);
3951  
3952  #ifdef CONFIG_NET_EGRESS
3953  static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3954  netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3955  {
3956  	int qm = skb_get_queue_mapping(skb);
3957  
3958  	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3959  }
3960  
3961  #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)3962  static bool netdev_xmit_txqueue_skipped(void)
3963  {
3964  	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3965  }
3966  
netdev_xmit_skip_txqueue(bool skip)3967  void netdev_xmit_skip_txqueue(bool skip)
3968  {
3969  	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3970  }
3971  EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3972  
3973  #else
netdev_xmit_txqueue_skipped(void)3974  static bool netdev_xmit_txqueue_skipped(void)
3975  {
3976  	return current->net_xmit.skip_txqueue;
3977  }
3978  
netdev_xmit_skip_txqueue(bool skip)3979  void netdev_xmit_skip_txqueue(bool skip)
3980  {
3981  	current->net_xmit.skip_txqueue = skip;
3982  }
3983  EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3984  #endif
3985  #endif /* CONFIG_NET_EGRESS */
3986  
3987  #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)3988  static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3989  		  enum skb_drop_reason *drop_reason)
3990  {
3991  	int ret = TC_ACT_UNSPEC;
3992  #ifdef CONFIG_NET_CLS_ACT
3993  	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3994  	struct tcf_result res;
3995  
3996  	if (!miniq)
3997  		return ret;
3998  
3999  	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4000  		if (tcf_block_bypass_sw(miniq->block))
4001  			return ret;
4002  	}
4003  
4004  	tc_skb_cb(skb)->mru = 0;
4005  	tc_skb_cb(skb)->post_ct = false;
4006  	tcf_set_drop_reason(skb, *drop_reason);
4007  
4008  	mini_qdisc_bstats_cpu_update(miniq, skb);
4009  	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4010  	/* Only tcf related quirks below. */
4011  	switch (ret) {
4012  	case TC_ACT_SHOT:
4013  		*drop_reason = tcf_get_drop_reason(skb);
4014  		mini_qdisc_qstats_cpu_drop(miniq);
4015  		break;
4016  	case TC_ACT_OK:
4017  	case TC_ACT_RECLASSIFY:
4018  		skb->tc_index = TC_H_MIN(res.classid);
4019  		break;
4020  	}
4021  #endif /* CONFIG_NET_CLS_ACT */
4022  	return ret;
4023  }
4024  
4025  static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4026  
tcx_inc(void)4027  void tcx_inc(void)
4028  {
4029  	static_branch_inc(&tcx_needed_key);
4030  }
4031  
tcx_dec(void)4032  void tcx_dec(void)
4033  {
4034  	static_branch_dec(&tcx_needed_key);
4035  }
4036  
4037  static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4038  tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4039  	const bool needs_mac)
4040  {
4041  	const struct bpf_mprog_fp *fp;
4042  	const struct bpf_prog *prog;
4043  	int ret = TCX_NEXT;
4044  
4045  	if (needs_mac)
4046  		__skb_push(skb, skb->mac_len);
4047  	bpf_mprog_foreach_prog(entry, fp, prog) {
4048  		bpf_compute_data_pointers(skb);
4049  		ret = bpf_prog_run(prog, skb);
4050  		if (ret != TCX_NEXT)
4051  			break;
4052  	}
4053  	if (needs_mac)
4054  		__skb_pull(skb, skb->mac_len);
4055  	return tcx_action_code(skb, ret);
4056  }
4057  
4058  static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4059  sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4060  		   struct net_device *orig_dev, bool *another)
4061  {
4062  	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4063  	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4064  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4065  	int sch_ret;
4066  
4067  	if (!entry)
4068  		return skb;
4069  
4070  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4071  	if (*pt_prev) {
4072  		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4073  		*pt_prev = NULL;
4074  	}
4075  
4076  	qdisc_skb_cb(skb)->pkt_len = skb->len;
4077  	tcx_set_ingress(skb, true);
4078  
4079  	if (static_branch_unlikely(&tcx_needed_key)) {
4080  		sch_ret = tcx_run(entry, skb, true);
4081  		if (sch_ret != TC_ACT_UNSPEC)
4082  			goto ingress_verdict;
4083  	}
4084  	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4085  ingress_verdict:
4086  	switch (sch_ret) {
4087  	case TC_ACT_REDIRECT:
4088  		/* skb_mac_header check was done by BPF, so we can safely
4089  		 * push the L2 header back before redirecting to another
4090  		 * netdev.
4091  		 */
4092  		__skb_push(skb, skb->mac_len);
4093  		if (skb_do_redirect(skb) == -EAGAIN) {
4094  			__skb_pull(skb, skb->mac_len);
4095  			*another = true;
4096  			break;
4097  		}
4098  		*ret = NET_RX_SUCCESS;
4099  		bpf_net_ctx_clear(bpf_net_ctx);
4100  		return NULL;
4101  	case TC_ACT_SHOT:
4102  		kfree_skb_reason(skb, drop_reason);
4103  		*ret = NET_RX_DROP;
4104  		bpf_net_ctx_clear(bpf_net_ctx);
4105  		return NULL;
4106  	/* used by tc_run */
4107  	case TC_ACT_STOLEN:
4108  	case TC_ACT_QUEUED:
4109  	case TC_ACT_TRAP:
4110  		consume_skb(skb);
4111  		fallthrough;
4112  	case TC_ACT_CONSUMED:
4113  		*ret = NET_RX_SUCCESS;
4114  		bpf_net_ctx_clear(bpf_net_ctx);
4115  		return NULL;
4116  	}
4117  	bpf_net_ctx_clear(bpf_net_ctx);
4118  
4119  	return skb;
4120  }
4121  
4122  static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4123  sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4124  {
4125  	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4126  	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4127  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4128  	int sch_ret;
4129  
4130  	if (!entry)
4131  		return skb;
4132  
4133  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4134  
4135  	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4136  	 * already set by the caller.
4137  	 */
4138  	if (static_branch_unlikely(&tcx_needed_key)) {
4139  		sch_ret = tcx_run(entry, skb, false);
4140  		if (sch_ret != TC_ACT_UNSPEC)
4141  			goto egress_verdict;
4142  	}
4143  	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4144  egress_verdict:
4145  	switch (sch_ret) {
4146  	case TC_ACT_REDIRECT:
4147  		/* No need to push/pop skb's mac_header here on egress! */
4148  		skb_do_redirect(skb);
4149  		*ret = NET_XMIT_SUCCESS;
4150  		bpf_net_ctx_clear(bpf_net_ctx);
4151  		return NULL;
4152  	case TC_ACT_SHOT:
4153  		kfree_skb_reason(skb, drop_reason);
4154  		*ret = NET_XMIT_DROP;
4155  		bpf_net_ctx_clear(bpf_net_ctx);
4156  		return NULL;
4157  	/* used by tc_run */
4158  	case TC_ACT_STOLEN:
4159  	case TC_ACT_QUEUED:
4160  	case TC_ACT_TRAP:
4161  		consume_skb(skb);
4162  		fallthrough;
4163  	case TC_ACT_CONSUMED:
4164  		*ret = NET_XMIT_SUCCESS;
4165  		bpf_net_ctx_clear(bpf_net_ctx);
4166  		return NULL;
4167  	}
4168  	bpf_net_ctx_clear(bpf_net_ctx);
4169  
4170  	return skb;
4171  }
4172  #else
4173  static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4174  sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4175  		   struct net_device *orig_dev, bool *another)
4176  {
4177  	return skb;
4178  }
4179  
4180  static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4181  sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4182  {
4183  	return skb;
4184  }
4185  #endif /* CONFIG_NET_XGRESS */
4186  
4187  #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4188  static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4189  			       struct xps_dev_maps *dev_maps, unsigned int tci)
4190  {
4191  	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4192  	struct xps_map *map;
4193  	int queue_index = -1;
4194  
4195  	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4196  		return queue_index;
4197  
4198  	tci *= dev_maps->num_tc;
4199  	tci += tc;
4200  
4201  	map = rcu_dereference(dev_maps->attr_map[tci]);
4202  	if (map) {
4203  		if (map->len == 1)
4204  			queue_index = map->queues[0];
4205  		else
4206  			queue_index = map->queues[reciprocal_scale(
4207  						skb_get_hash(skb), map->len)];
4208  		if (unlikely(queue_index >= dev->real_num_tx_queues))
4209  			queue_index = -1;
4210  	}
4211  	return queue_index;
4212  }
4213  #endif
4214  
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4215  static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4216  			 struct sk_buff *skb)
4217  {
4218  #ifdef CONFIG_XPS
4219  	struct xps_dev_maps *dev_maps;
4220  	struct sock *sk = skb->sk;
4221  	int queue_index = -1;
4222  
4223  	if (!static_key_false(&xps_needed))
4224  		return -1;
4225  
4226  	rcu_read_lock();
4227  	if (!static_key_false(&xps_rxqs_needed))
4228  		goto get_cpus_map;
4229  
4230  	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4231  	if (dev_maps) {
4232  		int tci = sk_rx_queue_get(sk);
4233  
4234  		if (tci >= 0)
4235  			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4236  							  tci);
4237  	}
4238  
4239  get_cpus_map:
4240  	if (queue_index < 0) {
4241  		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4242  		if (dev_maps) {
4243  			unsigned int tci = skb->sender_cpu - 1;
4244  
4245  			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4246  							  tci);
4247  		}
4248  	}
4249  	rcu_read_unlock();
4250  
4251  	return queue_index;
4252  #else
4253  	return -1;
4254  #endif
4255  }
4256  
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4257  u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4258  		     struct net_device *sb_dev)
4259  {
4260  	return 0;
4261  }
4262  EXPORT_SYMBOL(dev_pick_tx_zero);
4263  
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4264  u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4265  		     struct net_device *sb_dev)
4266  {
4267  	struct sock *sk = skb->sk;
4268  	int queue_index = sk_tx_queue_get(sk);
4269  
4270  	sb_dev = sb_dev ? : dev;
4271  
4272  	if (queue_index < 0 || skb->ooo_okay ||
4273  	    queue_index >= dev->real_num_tx_queues) {
4274  		int new_index = get_xps_queue(dev, sb_dev, skb);
4275  
4276  		if (new_index < 0)
4277  			new_index = skb_tx_hash(dev, sb_dev, skb);
4278  
4279  		if (queue_index != new_index && sk &&
4280  		    sk_fullsock(sk) &&
4281  		    rcu_access_pointer(sk->sk_dst_cache))
4282  			sk_tx_queue_set(sk, new_index);
4283  
4284  		queue_index = new_index;
4285  	}
4286  
4287  	return queue_index;
4288  }
4289  EXPORT_SYMBOL(netdev_pick_tx);
4290  
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4291  struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4292  					 struct sk_buff *skb,
4293  					 struct net_device *sb_dev)
4294  {
4295  	int queue_index = 0;
4296  
4297  #ifdef CONFIG_XPS
4298  	u32 sender_cpu = skb->sender_cpu - 1;
4299  
4300  	if (sender_cpu >= (u32)NR_CPUS)
4301  		skb->sender_cpu = raw_smp_processor_id() + 1;
4302  #endif
4303  
4304  	if (dev->real_num_tx_queues != 1) {
4305  		const struct net_device_ops *ops = dev->netdev_ops;
4306  
4307  		if (ops->ndo_select_queue)
4308  			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4309  		else
4310  			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4311  
4312  		queue_index = netdev_cap_txqueue(dev, queue_index);
4313  	}
4314  
4315  	skb_set_queue_mapping(skb, queue_index);
4316  	return netdev_get_tx_queue(dev, queue_index);
4317  }
4318  
4319  /**
4320   * __dev_queue_xmit() - transmit a buffer
4321   * @skb:	buffer to transmit
4322   * @sb_dev:	suboordinate device used for L2 forwarding offload
4323   *
4324   * Queue a buffer for transmission to a network device. The caller must
4325   * have set the device and priority and built the buffer before calling
4326   * this function. The function can be called from an interrupt.
4327   *
4328   * When calling this method, interrupts MUST be enabled. This is because
4329   * the BH enable code must have IRQs enabled so that it will not deadlock.
4330   *
4331   * Regardless of the return value, the skb is consumed, so it is currently
4332   * difficult to retry a send to this method. (You can bump the ref count
4333   * before sending to hold a reference for retry if you are careful.)
4334   *
4335   * Return:
4336   * * 0				- buffer successfully transmitted
4337   * * positive qdisc return code	- NET_XMIT_DROP etc.
4338   * * negative errno		- other errors
4339   */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4340  int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4341  {
4342  	struct net_device *dev = skb->dev;
4343  	struct netdev_queue *txq = NULL;
4344  	struct Qdisc *q;
4345  	int rc = -ENOMEM;
4346  	bool again = false;
4347  
4348  	skb_reset_mac_header(skb);
4349  	skb_assert_len(skb);
4350  
4351  	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4352  		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4353  
4354  	/* Disable soft irqs for various locks below. Also
4355  	 * stops preemption for RCU.
4356  	 */
4357  	rcu_read_lock_bh();
4358  
4359  	skb_update_prio(skb);
4360  
4361  	qdisc_pkt_len_init(skb);
4362  	tcx_set_ingress(skb, false);
4363  #ifdef CONFIG_NET_EGRESS
4364  	if (static_branch_unlikely(&egress_needed_key)) {
4365  		if (nf_hook_egress_active()) {
4366  			skb = nf_hook_egress(skb, &rc, dev);
4367  			if (!skb)
4368  				goto out;
4369  		}
4370  
4371  		netdev_xmit_skip_txqueue(false);
4372  
4373  		nf_skip_egress(skb, true);
4374  		skb = sch_handle_egress(skb, &rc, dev);
4375  		if (!skb)
4376  			goto out;
4377  		nf_skip_egress(skb, false);
4378  
4379  		if (netdev_xmit_txqueue_skipped())
4380  			txq = netdev_tx_queue_mapping(dev, skb);
4381  	}
4382  #endif
4383  	/* If device/qdisc don't need skb->dst, release it right now while
4384  	 * its hot in this cpu cache.
4385  	 */
4386  	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4387  		skb_dst_drop(skb);
4388  	else
4389  		skb_dst_force(skb);
4390  
4391  	if (!txq)
4392  		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4393  
4394  	q = rcu_dereference_bh(txq->qdisc);
4395  
4396  	trace_net_dev_queue(skb);
4397  	if (q->enqueue) {
4398  		rc = __dev_xmit_skb(skb, q, dev, txq);
4399  		goto out;
4400  	}
4401  
4402  	/* The device has no queue. Common case for software devices:
4403  	 * loopback, all the sorts of tunnels...
4404  
4405  	 * Really, it is unlikely that netif_tx_lock protection is necessary
4406  	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4407  	 * counters.)
4408  	 * However, it is possible, that they rely on protection
4409  	 * made by us here.
4410  
4411  	 * Check this and shot the lock. It is not prone from deadlocks.
4412  	 *Either shot noqueue qdisc, it is even simpler 8)
4413  	 */
4414  	if (dev->flags & IFF_UP) {
4415  		int cpu = smp_processor_id(); /* ok because BHs are off */
4416  
4417  		/* Other cpus might concurrently change txq->xmit_lock_owner
4418  		 * to -1 or to their cpu id, but not to our id.
4419  		 */
4420  		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4421  			if (dev_xmit_recursion())
4422  				goto recursion_alert;
4423  
4424  			skb = validate_xmit_skb(skb, dev, &again);
4425  			if (!skb)
4426  				goto out;
4427  
4428  			HARD_TX_LOCK(dev, txq, cpu);
4429  
4430  			if (!netif_xmit_stopped(txq)) {
4431  				dev_xmit_recursion_inc();
4432  				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4433  				dev_xmit_recursion_dec();
4434  				if (dev_xmit_complete(rc)) {
4435  					HARD_TX_UNLOCK(dev, txq);
4436  					goto out;
4437  				}
4438  			}
4439  			HARD_TX_UNLOCK(dev, txq);
4440  			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4441  					     dev->name);
4442  		} else {
4443  			/* Recursion is detected! It is possible,
4444  			 * unfortunately
4445  			 */
4446  recursion_alert:
4447  			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4448  					     dev->name);
4449  		}
4450  	}
4451  
4452  	rc = -ENETDOWN;
4453  	rcu_read_unlock_bh();
4454  
4455  	dev_core_stats_tx_dropped_inc(dev);
4456  	kfree_skb_list(skb);
4457  	return rc;
4458  out:
4459  	rcu_read_unlock_bh();
4460  	return rc;
4461  }
4462  EXPORT_SYMBOL(__dev_queue_xmit);
4463  
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4464  int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4465  {
4466  	struct net_device *dev = skb->dev;
4467  	struct sk_buff *orig_skb = skb;
4468  	struct netdev_queue *txq;
4469  	int ret = NETDEV_TX_BUSY;
4470  	bool again = false;
4471  
4472  	if (unlikely(!netif_running(dev) ||
4473  		     !netif_carrier_ok(dev)))
4474  		goto drop;
4475  
4476  	skb = validate_xmit_skb_list(skb, dev, &again);
4477  	if (skb != orig_skb)
4478  		goto drop;
4479  
4480  	skb_set_queue_mapping(skb, queue_id);
4481  	txq = skb_get_tx_queue(dev, skb);
4482  
4483  	local_bh_disable();
4484  
4485  	dev_xmit_recursion_inc();
4486  	HARD_TX_LOCK(dev, txq, smp_processor_id());
4487  	if (!netif_xmit_frozen_or_drv_stopped(txq))
4488  		ret = netdev_start_xmit(skb, dev, txq, false);
4489  	HARD_TX_UNLOCK(dev, txq);
4490  	dev_xmit_recursion_dec();
4491  
4492  	local_bh_enable();
4493  	return ret;
4494  drop:
4495  	dev_core_stats_tx_dropped_inc(dev);
4496  	kfree_skb_list(skb);
4497  	return NET_XMIT_DROP;
4498  }
4499  EXPORT_SYMBOL(__dev_direct_xmit);
4500  
4501  /*************************************************************************
4502   *			Receiver routines
4503   *************************************************************************/
4504  static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4505  
4506  int weight_p __read_mostly = 64;           /* old backlog weight */
4507  int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4508  int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4509  
4510  /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4511  static inline void ____napi_schedule(struct softnet_data *sd,
4512  				     struct napi_struct *napi)
4513  {
4514  	struct task_struct *thread;
4515  
4516  	lockdep_assert_irqs_disabled();
4517  
4518  	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4519  		/* Paired with smp_mb__before_atomic() in
4520  		 * napi_enable()/dev_set_threaded().
4521  		 * Use READ_ONCE() to guarantee a complete
4522  		 * read on napi->thread. Only call
4523  		 * wake_up_process() when it's not NULL.
4524  		 */
4525  		thread = READ_ONCE(napi->thread);
4526  		if (thread) {
4527  			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4528  				goto use_local_napi;
4529  
4530  			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4531  			wake_up_process(thread);
4532  			return;
4533  		}
4534  	}
4535  
4536  use_local_napi:
4537  	list_add_tail(&napi->poll_list, &sd->poll_list);
4538  	WRITE_ONCE(napi->list_owner, smp_processor_id());
4539  	/* If not called from net_rx_action()
4540  	 * we have to raise NET_RX_SOFTIRQ.
4541  	 */
4542  	if (!sd->in_net_rx_action)
4543  		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4544  }
4545  
4546  #ifdef CONFIG_RPS
4547  
4548  struct static_key_false rps_needed __read_mostly;
4549  EXPORT_SYMBOL(rps_needed);
4550  struct static_key_false rfs_needed __read_mostly;
4551  EXPORT_SYMBOL(rfs_needed);
4552  
4553  static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4554  set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4555  	    struct rps_dev_flow *rflow, u16 next_cpu)
4556  {
4557  	if (next_cpu < nr_cpu_ids) {
4558  		u32 head;
4559  #ifdef CONFIG_RFS_ACCEL
4560  		struct netdev_rx_queue *rxqueue;
4561  		struct rps_dev_flow_table *flow_table;
4562  		struct rps_dev_flow *old_rflow;
4563  		u16 rxq_index;
4564  		u32 flow_id;
4565  		int rc;
4566  
4567  		/* Should we steer this flow to a different hardware queue? */
4568  		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4569  		    !(dev->features & NETIF_F_NTUPLE))
4570  			goto out;
4571  		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4572  		if (rxq_index == skb_get_rx_queue(skb))
4573  			goto out;
4574  
4575  		rxqueue = dev->_rx + rxq_index;
4576  		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4577  		if (!flow_table)
4578  			goto out;
4579  		flow_id = skb_get_hash(skb) & flow_table->mask;
4580  		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4581  							rxq_index, flow_id);
4582  		if (rc < 0)
4583  			goto out;
4584  		old_rflow = rflow;
4585  		rflow = &flow_table->flows[flow_id];
4586  		WRITE_ONCE(rflow->filter, rc);
4587  		if (old_rflow->filter == rc)
4588  			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4589  	out:
4590  #endif
4591  		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4592  		rps_input_queue_tail_save(&rflow->last_qtail, head);
4593  	}
4594  
4595  	WRITE_ONCE(rflow->cpu, next_cpu);
4596  	return rflow;
4597  }
4598  
4599  /*
4600   * get_rps_cpu is called from netif_receive_skb and returns the target
4601   * CPU from the RPS map of the receiving queue for a given skb.
4602   * rcu_read_lock must be held on entry.
4603   */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4604  static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4605  		       struct rps_dev_flow **rflowp)
4606  {
4607  	const struct rps_sock_flow_table *sock_flow_table;
4608  	struct netdev_rx_queue *rxqueue = dev->_rx;
4609  	struct rps_dev_flow_table *flow_table;
4610  	struct rps_map *map;
4611  	int cpu = -1;
4612  	u32 tcpu;
4613  	u32 hash;
4614  
4615  	if (skb_rx_queue_recorded(skb)) {
4616  		u16 index = skb_get_rx_queue(skb);
4617  
4618  		if (unlikely(index >= dev->real_num_rx_queues)) {
4619  			WARN_ONCE(dev->real_num_rx_queues > 1,
4620  				  "%s received packet on queue %u, but number "
4621  				  "of RX queues is %u\n",
4622  				  dev->name, index, dev->real_num_rx_queues);
4623  			goto done;
4624  		}
4625  		rxqueue += index;
4626  	}
4627  
4628  	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4629  
4630  	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4631  	map = rcu_dereference(rxqueue->rps_map);
4632  	if (!flow_table && !map)
4633  		goto done;
4634  
4635  	skb_reset_network_header(skb);
4636  	hash = skb_get_hash(skb);
4637  	if (!hash)
4638  		goto done;
4639  
4640  	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4641  	if (flow_table && sock_flow_table) {
4642  		struct rps_dev_flow *rflow;
4643  		u32 next_cpu;
4644  		u32 ident;
4645  
4646  		/* First check into global flow table if there is a match.
4647  		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4648  		 */
4649  		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4650  		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4651  			goto try_rps;
4652  
4653  		next_cpu = ident & net_hotdata.rps_cpu_mask;
4654  
4655  		/* OK, now we know there is a match,
4656  		 * we can look at the local (per receive queue) flow table
4657  		 */
4658  		rflow = &flow_table->flows[hash & flow_table->mask];
4659  		tcpu = rflow->cpu;
4660  
4661  		/*
4662  		 * If the desired CPU (where last recvmsg was done) is
4663  		 * different from current CPU (one in the rx-queue flow
4664  		 * table entry), switch if one of the following holds:
4665  		 *   - Current CPU is unset (>= nr_cpu_ids).
4666  		 *   - Current CPU is offline.
4667  		 *   - The current CPU's queue tail has advanced beyond the
4668  		 *     last packet that was enqueued using this table entry.
4669  		 *     This guarantees that all previous packets for the flow
4670  		 *     have been dequeued, thus preserving in order delivery.
4671  		 */
4672  		if (unlikely(tcpu != next_cpu) &&
4673  		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4674  		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4675  		      rflow->last_qtail)) >= 0)) {
4676  			tcpu = next_cpu;
4677  			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4678  		}
4679  
4680  		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4681  			*rflowp = rflow;
4682  			cpu = tcpu;
4683  			goto done;
4684  		}
4685  	}
4686  
4687  try_rps:
4688  
4689  	if (map) {
4690  		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4691  		if (cpu_online(tcpu)) {
4692  			cpu = tcpu;
4693  			goto done;
4694  		}
4695  	}
4696  
4697  done:
4698  	return cpu;
4699  }
4700  
4701  #ifdef CONFIG_RFS_ACCEL
4702  
4703  /**
4704   * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4705   * @dev: Device on which the filter was set
4706   * @rxq_index: RX queue index
4707   * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4708   * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4709   *
4710   * Drivers that implement ndo_rx_flow_steer() should periodically call
4711   * this function for each installed filter and remove the filters for
4712   * which it returns %true.
4713   */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4714  bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4715  			 u32 flow_id, u16 filter_id)
4716  {
4717  	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4718  	struct rps_dev_flow_table *flow_table;
4719  	struct rps_dev_flow *rflow;
4720  	bool expire = true;
4721  	unsigned int cpu;
4722  
4723  	rcu_read_lock();
4724  	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4725  	if (flow_table && flow_id <= flow_table->mask) {
4726  		rflow = &flow_table->flows[flow_id];
4727  		cpu = READ_ONCE(rflow->cpu);
4728  		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4729  		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4730  			   READ_ONCE(rflow->last_qtail)) <
4731  		     (int)(10 * flow_table->mask)))
4732  			expire = false;
4733  	}
4734  	rcu_read_unlock();
4735  	return expire;
4736  }
4737  EXPORT_SYMBOL(rps_may_expire_flow);
4738  
4739  #endif /* CONFIG_RFS_ACCEL */
4740  
4741  /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4742  static void rps_trigger_softirq(void *data)
4743  {
4744  	struct softnet_data *sd = data;
4745  
4746  	____napi_schedule(sd, &sd->backlog);
4747  	sd->received_rps++;
4748  }
4749  
4750  #endif /* CONFIG_RPS */
4751  
4752  /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4753  static void trigger_rx_softirq(void *data)
4754  {
4755  	struct softnet_data *sd = data;
4756  
4757  	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4758  	smp_store_release(&sd->defer_ipi_scheduled, 0);
4759  }
4760  
4761  /*
4762   * After we queued a packet into sd->input_pkt_queue,
4763   * we need to make sure this queue is serviced soon.
4764   *
4765   * - If this is another cpu queue, link it to our rps_ipi_list,
4766   *   and make sure we will process rps_ipi_list from net_rx_action().
4767   *
4768   * - If this is our own queue, NAPI schedule our backlog.
4769   *   Note that this also raises NET_RX_SOFTIRQ.
4770   */
napi_schedule_rps(struct softnet_data * sd)4771  static void napi_schedule_rps(struct softnet_data *sd)
4772  {
4773  	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4774  
4775  #ifdef CONFIG_RPS
4776  	if (sd != mysd) {
4777  		if (use_backlog_threads()) {
4778  			__napi_schedule_irqoff(&sd->backlog);
4779  			return;
4780  		}
4781  
4782  		sd->rps_ipi_next = mysd->rps_ipi_list;
4783  		mysd->rps_ipi_list = sd;
4784  
4785  		/* If not called from net_rx_action() or napi_threaded_poll()
4786  		 * we have to raise NET_RX_SOFTIRQ.
4787  		 */
4788  		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4789  			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4790  		return;
4791  	}
4792  #endif /* CONFIG_RPS */
4793  	__napi_schedule_irqoff(&mysd->backlog);
4794  }
4795  
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)4796  void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4797  {
4798  	unsigned long flags;
4799  
4800  	if (use_backlog_threads()) {
4801  		backlog_lock_irq_save(sd, &flags);
4802  
4803  		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4804  			__napi_schedule_irqoff(&sd->backlog);
4805  
4806  		backlog_unlock_irq_restore(sd, &flags);
4807  
4808  	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4809  		smp_call_function_single_async(cpu, &sd->defer_csd);
4810  	}
4811  }
4812  
4813  #ifdef CONFIG_NET_FLOW_LIMIT
4814  int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4815  #endif
4816  
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4817  static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4818  {
4819  #ifdef CONFIG_NET_FLOW_LIMIT
4820  	struct sd_flow_limit *fl;
4821  	struct softnet_data *sd;
4822  	unsigned int old_flow, new_flow;
4823  
4824  	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4825  		return false;
4826  
4827  	sd = this_cpu_ptr(&softnet_data);
4828  
4829  	rcu_read_lock();
4830  	fl = rcu_dereference(sd->flow_limit);
4831  	if (fl) {
4832  		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4833  		old_flow = fl->history[fl->history_head];
4834  		fl->history[fl->history_head] = new_flow;
4835  
4836  		fl->history_head++;
4837  		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4838  
4839  		if (likely(fl->buckets[old_flow]))
4840  			fl->buckets[old_flow]--;
4841  
4842  		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4843  			fl->count++;
4844  			rcu_read_unlock();
4845  			return true;
4846  		}
4847  	}
4848  	rcu_read_unlock();
4849  #endif
4850  	return false;
4851  }
4852  
4853  /*
4854   * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4855   * queue (may be a remote CPU queue).
4856   */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4857  static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4858  			      unsigned int *qtail)
4859  {
4860  	enum skb_drop_reason reason;
4861  	struct softnet_data *sd;
4862  	unsigned long flags;
4863  	unsigned int qlen;
4864  	int max_backlog;
4865  	u32 tail;
4866  
4867  	reason = SKB_DROP_REASON_DEV_READY;
4868  	if (!netif_running(skb->dev))
4869  		goto bad_dev;
4870  
4871  	reason = SKB_DROP_REASON_CPU_BACKLOG;
4872  	sd = &per_cpu(softnet_data, cpu);
4873  
4874  	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4875  	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4876  	if (unlikely(qlen > max_backlog))
4877  		goto cpu_backlog_drop;
4878  	backlog_lock_irq_save(sd, &flags);
4879  	qlen = skb_queue_len(&sd->input_pkt_queue);
4880  	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4881  		if (!qlen) {
4882  			/* Schedule NAPI for backlog device. We can use
4883  			 * non atomic operation as we own the queue lock.
4884  			 */
4885  			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4886  						&sd->backlog.state))
4887  				napi_schedule_rps(sd);
4888  		}
4889  		__skb_queue_tail(&sd->input_pkt_queue, skb);
4890  		tail = rps_input_queue_tail_incr(sd);
4891  		backlog_unlock_irq_restore(sd, &flags);
4892  
4893  		/* save the tail outside of the critical section */
4894  		rps_input_queue_tail_save(qtail, tail);
4895  		return NET_RX_SUCCESS;
4896  	}
4897  
4898  	backlog_unlock_irq_restore(sd, &flags);
4899  
4900  cpu_backlog_drop:
4901  	atomic_inc(&sd->dropped);
4902  bad_dev:
4903  	dev_core_stats_rx_dropped_inc(skb->dev);
4904  	kfree_skb_reason(skb, reason);
4905  	return NET_RX_DROP;
4906  }
4907  
netif_get_rxqueue(struct sk_buff * skb)4908  static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4909  {
4910  	struct net_device *dev = skb->dev;
4911  	struct netdev_rx_queue *rxqueue;
4912  
4913  	rxqueue = dev->_rx;
4914  
4915  	if (skb_rx_queue_recorded(skb)) {
4916  		u16 index = skb_get_rx_queue(skb);
4917  
4918  		if (unlikely(index >= dev->real_num_rx_queues)) {
4919  			WARN_ONCE(dev->real_num_rx_queues > 1,
4920  				  "%s received packet on queue %u, but number "
4921  				  "of RX queues is %u\n",
4922  				  dev->name, index, dev->real_num_rx_queues);
4923  
4924  			return rxqueue; /* Return first rxqueue */
4925  		}
4926  		rxqueue += index;
4927  	}
4928  	return rxqueue;
4929  }
4930  
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4931  u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4932  			     struct bpf_prog *xdp_prog)
4933  {
4934  	void *orig_data, *orig_data_end, *hard_start;
4935  	struct netdev_rx_queue *rxqueue;
4936  	bool orig_bcast, orig_host;
4937  	u32 mac_len, frame_sz;
4938  	__be16 orig_eth_type;
4939  	struct ethhdr *eth;
4940  	u32 metalen, act;
4941  	int off;
4942  
4943  	/* The XDP program wants to see the packet starting at the MAC
4944  	 * header.
4945  	 */
4946  	mac_len = skb->data - skb_mac_header(skb);
4947  	hard_start = skb->data - skb_headroom(skb);
4948  
4949  	/* SKB "head" area always have tailroom for skb_shared_info */
4950  	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4951  	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4952  
4953  	rxqueue = netif_get_rxqueue(skb);
4954  	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4955  	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4956  			 skb_headlen(skb) + mac_len, true);
4957  	if (skb_is_nonlinear(skb)) {
4958  		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4959  		xdp_buff_set_frags_flag(xdp);
4960  	} else {
4961  		xdp_buff_clear_frags_flag(xdp);
4962  	}
4963  
4964  	orig_data_end = xdp->data_end;
4965  	orig_data = xdp->data;
4966  	eth = (struct ethhdr *)xdp->data;
4967  	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4968  	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4969  	orig_eth_type = eth->h_proto;
4970  
4971  	act = bpf_prog_run_xdp(xdp_prog, xdp);
4972  
4973  	/* check if bpf_xdp_adjust_head was used */
4974  	off = xdp->data - orig_data;
4975  	if (off) {
4976  		if (off > 0)
4977  			__skb_pull(skb, off);
4978  		else if (off < 0)
4979  			__skb_push(skb, -off);
4980  
4981  		skb->mac_header += off;
4982  		skb_reset_network_header(skb);
4983  	}
4984  
4985  	/* check if bpf_xdp_adjust_tail was used */
4986  	off = xdp->data_end - orig_data_end;
4987  	if (off != 0) {
4988  		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4989  		skb->len += off; /* positive on grow, negative on shrink */
4990  	}
4991  
4992  	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4993  	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4994  	 */
4995  	if (xdp_buff_has_frags(xdp))
4996  		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4997  	else
4998  		skb->data_len = 0;
4999  
5000  	/* check if XDP changed eth hdr such SKB needs update */
5001  	eth = (struct ethhdr *)xdp->data;
5002  	if ((orig_eth_type != eth->h_proto) ||
5003  	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5004  						  skb->dev->dev_addr)) ||
5005  	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5006  		__skb_push(skb, ETH_HLEN);
5007  		skb->pkt_type = PACKET_HOST;
5008  		skb->protocol = eth_type_trans(skb, skb->dev);
5009  	}
5010  
5011  	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5012  	 * before calling us again on redirect path. We do not call do_redirect
5013  	 * as we leave that up to the caller.
5014  	 *
5015  	 * Caller is responsible for managing lifetime of skb (i.e. calling
5016  	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5017  	 */
5018  	switch (act) {
5019  	case XDP_REDIRECT:
5020  	case XDP_TX:
5021  		__skb_push(skb, mac_len);
5022  		break;
5023  	case XDP_PASS:
5024  		metalen = xdp->data - xdp->data_meta;
5025  		if (metalen)
5026  			skb_metadata_set(skb, metalen);
5027  		break;
5028  	}
5029  
5030  	return act;
5031  }
5032  
5033  static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,struct bpf_prog * prog)5034  netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5035  {
5036  	struct sk_buff *skb = *pskb;
5037  	int err, hroom, troom;
5038  
5039  	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5040  		return 0;
5041  
5042  	/* In case we have to go down the path and also linearize,
5043  	 * then lets do the pskb_expand_head() work just once here.
5044  	 */
5045  	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5046  	troom = skb->tail + skb->data_len - skb->end;
5047  	err = pskb_expand_head(skb,
5048  			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5049  			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5050  	if (err)
5051  		return err;
5052  
5053  	return skb_linearize(skb);
5054  }
5055  
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)5056  static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5057  				     struct xdp_buff *xdp,
5058  				     struct bpf_prog *xdp_prog)
5059  {
5060  	struct sk_buff *skb = *pskb;
5061  	u32 mac_len, act = XDP_DROP;
5062  
5063  	/* Reinjected packets coming from act_mirred or similar should
5064  	 * not get XDP generic processing.
5065  	 */
5066  	if (skb_is_redirected(skb))
5067  		return XDP_PASS;
5068  
5069  	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5070  	 * bytes. This is the guarantee that also native XDP provides,
5071  	 * thus we need to do it here as well.
5072  	 */
5073  	mac_len = skb->data - skb_mac_header(skb);
5074  	__skb_push(skb, mac_len);
5075  
5076  	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5077  	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5078  		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5079  			goto do_drop;
5080  	}
5081  
5082  	__skb_pull(*pskb, mac_len);
5083  
5084  	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5085  	switch (act) {
5086  	case XDP_REDIRECT:
5087  	case XDP_TX:
5088  	case XDP_PASS:
5089  		break;
5090  	default:
5091  		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5092  		fallthrough;
5093  	case XDP_ABORTED:
5094  		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5095  		fallthrough;
5096  	case XDP_DROP:
5097  	do_drop:
5098  		kfree_skb(*pskb);
5099  		break;
5100  	}
5101  
5102  	return act;
5103  }
5104  
5105  /* When doing generic XDP we have to bypass the qdisc layer and the
5106   * network taps in order to match in-driver-XDP behavior. This also means
5107   * that XDP packets are able to starve other packets going through a qdisc,
5108   * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5109   * queues, so they do not have this starvation issue.
5110   */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5111  void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5112  {
5113  	struct net_device *dev = skb->dev;
5114  	struct netdev_queue *txq;
5115  	bool free_skb = true;
5116  	int cpu, rc;
5117  
5118  	txq = netdev_core_pick_tx(dev, skb, NULL);
5119  	cpu = smp_processor_id();
5120  	HARD_TX_LOCK(dev, txq, cpu);
5121  	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5122  		rc = netdev_start_xmit(skb, dev, txq, 0);
5123  		if (dev_xmit_complete(rc))
5124  			free_skb = false;
5125  	}
5126  	HARD_TX_UNLOCK(dev, txq);
5127  	if (free_skb) {
5128  		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5129  		dev_core_stats_tx_dropped_inc(dev);
5130  		kfree_skb(skb);
5131  	}
5132  }
5133  
5134  static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5135  
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5136  int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5137  {
5138  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5139  
5140  	if (xdp_prog) {
5141  		struct xdp_buff xdp;
5142  		u32 act;
5143  		int err;
5144  
5145  		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5146  		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5147  		if (act != XDP_PASS) {
5148  			switch (act) {
5149  			case XDP_REDIRECT:
5150  				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5151  							      &xdp, xdp_prog);
5152  				if (err)
5153  					goto out_redir;
5154  				break;
5155  			case XDP_TX:
5156  				generic_xdp_tx(*pskb, xdp_prog);
5157  				break;
5158  			}
5159  			bpf_net_ctx_clear(bpf_net_ctx);
5160  			return XDP_DROP;
5161  		}
5162  		bpf_net_ctx_clear(bpf_net_ctx);
5163  	}
5164  	return XDP_PASS;
5165  out_redir:
5166  	bpf_net_ctx_clear(bpf_net_ctx);
5167  	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5168  	return XDP_DROP;
5169  }
5170  EXPORT_SYMBOL_GPL(do_xdp_generic);
5171  
netif_rx_internal(struct sk_buff * skb)5172  static int netif_rx_internal(struct sk_buff *skb)
5173  {
5174  	int ret;
5175  
5176  	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5177  
5178  	trace_netif_rx(skb);
5179  
5180  #ifdef CONFIG_RPS
5181  	if (static_branch_unlikely(&rps_needed)) {
5182  		struct rps_dev_flow voidflow, *rflow = &voidflow;
5183  		int cpu;
5184  
5185  		rcu_read_lock();
5186  
5187  		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5188  		if (cpu < 0)
5189  			cpu = smp_processor_id();
5190  
5191  		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5192  
5193  		rcu_read_unlock();
5194  	} else
5195  #endif
5196  	{
5197  		unsigned int qtail;
5198  
5199  		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5200  	}
5201  	return ret;
5202  }
5203  
5204  /**
5205   *	__netif_rx	-	Slightly optimized version of netif_rx
5206   *	@skb: buffer to post
5207   *
5208   *	This behaves as netif_rx except that it does not disable bottom halves.
5209   *	As a result this function may only be invoked from the interrupt context
5210   *	(either hard or soft interrupt).
5211   */
__netif_rx(struct sk_buff * skb)5212  int __netif_rx(struct sk_buff *skb)
5213  {
5214  	int ret;
5215  
5216  	lockdep_assert_once(hardirq_count() | softirq_count());
5217  
5218  	trace_netif_rx_entry(skb);
5219  	ret = netif_rx_internal(skb);
5220  	trace_netif_rx_exit(ret);
5221  	return ret;
5222  }
5223  EXPORT_SYMBOL(__netif_rx);
5224  
5225  /**
5226   *	netif_rx	-	post buffer to the network code
5227   *	@skb: buffer to post
5228   *
5229   *	This function receives a packet from a device driver and queues it for
5230   *	the upper (protocol) levels to process via the backlog NAPI device. It
5231   *	always succeeds. The buffer may be dropped during processing for
5232   *	congestion control or by the protocol layers.
5233   *	The network buffer is passed via the backlog NAPI device. Modern NIC
5234   *	driver should use NAPI and GRO.
5235   *	This function can used from interrupt and from process context. The
5236   *	caller from process context must not disable interrupts before invoking
5237   *	this function.
5238   *
5239   *	return values:
5240   *	NET_RX_SUCCESS	(no congestion)
5241   *	NET_RX_DROP     (packet was dropped)
5242   *
5243   */
netif_rx(struct sk_buff * skb)5244  int netif_rx(struct sk_buff *skb)
5245  {
5246  	bool need_bh_off = !(hardirq_count() | softirq_count());
5247  	int ret;
5248  
5249  	if (need_bh_off)
5250  		local_bh_disable();
5251  	trace_netif_rx_entry(skb);
5252  	ret = netif_rx_internal(skb);
5253  	trace_netif_rx_exit(ret);
5254  	if (need_bh_off)
5255  		local_bh_enable();
5256  	return ret;
5257  }
5258  EXPORT_SYMBOL(netif_rx);
5259  
net_tx_action(void)5260  static __latent_entropy void net_tx_action(void)
5261  {
5262  	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5263  
5264  	if (sd->completion_queue) {
5265  		struct sk_buff *clist;
5266  
5267  		local_irq_disable();
5268  		clist = sd->completion_queue;
5269  		sd->completion_queue = NULL;
5270  		local_irq_enable();
5271  
5272  		while (clist) {
5273  			struct sk_buff *skb = clist;
5274  
5275  			clist = clist->next;
5276  
5277  			WARN_ON(refcount_read(&skb->users));
5278  			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5279  				trace_consume_skb(skb, net_tx_action);
5280  			else
5281  				trace_kfree_skb(skb, net_tx_action,
5282  						get_kfree_skb_cb(skb)->reason, NULL);
5283  
5284  			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5285  				__kfree_skb(skb);
5286  			else
5287  				__napi_kfree_skb(skb,
5288  						 get_kfree_skb_cb(skb)->reason);
5289  		}
5290  	}
5291  
5292  	if (sd->output_queue) {
5293  		struct Qdisc *head;
5294  
5295  		local_irq_disable();
5296  		head = sd->output_queue;
5297  		sd->output_queue = NULL;
5298  		sd->output_queue_tailp = &sd->output_queue;
5299  		local_irq_enable();
5300  
5301  		rcu_read_lock();
5302  
5303  		while (head) {
5304  			struct Qdisc *q = head;
5305  			spinlock_t *root_lock = NULL;
5306  
5307  			head = head->next_sched;
5308  
5309  			/* We need to make sure head->next_sched is read
5310  			 * before clearing __QDISC_STATE_SCHED
5311  			 */
5312  			smp_mb__before_atomic();
5313  
5314  			if (!(q->flags & TCQ_F_NOLOCK)) {
5315  				root_lock = qdisc_lock(q);
5316  				spin_lock(root_lock);
5317  			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5318  						     &q->state))) {
5319  				/* There is a synchronize_net() between
5320  				 * STATE_DEACTIVATED flag being set and
5321  				 * qdisc_reset()/some_qdisc_is_busy() in
5322  				 * dev_deactivate(), so we can safely bail out
5323  				 * early here to avoid data race between
5324  				 * qdisc_deactivate() and some_qdisc_is_busy()
5325  				 * for lockless qdisc.
5326  				 */
5327  				clear_bit(__QDISC_STATE_SCHED, &q->state);
5328  				continue;
5329  			}
5330  
5331  			clear_bit(__QDISC_STATE_SCHED, &q->state);
5332  			qdisc_run(q);
5333  			if (root_lock)
5334  				spin_unlock(root_lock);
5335  		}
5336  
5337  		rcu_read_unlock();
5338  	}
5339  
5340  	xfrm_dev_backlog(sd);
5341  }
5342  
5343  #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5344  /* This hook is defined here for ATM LANE */
5345  int (*br_fdb_test_addr_hook)(struct net_device *dev,
5346  			     unsigned char *addr) __read_mostly;
5347  EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5348  #endif
5349  
5350  /**
5351   *	netdev_is_rx_handler_busy - check if receive handler is registered
5352   *	@dev: device to check
5353   *
5354   *	Check if a receive handler is already registered for a given device.
5355   *	Return true if there one.
5356   *
5357   *	The caller must hold the rtnl_mutex.
5358   */
netdev_is_rx_handler_busy(struct net_device * dev)5359  bool netdev_is_rx_handler_busy(struct net_device *dev)
5360  {
5361  	ASSERT_RTNL();
5362  	return dev && rtnl_dereference(dev->rx_handler);
5363  }
5364  EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5365  
5366  /**
5367   *	netdev_rx_handler_register - register receive handler
5368   *	@dev: device to register a handler for
5369   *	@rx_handler: receive handler to register
5370   *	@rx_handler_data: data pointer that is used by rx handler
5371   *
5372   *	Register a receive handler for a device. This handler will then be
5373   *	called from __netif_receive_skb. A negative errno code is returned
5374   *	on a failure.
5375   *
5376   *	The caller must hold the rtnl_mutex.
5377   *
5378   *	For a general description of rx_handler, see enum rx_handler_result.
5379   */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5380  int netdev_rx_handler_register(struct net_device *dev,
5381  			       rx_handler_func_t *rx_handler,
5382  			       void *rx_handler_data)
5383  {
5384  	if (netdev_is_rx_handler_busy(dev))
5385  		return -EBUSY;
5386  
5387  	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5388  		return -EINVAL;
5389  
5390  	/* Note: rx_handler_data must be set before rx_handler */
5391  	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5392  	rcu_assign_pointer(dev->rx_handler, rx_handler);
5393  
5394  	return 0;
5395  }
5396  EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5397  
5398  /**
5399   *	netdev_rx_handler_unregister - unregister receive handler
5400   *	@dev: device to unregister a handler from
5401   *
5402   *	Unregister a receive handler from a device.
5403   *
5404   *	The caller must hold the rtnl_mutex.
5405   */
netdev_rx_handler_unregister(struct net_device * dev)5406  void netdev_rx_handler_unregister(struct net_device *dev)
5407  {
5408  
5409  	ASSERT_RTNL();
5410  	RCU_INIT_POINTER(dev->rx_handler, NULL);
5411  	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5412  	 * section has a guarantee to see a non NULL rx_handler_data
5413  	 * as well.
5414  	 */
5415  	synchronize_net();
5416  	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5417  }
5418  EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5419  
5420  /*
5421   * Limit the use of PFMEMALLOC reserves to those protocols that implement
5422   * the special handling of PFMEMALLOC skbs.
5423   */
skb_pfmemalloc_protocol(struct sk_buff * skb)5424  static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5425  {
5426  	switch (skb->protocol) {
5427  	case htons(ETH_P_ARP):
5428  	case htons(ETH_P_IP):
5429  	case htons(ETH_P_IPV6):
5430  	case htons(ETH_P_8021Q):
5431  	case htons(ETH_P_8021AD):
5432  		return true;
5433  	default:
5434  		return false;
5435  	}
5436  }
5437  
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5438  static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5439  			     int *ret, struct net_device *orig_dev)
5440  {
5441  	if (nf_hook_ingress_active(skb)) {
5442  		int ingress_retval;
5443  
5444  		if (*pt_prev) {
5445  			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5446  			*pt_prev = NULL;
5447  		}
5448  
5449  		rcu_read_lock();
5450  		ingress_retval = nf_hook_ingress(skb);
5451  		rcu_read_unlock();
5452  		return ingress_retval;
5453  	}
5454  	return 0;
5455  }
5456  
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5457  static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5458  				    struct packet_type **ppt_prev)
5459  {
5460  	struct packet_type *ptype, *pt_prev;
5461  	rx_handler_func_t *rx_handler;
5462  	struct sk_buff *skb = *pskb;
5463  	struct net_device *orig_dev;
5464  	bool deliver_exact = false;
5465  	int ret = NET_RX_DROP;
5466  	__be16 type;
5467  
5468  	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5469  
5470  	trace_netif_receive_skb(skb);
5471  
5472  	orig_dev = skb->dev;
5473  
5474  	skb_reset_network_header(skb);
5475  	if (!skb_transport_header_was_set(skb))
5476  		skb_reset_transport_header(skb);
5477  	skb_reset_mac_len(skb);
5478  
5479  	pt_prev = NULL;
5480  
5481  another_round:
5482  	skb->skb_iif = skb->dev->ifindex;
5483  
5484  	__this_cpu_inc(softnet_data.processed);
5485  
5486  	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5487  		int ret2;
5488  
5489  		migrate_disable();
5490  		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5491  				      &skb);
5492  		migrate_enable();
5493  
5494  		if (ret2 != XDP_PASS) {
5495  			ret = NET_RX_DROP;
5496  			goto out;
5497  		}
5498  	}
5499  
5500  	if (eth_type_vlan(skb->protocol)) {
5501  		skb = skb_vlan_untag(skb);
5502  		if (unlikely(!skb))
5503  			goto out;
5504  	}
5505  
5506  	if (skb_skip_tc_classify(skb))
5507  		goto skip_classify;
5508  
5509  	if (pfmemalloc)
5510  		goto skip_taps;
5511  
5512  	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5513  		if (pt_prev)
5514  			ret = deliver_skb(skb, pt_prev, orig_dev);
5515  		pt_prev = ptype;
5516  	}
5517  
5518  	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5519  		if (pt_prev)
5520  			ret = deliver_skb(skb, pt_prev, orig_dev);
5521  		pt_prev = ptype;
5522  	}
5523  
5524  skip_taps:
5525  #ifdef CONFIG_NET_INGRESS
5526  	if (static_branch_unlikely(&ingress_needed_key)) {
5527  		bool another = false;
5528  
5529  		nf_skip_egress(skb, true);
5530  		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5531  					 &another);
5532  		if (another)
5533  			goto another_round;
5534  		if (!skb)
5535  			goto out;
5536  
5537  		nf_skip_egress(skb, false);
5538  		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5539  			goto out;
5540  	}
5541  #endif
5542  	skb_reset_redirect(skb);
5543  skip_classify:
5544  	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5545  		goto drop;
5546  
5547  	if (skb_vlan_tag_present(skb)) {
5548  		if (pt_prev) {
5549  			ret = deliver_skb(skb, pt_prev, orig_dev);
5550  			pt_prev = NULL;
5551  		}
5552  		if (vlan_do_receive(&skb))
5553  			goto another_round;
5554  		else if (unlikely(!skb))
5555  			goto out;
5556  	}
5557  
5558  	rx_handler = rcu_dereference(skb->dev->rx_handler);
5559  	if (rx_handler) {
5560  		if (pt_prev) {
5561  			ret = deliver_skb(skb, pt_prev, orig_dev);
5562  			pt_prev = NULL;
5563  		}
5564  		switch (rx_handler(&skb)) {
5565  		case RX_HANDLER_CONSUMED:
5566  			ret = NET_RX_SUCCESS;
5567  			goto out;
5568  		case RX_HANDLER_ANOTHER:
5569  			goto another_round;
5570  		case RX_HANDLER_EXACT:
5571  			deliver_exact = true;
5572  			break;
5573  		case RX_HANDLER_PASS:
5574  			break;
5575  		default:
5576  			BUG();
5577  		}
5578  	}
5579  
5580  	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5581  check_vlan_id:
5582  		if (skb_vlan_tag_get_id(skb)) {
5583  			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5584  			 * find vlan device.
5585  			 */
5586  			skb->pkt_type = PACKET_OTHERHOST;
5587  		} else if (eth_type_vlan(skb->protocol)) {
5588  			/* Outer header is 802.1P with vlan 0, inner header is
5589  			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5590  			 * not find vlan dev for vlan id 0.
5591  			 */
5592  			__vlan_hwaccel_clear_tag(skb);
5593  			skb = skb_vlan_untag(skb);
5594  			if (unlikely(!skb))
5595  				goto out;
5596  			if (vlan_do_receive(&skb))
5597  				/* After stripping off 802.1P header with vlan 0
5598  				 * vlan dev is found for inner header.
5599  				 */
5600  				goto another_round;
5601  			else if (unlikely(!skb))
5602  				goto out;
5603  			else
5604  				/* We have stripped outer 802.1P vlan 0 header.
5605  				 * But could not find vlan dev.
5606  				 * check again for vlan id to set OTHERHOST.
5607  				 */
5608  				goto check_vlan_id;
5609  		}
5610  		/* Note: we might in the future use prio bits
5611  		 * and set skb->priority like in vlan_do_receive()
5612  		 * For the time being, just ignore Priority Code Point
5613  		 */
5614  		__vlan_hwaccel_clear_tag(skb);
5615  	}
5616  
5617  	type = skb->protocol;
5618  
5619  	/* deliver only exact match when indicated */
5620  	if (likely(!deliver_exact)) {
5621  		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5622  				       &ptype_base[ntohs(type) &
5623  						   PTYPE_HASH_MASK]);
5624  	}
5625  
5626  	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5627  			       &orig_dev->ptype_specific);
5628  
5629  	if (unlikely(skb->dev != orig_dev)) {
5630  		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5631  				       &skb->dev->ptype_specific);
5632  	}
5633  
5634  	if (pt_prev) {
5635  		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5636  			goto drop;
5637  		*ppt_prev = pt_prev;
5638  	} else {
5639  drop:
5640  		if (!deliver_exact)
5641  			dev_core_stats_rx_dropped_inc(skb->dev);
5642  		else
5643  			dev_core_stats_rx_nohandler_inc(skb->dev);
5644  		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5645  		/* Jamal, now you will not able to escape explaining
5646  		 * me how you were going to use this. :-)
5647  		 */
5648  		ret = NET_RX_DROP;
5649  	}
5650  
5651  out:
5652  	/* The invariant here is that if *ppt_prev is not NULL
5653  	 * then skb should also be non-NULL.
5654  	 *
5655  	 * Apparently *ppt_prev assignment above holds this invariant due to
5656  	 * skb dereferencing near it.
5657  	 */
5658  	*pskb = skb;
5659  	return ret;
5660  }
5661  
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5662  static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5663  {
5664  	struct net_device *orig_dev = skb->dev;
5665  	struct packet_type *pt_prev = NULL;
5666  	int ret;
5667  
5668  	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5669  	if (pt_prev)
5670  		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5671  					 skb->dev, pt_prev, orig_dev);
5672  	return ret;
5673  }
5674  
5675  /**
5676   *	netif_receive_skb_core - special purpose version of netif_receive_skb
5677   *	@skb: buffer to process
5678   *
5679   *	More direct receive version of netif_receive_skb().  It should
5680   *	only be used by callers that have a need to skip RPS and Generic XDP.
5681   *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5682   *
5683   *	This function may only be called from softirq context and interrupts
5684   *	should be enabled.
5685   *
5686   *	Return values (usually ignored):
5687   *	NET_RX_SUCCESS: no congestion
5688   *	NET_RX_DROP: packet was dropped
5689   */
netif_receive_skb_core(struct sk_buff * skb)5690  int netif_receive_skb_core(struct sk_buff *skb)
5691  {
5692  	int ret;
5693  
5694  	rcu_read_lock();
5695  	ret = __netif_receive_skb_one_core(skb, false);
5696  	rcu_read_unlock();
5697  
5698  	return ret;
5699  }
5700  EXPORT_SYMBOL(netif_receive_skb_core);
5701  
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5702  static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5703  						  struct packet_type *pt_prev,
5704  						  struct net_device *orig_dev)
5705  {
5706  	struct sk_buff *skb, *next;
5707  
5708  	if (!pt_prev)
5709  		return;
5710  	if (list_empty(head))
5711  		return;
5712  	if (pt_prev->list_func != NULL)
5713  		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5714  				   ip_list_rcv, head, pt_prev, orig_dev);
5715  	else
5716  		list_for_each_entry_safe(skb, next, head, list) {
5717  			skb_list_del_init(skb);
5718  			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5719  		}
5720  }
5721  
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5722  static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5723  {
5724  	/* Fast-path assumptions:
5725  	 * - There is no RX handler.
5726  	 * - Only one packet_type matches.
5727  	 * If either of these fails, we will end up doing some per-packet
5728  	 * processing in-line, then handling the 'last ptype' for the whole
5729  	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5730  	 * because the 'last ptype' must be constant across the sublist, and all
5731  	 * other ptypes are handled per-packet.
5732  	 */
5733  	/* Current (common) ptype of sublist */
5734  	struct packet_type *pt_curr = NULL;
5735  	/* Current (common) orig_dev of sublist */
5736  	struct net_device *od_curr = NULL;
5737  	struct sk_buff *skb, *next;
5738  	LIST_HEAD(sublist);
5739  
5740  	list_for_each_entry_safe(skb, next, head, list) {
5741  		struct net_device *orig_dev = skb->dev;
5742  		struct packet_type *pt_prev = NULL;
5743  
5744  		skb_list_del_init(skb);
5745  		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5746  		if (!pt_prev)
5747  			continue;
5748  		if (pt_curr != pt_prev || od_curr != orig_dev) {
5749  			/* dispatch old sublist */
5750  			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5751  			/* start new sublist */
5752  			INIT_LIST_HEAD(&sublist);
5753  			pt_curr = pt_prev;
5754  			od_curr = orig_dev;
5755  		}
5756  		list_add_tail(&skb->list, &sublist);
5757  	}
5758  
5759  	/* dispatch final sublist */
5760  	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5761  }
5762  
__netif_receive_skb(struct sk_buff * skb)5763  static int __netif_receive_skb(struct sk_buff *skb)
5764  {
5765  	int ret;
5766  
5767  	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5768  		unsigned int noreclaim_flag;
5769  
5770  		/*
5771  		 * PFMEMALLOC skbs are special, they should
5772  		 * - be delivered to SOCK_MEMALLOC sockets only
5773  		 * - stay away from userspace
5774  		 * - have bounded memory usage
5775  		 *
5776  		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5777  		 * context down to all allocation sites.
5778  		 */
5779  		noreclaim_flag = memalloc_noreclaim_save();
5780  		ret = __netif_receive_skb_one_core(skb, true);
5781  		memalloc_noreclaim_restore(noreclaim_flag);
5782  	} else
5783  		ret = __netif_receive_skb_one_core(skb, false);
5784  
5785  	return ret;
5786  }
5787  
__netif_receive_skb_list(struct list_head * head)5788  static void __netif_receive_skb_list(struct list_head *head)
5789  {
5790  	unsigned long noreclaim_flag = 0;
5791  	struct sk_buff *skb, *next;
5792  	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5793  
5794  	list_for_each_entry_safe(skb, next, head, list) {
5795  		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5796  			struct list_head sublist;
5797  
5798  			/* Handle the previous sublist */
5799  			list_cut_before(&sublist, head, &skb->list);
5800  			if (!list_empty(&sublist))
5801  				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5802  			pfmemalloc = !pfmemalloc;
5803  			/* See comments in __netif_receive_skb */
5804  			if (pfmemalloc)
5805  				noreclaim_flag = memalloc_noreclaim_save();
5806  			else
5807  				memalloc_noreclaim_restore(noreclaim_flag);
5808  		}
5809  	}
5810  	/* Handle the remaining sublist */
5811  	if (!list_empty(head))
5812  		__netif_receive_skb_list_core(head, pfmemalloc);
5813  	/* Restore pflags */
5814  	if (pfmemalloc)
5815  		memalloc_noreclaim_restore(noreclaim_flag);
5816  }
5817  
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5818  static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5819  {
5820  	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5821  	struct bpf_prog *new = xdp->prog;
5822  	int ret = 0;
5823  
5824  	switch (xdp->command) {
5825  	case XDP_SETUP_PROG:
5826  		rcu_assign_pointer(dev->xdp_prog, new);
5827  		if (old)
5828  			bpf_prog_put(old);
5829  
5830  		if (old && !new) {
5831  			static_branch_dec(&generic_xdp_needed_key);
5832  		} else if (new && !old) {
5833  			static_branch_inc(&generic_xdp_needed_key);
5834  			dev_disable_lro(dev);
5835  			dev_disable_gro_hw(dev);
5836  		}
5837  		break;
5838  
5839  	default:
5840  		ret = -EINVAL;
5841  		break;
5842  	}
5843  
5844  	return ret;
5845  }
5846  
netif_receive_skb_internal(struct sk_buff * skb)5847  static int netif_receive_skb_internal(struct sk_buff *skb)
5848  {
5849  	int ret;
5850  
5851  	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5852  
5853  	if (skb_defer_rx_timestamp(skb))
5854  		return NET_RX_SUCCESS;
5855  
5856  	rcu_read_lock();
5857  #ifdef CONFIG_RPS
5858  	if (static_branch_unlikely(&rps_needed)) {
5859  		struct rps_dev_flow voidflow, *rflow = &voidflow;
5860  		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5861  
5862  		if (cpu >= 0) {
5863  			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5864  			rcu_read_unlock();
5865  			return ret;
5866  		}
5867  	}
5868  #endif
5869  	ret = __netif_receive_skb(skb);
5870  	rcu_read_unlock();
5871  	return ret;
5872  }
5873  
netif_receive_skb_list_internal(struct list_head * head)5874  void netif_receive_skb_list_internal(struct list_head *head)
5875  {
5876  	struct sk_buff *skb, *next;
5877  	LIST_HEAD(sublist);
5878  
5879  	list_for_each_entry_safe(skb, next, head, list) {
5880  		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5881  				    skb);
5882  		skb_list_del_init(skb);
5883  		if (!skb_defer_rx_timestamp(skb))
5884  			list_add_tail(&skb->list, &sublist);
5885  	}
5886  	list_splice_init(&sublist, head);
5887  
5888  	rcu_read_lock();
5889  #ifdef CONFIG_RPS
5890  	if (static_branch_unlikely(&rps_needed)) {
5891  		list_for_each_entry_safe(skb, next, head, list) {
5892  			struct rps_dev_flow voidflow, *rflow = &voidflow;
5893  			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5894  
5895  			if (cpu >= 0) {
5896  				/* Will be handled, remove from list */
5897  				skb_list_del_init(skb);
5898  				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5899  			}
5900  		}
5901  	}
5902  #endif
5903  	__netif_receive_skb_list(head);
5904  	rcu_read_unlock();
5905  }
5906  
5907  /**
5908   *	netif_receive_skb - process receive buffer from network
5909   *	@skb: buffer to process
5910   *
5911   *	netif_receive_skb() is the main receive data processing function.
5912   *	It always succeeds. The buffer may be dropped during processing
5913   *	for congestion control or by the protocol layers.
5914   *
5915   *	This function may only be called from softirq context and interrupts
5916   *	should be enabled.
5917   *
5918   *	Return values (usually ignored):
5919   *	NET_RX_SUCCESS: no congestion
5920   *	NET_RX_DROP: packet was dropped
5921   */
netif_receive_skb(struct sk_buff * skb)5922  int netif_receive_skb(struct sk_buff *skb)
5923  {
5924  	int ret;
5925  
5926  	trace_netif_receive_skb_entry(skb);
5927  
5928  	ret = netif_receive_skb_internal(skb);
5929  	trace_netif_receive_skb_exit(ret);
5930  
5931  	return ret;
5932  }
5933  EXPORT_SYMBOL(netif_receive_skb);
5934  
5935  /**
5936   *	netif_receive_skb_list - process many receive buffers from network
5937   *	@head: list of skbs to process.
5938   *
5939   *	Since return value of netif_receive_skb() is normally ignored, and
5940   *	wouldn't be meaningful for a list, this function returns void.
5941   *
5942   *	This function may only be called from softirq context and interrupts
5943   *	should be enabled.
5944   */
netif_receive_skb_list(struct list_head * head)5945  void netif_receive_skb_list(struct list_head *head)
5946  {
5947  	struct sk_buff *skb;
5948  
5949  	if (list_empty(head))
5950  		return;
5951  	if (trace_netif_receive_skb_list_entry_enabled()) {
5952  		list_for_each_entry(skb, head, list)
5953  			trace_netif_receive_skb_list_entry(skb);
5954  	}
5955  	netif_receive_skb_list_internal(head);
5956  	trace_netif_receive_skb_list_exit(0);
5957  }
5958  EXPORT_SYMBOL(netif_receive_skb_list);
5959  
5960  static DEFINE_PER_CPU(struct work_struct, flush_works);
5961  
5962  /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5963  static void flush_backlog(struct work_struct *work)
5964  {
5965  	struct sk_buff *skb, *tmp;
5966  	struct softnet_data *sd;
5967  
5968  	local_bh_disable();
5969  	sd = this_cpu_ptr(&softnet_data);
5970  
5971  	backlog_lock_irq_disable(sd);
5972  	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5973  		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5974  			__skb_unlink(skb, &sd->input_pkt_queue);
5975  			dev_kfree_skb_irq(skb);
5976  			rps_input_queue_head_incr(sd);
5977  		}
5978  	}
5979  	backlog_unlock_irq_enable(sd);
5980  
5981  	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5982  	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5983  		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5984  			__skb_unlink(skb, &sd->process_queue);
5985  			kfree_skb(skb);
5986  			rps_input_queue_head_incr(sd);
5987  		}
5988  	}
5989  	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5990  	local_bh_enable();
5991  }
5992  
flush_required(int cpu)5993  static bool flush_required(int cpu)
5994  {
5995  #if IS_ENABLED(CONFIG_RPS)
5996  	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5997  	bool do_flush;
5998  
5999  	backlog_lock_irq_disable(sd);
6000  
6001  	/* as insertion into process_queue happens with the rps lock held,
6002  	 * process_queue access may race only with dequeue
6003  	 */
6004  	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6005  		   !skb_queue_empty_lockless(&sd->process_queue);
6006  	backlog_unlock_irq_enable(sd);
6007  
6008  	return do_flush;
6009  #endif
6010  	/* without RPS we can't safely check input_pkt_queue: during a
6011  	 * concurrent remote skb_queue_splice() we can detect as empty both
6012  	 * input_pkt_queue and process_queue even if the latter could end-up
6013  	 * containing a lot of packets.
6014  	 */
6015  	return true;
6016  }
6017  
flush_all_backlogs(void)6018  static void flush_all_backlogs(void)
6019  {
6020  	static cpumask_t flush_cpus;
6021  	unsigned int cpu;
6022  
6023  	/* since we are under rtnl lock protection we can use static data
6024  	 * for the cpumask and avoid allocating on stack the possibly
6025  	 * large mask
6026  	 */
6027  	ASSERT_RTNL();
6028  
6029  	cpus_read_lock();
6030  
6031  	cpumask_clear(&flush_cpus);
6032  	for_each_online_cpu(cpu) {
6033  		if (flush_required(cpu)) {
6034  			queue_work_on(cpu, system_highpri_wq,
6035  				      per_cpu_ptr(&flush_works, cpu));
6036  			cpumask_set_cpu(cpu, &flush_cpus);
6037  		}
6038  	}
6039  
6040  	/* we can have in flight packet[s] on the cpus we are not flushing,
6041  	 * synchronize_net() in unregister_netdevice_many() will take care of
6042  	 * them
6043  	 */
6044  	for_each_cpu(cpu, &flush_cpus)
6045  		flush_work(per_cpu_ptr(&flush_works, cpu));
6046  
6047  	cpus_read_unlock();
6048  }
6049  
net_rps_send_ipi(struct softnet_data * remsd)6050  static void net_rps_send_ipi(struct softnet_data *remsd)
6051  {
6052  #ifdef CONFIG_RPS
6053  	while (remsd) {
6054  		struct softnet_data *next = remsd->rps_ipi_next;
6055  
6056  		if (cpu_online(remsd->cpu))
6057  			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6058  		remsd = next;
6059  	}
6060  #endif
6061  }
6062  
6063  /*
6064   * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6065   * Note: called with local irq disabled, but exits with local irq enabled.
6066   */
net_rps_action_and_irq_enable(struct softnet_data * sd)6067  static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6068  {
6069  #ifdef CONFIG_RPS
6070  	struct softnet_data *remsd = sd->rps_ipi_list;
6071  
6072  	if (!use_backlog_threads() && remsd) {
6073  		sd->rps_ipi_list = NULL;
6074  
6075  		local_irq_enable();
6076  
6077  		/* Send pending IPI's to kick RPS processing on remote cpus. */
6078  		net_rps_send_ipi(remsd);
6079  	} else
6080  #endif
6081  		local_irq_enable();
6082  }
6083  
sd_has_rps_ipi_waiting(struct softnet_data * sd)6084  static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6085  {
6086  #ifdef CONFIG_RPS
6087  	return !use_backlog_threads() && sd->rps_ipi_list;
6088  #else
6089  	return false;
6090  #endif
6091  }
6092  
process_backlog(struct napi_struct * napi,int quota)6093  static int process_backlog(struct napi_struct *napi, int quota)
6094  {
6095  	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6096  	bool again = true;
6097  	int work = 0;
6098  
6099  	/* Check if we have pending ipi, its better to send them now,
6100  	 * not waiting net_rx_action() end.
6101  	 */
6102  	if (sd_has_rps_ipi_waiting(sd)) {
6103  		local_irq_disable();
6104  		net_rps_action_and_irq_enable(sd);
6105  	}
6106  
6107  	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6108  	while (again) {
6109  		struct sk_buff *skb;
6110  
6111  		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6112  		while ((skb = __skb_dequeue(&sd->process_queue))) {
6113  			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6114  			rcu_read_lock();
6115  			__netif_receive_skb(skb);
6116  			rcu_read_unlock();
6117  			if (++work >= quota) {
6118  				rps_input_queue_head_add(sd, work);
6119  				return work;
6120  			}
6121  
6122  			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6123  		}
6124  		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6125  
6126  		backlog_lock_irq_disable(sd);
6127  		if (skb_queue_empty(&sd->input_pkt_queue)) {
6128  			/*
6129  			 * Inline a custom version of __napi_complete().
6130  			 * only current cpu owns and manipulates this napi,
6131  			 * and NAPI_STATE_SCHED is the only possible flag set
6132  			 * on backlog.
6133  			 * We can use a plain write instead of clear_bit(),
6134  			 * and we dont need an smp_mb() memory barrier.
6135  			 */
6136  			napi->state &= NAPIF_STATE_THREADED;
6137  			again = false;
6138  		} else {
6139  			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6140  			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6141  						   &sd->process_queue);
6142  			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6143  		}
6144  		backlog_unlock_irq_enable(sd);
6145  	}
6146  
6147  	if (work)
6148  		rps_input_queue_head_add(sd, work);
6149  	return work;
6150  }
6151  
6152  /**
6153   * __napi_schedule - schedule for receive
6154   * @n: entry to schedule
6155   *
6156   * The entry's receive function will be scheduled to run.
6157   * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6158   */
__napi_schedule(struct napi_struct * n)6159  void __napi_schedule(struct napi_struct *n)
6160  {
6161  	unsigned long flags;
6162  
6163  	local_irq_save(flags);
6164  	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6165  	local_irq_restore(flags);
6166  }
6167  EXPORT_SYMBOL(__napi_schedule);
6168  
6169  /**
6170   *	napi_schedule_prep - check if napi can be scheduled
6171   *	@n: napi context
6172   *
6173   * Test if NAPI routine is already running, and if not mark
6174   * it as running.  This is used as a condition variable to
6175   * insure only one NAPI poll instance runs.  We also make
6176   * sure there is no pending NAPI disable.
6177   */
napi_schedule_prep(struct napi_struct * n)6178  bool napi_schedule_prep(struct napi_struct *n)
6179  {
6180  	unsigned long new, val = READ_ONCE(n->state);
6181  
6182  	do {
6183  		if (unlikely(val & NAPIF_STATE_DISABLE))
6184  			return false;
6185  		new = val | NAPIF_STATE_SCHED;
6186  
6187  		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6188  		 * This was suggested by Alexander Duyck, as compiler
6189  		 * emits better code than :
6190  		 * if (val & NAPIF_STATE_SCHED)
6191  		 *     new |= NAPIF_STATE_MISSED;
6192  		 */
6193  		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6194  						   NAPIF_STATE_MISSED;
6195  	} while (!try_cmpxchg(&n->state, &val, new));
6196  
6197  	return !(val & NAPIF_STATE_SCHED);
6198  }
6199  EXPORT_SYMBOL(napi_schedule_prep);
6200  
6201  /**
6202   * __napi_schedule_irqoff - schedule for receive
6203   * @n: entry to schedule
6204   *
6205   * Variant of __napi_schedule() assuming hard irqs are masked.
6206   *
6207   * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6208   * because the interrupt disabled assumption might not be true
6209   * due to force-threaded interrupts and spinlock substitution.
6210   */
__napi_schedule_irqoff(struct napi_struct * n)6211  void __napi_schedule_irqoff(struct napi_struct *n)
6212  {
6213  	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6214  		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6215  	else
6216  		__napi_schedule(n);
6217  }
6218  EXPORT_SYMBOL(__napi_schedule_irqoff);
6219  
napi_complete_done(struct napi_struct * n,int work_done)6220  bool napi_complete_done(struct napi_struct *n, int work_done)
6221  {
6222  	unsigned long flags, val, new, timeout = 0;
6223  	bool ret = true;
6224  
6225  	/*
6226  	 * 1) Don't let napi dequeue from the cpu poll list
6227  	 *    just in case its running on a different cpu.
6228  	 * 2) If we are busy polling, do nothing here, we have
6229  	 *    the guarantee we will be called later.
6230  	 */
6231  	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6232  				 NAPIF_STATE_IN_BUSY_POLL)))
6233  		return false;
6234  
6235  	if (work_done) {
6236  		if (n->gro_bitmask)
6237  			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6238  		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6239  	}
6240  	if (n->defer_hard_irqs_count > 0) {
6241  		n->defer_hard_irqs_count--;
6242  		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6243  		if (timeout)
6244  			ret = false;
6245  	}
6246  	if (n->gro_bitmask) {
6247  		/* When the NAPI instance uses a timeout and keeps postponing
6248  		 * it, we need to bound somehow the time packets are kept in
6249  		 * the GRO layer
6250  		 */
6251  		napi_gro_flush(n, !!timeout);
6252  	}
6253  
6254  	gro_normal_list(n);
6255  
6256  	if (unlikely(!list_empty(&n->poll_list))) {
6257  		/* If n->poll_list is not empty, we need to mask irqs */
6258  		local_irq_save(flags);
6259  		list_del_init(&n->poll_list);
6260  		local_irq_restore(flags);
6261  	}
6262  	WRITE_ONCE(n->list_owner, -1);
6263  
6264  	val = READ_ONCE(n->state);
6265  	do {
6266  		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6267  
6268  		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6269  			      NAPIF_STATE_SCHED_THREADED |
6270  			      NAPIF_STATE_PREFER_BUSY_POLL);
6271  
6272  		/* If STATE_MISSED was set, leave STATE_SCHED set,
6273  		 * because we will call napi->poll() one more time.
6274  		 * This C code was suggested by Alexander Duyck to help gcc.
6275  		 */
6276  		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6277  						    NAPIF_STATE_SCHED;
6278  	} while (!try_cmpxchg(&n->state, &val, new));
6279  
6280  	if (unlikely(val & NAPIF_STATE_MISSED)) {
6281  		__napi_schedule(n);
6282  		return false;
6283  	}
6284  
6285  	if (timeout)
6286  		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6287  			      HRTIMER_MODE_REL_PINNED);
6288  	return ret;
6289  }
6290  EXPORT_SYMBOL(napi_complete_done);
6291  
6292  /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6293  struct napi_struct *napi_by_id(unsigned int napi_id)
6294  {
6295  	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6296  	struct napi_struct *napi;
6297  
6298  	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6299  		if (napi->napi_id == napi_id)
6300  			return napi;
6301  
6302  	return NULL;
6303  }
6304  
skb_defer_free_flush(struct softnet_data * sd)6305  static void skb_defer_free_flush(struct softnet_data *sd)
6306  {
6307  	struct sk_buff *skb, *next;
6308  
6309  	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6310  	if (!READ_ONCE(sd->defer_list))
6311  		return;
6312  
6313  	spin_lock(&sd->defer_lock);
6314  	skb = sd->defer_list;
6315  	sd->defer_list = NULL;
6316  	sd->defer_count = 0;
6317  	spin_unlock(&sd->defer_lock);
6318  
6319  	while (skb != NULL) {
6320  		next = skb->next;
6321  		napi_consume_skb(skb, 1);
6322  		skb = next;
6323  	}
6324  }
6325  
6326  #if defined(CONFIG_NET_RX_BUSY_POLL)
6327  
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6328  static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6329  {
6330  	if (!skip_schedule) {
6331  		gro_normal_list(napi);
6332  		__napi_schedule(napi);
6333  		return;
6334  	}
6335  
6336  	if (napi->gro_bitmask) {
6337  		/* flush too old packets
6338  		 * If HZ < 1000, flush all packets.
6339  		 */
6340  		napi_gro_flush(napi, HZ >= 1000);
6341  	}
6342  
6343  	gro_normal_list(napi);
6344  	clear_bit(NAPI_STATE_SCHED, &napi->state);
6345  }
6346  
6347  enum {
6348  	NAPI_F_PREFER_BUSY_POLL	= 1,
6349  	NAPI_F_END_ON_RESCHED	= 2,
6350  };
6351  
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6352  static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6353  			   unsigned flags, u16 budget)
6354  {
6355  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6356  	bool skip_schedule = false;
6357  	unsigned long timeout;
6358  	int rc;
6359  
6360  	/* Busy polling means there is a high chance device driver hard irq
6361  	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6362  	 * set in napi_schedule_prep().
6363  	 * Since we are about to call napi->poll() once more, we can safely
6364  	 * clear NAPI_STATE_MISSED.
6365  	 *
6366  	 * Note: x86 could use a single "lock and ..." instruction
6367  	 * to perform these two clear_bit()
6368  	 */
6369  	clear_bit(NAPI_STATE_MISSED, &napi->state);
6370  	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6371  
6372  	local_bh_disable();
6373  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6374  
6375  	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6376  		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6377  		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6378  		if (napi->defer_hard_irqs_count && timeout) {
6379  			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6380  			skip_schedule = true;
6381  		}
6382  	}
6383  
6384  	/* All we really want here is to re-enable device interrupts.
6385  	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6386  	 */
6387  	rc = napi->poll(napi, budget);
6388  	/* We can't gro_normal_list() here, because napi->poll() might have
6389  	 * rearmed the napi (napi_complete_done()) in which case it could
6390  	 * already be running on another CPU.
6391  	 */
6392  	trace_napi_poll(napi, rc, budget);
6393  	netpoll_poll_unlock(have_poll_lock);
6394  	if (rc == budget)
6395  		__busy_poll_stop(napi, skip_schedule);
6396  	bpf_net_ctx_clear(bpf_net_ctx);
6397  	local_bh_enable();
6398  }
6399  
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6400  static void __napi_busy_loop(unsigned int napi_id,
6401  		      bool (*loop_end)(void *, unsigned long),
6402  		      void *loop_end_arg, unsigned flags, u16 budget)
6403  {
6404  	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6405  	int (*napi_poll)(struct napi_struct *napi, int budget);
6406  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6407  	void *have_poll_lock = NULL;
6408  	struct napi_struct *napi;
6409  
6410  	WARN_ON_ONCE(!rcu_read_lock_held());
6411  
6412  restart:
6413  	napi_poll = NULL;
6414  
6415  	napi = napi_by_id(napi_id);
6416  	if (!napi)
6417  		return;
6418  
6419  	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6420  		preempt_disable();
6421  	for (;;) {
6422  		int work = 0;
6423  
6424  		local_bh_disable();
6425  		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6426  		if (!napi_poll) {
6427  			unsigned long val = READ_ONCE(napi->state);
6428  
6429  			/* If multiple threads are competing for this napi,
6430  			 * we avoid dirtying napi->state as much as we can.
6431  			 */
6432  			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6433  				   NAPIF_STATE_IN_BUSY_POLL)) {
6434  				if (flags & NAPI_F_PREFER_BUSY_POLL)
6435  					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6436  				goto count;
6437  			}
6438  			if (cmpxchg(&napi->state, val,
6439  				    val | NAPIF_STATE_IN_BUSY_POLL |
6440  					  NAPIF_STATE_SCHED) != val) {
6441  				if (flags & NAPI_F_PREFER_BUSY_POLL)
6442  					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6443  				goto count;
6444  			}
6445  			have_poll_lock = netpoll_poll_lock(napi);
6446  			napi_poll = napi->poll;
6447  		}
6448  		work = napi_poll(napi, budget);
6449  		trace_napi_poll(napi, work, budget);
6450  		gro_normal_list(napi);
6451  count:
6452  		if (work > 0)
6453  			__NET_ADD_STATS(dev_net(napi->dev),
6454  					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6455  		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6456  		bpf_net_ctx_clear(bpf_net_ctx);
6457  		local_bh_enable();
6458  
6459  		if (!loop_end || loop_end(loop_end_arg, start_time))
6460  			break;
6461  
6462  		if (unlikely(need_resched())) {
6463  			if (flags & NAPI_F_END_ON_RESCHED)
6464  				break;
6465  			if (napi_poll)
6466  				busy_poll_stop(napi, have_poll_lock, flags, budget);
6467  			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6468  				preempt_enable();
6469  			rcu_read_unlock();
6470  			cond_resched();
6471  			rcu_read_lock();
6472  			if (loop_end(loop_end_arg, start_time))
6473  				return;
6474  			goto restart;
6475  		}
6476  		cpu_relax();
6477  	}
6478  	if (napi_poll)
6479  		busy_poll_stop(napi, have_poll_lock, flags, budget);
6480  	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6481  		preempt_enable();
6482  }
6483  
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6484  void napi_busy_loop_rcu(unsigned int napi_id,
6485  			bool (*loop_end)(void *, unsigned long),
6486  			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6487  {
6488  	unsigned flags = NAPI_F_END_ON_RESCHED;
6489  
6490  	if (prefer_busy_poll)
6491  		flags |= NAPI_F_PREFER_BUSY_POLL;
6492  
6493  	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6494  }
6495  
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6496  void napi_busy_loop(unsigned int napi_id,
6497  		    bool (*loop_end)(void *, unsigned long),
6498  		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6499  {
6500  	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6501  
6502  	rcu_read_lock();
6503  	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6504  	rcu_read_unlock();
6505  }
6506  EXPORT_SYMBOL(napi_busy_loop);
6507  
6508  #endif /* CONFIG_NET_RX_BUSY_POLL */
6509  
napi_hash_add(struct napi_struct * napi)6510  static void napi_hash_add(struct napi_struct *napi)
6511  {
6512  	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6513  		return;
6514  
6515  	spin_lock(&napi_hash_lock);
6516  
6517  	/* 0..NR_CPUS range is reserved for sender_cpu use */
6518  	do {
6519  		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6520  			napi_gen_id = MIN_NAPI_ID;
6521  	} while (napi_by_id(napi_gen_id));
6522  	napi->napi_id = napi_gen_id;
6523  
6524  	hlist_add_head_rcu(&napi->napi_hash_node,
6525  			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6526  
6527  	spin_unlock(&napi_hash_lock);
6528  }
6529  
6530  /* Warning : caller is responsible to make sure rcu grace period
6531   * is respected before freeing memory containing @napi
6532   */
napi_hash_del(struct napi_struct * napi)6533  static void napi_hash_del(struct napi_struct *napi)
6534  {
6535  	spin_lock(&napi_hash_lock);
6536  
6537  	hlist_del_init_rcu(&napi->napi_hash_node);
6538  
6539  	spin_unlock(&napi_hash_lock);
6540  }
6541  
napi_watchdog(struct hrtimer * timer)6542  static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6543  {
6544  	struct napi_struct *napi;
6545  
6546  	napi = container_of(timer, struct napi_struct, timer);
6547  
6548  	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6549  	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6550  	 */
6551  	if (!napi_disable_pending(napi) &&
6552  	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6553  		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6554  		__napi_schedule_irqoff(napi);
6555  	}
6556  
6557  	return HRTIMER_NORESTART;
6558  }
6559  
init_gro_hash(struct napi_struct * napi)6560  static void init_gro_hash(struct napi_struct *napi)
6561  {
6562  	int i;
6563  
6564  	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6565  		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6566  		napi->gro_hash[i].count = 0;
6567  	}
6568  	napi->gro_bitmask = 0;
6569  }
6570  
dev_set_threaded(struct net_device * dev,bool threaded)6571  int dev_set_threaded(struct net_device *dev, bool threaded)
6572  {
6573  	struct napi_struct *napi;
6574  	int err = 0;
6575  
6576  	if (dev->threaded == threaded)
6577  		return 0;
6578  
6579  	if (threaded) {
6580  		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6581  			if (!napi->thread) {
6582  				err = napi_kthread_create(napi);
6583  				if (err) {
6584  					threaded = false;
6585  					break;
6586  				}
6587  			}
6588  		}
6589  	}
6590  
6591  	WRITE_ONCE(dev->threaded, threaded);
6592  
6593  	/* Make sure kthread is created before THREADED bit
6594  	 * is set.
6595  	 */
6596  	smp_mb__before_atomic();
6597  
6598  	/* Setting/unsetting threaded mode on a napi might not immediately
6599  	 * take effect, if the current napi instance is actively being
6600  	 * polled. In this case, the switch between threaded mode and
6601  	 * softirq mode will happen in the next round of napi_schedule().
6602  	 * This should not cause hiccups/stalls to the live traffic.
6603  	 */
6604  	list_for_each_entry(napi, &dev->napi_list, dev_list)
6605  		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6606  
6607  	return err;
6608  }
6609  EXPORT_SYMBOL(dev_set_threaded);
6610  
6611  /**
6612   * netif_queue_set_napi - Associate queue with the napi
6613   * @dev: device to which NAPI and queue belong
6614   * @queue_index: Index of queue
6615   * @type: queue type as RX or TX
6616   * @napi: NAPI context, pass NULL to clear previously set NAPI
6617   *
6618   * Set queue with its corresponding napi context. This should be done after
6619   * registering the NAPI handler for the queue-vector and the queues have been
6620   * mapped to the corresponding interrupt vector.
6621   */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6622  void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6623  			  enum netdev_queue_type type, struct napi_struct *napi)
6624  {
6625  	struct netdev_rx_queue *rxq;
6626  	struct netdev_queue *txq;
6627  
6628  	if (WARN_ON_ONCE(napi && !napi->dev))
6629  		return;
6630  	if (dev->reg_state >= NETREG_REGISTERED)
6631  		ASSERT_RTNL();
6632  
6633  	switch (type) {
6634  	case NETDEV_QUEUE_TYPE_RX:
6635  		rxq = __netif_get_rx_queue(dev, queue_index);
6636  		rxq->napi = napi;
6637  		return;
6638  	case NETDEV_QUEUE_TYPE_TX:
6639  		txq = netdev_get_tx_queue(dev, queue_index);
6640  		txq->napi = napi;
6641  		return;
6642  	default:
6643  		return;
6644  	}
6645  }
6646  EXPORT_SYMBOL(netif_queue_set_napi);
6647  
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6648  void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6649  			   int (*poll)(struct napi_struct *, int), int weight)
6650  {
6651  	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6652  		return;
6653  
6654  	INIT_LIST_HEAD(&napi->poll_list);
6655  	INIT_HLIST_NODE(&napi->napi_hash_node);
6656  	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6657  	napi->timer.function = napi_watchdog;
6658  	init_gro_hash(napi);
6659  	napi->skb = NULL;
6660  	INIT_LIST_HEAD(&napi->rx_list);
6661  	napi->rx_count = 0;
6662  	napi->poll = poll;
6663  	if (weight > NAPI_POLL_WEIGHT)
6664  		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6665  				weight);
6666  	napi->weight = weight;
6667  	napi->dev = dev;
6668  #ifdef CONFIG_NETPOLL
6669  	napi->poll_owner = -1;
6670  #endif
6671  	napi->list_owner = -1;
6672  	set_bit(NAPI_STATE_SCHED, &napi->state);
6673  	set_bit(NAPI_STATE_NPSVC, &napi->state);
6674  	list_add_rcu(&napi->dev_list, &dev->napi_list);
6675  	napi_hash_add(napi);
6676  	napi_get_frags_check(napi);
6677  	/* Create kthread for this napi if dev->threaded is set.
6678  	 * Clear dev->threaded if kthread creation failed so that
6679  	 * threaded mode will not be enabled in napi_enable().
6680  	 */
6681  	if (dev->threaded && napi_kthread_create(napi))
6682  		dev->threaded = false;
6683  	netif_napi_set_irq(napi, -1);
6684  }
6685  EXPORT_SYMBOL(netif_napi_add_weight);
6686  
napi_disable(struct napi_struct * n)6687  void napi_disable(struct napi_struct *n)
6688  {
6689  	unsigned long val, new;
6690  
6691  	might_sleep();
6692  	set_bit(NAPI_STATE_DISABLE, &n->state);
6693  
6694  	val = READ_ONCE(n->state);
6695  	do {
6696  		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6697  			usleep_range(20, 200);
6698  			val = READ_ONCE(n->state);
6699  		}
6700  
6701  		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6702  		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6703  	} while (!try_cmpxchg(&n->state, &val, new));
6704  
6705  	hrtimer_cancel(&n->timer);
6706  
6707  	clear_bit(NAPI_STATE_DISABLE, &n->state);
6708  }
6709  EXPORT_SYMBOL(napi_disable);
6710  
6711  /**
6712   *	napi_enable - enable NAPI scheduling
6713   *	@n: NAPI context
6714   *
6715   * Resume NAPI from being scheduled on this context.
6716   * Must be paired with napi_disable.
6717   */
napi_enable(struct napi_struct * n)6718  void napi_enable(struct napi_struct *n)
6719  {
6720  	unsigned long new, val = READ_ONCE(n->state);
6721  
6722  	do {
6723  		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6724  
6725  		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6726  		if (n->dev->threaded && n->thread)
6727  			new |= NAPIF_STATE_THREADED;
6728  	} while (!try_cmpxchg(&n->state, &val, new));
6729  }
6730  EXPORT_SYMBOL(napi_enable);
6731  
flush_gro_hash(struct napi_struct * napi)6732  static void flush_gro_hash(struct napi_struct *napi)
6733  {
6734  	int i;
6735  
6736  	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6737  		struct sk_buff *skb, *n;
6738  
6739  		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6740  			kfree_skb(skb);
6741  		napi->gro_hash[i].count = 0;
6742  	}
6743  }
6744  
6745  /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6746  void __netif_napi_del(struct napi_struct *napi)
6747  {
6748  	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6749  		return;
6750  
6751  	napi_hash_del(napi);
6752  	list_del_rcu(&napi->dev_list);
6753  	napi_free_frags(napi);
6754  
6755  	flush_gro_hash(napi);
6756  	napi->gro_bitmask = 0;
6757  
6758  	if (napi->thread) {
6759  		kthread_stop(napi->thread);
6760  		napi->thread = NULL;
6761  	}
6762  }
6763  EXPORT_SYMBOL(__netif_napi_del);
6764  
__napi_poll(struct napi_struct * n,bool * repoll)6765  static int __napi_poll(struct napi_struct *n, bool *repoll)
6766  {
6767  	int work, weight;
6768  
6769  	weight = n->weight;
6770  
6771  	/* This NAPI_STATE_SCHED test is for avoiding a race
6772  	 * with netpoll's poll_napi().  Only the entity which
6773  	 * obtains the lock and sees NAPI_STATE_SCHED set will
6774  	 * actually make the ->poll() call.  Therefore we avoid
6775  	 * accidentally calling ->poll() when NAPI is not scheduled.
6776  	 */
6777  	work = 0;
6778  	if (napi_is_scheduled(n)) {
6779  		work = n->poll(n, weight);
6780  		trace_napi_poll(n, work, weight);
6781  
6782  		xdp_do_check_flushed(n);
6783  	}
6784  
6785  	if (unlikely(work > weight))
6786  		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6787  				n->poll, work, weight);
6788  
6789  	if (likely(work < weight))
6790  		return work;
6791  
6792  	/* Drivers must not modify the NAPI state if they
6793  	 * consume the entire weight.  In such cases this code
6794  	 * still "owns" the NAPI instance and therefore can
6795  	 * move the instance around on the list at-will.
6796  	 */
6797  	if (unlikely(napi_disable_pending(n))) {
6798  		napi_complete(n);
6799  		return work;
6800  	}
6801  
6802  	/* The NAPI context has more processing work, but busy-polling
6803  	 * is preferred. Exit early.
6804  	 */
6805  	if (napi_prefer_busy_poll(n)) {
6806  		if (napi_complete_done(n, work)) {
6807  			/* If timeout is not set, we need to make sure
6808  			 * that the NAPI is re-scheduled.
6809  			 */
6810  			napi_schedule(n);
6811  		}
6812  		return work;
6813  	}
6814  
6815  	if (n->gro_bitmask) {
6816  		/* flush too old packets
6817  		 * If HZ < 1000, flush all packets.
6818  		 */
6819  		napi_gro_flush(n, HZ >= 1000);
6820  	}
6821  
6822  	gro_normal_list(n);
6823  
6824  	/* Some drivers may have called napi_schedule
6825  	 * prior to exhausting their budget.
6826  	 */
6827  	if (unlikely(!list_empty(&n->poll_list))) {
6828  		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6829  			     n->dev ? n->dev->name : "backlog");
6830  		return work;
6831  	}
6832  
6833  	*repoll = true;
6834  
6835  	return work;
6836  }
6837  
napi_poll(struct napi_struct * n,struct list_head * repoll)6838  static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6839  {
6840  	bool do_repoll = false;
6841  	void *have;
6842  	int work;
6843  
6844  	list_del_init(&n->poll_list);
6845  
6846  	have = netpoll_poll_lock(n);
6847  
6848  	work = __napi_poll(n, &do_repoll);
6849  
6850  	if (do_repoll)
6851  		list_add_tail(&n->poll_list, repoll);
6852  
6853  	netpoll_poll_unlock(have);
6854  
6855  	return work;
6856  }
6857  
napi_thread_wait(struct napi_struct * napi)6858  static int napi_thread_wait(struct napi_struct *napi)
6859  {
6860  	set_current_state(TASK_INTERRUPTIBLE);
6861  
6862  	while (!kthread_should_stop()) {
6863  		/* Testing SCHED_THREADED bit here to make sure the current
6864  		 * kthread owns this napi and could poll on this napi.
6865  		 * Testing SCHED bit is not enough because SCHED bit might be
6866  		 * set by some other busy poll thread or by napi_disable().
6867  		 */
6868  		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6869  			WARN_ON(!list_empty(&napi->poll_list));
6870  			__set_current_state(TASK_RUNNING);
6871  			return 0;
6872  		}
6873  
6874  		schedule();
6875  		set_current_state(TASK_INTERRUPTIBLE);
6876  	}
6877  	__set_current_state(TASK_RUNNING);
6878  
6879  	return -1;
6880  }
6881  
napi_threaded_poll_loop(struct napi_struct * napi)6882  static void napi_threaded_poll_loop(struct napi_struct *napi)
6883  {
6884  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6885  	struct softnet_data *sd;
6886  	unsigned long last_qs = jiffies;
6887  
6888  	for (;;) {
6889  		bool repoll = false;
6890  		void *have;
6891  
6892  		local_bh_disable();
6893  		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6894  
6895  		sd = this_cpu_ptr(&softnet_data);
6896  		sd->in_napi_threaded_poll = true;
6897  
6898  		have = netpoll_poll_lock(napi);
6899  		__napi_poll(napi, &repoll);
6900  		netpoll_poll_unlock(have);
6901  
6902  		sd->in_napi_threaded_poll = false;
6903  		barrier();
6904  
6905  		if (sd_has_rps_ipi_waiting(sd)) {
6906  			local_irq_disable();
6907  			net_rps_action_and_irq_enable(sd);
6908  		}
6909  		skb_defer_free_flush(sd);
6910  		bpf_net_ctx_clear(bpf_net_ctx);
6911  		local_bh_enable();
6912  
6913  		if (!repoll)
6914  			break;
6915  
6916  		rcu_softirq_qs_periodic(last_qs);
6917  		cond_resched();
6918  	}
6919  }
6920  
napi_threaded_poll(void * data)6921  static int napi_threaded_poll(void *data)
6922  {
6923  	struct napi_struct *napi = data;
6924  
6925  	while (!napi_thread_wait(napi))
6926  		napi_threaded_poll_loop(napi);
6927  
6928  	return 0;
6929  }
6930  
net_rx_action(void)6931  static __latent_entropy void net_rx_action(void)
6932  {
6933  	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6934  	unsigned long time_limit = jiffies +
6935  		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6936  	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6937  	int budget = READ_ONCE(net_hotdata.netdev_budget);
6938  	LIST_HEAD(list);
6939  	LIST_HEAD(repoll);
6940  
6941  	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6942  start:
6943  	sd->in_net_rx_action = true;
6944  	local_irq_disable();
6945  	list_splice_init(&sd->poll_list, &list);
6946  	local_irq_enable();
6947  
6948  	for (;;) {
6949  		struct napi_struct *n;
6950  
6951  		skb_defer_free_flush(sd);
6952  
6953  		if (list_empty(&list)) {
6954  			if (list_empty(&repoll)) {
6955  				sd->in_net_rx_action = false;
6956  				barrier();
6957  				/* We need to check if ____napi_schedule()
6958  				 * had refilled poll_list while
6959  				 * sd->in_net_rx_action was true.
6960  				 */
6961  				if (!list_empty(&sd->poll_list))
6962  					goto start;
6963  				if (!sd_has_rps_ipi_waiting(sd))
6964  					goto end;
6965  			}
6966  			break;
6967  		}
6968  
6969  		n = list_first_entry(&list, struct napi_struct, poll_list);
6970  		budget -= napi_poll(n, &repoll);
6971  
6972  		/* If softirq window is exhausted then punt.
6973  		 * Allow this to run for 2 jiffies since which will allow
6974  		 * an average latency of 1.5/HZ.
6975  		 */
6976  		if (unlikely(budget <= 0 ||
6977  			     time_after_eq(jiffies, time_limit))) {
6978  			sd->time_squeeze++;
6979  			break;
6980  		}
6981  	}
6982  
6983  	local_irq_disable();
6984  
6985  	list_splice_tail_init(&sd->poll_list, &list);
6986  	list_splice_tail(&repoll, &list);
6987  	list_splice(&list, &sd->poll_list);
6988  	if (!list_empty(&sd->poll_list))
6989  		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6990  	else
6991  		sd->in_net_rx_action = false;
6992  
6993  	net_rps_action_and_irq_enable(sd);
6994  end:
6995  	bpf_net_ctx_clear(bpf_net_ctx);
6996  }
6997  
6998  struct netdev_adjacent {
6999  	struct net_device *dev;
7000  	netdevice_tracker dev_tracker;
7001  
7002  	/* upper master flag, there can only be one master device per list */
7003  	bool master;
7004  
7005  	/* lookup ignore flag */
7006  	bool ignore;
7007  
7008  	/* counter for the number of times this device was added to us */
7009  	u16 ref_nr;
7010  
7011  	/* private field for the users */
7012  	void *private;
7013  
7014  	struct list_head list;
7015  	struct rcu_head rcu;
7016  };
7017  
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7018  static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7019  						 struct list_head *adj_list)
7020  {
7021  	struct netdev_adjacent *adj;
7022  
7023  	list_for_each_entry(adj, adj_list, list) {
7024  		if (adj->dev == adj_dev)
7025  			return adj;
7026  	}
7027  	return NULL;
7028  }
7029  
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7030  static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7031  				    struct netdev_nested_priv *priv)
7032  {
7033  	struct net_device *dev = (struct net_device *)priv->data;
7034  
7035  	return upper_dev == dev;
7036  }
7037  
7038  /**
7039   * netdev_has_upper_dev - Check if device is linked to an upper device
7040   * @dev: device
7041   * @upper_dev: upper device to check
7042   *
7043   * Find out if a device is linked to specified upper device and return true
7044   * in case it is. Note that this checks only immediate upper device,
7045   * not through a complete stack of devices. The caller must hold the RTNL lock.
7046   */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7047  bool netdev_has_upper_dev(struct net_device *dev,
7048  			  struct net_device *upper_dev)
7049  {
7050  	struct netdev_nested_priv priv = {
7051  		.data = (void *)upper_dev,
7052  	};
7053  
7054  	ASSERT_RTNL();
7055  
7056  	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7057  					     &priv);
7058  }
7059  EXPORT_SYMBOL(netdev_has_upper_dev);
7060  
7061  /**
7062   * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7063   * @dev: device
7064   * @upper_dev: upper device to check
7065   *
7066   * Find out if a device is linked to specified upper device and return true
7067   * in case it is. Note that this checks the entire upper device chain.
7068   * The caller must hold rcu lock.
7069   */
7070  
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7071  bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7072  				  struct net_device *upper_dev)
7073  {
7074  	struct netdev_nested_priv priv = {
7075  		.data = (void *)upper_dev,
7076  	};
7077  
7078  	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7079  					       &priv);
7080  }
7081  EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7082  
7083  /**
7084   * netdev_has_any_upper_dev - Check if device is linked to some device
7085   * @dev: device
7086   *
7087   * Find out if a device is linked to an upper device and return true in case
7088   * it is. The caller must hold the RTNL lock.
7089   */
netdev_has_any_upper_dev(struct net_device * dev)7090  bool netdev_has_any_upper_dev(struct net_device *dev)
7091  {
7092  	ASSERT_RTNL();
7093  
7094  	return !list_empty(&dev->adj_list.upper);
7095  }
7096  EXPORT_SYMBOL(netdev_has_any_upper_dev);
7097  
7098  /**
7099   * netdev_master_upper_dev_get - Get master upper device
7100   * @dev: device
7101   *
7102   * Find a master upper device and return pointer to it or NULL in case
7103   * it's not there. The caller must hold the RTNL lock.
7104   */
netdev_master_upper_dev_get(struct net_device * dev)7105  struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7106  {
7107  	struct netdev_adjacent *upper;
7108  
7109  	ASSERT_RTNL();
7110  
7111  	if (list_empty(&dev->adj_list.upper))
7112  		return NULL;
7113  
7114  	upper = list_first_entry(&dev->adj_list.upper,
7115  				 struct netdev_adjacent, list);
7116  	if (likely(upper->master))
7117  		return upper->dev;
7118  	return NULL;
7119  }
7120  EXPORT_SYMBOL(netdev_master_upper_dev_get);
7121  
__netdev_master_upper_dev_get(struct net_device * dev)7122  static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7123  {
7124  	struct netdev_adjacent *upper;
7125  
7126  	ASSERT_RTNL();
7127  
7128  	if (list_empty(&dev->adj_list.upper))
7129  		return NULL;
7130  
7131  	upper = list_first_entry(&dev->adj_list.upper,
7132  				 struct netdev_adjacent, list);
7133  	if (likely(upper->master) && !upper->ignore)
7134  		return upper->dev;
7135  	return NULL;
7136  }
7137  
7138  /**
7139   * netdev_has_any_lower_dev - Check if device is linked to some device
7140   * @dev: device
7141   *
7142   * Find out if a device is linked to a lower device and return true in case
7143   * it is. The caller must hold the RTNL lock.
7144   */
netdev_has_any_lower_dev(struct net_device * dev)7145  static bool netdev_has_any_lower_dev(struct net_device *dev)
7146  {
7147  	ASSERT_RTNL();
7148  
7149  	return !list_empty(&dev->adj_list.lower);
7150  }
7151  
netdev_adjacent_get_private(struct list_head * adj_list)7152  void *netdev_adjacent_get_private(struct list_head *adj_list)
7153  {
7154  	struct netdev_adjacent *adj;
7155  
7156  	adj = list_entry(adj_list, struct netdev_adjacent, list);
7157  
7158  	return adj->private;
7159  }
7160  EXPORT_SYMBOL(netdev_adjacent_get_private);
7161  
7162  /**
7163   * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7164   * @dev: device
7165   * @iter: list_head ** of the current position
7166   *
7167   * Gets the next device from the dev's upper list, starting from iter
7168   * position. The caller must hold RCU read lock.
7169   */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7170  struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7171  						 struct list_head **iter)
7172  {
7173  	struct netdev_adjacent *upper;
7174  
7175  	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7176  
7177  	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7178  
7179  	if (&upper->list == &dev->adj_list.upper)
7180  		return NULL;
7181  
7182  	*iter = &upper->list;
7183  
7184  	return upper->dev;
7185  }
7186  EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7187  
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7188  static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7189  						  struct list_head **iter,
7190  						  bool *ignore)
7191  {
7192  	struct netdev_adjacent *upper;
7193  
7194  	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7195  
7196  	if (&upper->list == &dev->adj_list.upper)
7197  		return NULL;
7198  
7199  	*iter = &upper->list;
7200  	*ignore = upper->ignore;
7201  
7202  	return upper->dev;
7203  }
7204  
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7205  static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7206  						    struct list_head **iter)
7207  {
7208  	struct netdev_adjacent *upper;
7209  
7210  	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7211  
7212  	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7213  
7214  	if (&upper->list == &dev->adj_list.upper)
7215  		return NULL;
7216  
7217  	*iter = &upper->list;
7218  
7219  	return upper->dev;
7220  }
7221  
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7222  static int __netdev_walk_all_upper_dev(struct net_device *dev,
7223  				       int (*fn)(struct net_device *dev,
7224  					 struct netdev_nested_priv *priv),
7225  				       struct netdev_nested_priv *priv)
7226  {
7227  	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7228  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7229  	int ret, cur = 0;
7230  	bool ignore;
7231  
7232  	now = dev;
7233  	iter = &dev->adj_list.upper;
7234  
7235  	while (1) {
7236  		if (now != dev) {
7237  			ret = fn(now, priv);
7238  			if (ret)
7239  				return ret;
7240  		}
7241  
7242  		next = NULL;
7243  		while (1) {
7244  			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7245  			if (!udev)
7246  				break;
7247  			if (ignore)
7248  				continue;
7249  
7250  			next = udev;
7251  			niter = &udev->adj_list.upper;
7252  			dev_stack[cur] = now;
7253  			iter_stack[cur++] = iter;
7254  			break;
7255  		}
7256  
7257  		if (!next) {
7258  			if (!cur)
7259  				return 0;
7260  			next = dev_stack[--cur];
7261  			niter = iter_stack[cur];
7262  		}
7263  
7264  		now = next;
7265  		iter = niter;
7266  	}
7267  
7268  	return 0;
7269  }
7270  
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7271  int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7272  				  int (*fn)(struct net_device *dev,
7273  					    struct netdev_nested_priv *priv),
7274  				  struct netdev_nested_priv *priv)
7275  {
7276  	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7277  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7278  	int ret, cur = 0;
7279  
7280  	now = dev;
7281  	iter = &dev->adj_list.upper;
7282  
7283  	while (1) {
7284  		if (now != dev) {
7285  			ret = fn(now, priv);
7286  			if (ret)
7287  				return ret;
7288  		}
7289  
7290  		next = NULL;
7291  		while (1) {
7292  			udev = netdev_next_upper_dev_rcu(now, &iter);
7293  			if (!udev)
7294  				break;
7295  
7296  			next = udev;
7297  			niter = &udev->adj_list.upper;
7298  			dev_stack[cur] = now;
7299  			iter_stack[cur++] = iter;
7300  			break;
7301  		}
7302  
7303  		if (!next) {
7304  			if (!cur)
7305  				return 0;
7306  			next = dev_stack[--cur];
7307  			niter = iter_stack[cur];
7308  		}
7309  
7310  		now = next;
7311  		iter = niter;
7312  	}
7313  
7314  	return 0;
7315  }
7316  EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7317  
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7318  static bool __netdev_has_upper_dev(struct net_device *dev,
7319  				   struct net_device *upper_dev)
7320  {
7321  	struct netdev_nested_priv priv = {
7322  		.flags = 0,
7323  		.data = (void *)upper_dev,
7324  	};
7325  
7326  	ASSERT_RTNL();
7327  
7328  	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7329  					   &priv);
7330  }
7331  
7332  /**
7333   * netdev_lower_get_next_private - Get the next ->private from the
7334   *				   lower neighbour list
7335   * @dev: device
7336   * @iter: list_head ** of the current position
7337   *
7338   * Gets the next netdev_adjacent->private from the dev's lower neighbour
7339   * list, starting from iter position. The caller must hold either hold the
7340   * RTNL lock or its own locking that guarantees that the neighbour lower
7341   * list will remain unchanged.
7342   */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7343  void *netdev_lower_get_next_private(struct net_device *dev,
7344  				    struct list_head **iter)
7345  {
7346  	struct netdev_adjacent *lower;
7347  
7348  	lower = list_entry(*iter, struct netdev_adjacent, list);
7349  
7350  	if (&lower->list == &dev->adj_list.lower)
7351  		return NULL;
7352  
7353  	*iter = lower->list.next;
7354  
7355  	return lower->private;
7356  }
7357  EXPORT_SYMBOL(netdev_lower_get_next_private);
7358  
7359  /**
7360   * netdev_lower_get_next_private_rcu - Get the next ->private from the
7361   *				       lower neighbour list, RCU
7362   *				       variant
7363   * @dev: device
7364   * @iter: list_head ** of the current position
7365   *
7366   * Gets the next netdev_adjacent->private from the dev's lower neighbour
7367   * list, starting from iter position. The caller must hold RCU read lock.
7368   */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7369  void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7370  					struct list_head **iter)
7371  {
7372  	struct netdev_adjacent *lower;
7373  
7374  	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7375  
7376  	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377  
7378  	if (&lower->list == &dev->adj_list.lower)
7379  		return NULL;
7380  
7381  	*iter = &lower->list;
7382  
7383  	return lower->private;
7384  }
7385  EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7386  
7387  /**
7388   * netdev_lower_get_next - Get the next device from the lower neighbour
7389   *                         list
7390   * @dev: device
7391   * @iter: list_head ** of the current position
7392   *
7393   * Gets the next netdev_adjacent from the dev's lower neighbour
7394   * list, starting from iter position. The caller must hold RTNL lock or
7395   * its own locking that guarantees that the neighbour lower
7396   * list will remain unchanged.
7397   */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7398  void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7399  {
7400  	struct netdev_adjacent *lower;
7401  
7402  	lower = list_entry(*iter, struct netdev_adjacent, list);
7403  
7404  	if (&lower->list == &dev->adj_list.lower)
7405  		return NULL;
7406  
7407  	*iter = lower->list.next;
7408  
7409  	return lower->dev;
7410  }
7411  EXPORT_SYMBOL(netdev_lower_get_next);
7412  
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7413  static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7414  						struct list_head **iter)
7415  {
7416  	struct netdev_adjacent *lower;
7417  
7418  	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7419  
7420  	if (&lower->list == &dev->adj_list.lower)
7421  		return NULL;
7422  
7423  	*iter = &lower->list;
7424  
7425  	return lower->dev;
7426  }
7427  
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7428  static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7429  						  struct list_head **iter,
7430  						  bool *ignore)
7431  {
7432  	struct netdev_adjacent *lower;
7433  
7434  	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7435  
7436  	if (&lower->list == &dev->adj_list.lower)
7437  		return NULL;
7438  
7439  	*iter = &lower->list;
7440  	*ignore = lower->ignore;
7441  
7442  	return lower->dev;
7443  }
7444  
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7445  int netdev_walk_all_lower_dev(struct net_device *dev,
7446  			      int (*fn)(struct net_device *dev,
7447  					struct netdev_nested_priv *priv),
7448  			      struct netdev_nested_priv *priv)
7449  {
7450  	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7451  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7452  	int ret, cur = 0;
7453  
7454  	now = dev;
7455  	iter = &dev->adj_list.lower;
7456  
7457  	while (1) {
7458  		if (now != dev) {
7459  			ret = fn(now, priv);
7460  			if (ret)
7461  				return ret;
7462  		}
7463  
7464  		next = NULL;
7465  		while (1) {
7466  			ldev = netdev_next_lower_dev(now, &iter);
7467  			if (!ldev)
7468  				break;
7469  
7470  			next = ldev;
7471  			niter = &ldev->adj_list.lower;
7472  			dev_stack[cur] = now;
7473  			iter_stack[cur++] = iter;
7474  			break;
7475  		}
7476  
7477  		if (!next) {
7478  			if (!cur)
7479  				return 0;
7480  			next = dev_stack[--cur];
7481  			niter = iter_stack[cur];
7482  		}
7483  
7484  		now = next;
7485  		iter = niter;
7486  	}
7487  
7488  	return 0;
7489  }
7490  EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7491  
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7492  static int __netdev_walk_all_lower_dev(struct net_device *dev,
7493  				       int (*fn)(struct net_device *dev,
7494  					 struct netdev_nested_priv *priv),
7495  				       struct netdev_nested_priv *priv)
7496  {
7497  	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7498  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7499  	int ret, cur = 0;
7500  	bool ignore;
7501  
7502  	now = dev;
7503  	iter = &dev->adj_list.lower;
7504  
7505  	while (1) {
7506  		if (now != dev) {
7507  			ret = fn(now, priv);
7508  			if (ret)
7509  				return ret;
7510  		}
7511  
7512  		next = NULL;
7513  		while (1) {
7514  			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7515  			if (!ldev)
7516  				break;
7517  			if (ignore)
7518  				continue;
7519  
7520  			next = ldev;
7521  			niter = &ldev->adj_list.lower;
7522  			dev_stack[cur] = now;
7523  			iter_stack[cur++] = iter;
7524  			break;
7525  		}
7526  
7527  		if (!next) {
7528  			if (!cur)
7529  				return 0;
7530  			next = dev_stack[--cur];
7531  			niter = iter_stack[cur];
7532  		}
7533  
7534  		now = next;
7535  		iter = niter;
7536  	}
7537  
7538  	return 0;
7539  }
7540  
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7541  struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7542  					     struct list_head **iter)
7543  {
7544  	struct netdev_adjacent *lower;
7545  
7546  	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7547  	if (&lower->list == &dev->adj_list.lower)
7548  		return NULL;
7549  
7550  	*iter = &lower->list;
7551  
7552  	return lower->dev;
7553  }
7554  EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7555  
__netdev_upper_depth(struct net_device * dev)7556  static u8 __netdev_upper_depth(struct net_device *dev)
7557  {
7558  	struct net_device *udev;
7559  	struct list_head *iter;
7560  	u8 max_depth = 0;
7561  	bool ignore;
7562  
7563  	for (iter = &dev->adj_list.upper,
7564  	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7565  	     udev;
7566  	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7567  		if (ignore)
7568  			continue;
7569  		if (max_depth < udev->upper_level)
7570  			max_depth = udev->upper_level;
7571  	}
7572  
7573  	return max_depth;
7574  }
7575  
__netdev_lower_depth(struct net_device * dev)7576  static u8 __netdev_lower_depth(struct net_device *dev)
7577  {
7578  	struct net_device *ldev;
7579  	struct list_head *iter;
7580  	u8 max_depth = 0;
7581  	bool ignore;
7582  
7583  	for (iter = &dev->adj_list.lower,
7584  	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7585  	     ldev;
7586  	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7587  		if (ignore)
7588  			continue;
7589  		if (max_depth < ldev->lower_level)
7590  			max_depth = ldev->lower_level;
7591  	}
7592  
7593  	return max_depth;
7594  }
7595  
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7596  static int __netdev_update_upper_level(struct net_device *dev,
7597  				       struct netdev_nested_priv *__unused)
7598  {
7599  	dev->upper_level = __netdev_upper_depth(dev) + 1;
7600  	return 0;
7601  }
7602  
7603  #ifdef CONFIG_LOCKDEP
7604  static LIST_HEAD(net_unlink_list);
7605  
net_unlink_todo(struct net_device * dev)7606  static void net_unlink_todo(struct net_device *dev)
7607  {
7608  	if (list_empty(&dev->unlink_list))
7609  		list_add_tail(&dev->unlink_list, &net_unlink_list);
7610  }
7611  #endif
7612  
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7613  static int __netdev_update_lower_level(struct net_device *dev,
7614  				       struct netdev_nested_priv *priv)
7615  {
7616  	dev->lower_level = __netdev_lower_depth(dev) + 1;
7617  
7618  #ifdef CONFIG_LOCKDEP
7619  	if (!priv)
7620  		return 0;
7621  
7622  	if (priv->flags & NESTED_SYNC_IMM)
7623  		dev->nested_level = dev->lower_level - 1;
7624  	if (priv->flags & NESTED_SYNC_TODO)
7625  		net_unlink_todo(dev);
7626  #endif
7627  	return 0;
7628  }
7629  
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7630  int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7631  				  int (*fn)(struct net_device *dev,
7632  					    struct netdev_nested_priv *priv),
7633  				  struct netdev_nested_priv *priv)
7634  {
7635  	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7636  	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7637  	int ret, cur = 0;
7638  
7639  	now = dev;
7640  	iter = &dev->adj_list.lower;
7641  
7642  	while (1) {
7643  		if (now != dev) {
7644  			ret = fn(now, priv);
7645  			if (ret)
7646  				return ret;
7647  		}
7648  
7649  		next = NULL;
7650  		while (1) {
7651  			ldev = netdev_next_lower_dev_rcu(now, &iter);
7652  			if (!ldev)
7653  				break;
7654  
7655  			next = ldev;
7656  			niter = &ldev->adj_list.lower;
7657  			dev_stack[cur] = now;
7658  			iter_stack[cur++] = iter;
7659  			break;
7660  		}
7661  
7662  		if (!next) {
7663  			if (!cur)
7664  				return 0;
7665  			next = dev_stack[--cur];
7666  			niter = iter_stack[cur];
7667  		}
7668  
7669  		now = next;
7670  		iter = niter;
7671  	}
7672  
7673  	return 0;
7674  }
7675  EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7676  
7677  /**
7678   * netdev_lower_get_first_private_rcu - Get the first ->private from the
7679   *				       lower neighbour list, RCU
7680   *				       variant
7681   * @dev: device
7682   *
7683   * Gets the first netdev_adjacent->private from the dev's lower neighbour
7684   * list. The caller must hold RCU read lock.
7685   */
netdev_lower_get_first_private_rcu(struct net_device * dev)7686  void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7687  {
7688  	struct netdev_adjacent *lower;
7689  
7690  	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7691  			struct netdev_adjacent, list);
7692  	if (lower)
7693  		return lower->private;
7694  	return NULL;
7695  }
7696  EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7697  
7698  /**
7699   * netdev_master_upper_dev_get_rcu - Get master upper device
7700   * @dev: device
7701   *
7702   * Find a master upper device and return pointer to it or NULL in case
7703   * it's not there. The caller must hold the RCU read lock.
7704   */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7705  struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7706  {
7707  	struct netdev_adjacent *upper;
7708  
7709  	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7710  				       struct netdev_adjacent, list);
7711  	if (upper && likely(upper->master))
7712  		return upper->dev;
7713  	return NULL;
7714  }
7715  EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7716  
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7717  static int netdev_adjacent_sysfs_add(struct net_device *dev,
7718  			      struct net_device *adj_dev,
7719  			      struct list_head *dev_list)
7720  {
7721  	char linkname[IFNAMSIZ+7];
7722  
7723  	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7724  		"upper_%s" : "lower_%s", adj_dev->name);
7725  	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7726  				 linkname);
7727  }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7728  static void netdev_adjacent_sysfs_del(struct net_device *dev,
7729  			       char *name,
7730  			       struct list_head *dev_list)
7731  {
7732  	char linkname[IFNAMSIZ+7];
7733  
7734  	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7735  		"upper_%s" : "lower_%s", name);
7736  	sysfs_remove_link(&(dev->dev.kobj), linkname);
7737  }
7738  
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7739  static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7740  						 struct net_device *adj_dev,
7741  						 struct list_head *dev_list)
7742  {
7743  	return (dev_list == &dev->adj_list.upper ||
7744  		dev_list == &dev->adj_list.lower) &&
7745  		net_eq(dev_net(dev), dev_net(adj_dev));
7746  }
7747  
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7748  static int __netdev_adjacent_dev_insert(struct net_device *dev,
7749  					struct net_device *adj_dev,
7750  					struct list_head *dev_list,
7751  					void *private, bool master)
7752  {
7753  	struct netdev_adjacent *adj;
7754  	int ret;
7755  
7756  	adj = __netdev_find_adj(adj_dev, dev_list);
7757  
7758  	if (adj) {
7759  		adj->ref_nr += 1;
7760  		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7761  			 dev->name, adj_dev->name, adj->ref_nr);
7762  
7763  		return 0;
7764  	}
7765  
7766  	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7767  	if (!adj)
7768  		return -ENOMEM;
7769  
7770  	adj->dev = adj_dev;
7771  	adj->master = master;
7772  	adj->ref_nr = 1;
7773  	adj->private = private;
7774  	adj->ignore = false;
7775  	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7776  
7777  	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7778  		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7779  
7780  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7781  		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7782  		if (ret)
7783  			goto free_adj;
7784  	}
7785  
7786  	/* Ensure that master link is always the first item in list. */
7787  	if (master) {
7788  		ret = sysfs_create_link(&(dev->dev.kobj),
7789  					&(adj_dev->dev.kobj), "master");
7790  		if (ret)
7791  			goto remove_symlinks;
7792  
7793  		list_add_rcu(&adj->list, dev_list);
7794  	} else {
7795  		list_add_tail_rcu(&adj->list, dev_list);
7796  	}
7797  
7798  	return 0;
7799  
7800  remove_symlinks:
7801  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7802  		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7803  free_adj:
7804  	netdev_put(adj_dev, &adj->dev_tracker);
7805  	kfree(adj);
7806  
7807  	return ret;
7808  }
7809  
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7810  static void __netdev_adjacent_dev_remove(struct net_device *dev,
7811  					 struct net_device *adj_dev,
7812  					 u16 ref_nr,
7813  					 struct list_head *dev_list)
7814  {
7815  	struct netdev_adjacent *adj;
7816  
7817  	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7818  		 dev->name, adj_dev->name, ref_nr);
7819  
7820  	adj = __netdev_find_adj(adj_dev, dev_list);
7821  
7822  	if (!adj) {
7823  		pr_err("Adjacency does not exist for device %s from %s\n",
7824  		       dev->name, adj_dev->name);
7825  		WARN_ON(1);
7826  		return;
7827  	}
7828  
7829  	if (adj->ref_nr > ref_nr) {
7830  		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7831  			 dev->name, adj_dev->name, ref_nr,
7832  			 adj->ref_nr - ref_nr);
7833  		adj->ref_nr -= ref_nr;
7834  		return;
7835  	}
7836  
7837  	if (adj->master)
7838  		sysfs_remove_link(&(dev->dev.kobj), "master");
7839  
7840  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7841  		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7842  
7843  	list_del_rcu(&adj->list);
7844  	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7845  		 adj_dev->name, dev->name, adj_dev->name);
7846  	netdev_put(adj_dev, &adj->dev_tracker);
7847  	kfree_rcu(adj, rcu);
7848  }
7849  
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7850  static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7851  					    struct net_device *upper_dev,
7852  					    struct list_head *up_list,
7853  					    struct list_head *down_list,
7854  					    void *private, bool master)
7855  {
7856  	int ret;
7857  
7858  	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7859  					   private, master);
7860  	if (ret)
7861  		return ret;
7862  
7863  	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7864  					   private, false);
7865  	if (ret) {
7866  		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7867  		return ret;
7868  	}
7869  
7870  	return 0;
7871  }
7872  
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7873  static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7874  					       struct net_device *upper_dev,
7875  					       u16 ref_nr,
7876  					       struct list_head *up_list,
7877  					       struct list_head *down_list)
7878  {
7879  	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7880  	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7881  }
7882  
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7883  static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7884  						struct net_device *upper_dev,
7885  						void *private, bool master)
7886  {
7887  	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7888  						&dev->adj_list.upper,
7889  						&upper_dev->adj_list.lower,
7890  						private, master);
7891  }
7892  
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7893  static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7894  						   struct net_device *upper_dev)
7895  {
7896  	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7897  					   &dev->adj_list.upper,
7898  					   &upper_dev->adj_list.lower);
7899  }
7900  
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7901  static int __netdev_upper_dev_link(struct net_device *dev,
7902  				   struct net_device *upper_dev, bool master,
7903  				   void *upper_priv, void *upper_info,
7904  				   struct netdev_nested_priv *priv,
7905  				   struct netlink_ext_ack *extack)
7906  {
7907  	struct netdev_notifier_changeupper_info changeupper_info = {
7908  		.info = {
7909  			.dev = dev,
7910  			.extack = extack,
7911  		},
7912  		.upper_dev = upper_dev,
7913  		.master = master,
7914  		.linking = true,
7915  		.upper_info = upper_info,
7916  	};
7917  	struct net_device *master_dev;
7918  	int ret = 0;
7919  
7920  	ASSERT_RTNL();
7921  
7922  	if (dev == upper_dev)
7923  		return -EBUSY;
7924  
7925  	/* To prevent loops, check if dev is not upper device to upper_dev. */
7926  	if (__netdev_has_upper_dev(upper_dev, dev))
7927  		return -EBUSY;
7928  
7929  	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7930  		return -EMLINK;
7931  
7932  	if (!master) {
7933  		if (__netdev_has_upper_dev(dev, upper_dev))
7934  			return -EEXIST;
7935  	} else {
7936  		master_dev = __netdev_master_upper_dev_get(dev);
7937  		if (master_dev)
7938  			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7939  	}
7940  
7941  	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7942  					    &changeupper_info.info);
7943  	ret = notifier_to_errno(ret);
7944  	if (ret)
7945  		return ret;
7946  
7947  	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7948  						   master);
7949  	if (ret)
7950  		return ret;
7951  
7952  	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7953  					    &changeupper_info.info);
7954  	ret = notifier_to_errno(ret);
7955  	if (ret)
7956  		goto rollback;
7957  
7958  	__netdev_update_upper_level(dev, NULL);
7959  	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7960  
7961  	__netdev_update_lower_level(upper_dev, priv);
7962  	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7963  				    priv);
7964  
7965  	return 0;
7966  
7967  rollback:
7968  	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7969  
7970  	return ret;
7971  }
7972  
7973  /**
7974   * netdev_upper_dev_link - Add a link to the upper device
7975   * @dev: device
7976   * @upper_dev: new upper device
7977   * @extack: netlink extended ack
7978   *
7979   * Adds a link to device which is upper to this one. The caller must hold
7980   * the RTNL lock. On a failure a negative errno code is returned.
7981   * On success the reference counts are adjusted and the function
7982   * returns zero.
7983   */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7984  int netdev_upper_dev_link(struct net_device *dev,
7985  			  struct net_device *upper_dev,
7986  			  struct netlink_ext_ack *extack)
7987  {
7988  	struct netdev_nested_priv priv = {
7989  		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7990  		.data = NULL,
7991  	};
7992  
7993  	return __netdev_upper_dev_link(dev, upper_dev, false,
7994  				       NULL, NULL, &priv, extack);
7995  }
7996  EXPORT_SYMBOL(netdev_upper_dev_link);
7997  
7998  /**
7999   * netdev_master_upper_dev_link - Add a master link to the upper device
8000   * @dev: device
8001   * @upper_dev: new upper device
8002   * @upper_priv: upper device private
8003   * @upper_info: upper info to be passed down via notifier
8004   * @extack: netlink extended ack
8005   *
8006   * Adds a link to device which is upper to this one. In this case, only
8007   * one master upper device can be linked, although other non-master devices
8008   * might be linked as well. The caller must hold the RTNL lock.
8009   * On a failure a negative errno code is returned. On success the reference
8010   * counts are adjusted and the function returns zero.
8011   */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8012  int netdev_master_upper_dev_link(struct net_device *dev,
8013  				 struct net_device *upper_dev,
8014  				 void *upper_priv, void *upper_info,
8015  				 struct netlink_ext_ack *extack)
8016  {
8017  	struct netdev_nested_priv priv = {
8018  		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8019  		.data = NULL,
8020  	};
8021  
8022  	return __netdev_upper_dev_link(dev, upper_dev, true,
8023  				       upper_priv, upper_info, &priv, extack);
8024  }
8025  EXPORT_SYMBOL(netdev_master_upper_dev_link);
8026  
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8027  static void __netdev_upper_dev_unlink(struct net_device *dev,
8028  				      struct net_device *upper_dev,
8029  				      struct netdev_nested_priv *priv)
8030  {
8031  	struct netdev_notifier_changeupper_info changeupper_info = {
8032  		.info = {
8033  			.dev = dev,
8034  		},
8035  		.upper_dev = upper_dev,
8036  		.linking = false,
8037  	};
8038  
8039  	ASSERT_RTNL();
8040  
8041  	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8042  
8043  	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8044  				      &changeupper_info.info);
8045  
8046  	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8047  
8048  	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8049  				      &changeupper_info.info);
8050  
8051  	__netdev_update_upper_level(dev, NULL);
8052  	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8053  
8054  	__netdev_update_lower_level(upper_dev, priv);
8055  	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8056  				    priv);
8057  }
8058  
8059  /**
8060   * netdev_upper_dev_unlink - Removes a link to upper device
8061   * @dev: device
8062   * @upper_dev: new upper device
8063   *
8064   * Removes a link to device which is upper to this one. The caller must hold
8065   * the RTNL lock.
8066   */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8067  void netdev_upper_dev_unlink(struct net_device *dev,
8068  			     struct net_device *upper_dev)
8069  {
8070  	struct netdev_nested_priv priv = {
8071  		.flags = NESTED_SYNC_TODO,
8072  		.data = NULL,
8073  	};
8074  
8075  	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8076  }
8077  EXPORT_SYMBOL(netdev_upper_dev_unlink);
8078  
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8079  static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8080  				      struct net_device *lower_dev,
8081  				      bool val)
8082  {
8083  	struct netdev_adjacent *adj;
8084  
8085  	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8086  	if (adj)
8087  		adj->ignore = val;
8088  
8089  	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8090  	if (adj)
8091  		adj->ignore = val;
8092  }
8093  
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8094  static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8095  					struct net_device *lower_dev)
8096  {
8097  	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8098  }
8099  
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8100  static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8101  				       struct net_device *lower_dev)
8102  {
8103  	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8104  }
8105  
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8106  int netdev_adjacent_change_prepare(struct net_device *old_dev,
8107  				   struct net_device *new_dev,
8108  				   struct net_device *dev,
8109  				   struct netlink_ext_ack *extack)
8110  {
8111  	struct netdev_nested_priv priv = {
8112  		.flags = 0,
8113  		.data = NULL,
8114  	};
8115  	int err;
8116  
8117  	if (!new_dev)
8118  		return 0;
8119  
8120  	if (old_dev && new_dev != old_dev)
8121  		netdev_adjacent_dev_disable(dev, old_dev);
8122  	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8123  				      extack);
8124  	if (err) {
8125  		if (old_dev && new_dev != old_dev)
8126  			netdev_adjacent_dev_enable(dev, old_dev);
8127  		return err;
8128  	}
8129  
8130  	return 0;
8131  }
8132  EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8133  
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8134  void netdev_adjacent_change_commit(struct net_device *old_dev,
8135  				   struct net_device *new_dev,
8136  				   struct net_device *dev)
8137  {
8138  	struct netdev_nested_priv priv = {
8139  		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8140  		.data = NULL,
8141  	};
8142  
8143  	if (!new_dev || !old_dev)
8144  		return;
8145  
8146  	if (new_dev == old_dev)
8147  		return;
8148  
8149  	netdev_adjacent_dev_enable(dev, old_dev);
8150  	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8151  }
8152  EXPORT_SYMBOL(netdev_adjacent_change_commit);
8153  
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8154  void netdev_adjacent_change_abort(struct net_device *old_dev,
8155  				  struct net_device *new_dev,
8156  				  struct net_device *dev)
8157  {
8158  	struct netdev_nested_priv priv = {
8159  		.flags = 0,
8160  		.data = NULL,
8161  	};
8162  
8163  	if (!new_dev)
8164  		return;
8165  
8166  	if (old_dev && new_dev != old_dev)
8167  		netdev_adjacent_dev_enable(dev, old_dev);
8168  
8169  	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8170  }
8171  EXPORT_SYMBOL(netdev_adjacent_change_abort);
8172  
8173  /**
8174   * netdev_bonding_info_change - Dispatch event about slave change
8175   * @dev: device
8176   * @bonding_info: info to dispatch
8177   *
8178   * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8179   * The caller must hold the RTNL lock.
8180   */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8181  void netdev_bonding_info_change(struct net_device *dev,
8182  				struct netdev_bonding_info *bonding_info)
8183  {
8184  	struct netdev_notifier_bonding_info info = {
8185  		.info.dev = dev,
8186  	};
8187  
8188  	memcpy(&info.bonding_info, bonding_info,
8189  	       sizeof(struct netdev_bonding_info));
8190  	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8191  				      &info.info);
8192  }
8193  EXPORT_SYMBOL(netdev_bonding_info_change);
8194  
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8195  static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8196  					   struct netlink_ext_ack *extack)
8197  {
8198  	struct netdev_notifier_offload_xstats_info info = {
8199  		.info.dev = dev,
8200  		.info.extack = extack,
8201  		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8202  	};
8203  	int err;
8204  	int rc;
8205  
8206  	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8207  					 GFP_KERNEL);
8208  	if (!dev->offload_xstats_l3)
8209  		return -ENOMEM;
8210  
8211  	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8212  						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8213  						  &info.info);
8214  	err = notifier_to_errno(rc);
8215  	if (err)
8216  		goto free_stats;
8217  
8218  	return 0;
8219  
8220  free_stats:
8221  	kfree(dev->offload_xstats_l3);
8222  	dev->offload_xstats_l3 = NULL;
8223  	return err;
8224  }
8225  
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8226  int netdev_offload_xstats_enable(struct net_device *dev,
8227  				 enum netdev_offload_xstats_type type,
8228  				 struct netlink_ext_ack *extack)
8229  {
8230  	ASSERT_RTNL();
8231  
8232  	if (netdev_offload_xstats_enabled(dev, type))
8233  		return -EALREADY;
8234  
8235  	switch (type) {
8236  	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8237  		return netdev_offload_xstats_enable_l3(dev, extack);
8238  	}
8239  
8240  	WARN_ON(1);
8241  	return -EINVAL;
8242  }
8243  EXPORT_SYMBOL(netdev_offload_xstats_enable);
8244  
netdev_offload_xstats_disable_l3(struct net_device * dev)8245  static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8246  {
8247  	struct netdev_notifier_offload_xstats_info info = {
8248  		.info.dev = dev,
8249  		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8250  	};
8251  
8252  	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8253  				      &info.info);
8254  	kfree(dev->offload_xstats_l3);
8255  	dev->offload_xstats_l3 = NULL;
8256  }
8257  
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8258  int netdev_offload_xstats_disable(struct net_device *dev,
8259  				  enum netdev_offload_xstats_type type)
8260  {
8261  	ASSERT_RTNL();
8262  
8263  	if (!netdev_offload_xstats_enabled(dev, type))
8264  		return -EALREADY;
8265  
8266  	switch (type) {
8267  	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8268  		netdev_offload_xstats_disable_l3(dev);
8269  		return 0;
8270  	}
8271  
8272  	WARN_ON(1);
8273  	return -EINVAL;
8274  }
8275  EXPORT_SYMBOL(netdev_offload_xstats_disable);
8276  
netdev_offload_xstats_disable_all(struct net_device * dev)8277  static void netdev_offload_xstats_disable_all(struct net_device *dev)
8278  {
8279  	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8280  }
8281  
8282  static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8283  netdev_offload_xstats_get_ptr(const struct net_device *dev,
8284  			      enum netdev_offload_xstats_type type)
8285  {
8286  	switch (type) {
8287  	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8288  		return dev->offload_xstats_l3;
8289  	}
8290  
8291  	WARN_ON(1);
8292  	return NULL;
8293  }
8294  
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8295  bool netdev_offload_xstats_enabled(const struct net_device *dev,
8296  				   enum netdev_offload_xstats_type type)
8297  {
8298  	ASSERT_RTNL();
8299  
8300  	return netdev_offload_xstats_get_ptr(dev, type);
8301  }
8302  EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8303  
8304  struct netdev_notifier_offload_xstats_ru {
8305  	bool used;
8306  };
8307  
8308  struct netdev_notifier_offload_xstats_rd {
8309  	struct rtnl_hw_stats64 stats;
8310  	bool used;
8311  };
8312  
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8313  static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8314  				  const struct rtnl_hw_stats64 *src)
8315  {
8316  	dest->rx_packets	  += src->rx_packets;
8317  	dest->tx_packets	  += src->tx_packets;
8318  	dest->rx_bytes		  += src->rx_bytes;
8319  	dest->tx_bytes		  += src->tx_bytes;
8320  	dest->rx_errors		  += src->rx_errors;
8321  	dest->tx_errors		  += src->tx_errors;
8322  	dest->rx_dropped	  += src->rx_dropped;
8323  	dest->tx_dropped	  += src->tx_dropped;
8324  	dest->multicast		  += src->multicast;
8325  }
8326  
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8327  static int netdev_offload_xstats_get_used(struct net_device *dev,
8328  					  enum netdev_offload_xstats_type type,
8329  					  bool *p_used,
8330  					  struct netlink_ext_ack *extack)
8331  {
8332  	struct netdev_notifier_offload_xstats_ru report_used = {};
8333  	struct netdev_notifier_offload_xstats_info info = {
8334  		.info.dev = dev,
8335  		.info.extack = extack,
8336  		.type = type,
8337  		.report_used = &report_used,
8338  	};
8339  	int rc;
8340  
8341  	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8342  	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8343  					   &info.info);
8344  	*p_used = report_used.used;
8345  	return notifier_to_errno(rc);
8346  }
8347  
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8348  static int netdev_offload_xstats_get_stats(struct net_device *dev,
8349  					   enum netdev_offload_xstats_type type,
8350  					   struct rtnl_hw_stats64 *p_stats,
8351  					   bool *p_used,
8352  					   struct netlink_ext_ack *extack)
8353  {
8354  	struct netdev_notifier_offload_xstats_rd report_delta = {};
8355  	struct netdev_notifier_offload_xstats_info info = {
8356  		.info.dev = dev,
8357  		.info.extack = extack,
8358  		.type = type,
8359  		.report_delta = &report_delta,
8360  	};
8361  	struct rtnl_hw_stats64 *stats;
8362  	int rc;
8363  
8364  	stats = netdev_offload_xstats_get_ptr(dev, type);
8365  	if (WARN_ON(!stats))
8366  		return -EINVAL;
8367  
8368  	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8369  					   &info.info);
8370  
8371  	/* Cache whatever we got, even if there was an error, otherwise the
8372  	 * successful stats retrievals would get lost.
8373  	 */
8374  	netdev_hw_stats64_add(stats, &report_delta.stats);
8375  
8376  	if (p_stats)
8377  		*p_stats = *stats;
8378  	*p_used = report_delta.used;
8379  
8380  	return notifier_to_errno(rc);
8381  }
8382  
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8383  int netdev_offload_xstats_get(struct net_device *dev,
8384  			      enum netdev_offload_xstats_type type,
8385  			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8386  			      struct netlink_ext_ack *extack)
8387  {
8388  	ASSERT_RTNL();
8389  
8390  	if (p_stats)
8391  		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8392  						       p_used, extack);
8393  	else
8394  		return netdev_offload_xstats_get_used(dev, type, p_used,
8395  						      extack);
8396  }
8397  EXPORT_SYMBOL(netdev_offload_xstats_get);
8398  
8399  void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8400  netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8401  				   const struct rtnl_hw_stats64 *stats)
8402  {
8403  	report_delta->used = true;
8404  	netdev_hw_stats64_add(&report_delta->stats, stats);
8405  }
8406  EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8407  
8408  void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8409  netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8410  {
8411  	report_used->used = true;
8412  }
8413  EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8414  
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8415  void netdev_offload_xstats_push_delta(struct net_device *dev,
8416  				      enum netdev_offload_xstats_type type,
8417  				      const struct rtnl_hw_stats64 *p_stats)
8418  {
8419  	struct rtnl_hw_stats64 *stats;
8420  
8421  	ASSERT_RTNL();
8422  
8423  	stats = netdev_offload_xstats_get_ptr(dev, type);
8424  	if (WARN_ON(!stats))
8425  		return;
8426  
8427  	netdev_hw_stats64_add(stats, p_stats);
8428  }
8429  EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8430  
8431  /**
8432   * netdev_get_xmit_slave - Get the xmit slave of master device
8433   * @dev: device
8434   * @skb: The packet
8435   * @all_slaves: assume all the slaves are active
8436   *
8437   * The reference counters are not incremented so the caller must be
8438   * careful with locks. The caller must hold RCU lock.
8439   * %NULL is returned if no slave is found.
8440   */
8441  
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8442  struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8443  					 struct sk_buff *skb,
8444  					 bool all_slaves)
8445  {
8446  	const struct net_device_ops *ops = dev->netdev_ops;
8447  
8448  	if (!ops->ndo_get_xmit_slave)
8449  		return NULL;
8450  	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8451  }
8452  EXPORT_SYMBOL(netdev_get_xmit_slave);
8453  
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8454  static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8455  						  struct sock *sk)
8456  {
8457  	const struct net_device_ops *ops = dev->netdev_ops;
8458  
8459  	if (!ops->ndo_sk_get_lower_dev)
8460  		return NULL;
8461  	return ops->ndo_sk_get_lower_dev(dev, sk);
8462  }
8463  
8464  /**
8465   * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8466   * @dev: device
8467   * @sk: the socket
8468   *
8469   * %NULL is returned if no lower device is found.
8470   */
8471  
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8472  struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8473  					    struct sock *sk)
8474  {
8475  	struct net_device *lower;
8476  
8477  	lower = netdev_sk_get_lower_dev(dev, sk);
8478  	while (lower) {
8479  		dev = lower;
8480  		lower = netdev_sk_get_lower_dev(dev, sk);
8481  	}
8482  
8483  	return dev;
8484  }
8485  EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8486  
netdev_adjacent_add_links(struct net_device * dev)8487  static void netdev_adjacent_add_links(struct net_device *dev)
8488  {
8489  	struct netdev_adjacent *iter;
8490  
8491  	struct net *net = dev_net(dev);
8492  
8493  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8494  		if (!net_eq(net, dev_net(iter->dev)))
8495  			continue;
8496  		netdev_adjacent_sysfs_add(iter->dev, dev,
8497  					  &iter->dev->adj_list.lower);
8498  		netdev_adjacent_sysfs_add(dev, iter->dev,
8499  					  &dev->adj_list.upper);
8500  	}
8501  
8502  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8503  		if (!net_eq(net, dev_net(iter->dev)))
8504  			continue;
8505  		netdev_adjacent_sysfs_add(iter->dev, dev,
8506  					  &iter->dev->adj_list.upper);
8507  		netdev_adjacent_sysfs_add(dev, iter->dev,
8508  					  &dev->adj_list.lower);
8509  	}
8510  }
8511  
netdev_adjacent_del_links(struct net_device * dev)8512  static void netdev_adjacent_del_links(struct net_device *dev)
8513  {
8514  	struct netdev_adjacent *iter;
8515  
8516  	struct net *net = dev_net(dev);
8517  
8518  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8519  		if (!net_eq(net, dev_net(iter->dev)))
8520  			continue;
8521  		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8522  					  &iter->dev->adj_list.lower);
8523  		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8524  					  &dev->adj_list.upper);
8525  	}
8526  
8527  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8528  		if (!net_eq(net, dev_net(iter->dev)))
8529  			continue;
8530  		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8531  					  &iter->dev->adj_list.upper);
8532  		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8533  					  &dev->adj_list.lower);
8534  	}
8535  }
8536  
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8537  void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8538  {
8539  	struct netdev_adjacent *iter;
8540  
8541  	struct net *net = dev_net(dev);
8542  
8543  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8544  		if (!net_eq(net, dev_net(iter->dev)))
8545  			continue;
8546  		netdev_adjacent_sysfs_del(iter->dev, oldname,
8547  					  &iter->dev->adj_list.lower);
8548  		netdev_adjacent_sysfs_add(iter->dev, dev,
8549  					  &iter->dev->adj_list.lower);
8550  	}
8551  
8552  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8553  		if (!net_eq(net, dev_net(iter->dev)))
8554  			continue;
8555  		netdev_adjacent_sysfs_del(iter->dev, oldname,
8556  					  &iter->dev->adj_list.upper);
8557  		netdev_adjacent_sysfs_add(iter->dev, dev,
8558  					  &iter->dev->adj_list.upper);
8559  	}
8560  }
8561  
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8562  void *netdev_lower_dev_get_private(struct net_device *dev,
8563  				   struct net_device *lower_dev)
8564  {
8565  	struct netdev_adjacent *lower;
8566  
8567  	if (!lower_dev)
8568  		return NULL;
8569  	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8570  	if (!lower)
8571  		return NULL;
8572  
8573  	return lower->private;
8574  }
8575  EXPORT_SYMBOL(netdev_lower_dev_get_private);
8576  
8577  
8578  /**
8579   * netdev_lower_state_changed - Dispatch event about lower device state change
8580   * @lower_dev: device
8581   * @lower_state_info: state to dispatch
8582   *
8583   * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8584   * The caller must hold the RTNL lock.
8585   */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8586  void netdev_lower_state_changed(struct net_device *lower_dev,
8587  				void *lower_state_info)
8588  {
8589  	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8590  		.info.dev = lower_dev,
8591  	};
8592  
8593  	ASSERT_RTNL();
8594  	changelowerstate_info.lower_state_info = lower_state_info;
8595  	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8596  				      &changelowerstate_info.info);
8597  }
8598  EXPORT_SYMBOL(netdev_lower_state_changed);
8599  
dev_change_rx_flags(struct net_device * dev,int flags)8600  static void dev_change_rx_flags(struct net_device *dev, int flags)
8601  {
8602  	const struct net_device_ops *ops = dev->netdev_ops;
8603  
8604  	if (ops->ndo_change_rx_flags)
8605  		ops->ndo_change_rx_flags(dev, flags);
8606  }
8607  
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8608  static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8609  {
8610  	unsigned int old_flags = dev->flags;
8611  	unsigned int promiscuity, flags;
8612  	kuid_t uid;
8613  	kgid_t gid;
8614  
8615  	ASSERT_RTNL();
8616  
8617  	promiscuity = dev->promiscuity + inc;
8618  	if (promiscuity == 0) {
8619  		/*
8620  		 * Avoid overflow.
8621  		 * If inc causes overflow, untouch promisc and return error.
8622  		 */
8623  		if (unlikely(inc > 0)) {
8624  			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8625  			return -EOVERFLOW;
8626  		}
8627  		flags = old_flags & ~IFF_PROMISC;
8628  	} else {
8629  		flags = old_flags | IFF_PROMISC;
8630  	}
8631  	WRITE_ONCE(dev->promiscuity, promiscuity);
8632  	if (flags != old_flags) {
8633  		WRITE_ONCE(dev->flags, flags);
8634  		netdev_info(dev, "%s promiscuous mode\n",
8635  			    dev->flags & IFF_PROMISC ? "entered" : "left");
8636  		if (audit_enabled) {
8637  			current_uid_gid(&uid, &gid);
8638  			audit_log(audit_context(), GFP_ATOMIC,
8639  				  AUDIT_ANOM_PROMISCUOUS,
8640  				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8641  				  dev->name, (dev->flags & IFF_PROMISC),
8642  				  (old_flags & IFF_PROMISC),
8643  				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8644  				  from_kuid(&init_user_ns, uid),
8645  				  from_kgid(&init_user_ns, gid),
8646  				  audit_get_sessionid(current));
8647  		}
8648  
8649  		dev_change_rx_flags(dev, IFF_PROMISC);
8650  	}
8651  	if (notify)
8652  		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8653  	return 0;
8654  }
8655  
8656  /**
8657   *	dev_set_promiscuity	- update promiscuity count on a device
8658   *	@dev: device
8659   *	@inc: modifier
8660   *
8661   *	Add or remove promiscuity from a device. While the count in the device
8662   *	remains above zero the interface remains promiscuous. Once it hits zero
8663   *	the device reverts back to normal filtering operation. A negative inc
8664   *	value is used to drop promiscuity on the device.
8665   *	Return 0 if successful or a negative errno code on error.
8666   */
dev_set_promiscuity(struct net_device * dev,int inc)8667  int dev_set_promiscuity(struct net_device *dev, int inc)
8668  {
8669  	unsigned int old_flags = dev->flags;
8670  	int err;
8671  
8672  	err = __dev_set_promiscuity(dev, inc, true);
8673  	if (err < 0)
8674  		return err;
8675  	if (dev->flags != old_flags)
8676  		dev_set_rx_mode(dev);
8677  	return err;
8678  }
8679  EXPORT_SYMBOL(dev_set_promiscuity);
8680  
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8681  static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8682  {
8683  	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8684  	unsigned int allmulti, flags;
8685  
8686  	ASSERT_RTNL();
8687  
8688  	allmulti = dev->allmulti + inc;
8689  	if (allmulti == 0) {
8690  		/*
8691  		 * Avoid overflow.
8692  		 * If inc causes overflow, untouch allmulti and return error.
8693  		 */
8694  		if (unlikely(inc > 0)) {
8695  			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8696  			return -EOVERFLOW;
8697  		}
8698  		flags = old_flags & ~IFF_ALLMULTI;
8699  	} else {
8700  		flags = old_flags | IFF_ALLMULTI;
8701  	}
8702  	WRITE_ONCE(dev->allmulti, allmulti);
8703  	if (flags != old_flags) {
8704  		WRITE_ONCE(dev->flags, flags);
8705  		netdev_info(dev, "%s allmulticast mode\n",
8706  			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8707  		dev_change_rx_flags(dev, IFF_ALLMULTI);
8708  		dev_set_rx_mode(dev);
8709  		if (notify)
8710  			__dev_notify_flags(dev, old_flags,
8711  					   dev->gflags ^ old_gflags, 0, NULL);
8712  	}
8713  	return 0;
8714  }
8715  
8716  /**
8717   *	dev_set_allmulti	- update allmulti count on a device
8718   *	@dev: device
8719   *	@inc: modifier
8720   *
8721   *	Add or remove reception of all multicast frames to a device. While the
8722   *	count in the device remains above zero the interface remains listening
8723   *	to all interfaces. Once it hits zero the device reverts back to normal
8724   *	filtering operation. A negative @inc value is used to drop the counter
8725   *	when releasing a resource needing all multicasts.
8726   *	Return 0 if successful or a negative errno code on error.
8727   */
8728  
dev_set_allmulti(struct net_device * dev,int inc)8729  int dev_set_allmulti(struct net_device *dev, int inc)
8730  {
8731  	return __dev_set_allmulti(dev, inc, true);
8732  }
8733  EXPORT_SYMBOL(dev_set_allmulti);
8734  
8735  /*
8736   *	Upload unicast and multicast address lists to device and
8737   *	configure RX filtering. When the device doesn't support unicast
8738   *	filtering it is put in promiscuous mode while unicast addresses
8739   *	are present.
8740   */
__dev_set_rx_mode(struct net_device * dev)8741  void __dev_set_rx_mode(struct net_device *dev)
8742  {
8743  	const struct net_device_ops *ops = dev->netdev_ops;
8744  
8745  	/* dev_open will call this function so the list will stay sane. */
8746  	if (!(dev->flags&IFF_UP))
8747  		return;
8748  
8749  	if (!netif_device_present(dev))
8750  		return;
8751  
8752  	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8753  		/* Unicast addresses changes may only happen under the rtnl,
8754  		 * therefore calling __dev_set_promiscuity here is safe.
8755  		 */
8756  		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8757  			__dev_set_promiscuity(dev, 1, false);
8758  			dev->uc_promisc = true;
8759  		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8760  			__dev_set_promiscuity(dev, -1, false);
8761  			dev->uc_promisc = false;
8762  		}
8763  	}
8764  
8765  	if (ops->ndo_set_rx_mode)
8766  		ops->ndo_set_rx_mode(dev);
8767  }
8768  
dev_set_rx_mode(struct net_device * dev)8769  void dev_set_rx_mode(struct net_device *dev)
8770  {
8771  	netif_addr_lock_bh(dev);
8772  	__dev_set_rx_mode(dev);
8773  	netif_addr_unlock_bh(dev);
8774  }
8775  
8776  /**
8777   *	dev_get_flags - get flags reported to userspace
8778   *	@dev: device
8779   *
8780   *	Get the combination of flag bits exported through APIs to userspace.
8781   */
dev_get_flags(const struct net_device * dev)8782  unsigned int dev_get_flags(const struct net_device *dev)
8783  {
8784  	unsigned int flags;
8785  
8786  	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8787  				IFF_ALLMULTI |
8788  				IFF_RUNNING |
8789  				IFF_LOWER_UP |
8790  				IFF_DORMANT)) |
8791  		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8792  				IFF_ALLMULTI));
8793  
8794  	if (netif_running(dev)) {
8795  		if (netif_oper_up(dev))
8796  			flags |= IFF_RUNNING;
8797  		if (netif_carrier_ok(dev))
8798  			flags |= IFF_LOWER_UP;
8799  		if (netif_dormant(dev))
8800  			flags |= IFF_DORMANT;
8801  	}
8802  
8803  	return flags;
8804  }
8805  EXPORT_SYMBOL(dev_get_flags);
8806  
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8807  int __dev_change_flags(struct net_device *dev, unsigned int flags,
8808  		       struct netlink_ext_ack *extack)
8809  {
8810  	unsigned int old_flags = dev->flags;
8811  	int ret;
8812  
8813  	ASSERT_RTNL();
8814  
8815  	/*
8816  	 *	Set the flags on our device.
8817  	 */
8818  
8819  	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8820  			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8821  			       IFF_AUTOMEDIA)) |
8822  		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8823  				    IFF_ALLMULTI));
8824  
8825  	/*
8826  	 *	Load in the correct multicast list now the flags have changed.
8827  	 */
8828  
8829  	if ((old_flags ^ flags) & IFF_MULTICAST)
8830  		dev_change_rx_flags(dev, IFF_MULTICAST);
8831  
8832  	dev_set_rx_mode(dev);
8833  
8834  	/*
8835  	 *	Have we downed the interface. We handle IFF_UP ourselves
8836  	 *	according to user attempts to set it, rather than blindly
8837  	 *	setting it.
8838  	 */
8839  
8840  	ret = 0;
8841  	if ((old_flags ^ flags) & IFF_UP) {
8842  		if (old_flags & IFF_UP)
8843  			__dev_close(dev);
8844  		else
8845  			ret = __dev_open(dev, extack);
8846  	}
8847  
8848  	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8849  		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8850  		unsigned int old_flags = dev->flags;
8851  
8852  		dev->gflags ^= IFF_PROMISC;
8853  
8854  		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8855  			if (dev->flags != old_flags)
8856  				dev_set_rx_mode(dev);
8857  	}
8858  
8859  	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8860  	 * is important. Some (broken) drivers set IFF_PROMISC, when
8861  	 * IFF_ALLMULTI is requested not asking us and not reporting.
8862  	 */
8863  	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8864  		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8865  
8866  		dev->gflags ^= IFF_ALLMULTI;
8867  		__dev_set_allmulti(dev, inc, false);
8868  	}
8869  
8870  	return ret;
8871  }
8872  
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8873  void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8874  			unsigned int gchanges, u32 portid,
8875  			const struct nlmsghdr *nlh)
8876  {
8877  	unsigned int changes = dev->flags ^ old_flags;
8878  
8879  	if (gchanges)
8880  		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8881  
8882  	if (changes & IFF_UP) {
8883  		if (dev->flags & IFF_UP)
8884  			call_netdevice_notifiers(NETDEV_UP, dev);
8885  		else
8886  			call_netdevice_notifiers(NETDEV_DOWN, dev);
8887  	}
8888  
8889  	if (dev->flags & IFF_UP &&
8890  	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8891  		struct netdev_notifier_change_info change_info = {
8892  			.info = {
8893  				.dev = dev,
8894  			},
8895  			.flags_changed = changes,
8896  		};
8897  
8898  		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8899  	}
8900  }
8901  
8902  /**
8903   *	dev_change_flags - change device settings
8904   *	@dev: device
8905   *	@flags: device state flags
8906   *	@extack: netlink extended ack
8907   *
8908   *	Change settings on device based state flags. The flags are
8909   *	in the userspace exported format.
8910   */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8911  int dev_change_flags(struct net_device *dev, unsigned int flags,
8912  		     struct netlink_ext_ack *extack)
8913  {
8914  	int ret;
8915  	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8916  
8917  	ret = __dev_change_flags(dev, flags, extack);
8918  	if (ret < 0)
8919  		return ret;
8920  
8921  	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8922  	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8923  	return ret;
8924  }
8925  EXPORT_SYMBOL(dev_change_flags);
8926  
__dev_set_mtu(struct net_device * dev,int new_mtu)8927  int __dev_set_mtu(struct net_device *dev, int new_mtu)
8928  {
8929  	const struct net_device_ops *ops = dev->netdev_ops;
8930  
8931  	if (ops->ndo_change_mtu)
8932  		return ops->ndo_change_mtu(dev, new_mtu);
8933  
8934  	/* Pairs with all the lockless reads of dev->mtu in the stack */
8935  	WRITE_ONCE(dev->mtu, new_mtu);
8936  	return 0;
8937  }
8938  EXPORT_SYMBOL(__dev_set_mtu);
8939  
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8940  int dev_validate_mtu(struct net_device *dev, int new_mtu,
8941  		     struct netlink_ext_ack *extack)
8942  {
8943  	/* MTU must be positive, and in range */
8944  	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8945  		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8946  		return -EINVAL;
8947  	}
8948  
8949  	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8950  		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8951  		return -EINVAL;
8952  	}
8953  	return 0;
8954  }
8955  
8956  /**
8957   *	dev_set_mtu_ext - Change maximum transfer unit
8958   *	@dev: device
8959   *	@new_mtu: new transfer unit
8960   *	@extack: netlink extended ack
8961   *
8962   *	Change the maximum transfer size of the network device.
8963   */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8964  int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8965  		    struct netlink_ext_ack *extack)
8966  {
8967  	int err, orig_mtu;
8968  
8969  	if (new_mtu == dev->mtu)
8970  		return 0;
8971  
8972  	err = dev_validate_mtu(dev, new_mtu, extack);
8973  	if (err)
8974  		return err;
8975  
8976  	if (!netif_device_present(dev))
8977  		return -ENODEV;
8978  
8979  	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8980  	err = notifier_to_errno(err);
8981  	if (err)
8982  		return err;
8983  
8984  	orig_mtu = dev->mtu;
8985  	err = __dev_set_mtu(dev, new_mtu);
8986  
8987  	if (!err) {
8988  		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8989  						   orig_mtu);
8990  		err = notifier_to_errno(err);
8991  		if (err) {
8992  			/* setting mtu back and notifying everyone again,
8993  			 * so that they have a chance to revert changes.
8994  			 */
8995  			__dev_set_mtu(dev, orig_mtu);
8996  			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8997  						     new_mtu);
8998  		}
8999  	}
9000  	return err;
9001  }
9002  
dev_set_mtu(struct net_device * dev,int new_mtu)9003  int dev_set_mtu(struct net_device *dev, int new_mtu)
9004  {
9005  	struct netlink_ext_ack extack;
9006  	int err;
9007  
9008  	memset(&extack, 0, sizeof(extack));
9009  	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9010  	if (err && extack._msg)
9011  		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9012  	return err;
9013  }
9014  EXPORT_SYMBOL(dev_set_mtu);
9015  
9016  /**
9017   *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9018   *	@dev: device
9019   *	@new_len: new tx queue length
9020   */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9021  int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9022  {
9023  	unsigned int orig_len = dev->tx_queue_len;
9024  	int res;
9025  
9026  	if (new_len != (unsigned int)new_len)
9027  		return -ERANGE;
9028  
9029  	if (new_len != orig_len) {
9030  		WRITE_ONCE(dev->tx_queue_len, new_len);
9031  		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9032  		res = notifier_to_errno(res);
9033  		if (res)
9034  			goto err_rollback;
9035  		res = dev_qdisc_change_tx_queue_len(dev);
9036  		if (res)
9037  			goto err_rollback;
9038  	}
9039  
9040  	return 0;
9041  
9042  err_rollback:
9043  	netdev_err(dev, "refused to change device tx_queue_len\n");
9044  	WRITE_ONCE(dev->tx_queue_len, orig_len);
9045  	return res;
9046  }
9047  
9048  /**
9049   *	dev_set_group - Change group this device belongs to
9050   *	@dev: device
9051   *	@new_group: group this device should belong to
9052   */
dev_set_group(struct net_device * dev,int new_group)9053  void dev_set_group(struct net_device *dev, int new_group)
9054  {
9055  	dev->group = new_group;
9056  }
9057  
9058  /**
9059   *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9060   *	@dev: device
9061   *	@addr: new address
9062   *	@extack: netlink extended ack
9063   */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9064  int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9065  			      struct netlink_ext_ack *extack)
9066  {
9067  	struct netdev_notifier_pre_changeaddr_info info = {
9068  		.info.dev = dev,
9069  		.info.extack = extack,
9070  		.dev_addr = addr,
9071  	};
9072  	int rc;
9073  
9074  	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9075  	return notifier_to_errno(rc);
9076  }
9077  EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9078  
9079  /**
9080   *	dev_set_mac_address - Change Media Access Control Address
9081   *	@dev: device
9082   *	@sa: new address
9083   *	@extack: netlink extended ack
9084   *
9085   *	Change the hardware (MAC) address of the device
9086   */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9087  int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9088  			struct netlink_ext_ack *extack)
9089  {
9090  	const struct net_device_ops *ops = dev->netdev_ops;
9091  	int err;
9092  
9093  	if (!ops->ndo_set_mac_address)
9094  		return -EOPNOTSUPP;
9095  	if (sa->sa_family != dev->type)
9096  		return -EINVAL;
9097  	if (!netif_device_present(dev))
9098  		return -ENODEV;
9099  	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9100  	if (err)
9101  		return err;
9102  	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9103  		err = ops->ndo_set_mac_address(dev, sa);
9104  		if (err)
9105  			return err;
9106  	}
9107  	dev->addr_assign_type = NET_ADDR_SET;
9108  	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9109  	add_device_randomness(dev->dev_addr, dev->addr_len);
9110  	return 0;
9111  }
9112  EXPORT_SYMBOL(dev_set_mac_address);
9113  
9114  DECLARE_RWSEM(dev_addr_sem);
9115  
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9116  int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9117  			     struct netlink_ext_ack *extack)
9118  {
9119  	int ret;
9120  
9121  	down_write(&dev_addr_sem);
9122  	ret = dev_set_mac_address(dev, sa, extack);
9123  	up_write(&dev_addr_sem);
9124  	return ret;
9125  }
9126  EXPORT_SYMBOL(dev_set_mac_address_user);
9127  
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9128  int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9129  {
9130  	size_t size = sizeof(sa->sa_data_min);
9131  	struct net_device *dev;
9132  	int ret = 0;
9133  
9134  	down_read(&dev_addr_sem);
9135  	rcu_read_lock();
9136  
9137  	dev = dev_get_by_name_rcu(net, dev_name);
9138  	if (!dev) {
9139  		ret = -ENODEV;
9140  		goto unlock;
9141  	}
9142  	if (!dev->addr_len)
9143  		memset(sa->sa_data, 0, size);
9144  	else
9145  		memcpy(sa->sa_data, dev->dev_addr,
9146  		       min_t(size_t, size, dev->addr_len));
9147  	sa->sa_family = dev->type;
9148  
9149  unlock:
9150  	rcu_read_unlock();
9151  	up_read(&dev_addr_sem);
9152  	return ret;
9153  }
9154  EXPORT_SYMBOL(dev_get_mac_address);
9155  
9156  /**
9157   *	dev_change_carrier - Change device carrier
9158   *	@dev: device
9159   *	@new_carrier: new value
9160   *
9161   *	Change device carrier
9162   */
dev_change_carrier(struct net_device * dev,bool new_carrier)9163  int dev_change_carrier(struct net_device *dev, bool new_carrier)
9164  {
9165  	const struct net_device_ops *ops = dev->netdev_ops;
9166  
9167  	if (!ops->ndo_change_carrier)
9168  		return -EOPNOTSUPP;
9169  	if (!netif_device_present(dev))
9170  		return -ENODEV;
9171  	return ops->ndo_change_carrier(dev, new_carrier);
9172  }
9173  
9174  /**
9175   *	dev_get_phys_port_id - Get device physical port ID
9176   *	@dev: device
9177   *	@ppid: port ID
9178   *
9179   *	Get device physical port ID
9180   */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9181  int dev_get_phys_port_id(struct net_device *dev,
9182  			 struct netdev_phys_item_id *ppid)
9183  {
9184  	const struct net_device_ops *ops = dev->netdev_ops;
9185  
9186  	if (!ops->ndo_get_phys_port_id)
9187  		return -EOPNOTSUPP;
9188  	return ops->ndo_get_phys_port_id(dev, ppid);
9189  }
9190  
9191  /**
9192   *	dev_get_phys_port_name - Get device physical port name
9193   *	@dev: device
9194   *	@name: port name
9195   *	@len: limit of bytes to copy to name
9196   *
9197   *	Get device physical port name
9198   */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9199  int dev_get_phys_port_name(struct net_device *dev,
9200  			   char *name, size_t len)
9201  {
9202  	const struct net_device_ops *ops = dev->netdev_ops;
9203  	int err;
9204  
9205  	if (ops->ndo_get_phys_port_name) {
9206  		err = ops->ndo_get_phys_port_name(dev, name, len);
9207  		if (err != -EOPNOTSUPP)
9208  			return err;
9209  	}
9210  	return devlink_compat_phys_port_name_get(dev, name, len);
9211  }
9212  
9213  /**
9214   *	dev_get_port_parent_id - Get the device's port parent identifier
9215   *	@dev: network device
9216   *	@ppid: pointer to a storage for the port's parent identifier
9217   *	@recurse: allow/disallow recursion to lower devices
9218   *
9219   *	Get the devices's port parent identifier
9220   */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9221  int dev_get_port_parent_id(struct net_device *dev,
9222  			   struct netdev_phys_item_id *ppid,
9223  			   bool recurse)
9224  {
9225  	const struct net_device_ops *ops = dev->netdev_ops;
9226  	struct netdev_phys_item_id first = { };
9227  	struct net_device *lower_dev;
9228  	struct list_head *iter;
9229  	int err;
9230  
9231  	if (ops->ndo_get_port_parent_id) {
9232  		err = ops->ndo_get_port_parent_id(dev, ppid);
9233  		if (err != -EOPNOTSUPP)
9234  			return err;
9235  	}
9236  
9237  	err = devlink_compat_switch_id_get(dev, ppid);
9238  	if (!recurse || err != -EOPNOTSUPP)
9239  		return err;
9240  
9241  	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9242  		err = dev_get_port_parent_id(lower_dev, ppid, true);
9243  		if (err)
9244  			break;
9245  		if (!first.id_len)
9246  			first = *ppid;
9247  		else if (memcmp(&first, ppid, sizeof(*ppid)))
9248  			return -EOPNOTSUPP;
9249  	}
9250  
9251  	return err;
9252  }
9253  EXPORT_SYMBOL(dev_get_port_parent_id);
9254  
9255  /**
9256   *	netdev_port_same_parent_id - Indicate if two network devices have
9257   *	the same port parent identifier
9258   *	@a: first network device
9259   *	@b: second network device
9260   */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9261  bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9262  {
9263  	struct netdev_phys_item_id a_id = { };
9264  	struct netdev_phys_item_id b_id = { };
9265  
9266  	if (dev_get_port_parent_id(a, &a_id, true) ||
9267  	    dev_get_port_parent_id(b, &b_id, true))
9268  		return false;
9269  
9270  	return netdev_phys_item_id_same(&a_id, &b_id);
9271  }
9272  EXPORT_SYMBOL(netdev_port_same_parent_id);
9273  
9274  /**
9275   *	dev_change_proto_down - set carrier according to proto_down.
9276   *
9277   *	@dev: device
9278   *	@proto_down: new value
9279   */
dev_change_proto_down(struct net_device * dev,bool proto_down)9280  int dev_change_proto_down(struct net_device *dev, bool proto_down)
9281  {
9282  	if (!dev->change_proto_down)
9283  		return -EOPNOTSUPP;
9284  	if (!netif_device_present(dev))
9285  		return -ENODEV;
9286  	if (proto_down)
9287  		netif_carrier_off(dev);
9288  	else
9289  		netif_carrier_on(dev);
9290  	WRITE_ONCE(dev->proto_down, proto_down);
9291  	return 0;
9292  }
9293  
9294  /**
9295   *	dev_change_proto_down_reason - proto down reason
9296   *
9297   *	@dev: device
9298   *	@mask: proto down mask
9299   *	@value: proto down value
9300   */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9301  void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9302  				  u32 value)
9303  {
9304  	u32 proto_down_reason;
9305  	int b;
9306  
9307  	if (!mask) {
9308  		proto_down_reason = value;
9309  	} else {
9310  		proto_down_reason = dev->proto_down_reason;
9311  		for_each_set_bit(b, &mask, 32) {
9312  			if (value & (1 << b))
9313  				proto_down_reason |= BIT(b);
9314  			else
9315  				proto_down_reason &= ~BIT(b);
9316  		}
9317  	}
9318  	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9319  }
9320  
9321  struct bpf_xdp_link {
9322  	struct bpf_link link;
9323  	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9324  	int flags;
9325  };
9326  
dev_xdp_mode(struct net_device * dev,u32 flags)9327  static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9328  {
9329  	if (flags & XDP_FLAGS_HW_MODE)
9330  		return XDP_MODE_HW;
9331  	if (flags & XDP_FLAGS_DRV_MODE)
9332  		return XDP_MODE_DRV;
9333  	if (flags & XDP_FLAGS_SKB_MODE)
9334  		return XDP_MODE_SKB;
9335  	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9336  }
9337  
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9338  static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9339  {
9340  	switch (mode) {
9341  	case XDP_MODE_SKB:
9342  		return generic_xdp_install;
9343  	case XDP_MODE_DRV:
9344  	case XDP_MODE_HW:
9345  		return dev->netdev_ops->ndo_bpf;
9346  	default:
9347  		return NULL;
9348  	}
9349  }
9350  
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9351  static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9352  					 enum bpf_xdp_mode mode)
9353  {
9354  	return dev->xdp_state[mode].link;
9355  }
9356  
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9357  static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9358  				     enum bpf_xdp_mode mode)
9359  {
9360  	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9361  
9362  	if (link)
9363  		return link->link.prog;
9364  	return dev->xdp_state[mode].prog;
9365  }
9366  
dev_xdp_prog_count(struct net_device * dev)9367  u8 dev_xdp_prog_count(struct net_device *dev)
9368  {
9369  	u8 count = 0;
9370  	int i;
9371  
9372  	for (i = 0; i < __MAX_XDP_MODE; i++)
9373  		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9374  			count++;
9375  	return count;
9376  }
9377  EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9378  
dev_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9379  int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9380  {
9381  	if (!dev->netdev_ops->ndo_bpf)
9382  		return -EOPNOTSUPP;
9383  
9384  	if (dev_get_min_mp_channel_count(dev)) {
9385  		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9386  		return -EBUSY;
9387  	}
9388  
9389  	return dev->netdev_ops->ndo_bpf(dev, bpf);
9390  }
9391  EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9392  
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9393  u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9394  {
9395  	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9396  
9397  	return prog ? prog->aux->id : 0;
9398  }
9399  
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9400  static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9401  			     struct bpf_xdp_link *link)
9402  {
9403  	dev->xdp_state[mode].link = link;
9404  	dev->xdp_state[mode].prog = NULL;
9405  }
9406  
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9407  static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9408  			     struct bpf_prog *prog)
9409  {
9410  	dev->xdp_state[mode].link = NULL;
9411  	dev->xdp_state[mode].prog = prog;
9412  }
9413  
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9414  static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9415  			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9416  			   u32 flags, struct bpf_prog *prog)
9417  {
9418  	struct netdev_bpf xdp;
9419  	int err;
9420  
9421  	if (dev_get_min_mp_channel_count(dev)) {
9422  		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9423  		return -EBUSY;
9424  	}
9425  
9426  	memset(&xdp, 0, sizeof(xdp));
9427  	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9428  	xdp.extack = extack;
9429  	xdp.flags = flags;
9430  	xdp.prog = prog;
9431  
9432  	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9433  	 * "moved" into driver), so they don't increment it on their own, but
9434  	 * they do decrement refcnt when program is detached or replaced.
9435  	 * Given net_device also owns link/prog, we need to bump refcnt here
9436  	 * to prevent drivers from underflowing it.
9437  	 */
9438  	if (prog)
9439  		bpf_prog_inc(prog);
9440  	err = bpf_op(dev, &xdp);
9441  	if (err) {
9442  		if (prog)
9443  			bpf_prog_put(prog);
9444  		return err;
9445  	}
9446  
9447  	if (mode != XDP_MODE_HW)
9448  		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9449  
9450  	return 0;
9451  }
9452  
dev_xdp_uninstall(struct net_device * dev)9453  static void dev_xdp_uninstall(struct net_device *dev)
9454  {
9455  	struct bpf_xdp_link *link;
9456  	struct bpf_prog *prog;
9457  	enum bpf_xdp_mode mode;
9458  	bpf_op_t bpf_op;
9459  
9460  	ASSERT_RTNL();
9461  
9462  	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9463  		prog = dev_xdp_prog(dev, mode);
9464  		if (!prog)
9465  			continue;
9466  
9467  		bpf_op = dev_xdp_bpf_op(dev, mode);
9468  		if (!bpf_op)
9469  			continue;
9470  
9471  		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9472  
9473  		/* auto-detach link from net device */
9474  		link = dev_xdp_link(dev, mode);
9475  		if (link)
9476  			link->dev = NULL;
9477  		else
9478  			bpf_prog_put(prog);
9479  
9480  		dev_xdp_set_link(dev, mode, NULL);
9481  	}
9482  }
9483  
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9484  static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9485  			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9486  			  struct bpf_prog *old_prog, u32 flags)
9487  {
9488  	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9489  	struct bpf_prog *cur_prog;
9490  	struct net_device *upper;
9491  	struct list_head *iter;
9492  	enum bpf_xdp_mode mode;
9493  	bpf_op_t bpf_op;
9494  	int err;
9495  
9496  	ASSERT_RTNL();
9497  
9498  	/* either link or prog attachment, never both */
9499  	if (link && (new_prog || old_prog))
9500  		return -EINVAL;
9501  	/* link supports only XDP mode flags */
9502  	if (link && (flags & ~XDP_FLAGS_MODES)) {
9503  		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9504  		return -EINVAL;
9505  	}
9506  	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9507  	if (num_modes > 1) {
9508  		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9509  		return -EINVAL;
9510  	}
9511  	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9512  	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9513  		NL_SET_ERR_MSG(extack,
9514  			       "More than one program loaded, unset mode is ambiguous");
9515  		return -EINVAL;
9516  	}
9517  	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9518  	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9519  		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9520  		return -EINVAL;
9521  	}
9522  
9523  	mode = dev_xdp_mode(dev, flags);
9524  	/* can't replace attached link */
9525  	if (dev_xdp_link(dev, mode)) {
9526  		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9527  		return -EBUSY;
9528  	}
9529  
9530  	/* don't allow if an upper device already has a program */
9531  	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9532  		if (dev_xdp_prog_count(upper) > 0) {
9533  			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9534  			return -EEXIST;
9535  		}
9536  	}
9537  
9538  	cur_prog = dev_xdp_prog(dev, mode);
9539  	/* can't replace attached prog with link */
9540  	if (link && cur_prog) {
9541  		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9542  		return -EBUSY;
9543  	}
9544  	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9545  		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9546  		return -EEXIST;
9547  	}
9548  
9549  	/* put effective new program into new_prog */
9550  	if (link)
9551  		new_prog = link->link.prog;
9552  
9553  	if (new_prog) {
9554  		bool offload = mode == XDP_MODE_HW;
9555  		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9556  					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9557  
9558  		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9559  			NL_SET_ERR_MSG(extack, "XDP program already attached");
9560  			return -EBUSY;
9561  		}
9562  		if (!offload && dev_xdp_prog(dev, other_mode)) {
9563  			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9564  			return -EEXIST;
9565  		}
9566  		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9567  			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9568  			return -EINVAL;
9569  		}
9570  		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9571  			NL_SET_ERR_MSG(extack, "Program bound to different device");
9572  			return -EINVAL;
9573  		}
9574  		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9575  			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9576  			return -EINVAL;
9577  		}
9578  		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9579  			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9580  			return -EINVAL;
9581  		}
9582  	}
9583  
9584  	/* don't call drivers if the effective program didn't change */
9585  	if (new_prog != cur_prog) {
9586  		bpf_op = dev_xdp_bpf_op(dev, mode);
9587  		if (!bpf_op) {
9588  			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9589  			return -EOPNOTSUPP;
9590  		}
9591  
9592  		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9593  		if (err)
9594  			return err;
9595  	}
9596  
9597  	if (link)
9598  		dev_xdp_set_link(dev, mode, link);
9599  	else
9600  		dev_xdp_set_prog(dev, mode, new_prog);
9601  	if (cur_prog)
9602  		bpf_prog_put(cur_prog);
9603  
9604  	return 0;
9605  }
9606  
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9607  static int dev_xdp_attach_link(struct net_device *dev,
9608  			       struct netlink_ext_ack *extack,
9609  			       struct bpf_xdp_link *link)
9610  {
9611  	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9612  }
9613  
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9614  static int dev_xdp_detach_link(struct net_device *dev,
9615  			       struct netlink_ext_ack *extack,
9616  			       struct bpf_xdp_link *link)
9617  {
9618  	enum bpf_xdp_mode mode;
9619  	bpf_op_t bpf_op;
9620  
9621  	ASSERT_RTNL();
9622  
9623  	mode = dev_xdp_mode(dev, link->flags);
9624  	if (dev_xdp_link(dev, mode) != link)
9625  		return -EINVAL;
9626  
9627  	bpf_op = dev_xdp_bpf_op(dev, mode);
9628  	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9629  	dev_xdp_set_link(dev, mode, NULL);
9630  	return 0;
9631  }
9632  
bpf_xdp_link_release(struct bpf_link * link)9633  static void bpf_xdp_link_release(struct bpf_link *link)
9634  {
9635  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9636  
9637  	rtnl_lock();
9638  
9639  	/* if racing with net_device's tear down, xdp_link->dev might be
9640  	 * already NULL, in which case link was already auto-detached
9641  	 */
9642  	if (xdp_link->dev) {
9643  		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9644  		xdp_link->dev = NULL;
9645  	}
9646  
9647  	rtnl_unlock();
9648  }
9649  
bpf_xdp_link_detach(struct bpf_link * link)9650  static int bpf_xdp_link_detach(struct bpf_link *link)
9651  {
9652  	bpf_xdp_link_release(link);
9653  	return 0;
9654  }
9655  
bpf_xdp_link_dealloc(struct bpf_link * link)9656  static void bpf_xdp_link_dealloc(struct bpf_link *link)
9657  {
9658  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9659  
9660  	kfree(xdp_link);
9661  }
9662  
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9663  static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9664  				     struct seq_file *seq)
9665  {
9666  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9667  	u32 ifindex = 0;
9668  
9669  	rtnl_lock();
9670  	if (xdp_link->dev)
9671  		ifindex = xdp_link->dev->ifindex;
9672  	rtnl_unlock();
9673  
9674  	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9675  }
9676  
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9677  static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9678  				       struct bpf_link_info *info)
9679  {
9680  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9681  	u32 ifindex = 0;
9682  
9683  	rtnl_lock();
9684  	if (xdp_link->dev)
9685  		ifindex = xdp_link->dev->ifindex;
9686  	rtnl_unlock();
9687  
9688  	info->xdp.ifindex = ifindex;
9689  	return 0;
9690  }
9691  
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9692  static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9693  			       struct bpf_prog *old_prog)
9694  {
9695  	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9696  	enum bpf_xdp_mode mode;
9697  	bpf_op_t bpf_op;
9698  	int err = 0;
9699  
9700  	rtnl_lock();
9701  
9702  	/* link might have been auto-released already, so fail */
9703  	if (!xdp_link->dev) {
9704  		err = -ENOLINK;
9705  		goto out_unlock;
9706  	}
9707  
9708  	if (old_prog && link->prog != old_prog) {
9709  		err = -EPERM;
9710  		goto out_unlock;
9711  	}
9712  	old_prog = link->prog;
9713  	if (old_prog->type != new_prog->type ||
9714  	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9715  		err = -EINVAL;
9716  		goto out_unlock;
9717  	}
9718  
9719  	if (old_prog == new_prog) {
9720  		/* no-op, don't disturb drivers */
9721  		bpf_prog_put(new_prog);
9722  		goto out_unlock;
9723  	}
9724  
9725  	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9726  	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9727  	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9728  			      xdp_link->flags, new_prog);
9729  	if (err)
9730  		goto out_unlock;
9731  
9732  	old_prog = xchg(&link->prog, new_prog);
9733  	bpf_prog_put(old_prog);
9734  
9735  out_unlock:
9736  	rtnl_unlock();
9737  	return err;
9738  }
9739  
9740  static const struct bpf_link_ops bpf_xdp_link_lops = {
9741  	.release = bpf_xdp_link_release,
9742  	.dealloc = bpf_xdp_link_dealloc,
9743  	.detach = bpf_xdp_link_detach,
9744  	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9745  	.fill_link_info = bpf_xdp_link_fill_link_info,
9746  	.update_prog = bpf_xdp_link_update,
9747  };
9748  
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9749  int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9750  {
9751  	struct net *net = current->nsproxy->net_ns;
9752  	struct bpf_link_primer link_primer;
9753  	struct netlink_ext_ack extack = {};
9754  	struct bpf_xdp_link *link;
9755  	struct net_device *dev;
9756  	int err, fd;
9757  
9758  	rtnl_lock();
9759  	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9760  	if (!dev) {
9761  		rtnl_unlock();
9762  		return -EINVAL;
9763  	}
9764  
9765  	link = kzalloc(sizeof(*link), GFP_USER);
9766  	if (!link) {
9767  		err = -ENOMEM;
9768  		goto unlock;
9769  	}
9770  
9771  	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9772  	link->dev = dev;
9773  	link->flags = attr->link_create.flags;
9774  
9775  	err = bpf_link_prime(&link->link, &link_primer);
9776  	if (err) {
9777  		kfree(link);
9778  		goto unlock;
9779  	}
9780  
9781  	err = dev_xdp_attach_link(dev, &extack, link);
9782  	rtnl_unlock();
9783  
9784  	if (err) {
9785  		link->dev = NULL;
9786  		bpf_link_cleanup(&link_primer);
9787  		trace_bpf_xdp_link_attach_failed(extack._msg);
9788  		goto out_put_dev;
9789  	}
9790  
9791  	fd = bpf_link_settle(&link_primer);
9792  	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9793  	dev_put(dev);
9794  	return fd;
9795  
9796  unlock:
9797  	rtnl_unlock();
9798  
9799  out_put_dev:
9800  	dev_put(dev);
9801  	return err;
9802  }
9803  
9804  /**
9805   *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9806   *	@dev: device
9807   *	@extack: netlink extended ack
9808   *	@fd: new program fd or negative value to clear
9809   *	@expected_fd: old program fd that userspace expects to replace or clear
9810   *	@flags: xdp-related flags
9811   *
9812   *	Set or clear a bpf program for a device
9813   */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9814  int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9815  		      int fd, int expected_fd, u32 flags)
9816  {
9817  	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9818  	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9819  	int err;
9820  
9821  	ASSERT_RTNL();
9822  
9823  	if (fd >= 0) {
9824  		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9825  						 mode != XDP_MODE_SKB);
9826  		if (IS_ERR(new_prog))
9827  			return PTR_ERR(new_prog);
9828  	}
9829  
9830  	if (expected_fd >= 0) {
9831  		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9832  						 mode != XDP_MODE_SKB);
9833  		if (IS_ERR(old_prog)) {
9834  			err = PTR_ERR(old_prog);
9835  			old_prog = NULL;
9836  			goto err_out;
9837  		}
9838  	}
9839  
9840  	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9841  
9842  err_out:
9843  	if (err && new_prog)
9844  		bpf_prog_put(new_prog);
9845  	if (old_prog)
9846  		bpf_prog_put(old_prog);
9847  	return err;
9848  }
9849  
dev_get_min_mp_channel_count(const struct net_device * dev)9850  u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9851  {
9852  	int i;
9853  
9854  	ASSERT_RTNL();
9855  
9856  	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9857  		if (dev->_rx[i].mp_params.mp_priv)
9858  			/* The channel count is the idx plus 1. */
9859  			return i + 1;
9860  
9861  	return 0;
9862  }
9863  
9864  /**
9865   * dev_index_reserve() - allocate an ifindex in a namespace
9866   * @net: the applicable net namespace
9867   * @ifindex: requested ifindex, pass %0 to get one allocated
9868   *
9869   * Allocate a ifindex for a new device. Caller must either use the ifindex
9870   * to store the device (via list_netdevice()) or call dev_index_release()
9871   * to give the index up.
9872   *
9873   * Return: a suitable unique value for a new device interface number or -errno.
9874   */
dev_index_reserve(struct net * net,u32 ifindex)9875  static int dev_index_reserve(struct net *net, u32 ifindex)
9876  {
9877  	int err;
9878  
9879  	if (ifindex > INT_MAX) {
9880  		DEBUG_NET_WARN_ON_ONCE(1);
9881  		return -EINVAL;
9882  	}
9883  
9884  	if (!ifindex)
9885  		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9886  				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9887  	else
9888  		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9889  	if (err < 0)
9890  		return err;
9891  
9892  	return ifindex;
9893  }
9894  
dev_index_release(struct net * net,int ifindex)9895  static void dev_index_release(struct net *net, int ifindex)
9896  {
9897  	/* Expect only unused indexes, unlist_netdevice() removes the used */
9898  	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9899  }
9900  
9901  /* Delayed registration/unregisteration */
9902  LIST_HEAD(net_todo_list);
9903  DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9904  atomic_t dev_unreg_count = ATOMIC_INIT(0);
9905  
net_set_todo(struct net_device * dev)9906  static void net_set_todo(struct net_device *dev)
9907  {
9908  	list_add_tail(&dev->todo_list, &net_todo_list);
9909  }
9910  
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9911  static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9912  	struct net_device *upper, netdev_features_t features)
9913  {
9914  	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9915  	netdev_features_t feature;
9916  	int feature_bit;
9917  
9918  	for_each_netdev_feature(upper_disables, feature_bit) {
9919  		feature = __NETIF_F_BIT(feature_bit);
9920  		if (!(upper->wanted_features & feature)
9921  		    && (features & feature)) {
9922  			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9923  				   &feature, upper->name);
9924  			features &= ~feature;
9925  		}
9926  	}
9927  
9928  	return features;
9929  }
9930  
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9931  static void netdev_sync_lower_features(struct net_device *upper,
9932  	struct net_device *lower, netdev_features_t features)
9933  {
9934  	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9935  	netdev_features_t feature;
9936  	int feature_bit;
9937  
9938  	for_each_netdev_feature(upper_disables, feature_bit) {
9939  		feature = __NETIF_F_BIT(feature_bit);
9940  		if (!(features & feature) && (lower->features & feature)) {
9941  			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9942  				   &feature, lower->name);
9943  			lower->wanted_features &= ~feature;
9944  			__netdev_update_features(lower);
9945  
9946  			if (unlikely(lower->features & feature))
9947  				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9948  					    &feature, lower->name);
9949  			else
9950  				netdev_features_change(lower);
9951  		}
9952  	}
9953  }
9954  
netdev_has_ip_or_hw_csum(netdev_features_t features)9955  static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9956  {
9957  	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9958  	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9959  	bool hw_csum = features & NETIF_F_HW_CSUM;
9960  
9961  	return ip_csum || hw_csum;
9962  }
9963  
netdev_fix_features(struct net_device * dev,netdev_features_t features)9964  static netdev_features_t netdev_fix_features(struct net_device *dev,
9965  	netdev_features_t features)
9966  {
9967  	/* Fix illegal checksum combinations */
9968  	if ((features & NETIF_F_HW_CSUM) &&
9969  	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9970  		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9971  		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9972  	}
9973  
9974  	/* TSO requires that SG is present as well. */
9975  	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9976  		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9977  		features &= ~NETIF_F_ALL_TSO;
9978  	}
9979  
9980  	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9981  					!(features & NETIF_F_IP_CSUM)) {
9982  		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9983  		features &= ~NETIF_F_TSO;
9984  		features &= ~NETIF_F_TSO_ECN;
9985  	}
9986  
9987  	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9988  					 !(features & NETIF_F_IPV6_CSUM)) {
9989  		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9990  		features &= ~NETIF_F_TSO6;
9991  	}
9992  
9993  	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9994  	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9995  		features &= ~NETIF_F_TSO_MANGLEID;
9996  
9997  	/* TSO ECN requires that TSO is present as well. */
9998  	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9999  		features &= ~NETIF_F_TSO_ECN;
10000  
10001  	/* Software GSO depends on SG. */
10002  	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10003  		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10004  		features &= ~NETIF_F_GSO;
10005  	}
10006  
10007  	/* GSO partial features require GSO partial be set */
10008  	if ((features & dev->gso_partial_features) &&
10009  	    !(features & NETIF_F_GSO_PARTIAL)) {
10010  		netdev_dbg(dev,
10011  			   "Dropping partially supported GSO features since no GSO partial.\n");
10012  		features &= ~dev->gso_partial_features;
10013  	}
10014  
10015  	if (!(features & NETIF_F_RXCSUM)) {
10016  		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10017  		 * successfully merged by hardware must also have the
10018  		 * checksum verified by hardware.  If the user does not
10019  		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10020  		 */
10021  		if (features & NETIF_F_GRO_HW) {
10022  			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10023  			features &= ~NETIF_F_GRO_HW;
10024  		}
10025  	}
10026  
10027  	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10028  	if (features & NETIF_F_RXFCS) {
10029  		if (features & NETIF_F_LRO) {
10030  			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10031  			features &= ~NETIF_F_LRO;
10032  		}
10033  
10034  		if (features & NETIF_F_GRO_HW) {
10035  			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10036  			features &= ~NETIF_F_GRO_HW;
10037  		}
10038  	}
10039  
10040  	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10041  		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10042  		features &= ~NETIF_F_LRO;
10043  	}
10044  
10045  	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10046  		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10047  		features &= ~NETIF_F_HW_TLS_TX;
10048  	}
10049  
10050  	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10051  		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10052  		features &= ~NETIF_F_HW_TLS_RX;
10053  	}
10054  
10055  	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10056  		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10057  		features &= ~NETIF_F_GSO_UDP_L4;
10058  	}
10059  
10060  	return features;
10061  }
10062  
__netdev_update_features(struct net_device * dev)10063  int __netdev_update_features(struct net_device *dev)
10064  {
10065  	struct net_device *upper, *lower;
10066  	netdev_features_t features;
10067  	struct list_head *iter;
10068  	int err = -1;
10069  
10070  	ASSERT_RTNL();
10071  
10072  	features = netdev_get_wanted_features(dev);
10073  
10074  	if (dev->netdev_ops->ndo_fix_features)
10075  		features = dev->netdev_ops->ndo_fix_features(dev, features);
10076  
10077  	/* driver might be less strict about feature dependencies */
10078  	features = netdev_fix_features(dev, features);
10079  
10080  	/* some features can't be enabled if they're off on an upper device */
10081  	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10082  		features = netdev_sync_upper_features(dev, upper, features);
10083  
10084  	if (dev->features == features)
10085  		goto sync_lower;
10086  
10087  	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10088  		&dev->features, &features);
10089  
10090  	if (dev->netdev_ops->ndo_set_features)
10091  		err = dev->netdev_ops->ndo_set_features(dev, features);
10092  	else
10093  		err = 0;
10094  
10095  	if (unlikely(err < 0)) {
10096  		netdev_err(dev,
10097  			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10098  			err, &features, &dev->features);
10099  		/* return non-0 since some features might have changed and
10100  		 * it's better to fire a spurious notification than miss it
10101  		 */
10102  		return -1;
10103  	}
10104  
10105  sync_lower:
10106  	/* some features must be disabled on lower devices when disabled
10107  	 * on an upper device (think: bonding master or bridge)
10108  	 */
10109  	netdev_for_each_lower_dev(dev, lower, iter)
10110  		netdev_sync_lower_features(dev, lower, features);
10111  
10112  	if (!err) {
10113  		netdev_features_t diff = features ^ dev->features;
10114  
10115  		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10116  			/* udp_tunnel_{get,drop}_rx_info both need
10117  			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10118  			 * device, or they won't do anything.
10119  			 * Thus we need to update dev->features
10120  			 * *before* calling udp_tunnel_get_rx_info,
10121  			 * but *after* calling udp_tunnel_drop_rx_info.
10122  			 */
10123  			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10124  				dev->features = features;
10125  				udp_tunnel_get_rx_info(dev);
10126  			} else {
10127  				udp_tunnel_drop_rx_info(dev);
10128  			}
10129  		}
10130  
10131  		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10132  			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10133  				dev->features = features;
10134  				err |= vlan_get_rx_ctag_filter_info(dev);
10135  			} else {
10136  				vlan_drop_rx_ctag_filter_info(dev);
10137  			}
10138  		}
10139  
10140  		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10141  			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10142  				dev->features = features;
10143  				err |= vlan_get_rx_stag_filter_info(dev);
10144  			} else {
10145  				vlan_drop_rx_stag_filter_info(dev);
10146  			}
10147  		}
10148  
10149  		dev->features = features;
10150  	}
10151  
10152  	return err < 0 ? 0 : 1;
10153  }
10154  
10155  /**
10156   *	netdev_update_features - recalculate device features
10157   *	@dev: the device to check
10158   *
10159   *	Recalculate dev->features set and send notifications if it
10160   *	has changed. Should be called after driver or hardware dependent
10161   *	conditions might have changed that influence the features.
10162   */
netdev_update_features(struct net_device * dev)10163  void netdev_update_features(struct net_device *dev)
10164  {
10165  	if (__netdev_update_features(dev))
10166  		netdev_features_change(dev);
10167  }
10168  EXPORT_SYMBOL(netdev_update_features);
10169  
10170  /**
10171   *	netdev_change_features - recalculate device features
10172   *	@dev: the device to check
10173   *
10174   *	Recalculate dev->features set and send notifications even
10175   *	if they have not changed. Should be called instead of
10176   *	netdev_update_features() if also dev->vlan_features might
10177   *	have changed to allow the changes to be propagated to stacked
10178   *	VLAN devices.
10179   */
netdev_change_features(struct net_device * dev)10180  void netdev_change_features(struct net_device *dev)
10181  {
10182  	__netdev_update_features(dev);
10183  	netdev_features_change(dev);
10184  }
10185  EXPORT_SYMBOL(netdev_change_features);
10186  
10187  /**
10188   *	netif_stacked_transfer_operstate -	transfer operstate
10189   *	@rootdev: the root or lower level device to transfer state from
10190   *	@dev: the device to transfer operstate to
10191   *
10192   *	Transfer operational state from root to device. This is normally
10193   *	called when a stacking relationship exists between the root
10194   *	device and the device(a leaf device).
10195   */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10196  void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10197  					struct net_device *dev)
10198  {
10199  	if (rootdev->operstate == IF_OPER_DORMANT)
10200  		netif_dormant_on(dev);
10201  	else
10202  		netif_dormant_off(dev);
10203  
10204  	if (rootdev->operstate == IF_OPER_TESTING)
10205  		netif_testing_on(dev);
10206  	else
10207  		netif_testing_off(dev);
10208  
10209  	if (netif_carrier_ok(rootdev))
10210  		netif_carrier_on(dev);
10211  	else
10212  		netif_carrier_off(dev);
10213  }
10214  EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10215  
netif_alloc_rx_queues(struct net_device * dev)10216  static int netif_alloc_rx_queues(struct net_device *dev)
10217  {
10218  	unsigned int i, count = dev->num_rx_queues;
10219  	struct netdev_rx_queue *rx;
10220  	size_t sz = count * sizeof(*rx);
10221  	int err = 0;
10222  
10223  	BUG_ON(count < 1);
10224  
10225  	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10226  	if (!rx)
10227  		return -ENOMEM;
10228  
10229  	dev->_rx = rx;
10230  
10231  	for (i = 0; i < count; i++) {
10232  		rx[i].dev = dev;
10233  
10234  		/* XDP RX-queue setup */
10235  		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10236  		if (err < 0)
10237  			goto err_rxq_info;
10238  	}
10239  	return 0;
10240  
10241  err_rxq_info:
10242  	/* Rollback successful reg's and free other resources */
10243  	while (i--)
10244  		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10245  	kvfree(dev->_rx);
10246  	dev->_rx = NULL;
10247  	return err;
10248  }
10249  
netif_free_rx_queues(struct net_device * dev)10250  static void netif_free_rx_queues(struct net_device *dev)
10251  {
10252  	unsigned int i, count = dev->num_rx_queues;
10253  
10254  	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10255  	if (!dev->_rx)
10256  		return;
10257  
10258  	for (i = 0; i < count; i++)
10259  		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10260  
10261  	kvfree(dev->_rx);
10262  }
10263  
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10264  static void netdev_init_one_queue(struct net_device *dev,
10265  				  struct netdev_queue *queue, void *_unused)
10266  {
10267  	/* Initialize queue lock */
10268  	spin_lock_init(&queue->_xmit_lock);
10269  	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10270  	queue->xmit_lock_owner = -1;
10271  	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10272  	queue->dev = dev;
10273  #ifdef CONFIG_BQL
10274  	dql_init(&queue->dql, HZ);
10275  #endif
10276  }
10277  
netif_free_tx_queues(struct net_device * dev)10278  static void netif_free_tx_queues(struct net_device *dev)
10279  {
10280  	kvfree(dev->_tx);
10281  }
10282  
netif_alloc_netdev_queues(struct net_device * dev)10283  static int netif_alloc_netdev_queues(struct net_device *dev)
10284  {
10285  	unsigned int count = dev->num_tx_queues;
10286  	struct netdev_queue *tx;
10287  	size_t sz = count * sizeof(*tx);
10288  
10289  	if (count < 1 || count > 0xffff)
10290  		return -EINVAL;
10291  
10292  	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10293  	if (!tx)
10294  		return -ENOMEM;
10295  
10296  	dev->_tx = tx;
10297  
10298  	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10299  	spin_lock_init(&dev->tx_global_lock);
10300  
10301  	return 0;
10302  }
10303  
netif_tx_stop_all_queues(struct net_device * dev)10304  void netif_tx_stop_all_queues(struct net_device *dev)
10305  {
10306  	unsigned int i;
10307  
10308  	for (i = 0; i < dev->num_tx_queues; i++) {
10309  		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10310  
10311  		netif_tx_stop_queue(txq);
10312  	}
10313  }
10314  EXPORT_SYMBOL(netif_tx_stop_all_queues);
10315  
netdev_do_alloc_pcpu_stats(struct net_device * dev)10316  static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10317  {
10318  	void __percpu *v;
10319  
10320  	/* Drivers implementing ndo_get_peer_dev must support tstat
10321  	 * accounting, so that skb_do_redirect() can bump the dev's
10322  	 * RX stats upon network namespace switch.
10323  	 */
10324  	if (dev->netdev_ops->ndo_get_peer_dev &&
10325  	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10326  		return -EOPNOTSUPP;
10327  
10328  	switch (dev->pcpu_stat_type) {
10329  	case NETDEV_PCPU_STAT_NONE:
10330  		return 0;
10331  	case NETDEV_PCPU_STAT_LSTATS:
10332  		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10333  		break;
10334  	case NETDEV_PCPU_STAT_TSTATS:
10335  		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10336  		break;
10337  	case NETDEV_PCPU_STAT_DSTATS:
10338  		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10339  		break;
10340  	default:
10341  		return -EINVAL;
10342  	}
10343  
10344  	return v ? 0 : -ENOMEM;
10345  }
10346  
netdev_do_free_pcpu_stats(struct net_device * dev)10347  static void netdev_do_free_pcpu_stats(struct net_device *dev)
10348  {
10349  	switch (dev->pcpu_stat_type) {
10350  	case NETDEV_PCPU_STAT_NONE:
10351  		return;
10352  	case NETDEV_PCPU_STAT_LSTATS:
10353  		free_percpu(dev->lstats);
10354  		break;
10355  	case NETDEV_PCPU_STAT_TSTATS:
10356  		free_percpu(dev->tstats);
10357  		break;
10358  	case NETDEV_PCPU_STAT_DSTATS:
10359  		free_percpu(dev->dstats);
10360  		break;
10361  	}
10362  }
10363  
netdev_free_phy_link_topology(struct net_device * dev)10364  static void netdev_free_phy_link_topology(struct net_device *dev)
10365  {
10366  	struct phy_link_topology *topo = dev->link_topo;
10367  
10368  	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10369  		xa_destroy(&topo->phys);
10370  		kfree(topo);
10371  		dev->link_topo = NULL;
10372  	}
10373  }
10374  
10375  /**
10376   * register_netdevice() - register a network device
10377   * @dev: device to register
10378   *
10379   * Take a prepared network device structure and make it externally accessible.
10380   * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10381   * Callers must hold the rtnl lock - you may want register_netdev()
10382   * instead of this.
10383   */
register_netdevice(struct net_device * dev)10384  int register_netdevice(struct net_device *dev)
10385  {
10386  	int ret;
10387  	struct net *net = dev_net(dev);
10388  
10389  	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10390  		     NETDEV_FEATURE_COUNT);
10391  	BUG_ON(dev_boot_phase);
10392  	ASSERT_RTNL();
10393  
10394  	might_sleep();
10395  
10396  	/* When net_device's are persistent, this will be fatal. */
10397  	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10398  	BUG_ON(!net);
10399  
10400  	ret = ethtool_check_ops(dev->ethtool_ops);
10401  	if (ret)
10402  		return ret;
10403  
10404  	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10405  	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10406  	mutex_init(&dev->ethtool->rss_lock);
10407  
10408  	spin_lock_init(&dev->addr_list_lock);
10409  	netdev_set_addr_lockdep_class(dev);
10410  
10411  	ret = dev_get_valid_name(net, dev, dev->name);
10412  	if (ret < 0)
10413  		goto out;
10414  
10415  	ret = -ENOMEM;
10416  	dev->name_node = netdev_name_node_head_alloc(dev);
10417  	if (!dev->name_node)
10418  		goto out;
10419  
10420  	/* Init, if this function is available */
10421  	if (dev->netdev_ops->ndo_init) {
10422  		ret = dev->netdev_ops->ndo_init(dev);
10423  		if (ret) {
10424  			if (ret > 0)
10425  				ret = -EIO;
10426  			goto err_free_name;
10427  		}
10428  	}
10429  
10430  	if (((dev->hw_features | dev->features) &
10431  	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10432  	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10433  	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10434  		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10435  		ret = -EINVAL;
10436  		goto err_uninit;
10437  	}
10438  
10439  	ret = netdev_do_alloc_pcpu_stats(dev);
10440  	if (ret)
10441  		goto err_uninit;
10442  
10443  	ret = dev_index_reserve(net, dev->ifindex);
10444  	if (ret < 0)
10445  		goto err_free_pcpu;
10446  	dev->ifindex = ret;
10447  
10448  	/* Transfer changeable features to wanted_features and enable
10449  	 * software offloads (GSO and GRO).
10450  	 */
10451  	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10452  	dev->features |= NETIF_F_SOFT_FEATURES;
10453  
10454  	if (dev->udp_tunnel_nic_info) {
10455  		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10456  		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10457  	}
10458  
10459  	dev->wanted_features = dev->features & dev->hw_features;
10460  
10461  	if (!(dev->flags & IFF_LOOPBACK))
10462  		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10463  
10464  	/* If IPv4 TCP segmentation offload is supported we should also
10465  	 * allow the device to enable segmenting the frame with the option
10466  	 * of ignoring a static IP ID value.  This doesn't enable the
10467  	 * feature itself but allows the user to enable it later.
10468  	 */
10469  	if (dev->hw_features & NETIF_F_TSO)
10470  		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10471  	if (dev->vlan_features & NETIF_F_TSO)
10472  		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10473  	if (dev->mpls_features & NETIF_F_TSO)
10474  		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10475  	if (dev->hw_enc_features & NETIF_F_TSO)
10476  		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10477  
10478  	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10479  	 */
10480  	dev->vlan_features |= NETIF_F_HIGHDMA;
10481  
10482  	/* Make NETIF_F_SG inheritable to tunnel devices.
10483  	 */
10484  	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10485  
10486  	/* Make NETIF_F_SG inheritable to MPLS.
10487  	 */
10488  	dev->mpls_features |= NETIF_F_SG;
10489  
10490  	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10491  	ret = notifier_to_errno(ret);
10492  	if (ret)
10493  		goto err_ifindex_release;
10494  
10495  	ret = netdev_register_kobject(dev);
10496  
10497  	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10498  
10499  	if (ret)
10500  		goto err_uninit_notify;
10501  
10502  	__netdev_update_features(dev);
10503  
10504  	/*
10505  	 *	Default initial state at registry is that the
10506  	 *	device is present.
10507  	 */
10508  
10509  	set_bit(__LINK_STATE_PRESENT, &dev->state);
10510  
10511  	linkwatch_init_dev(dev);
10512  
10513  	dev_init_scheduler(dev);
10514  
10515  	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10516  	list_netdevice(dev);
10517  
10518  	add_device_randomness(dev->dev_addr, dev->addr_len);
10519  
10520  	/* If the device has permanent device address, driver should
10521  	 * set dev_addr and also addr_assign_type should be set to
10522  	 * NET_ADDR_PERM (default value).
10523  	 */
10524  	if (dev->addr_assign_type == NET_ADDR_PERM)
10525  		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10526  
10527  	/* Notify protocols, that a new device appeared. */
10528  	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10529  	ret = notifier_to_errno(ret);
10530  	if (ret) {
10531  		/* Expect explicit free_netdev() on failure */
10532  		dev->needs_free_netdev = false;
10533  		unregister_netdevice_queue(dev, NULL);
10534  		goto out;
10535  	}
10536  	/*
10537  	 *	Prevent userspace races by waiting until the network
10538  	 *	device is fully setup before sending notifications.
10539  	 */
10540  	if (!dev->rtnl_link_ops ||
10541  	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10542  		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10543  
10544  out:
10545  	return ret;
10546  
10547  err_uninit_notify:
10548  	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10549  err_ifindex_release:
10550  	dev_index_release(net, dev->ifindex);
10551  err_free_pcpu:
10552  	netdev_do_free_pcpu_stats(dev);
10553  err_uninit:
10554  	if (dev->netdev_ops->ndo_uninit)
10555  		dev->netdev_ops->ndo_uninit(dev);
10556  	if (dev->priv_destructor)
10557  		dev->priv_destructor(dev);
10558  err_free_name:
10559  	netdev_name_node_free(dev->name_node);
10560  	goto out;
10561  }
10562  EXPORT_SYMBOL(register_netdevice);
10563  
10564  /* Initialize the core of a dummy net device.
10565   * This is useful if you are calling this function after alloc_netdev(),
10566   * since it does not memset the net_device fields.
10567   */
init_dummy_netdev_core(struct net_device * dev)10568  static void init_dummy_netdev_core(struct net_device *dev)
10569  {
10570  	/* make sure we BUG if trying to hit standard
10571  	 * register/unregister code path
10572  	 */
10573  	dev->reg_state = NETREG_DUMMY;
10574  
10575  	/* NAPI wants this */
10576  	INIT_LIST_HEAD(&dev->napi_list);
10577  
10578  	/* a dummy interface is started by default */
10579  	set_bit(__LINK_STATE_PRESENT, &dev->state);
10580  	set_bit(__LINK_STATE_START, &dev->state);
10581  
10582  	/* napi_busy_loop stats accounting wants this */
10583  	dev_net_set(dev, &init_net);
10584  
10585  	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10586  	 * because users of this 'device' dont need to change
10587  	 * its refcount.
10588  	 */
10589  }
10590  
10591  /**
10592   *	init_dummy_netdev	- init a dummy network device for NAPI
10593   *	@dev: device to init
10594   *
10595   *	This takes a network device structure and initializes the minimum
10596   *	amount of fields so it can be used to schedule NAPI polls without
10597   *	registering a full blown interface. This is to be used by drivers
10598   *	that need to tie several hardware interfaces to a single NAPI
10599   *	poll scheduler due to HW limitations.
10600   */
init_dummy_netdev(struct net_device * dev)10601  void init_dummy_netdev(struct net_device *dev)
10602  {
10603  	/* Clear everything. Note we don't initialize spinlocks
10604  	 * as they aren't supposed to be taken by any of the
10605  	 * NAPI code and this dummy netdev is supposed to be
10606  	 * only ever used for NAPI polls
10607  	 */
10608  	memset(dev, 0, sizeof(struct net_device));
10609  	init_dummy_netdev_core(dev);
10610  }
10611  EXPORT_SYMBOL_GPL(init_dummy_netdev);
10612  
10613  /**
10614   *	register_netdev	- register a network device
10615   *	@dev: device to register
10616   *
10617   *	Take a completed network device structure and add it to the kernel
10618   *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10619   *	chain. 0 is returned on success. A negative errno code is returned
10620   *	on a failure to set up the device, or if the name is a duplicate.
10621   *
10622   *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10623   *	and expands the device name if you passed a format string to
10624   *	alloc_netdev.
10625   */
register_netdev(struct net_device * dev)10626  int register_netdev(struct net_device *dev)
10627  {
10628  	int err;
10629  
10630  	if (rtnl_lock_killable())
10631  		return -EINTR;
10632  	err = register_netdevice(dev);
10633  	rtnl_unlock();
10634  	return err;
10635  }
10636  EXPORT_SYMBOL(register_netdev);
10637  
netdev_refcnt_read(const struct net_device * dev)10638  int netdev_refcnt_read(const struct net_device *dev)
10639  {
10640  #ifdef CONFIG_PCPU_DEV_REFCNT
10641  	int i, refcnt = 0;
10642  
10643  	for_each_possible_cpu(i)
10644  		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10645  	return refcnt;
10646  #else
10647  	return refcount_read(&dev->dev_refcnt);
10648  #endif
10649  }
10650  EXPORT_SYMBOL(netdev_refcnt_read);
10651  
10652  int netdev_unregister_timeout_secs __read_mostly = 10;
10653  
10654  #define WAIT_REFS_MIN_MSECS 1
10655  #define WAIT_REFS_MAX_MSECS 250
10656  /**
10657   * netdev_wait_allrefs_any - wait until all references are gone.
10658   * @list: list of net_devices to wait on
10659   *
10660   * This is called when unregistering network devices.
10661   *
10662   * Any protocol or device that holds a reference should register
10663   * for netdevice notification, and cleanup and put back the
10664   * reference if they receive an UNREGISTER event.
10665   * We can get stuck here if buggy protocols don't correctly
10666   * call dev_put.
10667   */
netdev_wait_allrefs_any(struct list_head * list)10668  static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10669  {
10670  	unsigned long rebroadcast_time, warning_time;
10671  	struct net_device *dev;
10672  	int wait = 0;
10673  
10674  	rebroadcast_time = warning_time = jiffies;
10675  
10676  	list_for_each_entry(dev, list, todo_list)
10677  		if (netdev_refcnt_read(dev) == 1)
10678  			return dev;
10679  
10680  	while (true) {
10681  		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10682  			rtnl_lock();
10683  
10684  			/* Rebroadcast unregister notification */
10685  			list_for_each_entry(dev, list, todo_list)
10686  				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10687  
10688  			__rtnl_unlock();
10689  			rcu_barrier();
10690  			rtnl_lock();
10691  
10692  			list_for_each_entry(dev, list, todo_list)
10693  				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10694  					     &dev->state)) {
10695  					/* We must not have linkwatch events
10696  					 * pending on unregister. If this
10697  					 * happens, we simply run the queue
10698  					 * unscheduled, resulting in a noop
10699  					 * for this device.
10700  					 */
10701  					linkwatch_run_queue();
10702  					break;
10703  				}
10704  
10705  			__rtnl_unlock();
10706  
10707  			rebroadcast_time = jiffies;
10708  		}
10709  
10710  		rcu_barrier();
10711  
10712  		if (!wait) {
10713  			wait = WAIT_REFS_MIN_MSECS;
10714  		} else {
10715  			msleep(wait);
10716  			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10717  		}
10718  
10719  		list_for_each_entry(dev, list, todo_list)
10720  			if (netdev_refcnt_read(dev) == 1)
10721  				return dev;
10722  
10723  		if (time_after(jiffies, warning_time +
10724  			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10725  			list_for_each_entry(dev, list, todo_list) {
10726  				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10727  					 dev->name, netdev_refcnt_read(dev));
10728  				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10729  			}
10730  
10731  			warning_time = jiffies;
10732  		}
10733  	}
10734  }
10735  
10736  /* The sequence is:
10737   *
10738   *	rtnl_lock();
10739   *	...
10740   *	register_netdevice(x1);
10741   *	register_netdevice(x2);
10742   *	...
10743   *	unregister_netdevice(y1);
10744   *	unregister_netdevice(y2);
10745   *      ...
10746   *	rtnl_unlock();
10747   *	free_netdev(y1);
10748   *	free_netdev(y2);
10749   *
10750   * We are invoked by rtnl_unlock().
10751   * This allows us to deal with problems:
10752   * 1) We can delete sysfs objects which invoke hotplug
10753   *    without deadlocking with linkwatch via keventd.
10754   * 2) Since we run with the RTNL semaphore not held, we can sleep
10755   *    safely in order to wait for the netdev refcnt to drop to zero.
10756   *
10757   * We must not return until all unregister events added during
10758   * the interval the lock was held have been completed.
10759   */
netdev_run_todo(void)10760  void netdev_run_todo(void)
10761  {
10762  	struct net_device *dev, *tmp;
10763  	struct list_head list;
10764  	int cnt;
10765  #ifdef CONFIG_LOCKDEP
10766  	struct list_head unlink_list;
10767  
10768  	list_replace_init(&net_unlink_list, &unlink_list);
10769  
10770  	while (!list_empty(&unlink_list)) {
10771  		struct net_device *dev = list_first_entry(&unlink_list,
10772  							  struct net_device,
10773  							  unlink_list);
10774  		list_del_init(&dev->unlink_list);
10775  		dev->nested_level = dev->lower_level - 1;
10776  	}
10777  #endif
10778  
10779  	/* Snapshot list, allow later requests */
10780  	list_replace_init(&net_todo_list, &list);
10781  
10782  	__rtnl_unlock();
10783  
10784  	/* Wait for rcu callbacks to finish before next phase */
10785  	if (!list_empty(&list))
10786  		rcu_barrier();
10787  
10788  	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10789  		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10790  			netdev_WARN(dev, "run_todo but not unregistering\n");
10791  			list_del(&dev->todo_list);
10792  			continue;
10793  		}
10794  
10795  		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10796  		linkwatch_sync_dev(dev);
10797  	}
10798  
10799  	cnt = 0;
10800  	while (!list_empty(&list)) {
10801  		dev = netdev_wait_allrefs_any(&list);
10802  		list_del(&dev->todo_list);
10803  
10804  		/* paranoia */
10805  		BUG_ON(netdev_refcnt_read(dev) != 1);
10806  		BUG_ON(!list_empty(&dev->ptype_all));
10807  		BUG_ON(!list_empty(&dev->ptype_specific));
10808  		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10809  		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10810  
10811  		netdev_do_free_pcpu_stats(dev);
10812  		if (dev->priv_destructor)
10813  			dev->priv_destructor(dev);
10814  		if (dev->needs_free_netdev)
10815  			free_netdev(dev);
10816  
10817  		cnt++;
10818  
10819  		/* Free network device */
10820  		kobject_put(&dev->dev.kobj);
10821  	}
10822  	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10823  		wake_up(&netdev_unregistering_wq);
10824  }
10825  
10826  /* Collate per-cpu network dstats statistics
10827   *
10828   * Read per-cpu network statistics from dev->dstats and populate the related
10829   * fields in @s.
10830   */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)10831  static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10832  			     const struct pcpu_dstats __percpu *dstats)
10833  {
10834  	int cpu;
10835  
10836  	for_each_possible_cpu(cpu) {
10837  		u64 rx_packets, rx_bytes, rx_drops;
10838  		u64 tx_packets, tx_bytes, tx_drops;
10839  		const struct pcpu_dstats *stats;
10840  		unsigned int start;
10841  
10842  		stats = per_cpu_ptr(dstats, cpu);
10843  		do {
10844  			start = u64_stats_fetch_begin(&stats->syncp);
10845  			rx_packets = u64_stats_read(&stats->rx_packets);
10846  			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10847  			rx_drops   = u64_stats_read(&stats->rx_drops);
10848  			tx_packets = u64_stats_read(&stats->tx_packets);
10849  			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10850  			tx_drops   = u64_stats_read(&stats->tx_drops);
10851  		} while (u64_stats_fetch_retry(&stats->syncp, start));
10852  
10853  		s->rx_packets += rx_packets;
10854  		s->rx_bytes   += rx_bytes;
10855  		s->rx_dropped += rx_drops;
10856  		s->tx_packets += tx_packets;
10857  		s->tx_bytes   += tx_bytes;
10858  		s->tx_dropped += tx_drops;
10859  	}
10860  }
10861  
10862  /* ndo_get_stats64 implementation for dtstats-based accounting.
10863   *
10864   * Populate @s from dev->stats and dev->dstats. This is used internally by the
10865   * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10866   */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)10867  static void dev_get_dstats64(const struct net_device *dev,
10868  			     struct rtnl_link_stats64 *s)
10869  {
10870  	netdev_stats_to_stats64(s, &dev->stats);
10871  	dev_fetch_dstats(s, dev->dstats);
10872  }
10873  
10874  /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10875   * all the same fields in the same order as net_device_stats, with only
10876   * the type differing, but rtnl_link_stats64 may have additional fields
10877   * at the end for newer counters.
10878   */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10879  void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10880  			     const struct net_device_stats *netdev_stats)
10881  {
10882  	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10883  	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10884  	u64 *dst = (u64 *)stats64;
10885  
10886  	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10887  	for (i = 0; i < n; i++)
10888  		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10889  	/* zero out counters that only exist in rtnl_link_stats64 */
10890  	memset((char *)stats64 + n * sizeof(u64), 0,
10891  	       sizeof(*stats64) - n * sizeof(u64));
10892  }
10893  EXPORT_SYMBOL(netdev_stats_to_stats64);
10894  
netdev_core_stats_alloc(struct net_device * dev)10895  static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10896  		struct net_device *dev)
10897  {
10898  	struct net_device_core_stats __percpu *p;
10899  
10900  	p = alloc_percpu_gfp(struct net_device_core_stats,
10901  			     GFP_ATOMIC | __GFP_NOWARN);
10902  
10903  	if (p && cmpxchg(&dev->core_stats, NULL, p))
10904  		free_percpu(p);
10905  
10906  	/* This READ_ONCE() pairs with the cmpxchg() above */
10907  	return READ_ONCE(dev->core_stats);
10908  }
10909  
netdev_core_stats_inc(struct net_device * dev,u32 offset)10910  noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10911  {
10912  	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10913  	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10914  	unsigned long __percpu *field;
10915  
10916  	if (unlikely(!p)) {
10917  		p = netdev_core_stats_alloc(dev);
10918  		if (!p)
10919  			return;
10920  	}
10921  
10922  	field = (unsigned long __percpu *)((void __percpu *)p + offset);
10923  	this_cpu_inc(*field);
10924  }
10925  EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10926  
10927  /**
10928   *	dev_get_stats	- get network device statistics
10929   *	@dev: device to get statistics from
10930   *	@storage: place to store stats
10931   *
10932   *	Get network statistics from device. Return @storage.
10933   *	The device driver may provide its own method by setting
10934   *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10935   *	otherwise the internal statistics structure is used.
10936   */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10937  struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10938  					struct rtnl_link_stats64 *storage)
10939  {
10940  	const struct net_device_ops *ops = dev->netdev_ops;
10941  	const struct net_device_core_stats __percpu *p;
10942  
10943  	if (ops->ndo_get_stats64) {
10944  		memset(storage, 0, sizeof(*storage));
10945  		ops->ndo_get_stats64(dev, storage);
10946  	} else if (ops->ndo_get_stats) {
10947  		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10948  	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10949  		dev_get_tstats64(dev, storage);
10950  	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10951  		dev_get_dstats64(dev, storage);
10952  	} else {
10953  		netdev_stats_to_stats64(storage, &dev->stats);
10954  	}
10955  
10956  	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10957  	p = READ_ONCE(dev->core_stats);
10958  	if (p) {
10959  		const struct net_device_core_stats *core_stats;
10960  		int i;
10961  
10962  		for_each_possible_cpu(i) {
10963  			core_stats = per_cpu_ptr(p, i);
10964  			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10965  			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10966  			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10967  			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10968  		}
10969  	}
10970  	return storage;
10971  }
10972  EXPORT_SYMBOL(dev_get_stats);
10973  
10974  /**
10975   *	dev_fetch_sw_netstats - get per-cpu network device statistics
10976   *	@s: place to store stats
10977   *	@netstats: per-cpu network stats to read from
10978   *
10979   *	Read per-cpu network statistics and populate the related fields in @s.
10980   */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10981  void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10982  			   const struct pcpu_sw_netstats __percpu *netstats)
10983  {
10984  	int cpu;
10985  
10986  	for_each_possible_cpu(cpu) {
10987  		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10988  		const struct pcpu_sw_netstats *stats;
10989  		unsigned int start;
10990  
10991  		stats = per_cpu_ptr(netstats, cpu);
10992  		do {
10993  			start = u64_stats_fetch_begin(&stats->syncp);
10994  			rx_packets = u64_stats_read(&stats->rx_packets);
10995  			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10996  			tx_packets = u64_stats_read(&stats->tx_packets);
10997  			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10998  		} while (u64_stats_fetch_retry(&stats->syncp, start));
10999  
11000  		s->rx_packets += rx_packets;
11001  		s->rx_bytes   += rx_bytes;
11002  		s->tx_packets += tx_packets;
11003  		s->tx_bytes   += tx_bytes;
11004  	}
11005  }
11006  EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11007  
11008  /**
11009   *	dev_get_tstats64 - ndo_get_stats64 implementation
11010   *	@dev: device to get statistics from
11011   *	@s: place to store stats
11012   *
11013   *	Populate @s from dev->stats and dev->tstats. Can be used as
11014   *	ndo_get_stats64() callback.
11015   */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11016  void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11017  {
11018  	netdev_stats_to_stats64(s, &dev->stats);
11019  	dev_fetch_sw_netstats(s, dev->tstats);
11020  }
11021  EXPORT_SYMBOL_GPL(dev_get_tstats64);
11022  
dev_ingress_queue_create(struct net_device * dev)11023  struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11024  {
11025  	struct netdev_queue *queue = dev_ingress_queue(dev);
11026  
11027  #ifdef CONFIG_NET_CLS_ACT
11028  	if (queue)
11029  		return queue;
11030  	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11031  	if (!queue)
11032  		return NULL;
11033  	netdev_init_one_queue(dev, queue, NULL);
11034  	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11035  	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11036  	rcu_assign_pointer(dev->ingress_queue, queue);
11037  #endif
11038  	return queue;
11039  }
11040  
11041  static const struct ethtool_ops default_ethtool_ops;
11042  
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11043  void netdev_set_default_ethtool_ops(struct net_device *dev,
11044  				    const struct ethtool_ops *ops)
11045  {
11046  	if (dev->ethtool_ops == &default_ethtool_ops)
11047  		dev->ethtool_ops = ops;
11048  }
11049  EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11050  
11051  /**
11052   * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11053   * @dev: netdev to enable the IRQ coalescing on
11054   *
11055   * Sets a conservative default for SW IRQ coalescing. Users can use
11056   * sysfs attributes to override the default values.
11057   */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11058  void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11059  {
11060  	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11061  
11062  	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11063  		dev->gro_flush_timeout = 20000;
11064  		dev->napi_defer_hard_irqs = 1;
11065  	}
11066  }
11067  EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11068  
11069  /**
11070   * alloc_netdev_mqs - allocate network device
11071   * @sizeof_priv: size of private data to allocate space for
11072   * @name: device name format string
11073   * @name_assign_type: origin of device name
11074   * @setup: callback to initialize device
11075   * @txqs: the number of TX subqueues to allocate
11076   * @rxqs: the number of RX subqueues to allocate
11077   *
11078   * Allocates a struct net_device with private data area for driver use
11079   * and performs basic initialization.  Also allocates subqueue structs
11080   * for each queue on the device.
11081   */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11082  struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11083  		unsigned char name_assign_type,
11084  		void (*setup)(struct net_device *),
11085  		unsigned int txqs, unsigned int rxqs)
11086  {
11087  	struct net_device *dev;
11088  
11089  	BUG_ON(strlen(name) >= sizeof(dev->name));
11090  
11091  	if (txqs < 1) {
11092  		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11093  		return NULL;
11094  	}
11095  
11096  	if (rxqs < 1) {
11097  		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11098  		return NULL;
11099  	}
11100  
11101  	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11102  		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11103  	if (!dev)
11104  		return NULL;
11105  
11106  	dev->priv_len = sizeof_priv;
11107  
11108  	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11109  #ifdef CONFIG_PCPU_DEV_REFCNT
11110  	dev->pcpu_refcnt = alloc_percpu(int);
11111  	if (!dev->pcpu_refcnt)
11112  		goto free_dev;
11113  	__dev_hold(dev);
11114  #else
11115  	refcount_set(&dev->dev_refcnt, 1);
11116  #endif
11117  
11118  	if (dev_addr_init(dev))
11119  		goto free_pcpu;
11120  
11121  	dev_mc_init(dev);
11122  	dev_uc_init(dev);
11123  
11124  	dev_net_set(dev, &init_net);
11125  
11126  	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11127  	dev->xdp_zc_max_segs = 1;
11128  	dev->gso_max_segs = GSO_MAX_SEGS;
11129  	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11130  	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11131  	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11132  	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11133  	dev->tso_max_segs = TSO_MAX_SEGS;
11134  	dev->upper_level = 1;
11135  	dev->lower_level = 1;
11136  #ifdef CONFIG_LOCKDEP
11137  	dev->nested_level = 0;
11138  	INIT_LIST_HEAD(&dev->unlink_list);
11139  #endif
11140  
11141  	INIT_LIST_HEAD(&dev->napi_list);
11142  	INIT_LIST_HEAD(&dev->unreg_list);
11143  	INIT_LIST_HEAD(&dev->close_list);
11144  	INIT_LIST_HEAD(&dev->link_watch_list);
11145  	INIT_LIST_HEAD(&dev->adj_list.upper);
11146  	INIT_LIST_HEAD(&dev->adj_list.lower);
11147  	INIT_LIST_HEAD(&dev->ptype_all);
11148  	INIT_LIST_HEAD(&dev->ptype_specific);
11149  	INIT_LIST_HEAD(&dev->net_notifier_list);
11150  #ifdef CONFIG_NET_SCHED
11151  	hash_init(dev->qdisc_hash);
11152  #endif
11153  
11154  	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11155  	setup(dev);
11156  
11157  	if (!dev->tx_queue_len) {
11158  		dev->priv_flags |= IFF_NO_QUEUE;
11159  		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11160  	}
11161  
11162  	dev->num_tx_queues = txqs;
11163  	dev->real_num_tx_queues = txqs;
11164  	if (netif_alloc_netdev_queues(dev))
11165  		goto free_all;
11166  
11167  	dev->num_rx_queues = rxqs;
11168  	dev->real_num_rx_queues = rxqs;
11169  	if (netif_alloc_rx_queues(dev))
11170  		goto free_all;
11171  	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11172  	if (!dev->ethtool)
11173  		goto free_all;
11174  
11175  	strscpy(dev->name, name);
11176  	dev->name_assign_type = name_assign_type;
11177  	dev->group = INIT_NETDEV_GROUP;
11178  	if (!dev->ethtool_ops)
11179  		dev->ethtool_ops = &default_ethtool_ops;
11180  
11181  	nf_hook_netdev_init(dev);
11182  
11183  	return dev;
11184  
11185  free_all:
11186  	free_netdev(dev);
11187  	return NULL;
11188  
11189  free_pcpu:
11190  #ifdef CONFIG_PCPU_DEV_REFCNT
11191  	free_percpu(dev->pcpu_refcnt);
11192  free_dev:
11193  #endif
11194  	kvfree(dev);
11195  	return NULL;
11196  }
11197  EXPORT_SYMBOL(alloc_netdev_mqs);
11198  
11199  /**
11200   * free_netdev - free network device
11201   * @dev: device
11202   *
11203   * This function does the last stage of destroying an allocated device
11204   * interface. The reference to the device object is released. If this
11205   * is the last reference then it will be freed.Must be called in process
11206   * context.
11207   */
free_netdev(struct net_device * dev)11208  void free_netdev(struct net_device *dev)
11209  {
11210  	struct napi_struct *p, *n;
11211  
11212  	might_sleep();
11213  
11214  	/* When called immediately after register_netdevice() failed the unwind
11215  	 * handling may still be dismantling the device. Handle that case by
11216  	 * deferring the free.
11217  	 */
11218  	if (dev->reg_state == NETREG_UNREGISTERING) {
11219  		ASSERT_RTNL();
11220  		dev->needs_free_netdev = true;
11221  		return;
11222  	}
11223  
11224  	kfree(dev->ethtool);
11225  	netif_free_tx_queues(dev);
11226  	netif_free_rx_queues(dev);
11227  
11228  	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11229  
11230  	/* Flush device addresses */
11231  	dev_addr_flush(dev);
11232  
11233  	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11234  		netif_napi_del(p);
11235  
11236  	ref_tracker_dir_exit(&dev->refcnt_tracker);
11237  #ifdef CONFIG_PCPU_DEV_REFCNT
11238  	free_percpu(dev->pcpu_refcnt);
11239  	dev->pcpu_refcnt = NULL;
11240  #endif
11241  	free_percpu(dev->core_stats);
11242  	dev->core_stats = NULL;
11243  	free_percpu(dev->xdp_bulkq);
11244  	dev->xdp_bulkq = NULL;
11245  
11246  	netdev_free_phy_link_topology(dev);
11247  
11248  	/*  Compatibility with error handling in drivers */
11249  	if (dev->reg_state == NETREG_UNINITIALIZED ||
11250  	    dev->reg_state == NETREG_DUMMY) {
11251  		kvfree(dev);
11252  		return;
11253  	}
11254  
11255  	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11256  	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11257  
11258  	/* will free via device release */
11259  	put_device(&dev->dev);
11260  }
11261  EXPORT_SYMBOL(free_netdev);
11262  
11263  /**
11264   * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11265   * @sizeof_priv: size of private data to allocate space for
11266   *
11267   * Return: the allocated net_device on success, NULL otherwise
11268   */
alloc_netdev_dummy(int sizeof_priv)11269  struct net_device *alloc_netdev_dummy(int sizeof_priv)
11270  {
11271  	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11272  			    init_dummy_netdev_core);
11273  }
11274  EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11275  
11276  /**
11277   *	synchronize_net -  Synchronize with packet receive processing
11278   *
11279   *	Wait for packets currently being received to be done.
11280   *	Does not block later packets from starting.
11281   */
synchronize_net(void)11282  void synchronize_net(void)
11283  {
11284  	might_sleep();
11285  	if (rtnl_is_locked())
11286  		synchronize_rcu_expedited();
11287  	else
11288  		synchronize_rcu();
11289  }
11290  EXPORT_SYMBOL(synchronize_net);
11291  
netdev_rss_contexts_free(struct net_device * dev)11292  static void netdev_rss_contexts_free(struct net_device *dev)
11293  {
11294  	struct ethtool_rxfh_context *ctx;
11295  	unsigned long context;
11296  
11297  	mutex_lock(&dev->ethtool->rss_lock);
11298  	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11299  		struct ethtool_rxfh_param rxfh;
11300  
11301  		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11302  		rxfh.key = ethtool_rxfh_context_key(ctx);
11303  		rxfh.hfunc = ctx->hfunc;
11304  		rxfh.input_xfrm = ctx->input_xfrm;
11305  		rxfh.rss_context = context;
11306  		rxfh.rss_delete = true;
11307  
11308  		xa_erase(&dev->ethtool->rss_ctx, context);
11309  		if (dev->ethtool_ops->create_rxfh_context)
11310  			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11311  							      context, NULL);
11312  		else
11313  			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11314  		kfree(ctx);
11315  	}
11316  	xa_destroy(&dev->ethtool->rss_ctx);
11317  	mutex_unlock(&dev->ethtool->rss_lock);
11318  }
11319  
11320  /**
11321   *	unregister_netdevice_queue - remove device from the kernel
11322   *	@dev: device
11323   *	@head: list
11324   *
11325   *	This function shuts down a device interface and removes it
11326   *	from the kernel tables.
11327   *	If head not NULL, device is queued to be unregistered later.
11328   *
11329   *	Callers must hold the rtnl semaphore.  You may want
11330   *	unregister_netdev() instead of this.
11331   */
11332  
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11333  void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11334  {
11335  	ASSERT_RTNL();
11336  
11337  	if (head) {
11338  		list_move_tail(&dev->unreg_list, head);
11339  	} else {
11340  		LIST_HEAD(single);
11341  
11342  		list_add(&dev->unreg_list, &single);
11343  		unregister_netdevice_many(&single);
11344  	}
11345  }
11346  EXPORT_SYMBOL(unregister_netdevice_queue);
11347  
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11348  void unregister_netdevice_many_notify(struct list_head *head,
11349  				      u32 portid, const struct nlmsghdr *nlh)
11350  {
11351  	struct net_device *dev, *tmp;
11352  	LIST_HEAD(close_head);
11353  	int cnt = 0;
11354  
11355  	BUG_ON(dev_boot_phase);
11356  	ASSERT_RTNL();
11357  
11358  	if (list_empty(head))
11359  		return;
11360  
11361  	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11362  		/* Some devices call without registering
11363  		 * for initialization unwind. Remove those
11364  		 * devices and proceed with the remaining.
11365  		 */
11366  		if (dev->reg_state == NETREG_UNINITIALIZED) {
11367  			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11368  				 dev->name, dev);
11369  
11370  			WARN_ON(1);
11371  			list_del(&dev->unreg_list);
11372  			continue;
11373  		}
11374  		dev->dismantle = true;
11375  		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11376  	}
11377  
11378  	/* If device is running, close it first. */
11379  	list_for_each_entry(dev, head, unreg_list)
11380  		list_add_tail(&dev->close_list, &close_head);
11381  	dev_close_many(&close_head, true);
11382  
11383  	list_for_each_entry(dev, head, unreg_list) {
11384  		/* And unlink it from device chain. */
11385  		unlist_netdevice(dev);
11386  		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11387  	}
11388  	flush_all_backlogs();
11389  
11390  	synchronize_net();
11391  
11392  	list_for_each_entry(dev, head, unreg_list) {
11393  		struct sk_buff *skb = NULL;
11394  
11395  		/* Shutdown queueing discipline. */
11396  		dev_shutdown(dev);
11397  		dev_tcx_uninstall(dev);
11398  		dev_xdp_uninstall(dev);
11399  		bpf_dev_bound_netdev_unregister(dev);
11400  		dev_dmabuf_uninstall(dev);
11401  
11402  		netdev_offload_xstats_disable_all(dev);
11403  
11404  		/* Notify protocols, that we are about to destroy
11405  		 * this device. They should clean all the things.
11406  		 */
11407  		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11408  
11409  		if (!dev->rtnl_link_ops ||
11410  		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11411  			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11412  						     GFP_KERNEL, NULL, 0,
11413  						     portid, nlh);
11414  
11415  		/*
11416  		 *	Flush the unicast and multicast chains
11417  		 */
11418  		dev_uc_flush(dev);
11419  		dev_mc_flush(dev);
11420  
11421  		netdev_name_node_alt_flush(dev);
11422  		netdev_name_node_free(dev->name_node);
11423  
11424  		netdev_rss_contexts_free(dev);
11425  
11426  		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11427  
11428  		if (dev->netdev_ops->ndo_uninit)
11429  			dev->netdev_ops->ndo_uninit(dev);
11430  
11431  		mutex_destroy(&dev->ethtool->rss_lock);
11432  
11433  		if (skb)
11434  			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11435  
11436  		/* Notifier chain MUST detach us all upper devices. */
11437  		WARN_ON(netdev_has_any_upper_dev(dev));
11438  		WARN_ON(netdev_has_any_lower_dev(dev));
11439  
11440  		/* Remove entries from kobject tree */
11441  		netdev_unregister_kobject(dev);
11442  #ifdef CONFIG_XPS
11443  		/* Remove XPS queueing entries */
11444  		netif_reset_xps_queues_gt(dev, 0);
11445  #endif
11446  	}
11447  
11448  	synchronize_net();
11449  
11450  	list_for_each_entry(dev, head, unreg_list) {
11451  		netdev_put(dev, &dev->dev_registered_tracker);
11452  		net_set_todo(dev);
11453  		cnt++;
11454  	}
11455  	atomic_add(cnt, &dev_unreg_count);
11456  
11457  	list_del(head);
11458  }
11459  
11460  /**
11461   *	unregister_netdevice_many - unregister many devices
11462   *	@head: list of devices
11463   *
11464   *  Note: As most callers use a stack allocated list_head,
11465   *  we force a list_del() to make sure stack won't be corrupted later.
11466   */
unregister_netdevice_many(struct list_head * head)11467  void unregister_netdevice_many(struct list_head *head)
11468  {
11469  	unregister_netdevice_many_notify(head, 0, NULL);
11470  }
11471  EXPORT_SYMBOL(unregister_netdevice_many);
11472  
11473  /**
11474   *	unregister_netdev - remove device from the kernel
11475   *	@dev: device
11476   *
11477   *	This function shuts down a device interface and removes it
11478   *	from the kernel tables.
11479   *
11480   *	This is just a wrapper for unregister_netdevice that takes
11481   *	the rtnl semaphore.  In general you want to use this and not
11482   *	unregister_netdevice.
11483   */
unregister_netdev(struct net_device * dev)11484  void unregister_netdev(struct net_device *dev)
11485  {
11486  	rtnl_lock();
11487  	unregister_netdevice(dev);
11488  	rtnl_unlock();
11489  }
11490  EXPORT_SYMBOL(unregister_netdev);
11491  
11492  /**
11493   *	__dev_change_net_namespace - move device to different nethost namespace
11494   *	@dev: device
11495   *	@net: network namespace
11496   *	@pat: If not NULL name pattern to try if the current device name
11497   *	      is already taken in the destination network namespace.
11498   *	@new_ifindex: If not zero, specifies device index in the target
11499   *	              namespace.
11500   *
11501   *	This function shuts down a device interface and moves it
11502   *	to a new network namespace. On success 0 is returned, on
11503   *	a failure a netagive errno code is returned.
11504   *
11505   *	Callers must hold the rtnl semaphore.
11506   */
11507  
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11508  int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11509  			       const char *pat, int new_ifindex)
11510  {
11511  	struct netdev_name_node *name_node;
11512  	struct net *net_old = dev_net(dev);
11513  	char new_name[IFNAMSIZ] = {};
11514  	int err, new_nsid;
11515  
11516  	ASSERT_RTNL();
11517  
11518  	/* Don't allow namespace local devices to be moved. */
11519  	err = -EINVAL;
11520  	if (dev->netns_local)
11521  		goto out;
11522  
11523  	/* Ensure the device has been registered */
11524  	if (dev->reg_state != NETREG_REGISTERED)
11525  		goto out;
11526  
11527  	/* Get out if there is nothing todo */
11528  	err = 0;
11529  	if (net_eq(net_old, net))
11530  		goto out;
11531  
11532  	/* Pick the destination device name, and ensure
11533  	 * we can use it in the destination network namespace.
11534  	 */
11535  	err = -EEXIST;
11536  	if (netdev_name_in_use(net, dev->name)) {
11537  		/* We get here if we can't use the current device name */
11538  		if (!pat)
11539  			goto out;
11540  		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11541  		if (err < 0)
11542  			goto out;
11543  	}
11544  	/* Check that none of the altnames conflicts. */
11545  	err = -EEXIST;
11546  	netdev_for_each_altname(dev, name_node)
11547  		if (netdev_name_in_use(net, name_node->name))
11548  			goto out;
11549  
11550  	/* Check that new_ifindex isn't used yet. */
11551  	if (new_ifindex) {
11552  		err = dev_index_reserve(net, new_ifindex);
11553  		if (err < 0)
11554  			goto out;
11555  	} else {
11556  		/* If there is an ifindex conflict assign a new one */
11557  		err = dev_index_reserve(net, dev->ifindex);
11558  		if (err == -EBUSY)
11559  			err = dev_index_reserve(net, 0);
11560  		if (err < 0)
11561  			goto out;
11562  		new_ifindex = err;
11563  	}
11564  
11565  	/*
11566  	 * And now a mini version of register_netdevice unregister_netdevice.
11567  	 */
11568  
11569  	/* If device is running close it first. */
11570  	dev_close(dev);
11571  
11572  	/* And unlink it from device chain */
11573  	unlist_netdevice(dev);
11574  
11575  	synchronize_net();
11576  
11577  	/* Shutdown queueing discipline. */
11578  	dev_shutdown(dev);
11579  
11580  	/* Notify protocols, that we are about to destroy
11581  	 * this device. They should clean all the things.
11582  	 *
11583  	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11584  	 * This is wanted because this way 8021q and macvlan know
11585  	 * the device is just moving and can keep their slaves up.
11586  	 */
11587  	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11588  	rcu_barrier();
11589  
11590  	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11591  
11592  	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11593  			    new_ifindex);
11594  
11595  	/*
11596  	 *	Flush the unicast and multicast chains
11597  	 */
11598  	dev_uc_flush(dev);
11599  	dev_mc_flush(dev);
11600  
11601  	/* Send a netdev-removed uevent to the old namespace */
11602  	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11603  	netdev_adjacent_del_links(dev);
11604  
11605  	/* Move per-net netdevice notifiers that are following the netdevice */
11606  	move_netdevice_notifiers_dev_net(dev, net);
11607  
11608  	/* Actually switch the network namespace */
11609  	dev_net_set(dev, net);
11610  	dev->ifindex = new_ifindex;
11611  
11612  	if (new_name[0]) {
11613  		/* Rename the netdev to prepared name */
11614  		write_seqlock_bh(&netdev_rename_lock);
11615  		strscpy(dev->name, new_name, IFNAMSIZ);
11616  		write_sequnlock_bh(&netdev_rename_lock);
11617  	}
11618  
11619  	/* Fixup kobjects */
11620  	dev_set_uevent_suppress(&dev->dev, 1);
11621  	err = device_rename(&dev->dev, dev->name);
11622  	dev_set_uevent_suppress(&dev->dev, 0);
11623  	WARN_ON(err);
11624  
11625  	/* Send a netdev-add uevent to the new namespace */
11626  	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11627  	netdev_adjacent_add_links(dev);
11628  
11629  	/* Adapt owner in case owning user namespace of target network
11630  	 * namespace is different from the original one.
11631  	 */
11632  	err = netdev_change_owner(dev, net_old, net);
11633  	WARN_ON(err);
11634  
11635  	/* Add the device back in the hashes */
11636  	list_netdevice(dev);
11637  
11638  	/* Notify protocols, that a new device appeared. */
11639  	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11640  
11641  	/*
11642  	 *	Prevent userspace races by waiting until the network
11643  	 *	device is fully setup before sending notifications.
11644  	 */
11645  	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11646  
11647  	synchronize_net();
11648  	err = 0;
11649  out:
11650  	return err;
11651  }
11652  EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11653  
dev_cpu_dead(unsigned int oldcpu)11654  static int dev_cpu_dead(unsigned int oldcpu)
11655  {
11656  	struct sk_buff **list_skb;
11657  	struct sk_buff *skb;
11658  	unsigned int cpu;
11659  	struct softnet_data *sd, *oldsd, *remsd = NULL;
11660  
11661  	local_irq_disable();
11662  	cpu = smp_processor_id();
11663  	sd = &per_cpu(softnet_data, cpu);
11664  	oldsd = &per_cpu(softnet_data, oldcpu);
11665  
11666  	/* Find end of our completion_queue. */
11667  	list_skb = &sd->completion_queue;
11668  	while (*list_skb)
11669  		list_skb = &(*list_skb)->next;
11670  	/* Append completion queue from offline CPU. */
11671  	*list_skb = oldsd->completion_queue;
11672  	oldsd->completion_queue = NULL;
11673  
11674  	/* Append output queue from offline CPU. */
11675  	if (oldsd->output_queue) {
11676  		*sd->output_queue_tailp = oldsd->output_queue;
11677  		sd->output_queue_tailp = oldsd->output_queue_tailp;
11678  		oldsd->output_queue = NULL;
11679  		oldsd->output_queue_tailp = &oldsd->output_queue;
11680  	}
11681  	/* Append NAPI poll list from offline CPU, with one exception :
11682  	 * process_backlog() must be called by cpu owning percpu backlog.
11683  	 * We properly handle process_queue & input_pkt_queue later.
11684  	 */
11685  	while (!list_empty(&oldsd->poll_list)) {
11686  		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11687  							    struct napi_struct,
11688  							    poll_list);
11689  
11690  		list_del_init(&napi->poll_list);
11691  		if (napi->poll == process_backlog)
11692  			napi->state &= NAPIF_STATE_THREADED;
11693  		else
11694  			____napi_schedule(sd, napi);
11695  	}
11696  
11697  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11698  	local_irq_enable();
11699  
11700  	if (!use_backlog_threads()) {
11701  #ifdef CONFIG_RPS
11702  		remsd = oldsd->rps_ipi_list;
11703  		oldsd->rps_ipi_list = NULL;
11704  #endif
11705  		/* send out pending IPI's on offline CPU */
11706  		net_rps_send_ipi(remsd);
11707  	}
11708  
11709  	/* Process offline CPU's input_pkt_queue */
11710  	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11711  		netif_rx(skb);
11712  		rps_input_queue_head_incr(oldsd);
11713  	}
11714  	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11715  		netif_rx(skb);
11716  		rps_input_queue_head_incr(oldsd);
11717  	}
11718  
11719  	return 0;
11720  }
11721  
11722  /**
11723   *	netdev_increment_features - increment feature set by one
11724   *	@all: current feature set
11725   *	@one: new feature set
11726   *	@mask: mask feature set
11727   *
11728   *	Computes a new feature set after adding a device with feature set
11729   *	@one to the master device with current feature set @all.  Will not
11730   *	enable anything that is off in @mask. Returns the new feature set.
11731   */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11732  netdev_features_t netdev_increment_features(netdev_features_t all,
11733  	netdev_features_t one, netdev_features_t mask)
11734  {
11735  	if (mask & NETIF_F_HW_CSUM)
11736  		mask |= NETIF_F_CSUM_MASK;
11737  	mask |= NETIF_F_VLAN_CHALLENGED;
11738  
11739  	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11740  	all &= one | ~NETIF_F_ALL_FOR_ALL;
11741  
11742  	/* If one device supports hw checksumming, set for all. */
11743  	if (all & NETIF_F_HW_CSUM)
11744  		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11745  
11746  	return all;
11747  }
11748  EXPORT_SYMBOL(netdev_increment_features);
11749  
netdev_create_hash(void)11750  static struct hlist_head * __net_init netdev_create_hash(void)
11751  {
11752  	int i;
11753  	struct hlist_head *hash;
11754  
11755  	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11756  	if (hash != NULL)
11757  		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11758  			INIT_HLIST_HEAD(&hash[i]);
11759  
11760  	return hash;
11761  }
11762  
11763  /* Initialize per network namespace state */
netdev_init(struct net * net)11764  static int __net_init netdev_init(struct net *net)
11765  {
11766  	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11767  		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11768  
11769  	INIT_LIST_HEAD(&net->dev_base_head);
11770  
11771  	net->dev_name_head = netdev_create_hash();
11772  	if (net->dev_name_head == NULL)
11773  		goto err_name;
11774  
11775  	net->dev_index_head = netdev_create_hash();
11776  	if (net->dev_index_head == NULL)
11777  		goto err_idx;
11778  
11779  	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11780  
11781  	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11782  
11783  	return 0;
11784  
11785  err_idx:
11786  	kfree(net->dev_name_head);
11787  err_name:
11788  	return -ENOMEM;
11789  }
11790  
11791  /**
11792   *	netdev_drivername - network driver for the device
11793   *	@dev: network device
11794   *
11795   *	Determine network driver for device.
11796   */
netdev_drivername(const struct net_device * dev)11797  const char *netdev_drivername(const struct net_device *dev)
11798  {
11799  	const struct device_driver *driver;
11800  	const struct device *parent;
11801  	const char *empty = "";
11802  
11803  	parent = dev->dev.parent;
11804  	if (!parent)
11805  		return empty;
11806  
11807  	driver = parent->driver;
11808  	if (driver && driver->name)
11809  		return driver->name;
11810  	return empty;
11811  }
11812  
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11813  static void __netdev_printk(const char *level, const struct net_device *dev,
11814  			    struct va_format *vaf)
11815  {
11816  	if (dev && dev->dev.parent) {
11817  		dev_printk_emit(level[1] - '0',
11818  				dev->dev.parent,
11819  				"%s %s %s%s: %pV",
11820  				dev_driver_string(dev->dev.parent),
11821  				dev_name(dev->dev.parent),
11822  				netdev_name(dev), netdev_reg_state(dev),
11823  				vaf);
11824  	} else if (dev) {
11825  		printk("%s%s%s: %pV",
11826  		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11827  	} else {
11828  		printk("%s(NULL net_device): %pV", level, vaf);
11829  	}
11830  }
11831  
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11832  void netdev_printk(const char *level, const struct net_device *dev,
11833  		   const char *format, ...)
11834  {
11835  	struct va_format vaf;
11836  	va_list args;
11837  
11838  	va_start(args, format);
11839  
11840  	vaf.fmt = format;
11841  	vaf.va = &args;
11842  
11843  	__netdev_printk(level, dev, &vaf);
11844  
11845  	va_end(args);
11846  }
11847  EXPORT_SYMBOL(netdev_printk);
11848  
11849  #define define_netdev_printk_level(func, level)			\
11850  void func(const struct net_device *dev, const char *fmt, ...)	\
11851  {								\
11852  	struct va_format vaf;					\
11853  	va_list args;						\
11854  								\
11855  	va_start(args, fmt);					\
11856  								\
11857  	vaf.fmt = fmt;						\
11858  	vaf.va = &args;						\
11859  								\
11860  	__netdev_printk(level, dev, &vaf);			\
11861  								\
11862  	va_end(args);						\
11863  }								\
11864  EXPORT_SYMBOL(func);
11865  
11866  define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11867  define_netdev_printk_level(netdev_alert, KERN_ALERT);
11868  define_netdev_printk_level(netdev_crit, KERN_CRIT);
11869  define_netdev_printk_level(netdev_err, KERN_ERR);
11870  define_netdev_printk_level(netdev_warn, KERN_WARNING);
11871  define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11872  define_netdev_printk_level(netdev_info, KERN_INFO);
11873  
netdev_exit(struct net * net)11874  static void __net_exit netdev_exit(struct net *net)
11875  {
11876  	kfree(net->dev_name_head);
11877  	kfree(net->dev_index_head);
11878  	xa_destroy(&net->dev_by_index);
11879  	if (net != &init_net)
11880  		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11881  }
11882  
11883  static struct pernet_operations __net_initdata netdev_net_ops = {
11884  	.init = netdev_init,
11885  	.exit = netdev_exit,
11886  };
11887  
default_device_exit_net(struct net * net)11888  static void __net_exit default_device_exit_net(struct net *net)
11889  {
11890  	struct netdev_name_node *name_node, *tmp;
11891  	struct net_device *dev, *aux;
11892  	/*
11893  	 * Push all migratable network devices back to the
11894  	 * initial network namespace
11895  	 */
11896  	ASSERT_RTNL();
11897  	for_each_netdev_safe(net, dev, aux) {
11898  		int err;
11899  		char fb_name[IFNAMSIZ];
11900  
11901  		/* Ignore unmoveable devices (i.e. loopback) */
11902  		if (dev->netns_local)
11903  			continue;
11904  
11905  		/* Leave virtual devices for the generic cleanup */
11906  		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11907  			continue;
11908  
11909  		/* Push remaining network devices to init_net */
11910  		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11911  		if (netdev_name_in_use(&init_net, fb_name))
11912  			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11913  
11914  		netdev_for_each_altname_safe(dev, name_node, tmp)
11915  			if (netdev_name_in_use(&init_net, name_node->name))
11916  				__netdev_name_node_alt_destroy(name_node);
11917  
11918  		err = dev_change_net_namespace(dev, &init_net, fb_name);
11919  		if (err) {
11920  			pr_emerg("%s: failed to move %s to init_net: %d\n",
11921  				 __func__, dev->name, err);
11922  			BUG();
11923  		}
11924  	}
11925  }
11926  
default_device_exit_batch(struct list_head * net_list)11927  static void __net_exit default_device_exit_batch(struct list_head *net_list)
11928  {
11929  	/* At exit all network devices most be removed from a network
11930  	 * namespace.  Do this in the reverse order of registration.
11931  	 * Do this across as many network namespaces as possible to
11932  	 * improve batching efficiency.
11933  	 */
11934  	struct net_device *dev;
11935  	struct net *net;
11936  	LIST_HEAD(dev_kill_list);
11937  
11938  	rtnl_lock();
11939  	list_for_each_entry(net, net_list, exit_list) {
11940  		default_device_exit_net(net);
11941  		cond_resched();
11942  	}
11943  
11944  	list_for_each_entry(net, net_list, exit_list) {
11945  		for_each_netdev_reverse(net, dev) {
11946  			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11947  				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11948  			else
11949  				unregister_netdevice_queue(dev, &dev_kill_list);
11950  		}
11951  	}
11952  	unregister_netdevice_many(&dev_kill_list);
11953  	rtnl_unlock();
11954  }
11955  
11956  static struct pernet_operations __net_initdata default_device_ops = {
11957  	.exit_batch = default_device_exit_batch,
11958  };
11959  
net_dev_struct_check(void)11960  static void __init net_dev_struct_check(void)
11961  {
11962  	/* TX read-mostly hotpath */
11963  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11964  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11965  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11966  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11967  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11968  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11969  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11970  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11971  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11972  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11973  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11974  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11975  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11976  #ifdef CONFIG_XPS
11977  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11978  #endif
11979  #ifdef CONFIG_NETFILTER_EGRESS
11980  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11981  #endif
11982  #ifdef CONFIG_NET_XGRESS
11983  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11984  #endif
11985  	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11986  
11987  	/* TXRX read-mostly hotpath */
11988  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11989  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11990  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11991  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11992  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11993  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11994  	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11995  
11996  	/* RX read-mostly hotpath */
11997  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11998  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11999  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12000  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12001  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
12002  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
12003  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12004  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12005  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12006  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12007  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12008  #ifdef CONFIG_NETPOLL
12009  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12010  #endif
12011  #ifdef CONFIG_NET_XGRESS
12012  	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12013  #endif
12014  	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12015  }
12016  
12017  /*
12018   *	Initialize the DEV module. At boot time this walks the device list and
12019   *	unhooks any devices that fail to initialise (normally hardware not
12020   *	present) and leaves us with a valid list of present and active devices.
12021   *
12022   */
12023  
12024  /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12025  #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12026  
net_page_pool_create(int cpuid)12027  static int net_page_pool_create(int cpuid)
12028  {
12029  #if IS_ENABLED(CONFIG_PAGE_POOL)
12030  	struct page_pool_params page_pool_params = {
12031  		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12032  		.flags = PP_FLAG_SYSTEM_POOL,
12033  		.nid = cpu_to_mem(cpuid),
12034  	};
12035  	struct page_pool *pp_ptr;
12036  
12037  	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12038  	if (IS_ERR(pp_ptr))
12039  		return -ENOMEM;
12040  
12041  	per_cpu(system_page_pool, cpuid) = pp_ptr;
12042  #endif
12043  	return 0;
12044  }
12045  
backlog_napi_should_run(unsigned int cpu)12046  static int backlog_napi_should_run(unsigned int cpu)
12047  {
12048  	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12049  	struct napi_struct *napi = &sd->backlog;
12050  
12051  	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12052  }
12053  
run_backlog_napi(unsigned int cpu)12054  static void run_backlog_napi(unsigned int cpu)
12055  {
12056  	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12057  
12058  	napi_threaded_poll_loop(&sd->backlog);
12059  }
12060  
backlog_napi_setup(unsigned int cpu)12061  static void backlog_napi_setup(unsigned int cpu)
12062  {
12063  	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12064  	struct napi_struct *napi = &sd->backlog;
12065  
12066  	napi->thread = this_cpu_read(backlog_napi);
12067  	set_bit(NAPI_STATE_THREADED, &napi->state);
12068  }
12069  
12070  static struct smp_hotplug_thread backlog_threads = {
12071  	.store			= &backlog_napi,
12072  	.thread_should_run	= backlog_napi_should_run,
12073  	.thread_fn		= run_backlog_napi,
12074  	.thread_comm		= "backlog_napi/%u",
12075  	.setup			= backlog_napi_setup,
12076  };
12077  
12078  /*
12079   *       This is called single threaded during boot, so no need
12080   *       to take the rtnl semaphore.
12081   */
net_dev_init(void)12082  static int __init net_dev_init(void)
12083  {
12084  	int i, rc = -ENOMEM;
12085  
12086  	BUG_ON(!dev_boot_phase);
12087  
12088  	net_dev_struct_check();
12089  
12090  	if (dev_proc_init())
12091  		goto out;
12092  
12093  	if (netdev_kobject_init())
12094  		goto out;
12095  
12096  	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12097  		INIT_LIST_HEAD(&ptype_base[i]);
12098  
12099  	if (register_pernet_subsys(&netdev_net_ops))
12100  		goto out;
12101  
12102  	/*
12103  	 *	Initialise the packet receive queues.
12104  	 */
12105  
12106  	for_each_possible_cpu(i) {
12107  		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12108  		struct softnet_data *sd = &per_cpu(softnet_data, i);
12109  
12110  		INIT_WORK(flush, flush_backlog);
12111  
12112  		skb_queue_head_init(&sd->input_pkt_queue);
12113  		skb_queue_head_init(&sd->process_queue);
12114  #ifdef CONFIG_XFRM_OFFLOAD
12115  		skb_queue_head_init(&sd->xfrm_backlog);
12116  #endif
12117  		INIT_LIST_HEAD(&sd->poll_list);
12118  		sd->output_queue_tailp = &sd->output_queue;
12119  #ifdef CONFIG_RPS
12120  		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12121  		sd->cpu = i;
12122  #endif
12123  		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12124  		spin_lock_init(&sd->defer_lock);
12125  
12126  		init_gro_hash(&sd->backlog);
12127  		sd->backlog.poll = process_backlog;
12128  		sd->backlog.weight = weight_p;
12129  		INIT_LIST_HEAD(&sd->backlog.poll_list);
12130  
12131  		if (net_page_pool_create(i))
12132  			goto out;
12133  	}
12134  	if (use_backlog_threads())
12135  		smpboot_register_percpu_thread(&backlog_threads);
12136  
12137  	dev_boot_phase = 0;
12138  
12139  	/* The loopback device is special if any other network devices
12140  	 * is present in a network namespace the loopback device must
12141  	 * be present. Since we now dynamically allocate and free the
12142  	 * loopback device ensure this invariant is maintained by
12143  	 * keeping the loopback device as the first device on the
12144  	 * list of network devices.  Ensuring the loopback devices
12145  	 * is the first device that appears and the last network device
12146  	 * that disappears.
12147  	 */
12148  	if (register_pernet_device(&loopback_net_ops))
12149  		goto out;
12150  
12151  	if (register_pernet_device(&default_device_ops))
12152  		goto out;
12153  
12154  	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12155  	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12156  
12157  	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12158  				       NULL, dev_cpu_dead);
12159  	WARN_ON(rc < 0);
12160  	rc = 0;
12161  
12162  	/* avoid static key IPIs to isolated CPUs */
12163  	if (housekeeping_enabled(HK_TYPE_MISC))
12164  		net_enable_timestamp();
12165  out:
12166  	if (rc < 0) {
12167  		for_each_possible_cpu(i) {
12168  			struct page_pool *pp_ptr;
12169  
12170  			pp_ptr = per_cpu(system_page_pool, i);
12171  			if (!pp_ptr)
12172  				continue;
12173  
12174  			page_pool_destroy(pp_ptr);
12175  			per_cpu(system_page_pool, i) = NULL;
12176  		}
12177  	}
12178  
12179  	return rc;
12180  }
12181  
12182  subsys_initcall(net_dev_init);
12183