1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * Macros and functions to access KVM PTEs (also known as SPTEs)
6   *
7   * Copyright (C) 2006 Qumranet, Inc.
8   * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9   */
10  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11  
12  #include <linux/kvm_host.h>
13  #include "mmu.h"
14  #include "mmu_internal.h"
15  #include "x86.h"
16  #include "spte.h"
17  
18  #include <asm/e820/api.h>
19  #include <asm/memtype.h>
20  #include <asm/vmx.h>
21  
22  bool __read_mostly enable_mmio_caching = true;
23  static bool __ro_after_init allow_mmio_caching;
24  module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
25  EXPORT_SYMBOL_GPL(enable_mmio_caching);
26  
27  u64 __read_mostly shadow_host_writable_mask;
28  u64 __read_mostly shadow_mmu_writable_mask;
29  u64 __read_mostly shadow_nx_mask;
30  u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
31  u64 __read_mostly shadow_user_mask;
32  u64 __read_mostly shadow_accessed_mask;
33  u64 __read_mostly shadow_dirty_mask;
34  u64 __read_mostly shadow_mmio_value;
35  u64 __read_mostly shadow_mmio_mask;
36  u64 __read_mostly shadow_mmio_access_mask;
37  u64 __read_mostly shadow_present_mask;
38  u64 __read_mostly shadow_memtype_mask;
39  u64 __read_mostly shadow_me_value;
40  u64 __read_mostly shadow_me_mask;
41  u64 __read_mostly shadow_acc_track_mask;
42  
43  u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
44  u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
45  
kvm_get_host_maxphyaddr(void)46  static u8 __init kvm_get_host_maxphyaddr(void)
47  {
48  	/*
49  	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
50  	 * in CPU detection code, but the processor treats those reduced bits as
51  	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
52  	 * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR,
53  	 * when reasoning about CPU behavior with respect to MAXPHYADDR.
54  	 */
55  	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
56  		return cpuid_eax(0x80000008) & 0xff;
57  
58  	/*
59  	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
60  	 * custom CPUID.  Proceed with whatever the kernel found since these features
61  	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
62  	 */
63  	return boot_cpu_data.x86_phys_bits;
64  }
65  
kvm_mmu_spte_module_init(void)66  void __init kvm_mmu_spte_module_init(void)
67  {
68  	/*
69  	 * Snapshot userspace's desire to allow MMIO caching.  Whether or not
70  	 * KVM can actually enable MMIO caching depends on vendor-specific
71  	 * hardware capabilities and other module params that can't be resolved
72  	 * until the vendor module is loaded, i.e. enable_mmio_caching can and
73  	 * will change when the vendor module is (re)loaded.
74  	 */
75  	allow_mmio_caching = enable_mmio_caching;
76  
77  	kvm_host.maxphyaddr = kvm_get_host_maxphyaddr();
78  }
79  
generation_mmio_spte_mask(u64 gen)80  static u64 generation_mmio_spte_mask(u64 gen)
81  {
82  	u64 mask;
83  
84  	WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
85  
86  	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
87  	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
88  	return mask;
89  }
90  
make_mmio_spte(struct kvm_vcpu * vcpu,u64 gfn,unsigned int access)91  u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
92  {
93  	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
94  	u64 spte = generation_mmio_spte_mask(gen);
95  	u64 gpa = gfn << PAGE_SHIFT;
96  
97  	WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value);
98  
99  	access &= shadow_mmio_access_mask;
100  	spte |= vcpu->kvm->arch.shadow_mmio_value | access;
101  	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
102  	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
103  		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
104  
105  	return spte;
106  }
107  
kvm_is_mmio_pfn(kvm_pfn_t pfn)108  static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
109  {
110  	if (pfn_valid(pfn))
111  		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
112  			/*
113  			 * Some reserved pages, such as those from NVDIMM
114  			 * DAX devices, are not for MMIO, and can be mapped
115  			 * with cached memory type for better performance.
116  			 * However, the above check misconceives those pages
117  			 * as MMIO, and results in KVM mapping them with UC
118  			 * memory type, which would hurt the performance.
119  			 * Therefore, we check the host memory type in addition
120  			 * and only treat UC/UC-/WC pages as MMIO.
121  			 */
122  			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
123  
124  	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
125  				     pfn_to_hpa(pfn + 1) - 1,
126  				     E820_TYPE_RAM);
127  }
128  
129  /*
130   * Returns true if the SPTE has bits that may be set without holding mmu_lock.
131   * The caller is responsible for checking if the SPTE is shadow-present, and
132   * for determining whether or not the caller cares about non-leaf SPTEs.
133   */
spte_has_volatile_bits(u64 spte)134  bool spte_has_volatile_bits(u64 spte)
135  {
136  	/*
137  	 * Always atomically update spte if it can be updated
138  	 * out of mmu-lock, it can ensure dirty bit is not lost,
139  	 * also, it can help us to get a stable is_writable_pte()
140  	 * to ensure tlb flush is not missed.
141  	 */
142  	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
143  		return true;
144  
145  	if (is_access_track_spte(spte))
146  		return true;
147  
148  	if (spte_ad_enabled(spte)) {
149  		if (!(spte & shadow_accessed_mask) ||
150  		    (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
151  			return true;
152  	}
153  
154  	return false;
155  }
156  
make_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,const struct kvm_memory_slot * slot,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,u64 old_spte,bool prefetch,bool can_unsync,bool host_writable,u64 * new_spte)157  bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
158  	       const struct kvm_memory_slot *slot,
159  	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
160  	       u64 old_spte, bool prefetch, bool can_unsync,
161  	       bool host_writable, u64 *new_spte)
162  {
163  	int level = sp->role.level;
164  	u64 spte = SPTE_MMU_PRESENT_MASK;
165  	bool wrprot = false;
166  
167  	/*
168  	 * For the EPT case, shadow_present_mask has no RWX bits set if
169  	 * exec-only page table entries are supported.  In that case,
170  	 * ACC_USER_MASK and shadow_user_mask are used to represent
171  	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
172  	 */
173  	WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE);
174  
175  	if (sp->role.ad_disabled)
176  		spte |= SPTE_TDP_AD_DISABLED;
177  	else if (kvm_mmu_page_ad_need_write_protect(sp))
178  		spte |= SPTE_TDP_AD_WRPROT_ONLY;
179  
180  	spte |= shadow_present_mask;
181  	if (!prefetch)
182  		spte |= spte_shadow_accessed_mask(spte);
183  
184  	/*
185  	 * For simplicity, enforce the NX huge page mitigation even if not
186  	 * strictly necessary.  KVM could ignore the mitigation if paging is
187  	 * disabled in the guest, as the guest doesn't have any page tables to
188  	 * abuse.  But to safely ignore the mitigation, KVM would have to
189  	 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
190  	 * is toggled on, and that's a net negative for performance when TDP is
191  	 * enabled.  When TDP is disabled, KVM will always switch to a new MMU
192  	 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
193  	 * would tie make_spte() further to vCPU/MMU state, and add complexity
194  	 * just to optimize a mode that is anything but performance critical.
195  	 */
196  	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
197  	    is_nx_huge_page_enabled(vcpu->kvm)) {
198  		pte_access &= ~ACC_EXEC_MASK;
199  	}
200  
201  	if (pte_access & ACC_EXEC_MASK)
202  		spte |= shadow_x_mask;
203  	else
204  		spte |= shadow_nx_mask;
205  
206  	if (pte_access & ACC_USER_MASK)
207  		spte |= shadow_user_mask;
208  
209  	if (level > PG_LEVEL_4K)
210  		spte |= PT_PAGE_SIZE_MASK;
211  
212  	if (shadow_memtype_mask)
213  		spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn,
214  						  kvm_is_mmio_pfn(pfn));
215  	if (host_writable)
216  		spte |= shadow_host_writable_mask;
217  	else
218  		pte_access &= ~ACC_WRITE_MASK;
219  
220  	if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
221  		spte |= shadow_me_value;
222  
223  	spte |= (u64)pfn << PAGE_SHIFT;
224  
225  	if (pte_access & ACC_WRITE_MASK) {
226  		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
227  
228  		/*
229  		 * Optimization: for pte sync, if spte was writable the hash
230  		 * lookup is unnecessary (and expensive). Write protection
231  		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
232  		 * Same reasoning can be applied to dirty page accounting.
233  		 */
234  		if (is_writable_pte(old_spte))
235  			goto out;
236  
237  		/*
238  		 * Unsync shadow pages that are reachable by the new, writable
239  		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
240  		 * e.g. it's write-tracked (upper-level SPs) or has one or more
241  		 * shadow pages and unsync'ing pages is not allowed.
242  		 */
243  		if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
244  			wrprot = true;
245  			pte_access &= ~ACC_WRITE_MASK;
246  			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
247  		}
248  	}
249  
250  	if (pte_access & ACC_WRITE_MASK)
251  		spte |= spte_shadow_dirty_mask(spte);
252  
253  out:
254  	if (prefetch)
255  		spte = mark_spte_for_access_track(spte);
256  
257  	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
258  		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
259  		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
260  
261  	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
262  		/* Enforced by kvm_mmu_hugepage_adjust. */
263  		WARN_ON_ONCE(level > PG_LEVEL_4K);
264  		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
265  	}
266  
267  	*new_spte = spte;
268  	return wrprot;
269  }
270  
make_spte_executable(u64 spte)271  static u64 make_spte_executable(u64 spte)
272  {
273  	bool is_access_track = is_access_track_spte(spte);
274  
275  	if (is_access_track)
276  		spte = restore_acc_track_spte(spte);
277  
278  	spte &= ~shadow_nx_mask;
279  	spte |= shadow_x_mask;
280  
281  	if (is_access_track)
282  		spte = mark_spte_for_access_track(spte);
283  
284  	return spte;
285  }
286  
287  /*
288   * Construct an SPTE that maps a sub-page of the given huge page SPTE where
289   * `index` identifies which sub-page.
290   *
291   * This is used during huge page splitting to build the SPTEs that make up the
292   * new page table.
293   */
make_huge_page_split_spte(struct kvm * kvm,u64 huge_spte,union kvm_mmu_page_role role,int index)294  u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte,
295  			      union kvm_mmu_page_role role, int index)
296  {
297  	u64 child_spte = huge_spte;
298  
299  	KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm);
300  
301  	/*
302  	 * The child_spte already has the base address of the huge page being
303  	 * split. So we just have to OR in the offset to the page at the next
304  	 * lower level for the given index.
305  	 */
306  	child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
307  
308  	if (role.level == PG_LEVEL_4K) {
309  		child_spte &= ~PT_PAGE_SIZE_MASK;
310  
311  		/*
312  		 * When splitting to a 4K page where execution is allowed, mark
313  		 * the page executable as the NX hugepage mitigation no longer
314  		 * applies.
315  		 */
316  		if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
317  			child_spte = make_spte_executable(child_spte);
318  	}
319  
320  	return child_spte;
321  }
322  
323  
make_nonleaf_spte(u64 * child_pt,bool ad_disabled)324  u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
325  {
326  	u64 spte = SPTE_MMU_PRESENT_MASK;
327  
328  	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
329  		shadow_user_mask | shadow_x_mask | shadow_me_value;
330  
331  	if (ad_disabled)
332  		spte |= SPTE_TDP_AD_DISABLED;
333  	else
334  		spte |= shadow_accessed_mask;
335  
336  	return spte;
337  }
338  
mark_spte_for_access_track(u64 spte)339  u64 mark_spte_for_access_track(u64 spte)
340  {
341  	if (spte_ad_enabled(spte))
342  		return spte & ~shadow_accessed_mask;
343  
344  	if (is_access_track_spte(spte))
345  		return spte;
346  
347  	check_spte_writable_invariants(spte);
348  
349  	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
350  			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
351  		  "Access Tracking saved bit locations are not zero\n");
352  
353  	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
354  		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
355  	spte &= ~shadow_acc_track_mask;
356  
357  	return spte;
358  }
359  
kvm_mmu_set_mmio_spte_mask(u64 mmio_value,u64 mmio_mask,u64 access_mask)360  void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
361  {
362  	BUG_ON((u64)(unsigned)access_mask != access_mask);
363  	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
364  
365  	/*
366  	 * Reset to the original module param value to honor userspace's desire
367  	 * to (dis)allow MMIO caching.  Update the param itself so that
368  	 * userspace can see whether or not KVM is actually using MMIO caching.
369  	 */
370  	enable_mmio_caching = allow_mmio_caching;
371  	if (!enable_mmio_caching)
372  		mmio_value = 0;
373  
374  	/*
375  	 * The mask must contain only bits that are carved out specifically for
376  	 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
377  	 * generation.
378  	 */
379  	if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
380  		mmio_value = 0;
381  
382  	/*
383  	 * Disable MMIO caching if the MMIO value collides with the bits that
384  	 * are used to hold the relocated GFN when the L1TF mitigation is
385  	 * enabled.  This should never fire as there is no known hardware that
386  	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
387  	 * MMIO value are not susceptible to L1TF.
388  	 */
389  	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
390  				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
391  		mmio_value = 0;
392  
393  	/*
394  	 * The masked MMIO value must obviously match itself and a frozen SPTE
395  	 * must not get a false positive.  Frozen SPTEs and MMIO SPTEs should
396  	 * never collide as MMIO must set some RWX bits, and frozen SPTEs must
397  	 * not set any RWX bits.
398  	 */
399  	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
400  	    WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value))
401  		mmio_value = 0;
402  
403  	if (!mmio_value)
404  		enable_mmio_caching = false;
405  
406  	shadow_mmio_value = mmio_value;
407  	shadow_mmio_mask  = mmio_mask;
408  	shadow_mmio_access_mask = access_mask;
409  }
410  EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
411  
kvm_mmu_set_me_spte_mask(u64 me_value,u64 me_mask)412  void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
413  {
414  	/* shadow_me_value must be a subset of shadow_me_mask */
415  	if (WARN_ON(me_value & ~me_mask))
416  		me_value = me_mask = 0;
417  
418  	shadow_me_value = me_value;
419  	shadow_me_mask = me_mask;
420  }
421  EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
422  
kvm_mmu_set_ept_masks(bool has_ad_bits,bool has_exec_only)423  void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
424  {
425  	shadow_user_mask	= VMX_EPT_READABLE_MASK;
426  	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
427  	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
428  	shadow_nx_mask		= 0ull;
429  	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
430  	/* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */
431  	shadow_present_mask	=
432  		(has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT;
433  	/*
434  	 * EPT overrides the host MTRRs, and so KVM must program the desired
435  	 * memtype directly into the SPTEs.  Note, this mask is just the mask
436  	 * of all bits that factor into the memtype, the actual memtype must be
437  	 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
438  	 */
439  	shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
440  	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
441  	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
442  	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
443  
444  	/*
445  	 * EPT Misconfigurations are generated if the value of bits 2:0
446  	 * of an EPT paging-structure entry is 110b (write/execute).
447  	 */
448  	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
449  				   VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0);
450  }
451  EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
452  
kvm_mmu_reset_all_pte_masks(void)453  void kvm_mmu_reset_all_pte_masks(void)
454  {
455  	u8 low_phys_bits;
456  	u64 mask;
457  
458  	/*
459  	 * If the CPU has 46 or less physical address bits, then set an
460  	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
461  	 * assumed that the CPU is not vulnerable to L1TF.
462  	 *
463  	 * Some Intel CPUs address the L1 cache using more PA bits than are
464  	 * reported by CPUID. Use the PA width of the L1 cache when possible
465  	 * to achieve more effective mitigation, e.g. if system RAM overlaps
466  	 * the most significant bits of legal physical address space.
467  	 */
468  	shadow_nonpresent_or_rsvd_mask = 0;
469  	low_phys_bits = boot_cpu_data.x86_phys_bits;
470  	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
471  	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
472  			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
473  		low_phys_bits = boot_cpu_data.x86_cache_bits
474  			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
475  		shadow_nonpresent_or_rsvd_mask =
476  			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
477  	}
478  
479  	shadow_nonpresent_or_rsvd_lower_gfn_mask =
480  		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
481  
482  	shadow_user_mask	= PT_USER_MASK;
483  	shadow_accessed_mask	= PT_ACCESSED_MASK;
484  	shadow_dirty_mask	= PT_DIRTY_MASK;
485  	shadow_nx_mask		= PT64_NX_MASK;
486  	shadow_x_mask		= 0;
487  	shadow_present_mask	= PT_PRESENT_MASK;
488  
489  	/*
490  	 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
491  	 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
492  	 * correct memtype (WB is the "weakest" memtype).
493  	 */
494  	shadow_memtype_mask	= 0;
495  	shadow_acc_track_mask	= 0;
496  	shadow_me_mask		= 0;
497  	shadow_me_value		= 0;
498  
499  	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
500  	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
501  
502  	/*
503  	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
504  	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
505  	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
506  	 * 52-bit physical addresses then there are no reserved PA bits in the
507  	 * PTEs and so the reserved PA approach must be disabled.
508  	 */
509  	if (kvm_host.maxphyaddr < 52)
510  		mask = BIT_ULL(51) | PT_PRESENT_MASK;
511  	else
512  		mask = 0;
513  
514  	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
515  }
516