1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * <linux/usb/gadget.h>
4   *
5   * We call the USB code inside a Linux-based peripheral device a "gadget"
6   * driver, except for the hardware-specific bus glue.  One USB host can
7   * talk to many USB gadgets, but the gadgets are only able to communicate
8   * to one host.
9   *
10   *
11   * (C) Copyright 2002-2004 by David Brownell
12   * All Rights Reserved.
13   */
14  
15  #ifndef __LINUX_USB_GADGET_H
16  #define __LINUX_USB_GADGET_H
17  
18  #include <linux/configfs.h>
19  #include <linux/device.h>
20  #include <linux/errno.h>
21  #include <linux/init.h>
22  #include <linux/list.h>
23  #include <linux/slab.h>
24  #include <linux/scatterlist.h>
25  #include <linux/types.h>
26  #include <linux/workqueue.h>
27  #include <linux/usb/ch9.h>
28  
29  #define UDC_TRACE_STR_MAX	512
30  
31  struct usb_ep;
32  
33  /**
34   * struct usb_request - describes one i/o request
35   * @buf: Buffer used for data.  Always provide this; some controllers
36   *	only use PIO, or don't use DMA for some endpoints.
37   * @dma: DMA address corresponding to 'buf'.  If you don't set this
38   *	field, and the usb controller needs one, it is responsible
39   *	for mapping and unmapping the buffer.
40   * @sg: a scatterlist for SG-capable controllers.
41   * @num_sgs: number of SG entries
42   * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
43   * @length: Length of that data
44   * @stream_id: The stream id, when USB3.0 bulk streams are being used
45   * @is_last: Indicates if this is the last request of a stream_id before
46   *	switching to a different stream (required for DWC3 controllers).
47   * @no_interrupt: If true, hints that no completion irq is needed.
48   *	Helpful sometimes with deep request queues that are handled
49   *	directly by DMA controllers.
50   * @zero: If true, when writing data, makes the last packet be "short"
51   *     by adding a zero length packet as needed;
52   * @short_not_ok: When reading data, makes short packets be
53   *     treated as errors (queue stops advancing till cleanup).
54   * @dma_mapped: Indicates if request has been mapped to DMA (internal)
55   * @sg_was_mapped: Set if the scatterlist has been mapped before the request
56   * @complete: Function called when request completes, so this request and
57   *	its buffer may be re-used.  The function will always be called with
58   *	interrupts disabled, and it must not sleep.
59   *	Reads terminate with a short packet, or when the buffer fills,
60   *	whichever comes first.  When writes terminate, some data bytes
61   *	will usually still be in flight (often in a hardware fifo).
62   *	Errors (for reads or writes) stop the queue from advancing
63   *	until the completion function returns, so that any transfers
64   *	invalidated by the error may first be dequeued.
65   * @context: For use by the completion callback
66   * @list: For use by the gadget driver.
67   * @frame_number: Reports the interval number in (micro)frame in which the
68   *	isochronous transfer was transmitted or received.
69   * @status: Reports completion code, zero or a negative errno.
70   *	Normally, faults block the transfer queue from advancing until
71   *	the completion callback returns.
72   *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
73   *	or when the driver disabled the endpoint.
74   * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
75   *	transfers) this may be less than the requested length.  If the
76   *	short_not_ok flag is set, short reads are treated as errors
77   *	even when status otherwise indicates successful completion.
78   *	Note that for writes (IN transfers) some data bytes may still
79   *	reside in a device-side FIFO when the request is reported as
80   *	complete.
81   *
82   * These are allocated/freed through the endpoint they're used with.  The
83   * hardware's driver can add extra per-request data to the memory it returns,
84   * which often avoids separate memory allocations (potential failures),
85   * later when the request is queued.
86   *
87   * Request flags affect request handling, such as whether a zero length
88   * packet is written (the "zero" flag), whether a short read should be
89   * treated as an error (blocking request queue advance, the "short_not_ok"
90   * flag), or hinting that an interrupt is not required (the "no_interrupt"
91   * flag, for use with deep request queues).
92   *
93   * Bulk endpoints can use any size buffers, and can also be used for interrupt
94   * transfers. interrupt-only endpoints can be much less functional.
95   *
96   * NOTE:  this is analogous to 'struct urb' on the host side, except that
97   * it's thinner and promotes more pre-allocation.
98   */
99  
100  struct usb_request {
101  	void			*buf;
102  	unsigned		length;
103  	dma_addr_t		dma;
104  
105  	struct scatterlist	*sg;
106  	unsigned		num_sgs;
107  	unsigned		num_mapped_sgs;
108  
109  	unsigned		stream_id:16;
110  	unsigned		is_last:1;
111  	unsigned		no_interrupt:1;
112  	unsigned		zero:1;
113  	unsigned		short_not_ok:1;
114  	unsigned		dma_mapped:1;
115  	unsigned		sg_was_mapped:1;
116  
117  	void			(*complete)(struct usb_ep *ep,
118  					struct usb_request *req);
119  	void			*context;
120  	struct list_head	list;
121  
122  	unsigned		frame_number;		/* ISO ONLY */
123  
124  	int			status;
125  	unsigned		actual;
126  };
127  
128  /*-------------------------------------------------------------------------*/
129  
130  /* endpoint-specific parts of the api to the usb controller hardware.
131   * unlike the urb model, (de)multiplexing layers are not required.
132   * (so this api could slash overhead if used on the host side...)
133   *
134   * note that device side usb controllers commonly differ in how many
135   * endpoints they support, as well as their capabilities.
136   */
137  struct usb_ep_ops {
138  	int (*enable) (struct usb_ep *ep,
139  		const struct usb_endpoint_descriptor *desc);
140  	int (*disable) (struct usb_ep *ep);
141  	void (*dispose) (struct usb_ep *ep);
142  
143  	struct usb_request *(*alloc_request) (struct usb_ep *ep,
144  		gfp_t gfp_flags);
145  	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
146  
147  	int (*queue) (struct usb_ep *ep, struct usb_request *req,
148  		gfp_t gfp_flags);
149  	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
150  
151  	int (*set_halt) (struct usb_ep *ep, int value);
152  	int (*set_wedge) (struct usb_ep *ep);
153  
154  	int (*fifo_status) (struct usb_ep *ep);
155  	void (*fifo_flush) (struct usb_ep *ep);
156  };
157  
158  /**
159   * struct usb_ep_caps - endpoint capabilities description
160   * @type_control:Endpoint supports control type (reserved for ep0).
161   * @type_iso:Endpoint supports isochronous transfers.
162   * @type_bulk:Endpoint supports bulk transfers.
163   * @type_int:Endpoint supports interrupt transfers.
164   * @dir_in:Endpoint supports IN direction.
165   * @dir_out:Endpoint supports OUT direction.
166   */
167  struct usb_ep_caps {
168  	unsigned type_control:1;
169  	unsigned type_iso:1;
170  	unsigned type_bulk:1;
171  	unsigned type_int:1;
172  	unsigned dir_in:1;
173  	unsigned dir_out:1;
174  };
175  
176  #define USB_EP_CAPS_TYPE_CONTROL     0x01
177  #define USB_EP_CAPS_TYPE_ISO         0x02
178  #define USB_EP_CAPS_TYPE_BULK        0x04
179  #define USB_EP_CAPS_TYPE_INT         0x08
180  #define USB_EP_CAPS_TYPE_ALL \
181  	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
182  #define USB_EP_CAPS_DIR_IN           0x01
183  #define USB_EP_CAPS_DIR_OUT          0x02
184  #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
185  
186  #define USB_EP_CAPS(_type, _dir) \
187  	{ \
188  		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
189  		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
190  		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
191  		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
192  		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
193  		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
194  	}
195  
196  /**
197   * struct usb_ep - device side representation of USB endpoint
198   * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
199   * @ops: Function pointers used to access hardware-specific operations.
200   * @ep_list:the gadget's ep_list holds all of its endpoints
201   * @caps:The structure describing types and directions supported by endpoint.
202   * @enabled: The current endpoint enabled/disabled state.
203   * @claimed: True if this endpoint is claimed by a function.
204   * @maxpacket:The maximum packet size used on this endpoint.  The initial
205   *	value can sometimes be reduced (hardware allowing), according to
206   *	the endpoint descriptor used to configure the endpoint.
207   * @maxpacket_limit:The maximum packet size value which can be handled by this
208   *	endpoint. It's set once by UDC driver when endpoint is initialized, and
209   *	should not be changed. Should not be confused with maxpacket.
210   * @max_streams: The maximum number of streams supported
211   *	by this EP (0 - 16, actual number is 2^n)
212   * @mult: multiplier, 'mult' value for SS Isoc EPs
213   * @maxburst: the maximum number of bursts supported by this EP (for usb3)
214   * @driver_data:for use by the gadget driver.
215   * @address: used to identify the endpoint when finding descriptor that
216   *	matches connection speed
217   * @desc: endpoint descriptor.  This pointer is set before the endpoint is
218   *	enabled and remains valid until the endpoint is disabled.
219   * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
220   *	descriptor that is used to configure the endpoint
221   *
222   * the bus controller driver lists all the general purpose endpoints in
223   * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
224   * and is accessed only in response to a driver setup() callback.
225   */
226  
227  struct usb_ep {
228  	void			*driver_data;
229  
230  	const char		*name;
231  	const struct usb_ep_ops	*ops;
232  	const struct usb_endpoint_descriptor	*desc;
233  	const struct usb_ss_ep_comp_descriptor	*comp_desc;
234  	struct list_head	ep_list;
235  	struct usb_ep_caps	caps;
236  	bool			claimed;
237  	bool			enabled;
238  	unsigned		mult:2;
239  	unsigned		maxburst:5;
240  	u8			address;
241  	u16			maxpacket;
242  	u16			maxpacket_limit;
243  	u16			max_streams;
244  };
245  
246  /*-------------------------------------------------------------------------*/
247  
248  #if IS_ENABLED(CONFIG_USB_GADGET)
249  void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
250  int usb_ep_enable(struct usb_ep *ep);
251  int usb_ep_disable(struct usb_ep *ep);
252  struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
253  void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
254  int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
255  int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
256  int usb_ep_set_halt(struct usb_ep *ep);
257  int usb_ep_clear_halt(struct usb_ep *ep);
258  int usb_ep_set_wedge(struct usb_ep *ep);
259  int usb_ep_fifo_status(struct usb_ep *ep);
260  void usb_ep_fifo_flush(struct usb_ep *ep);
261  #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)262  static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
263  		unsigned maxpacket_limit)
264  { }
usb_ep_enable(struct usb_ep * ep)265  static inline int usb_ep_enable(struct usb_ep *ep)
266  { return 0; }
usb_ep_disable(struct usb_ep * ep)267  static inline int usb_ep_disable(struct usb_ep *ep)
268  { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)269  static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
270  		gfp_t gfp_flags)
271  { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)272  static inline void usb_ep_free_request(struct usb_ep *ep,
273  		struct usb_request *req)
274  { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)275  static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
276  		gfp_t gfp_flags)
277  { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)278  static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
279  { return 0; }
usb_ep_set_halt(struct usb_ep * ep)280  static inline int usb_ep_set_halt(struct usb_ep *ep)
281  { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)282  static inline int usb_ep_clear_halt(struct usb_ep *ep)
283  { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)284  static inline int usb_ep_set_wedge(struct usb_ep *ep)
285  { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)286  static inline int usb_ep_fifo_status(struct usb_ep *ep)
287  { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)288  static inline void usb_ep_fifo_flush(struct usb_ep *ep)
289  { }
290  #endif /* USB_GADGET */
291  
292  /*-------------------------------------------------------------------------*/
293  
294  struct usb_dcd_config_params {
295  	__u8  bU1devExitLat;	/* U1 Device exit Latency */
296  #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
297  	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
298  #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
299  	__u8 besl_baseline;	/* Recommended baseline BESL (0-15) */
300  	__u8 besl_deep;		/* Recommended deep BESL (0-15) */
301  #define USB_DEFAULT_BESL_UNSPECIFIED	0xFF	/* No recommended value */
302  };
303  
304  
305  struct usb_gadget;
306  struct usb_gadget_driver;
307  struct usb_udc;
308  
309  /* the rest of the api to the controller hardware: device operations,
310   * which don't involve endpoints (or i/o).
311   */
312  struct usb_gadget_ops {
313  	int	(*get_frame)(struct usb_gadget *);
314  	int	(*wakeup)(struct usb_gadget *);
315  	int	(*func_wakeup)(struct usb_gadget *gadget, int intf_id);
316  	int	(*set_remote_wakeup)(struct usb_gadget *, int set);
317  	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
318  	int	(*vbus_session) (struct usb_gadget *, int is_active);
319  	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
320  	int	(*pullup) (struct usb_gadget *, int is_on);
321  	int	(*ioctl)(struct usb_gadget *,
322  				unsigned code, unsigned long param);
323  	void	(*get_config_params)(struct usb_gadget *,
324  				     struct usb_dcd_config_params *);
325  	int	(*udc_start)(struct usb_gadget *,
326  			struct usb_gadget_driver *);
327  	int	(*udc_stop)(struct usb_gadget *);
328  	void	(*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
329  	void	(*udc_set_ssp_rate)(struct usb_gadget *gadget,
330  			enum usb_ssp_rate rate);
331  	void	(*udc_async_callbacks)(struct usb_gadget *gadget, bool enable);
332  	struct usb_ep *(*match_ep)(struct usb_gadget *,
333  			struct usb_endpoint_descriptor *,
334  			struct usb_ss_ep_comp_descriptor *);
335  	int	(*check_config)(struct usb_gadget *gadget);
336  };
337  
338  /**
339   * struct usb_gadget - represents a usb device
340   * @work: (internal use) Workqueue to be used for sysfs_notify()
341   * @udc: struct usb_udc pointer for this gadget
342   * @ops: Function pointers used to access hardware-specific operations.
343   * @ep0: Endpoint zero, used when reading or writing responses to
344   *	driver setup() requests
345   * @ep_list: List of other endpoints supported by the device.
346   * @speed: Speed of current connection to USB host.
347   * @max_speed: Maximal speed the UDC can handle.  UDC must support this
348   *      and all slower speeds.
349   * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count.
350   * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC
351   *	can handle. The UDC must support this and all slower speeds and lower
352   *	number of lanes.
353   * @state: the state we are now (attached, suspended, configured, etc)
354   * @name: Identifies the controller hardware type.  Used in diagnostics
355   *	and sometimes configuration.
356   * @dev: Driver model state for this abstract device.
357   * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
358   * @out_epnum: last used out ep number
359   * @in_epnum: last used in ep number
360   * @mA: last set mA value
361   * @otg_caps: OTG capabilities of this gadget.
362   * @sg_supported: true if we can handle scatter-gather
363   * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
364   *	gadget driver must provide a USB OTG descriptor.
365   * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
366   *	is in the Mini-AB jack, and HNP has been used to switch roles
367   *	so that the "A" device currently acts as A-Peripheral, not A-Host.
368   * @a_hnp_support: OTG device feature flag, indicating that the A-Host
369   *	supports HNP at this port.
370   * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
371   *	only supports HNP on a different root port.
372   * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
373   *	enabled HNP support.
374   * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
375   *	in peripheral mode can support HNP polling.
376   * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
377   *	or B-Peripheral wants to take host role.
378   * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
379   *	MaxPacketSize.
380   * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
381   * @quirk_stall_not_supp: UDC controller doesn't support stalling.
382   * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
383   * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
384   *	u_ether.c to improve performance.
385   * @is_selfpowered: if the gadget is self-powered.
386   * @deactivated: True if gadget is deactivated - in deactivated state it cannot
387   *	be connected.
388   * @connected: True if gadget is connected.
389   * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
390   *	indicates that it supports LPM as per the LPM ECN & errata.
391   * @wakeup_capable: True if gadget is capable of sending remote wakeup.
392   * @wakeup_armed: True if gadget is armed by the host for remote wakeup.
393   * @irq: the interrupt number for device controller.
394   * @id_number: a unique ID number for ensuring that gadget names are distinct
395   *
396   * Gadgets have a mostly-portable "gadget driver" implementing device
397   * functions, handling all usb configurations and interfaces.  Gadget
398   * drivers talk to hardware-specific code indirectly, through ops vectors.
399   * That insulates the gadget driver from hardware details, and packages
400   * the hardware endpoints through generic i/o queues.  The "usb_gadget"
401   * and "usb_ep" interfaces provide that insulation from the hardware.
402   *
403   * Except for the driver data, all fields in this structure are
404   * read-only to the gadget driver.  That driver data is part of the
405   * "driver model" infrastructure in 2.6 (and later) kernels, and for
406   * earlier systems is grouped in a similar structure that's not known
407   * to the rest of the kernel.
408   *
409   * Values of the three OTG device feature flags are updated before the
410   * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
411   * driver suspend() calls.  They are valid only when is_otg, and when the
412   * device is acting as a B-Peripheral (so is_a_peripheral is false).
413   */
414  struct usb_gadget {
415  	struct work_struct		work;
416  	struct usb_udc			*udc;
417  	/* readonly to gadget driver */
418  	const struct usb_gadget_ops	*ops;
419  	struct usb_ep			*ep0;
420  	struct list_head		ep_list;	/* of usb_ep */
421  	enum usb_device_speed		speed;
422  	enum usb_device_speed		max_speed;
423  
424  	/* USB SuperSpeed Plus only */
425  	enum usb_ssp_rate		ssp_rate;
426  	enum usb_ssp_rate		max_ssp_rate;
427  
428  	enum usb_device_state		state;
429  	const char			*name;
430  	struct device			dev;
431  	unsigned			isoch_delay;
432  	unsigned			out_epnum;
433  	unsigned			in_epnum;
434  	unsigned			mA;
435  	struct usb_otg_caps		*otg_caps;
436  
437  	unsigned			sg_supported:1;
438  	unsigned			is_otg:1;
439  	unsigned			is_a_peripheral:1;
440  	unsigned			b_hnp_enable:1;
441  	unsigned			a_hnp_support:1;
442  	unsigned			a_alt_hnp_support:1;
443  	unsigned			hnp_polling_support:1;
444  	unsigned			host_request_flag:1;
445  	unsigned			quirk_ep_out_aligned_size:1;
446  	unsigned			quirk_altset_not_supp:1;
447  	unsigned			quirk_stall_not_supp:1;
448  	unsigned			quirk_zlp_not_supp:1;
449  	unsigned			quirk_avoids_skb_reserve:1;
450  	unsigned			is_selfpowered:1;
451  	unsigned			deactivated:1;
452  	unsigned			connected:1;
453  	unsigned			lpm_capable:1;
454  	unsigned			wakeup_capable:1;
455  	unsigned			wakeup_armed:1;
456  	int				irq;
457  	int				id_number;
458  };
459  #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
460  
461  /* Interface to the device model */
set_gadget_data(struct usb_gadget * gadget,void * data)462  static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
463  	{ dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)464  static inline void *get_gadget_data(struct usb_gadget *gadget)
465  	{ return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)466  static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
467  {
468  	return container_of(dev, struct usb_gadget, dev);
469  }
usb_get_gadget(struct usb_gadget * gadget)470  static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget)
471  {
472  	get_device(&gadget->dev);
473  	return gadget;
474  }
usb_put_gadget(struct usb_gadget * gadget)475  static inline void usb_put_gadget(struct usb_gadget *gadget)
476  {
477  	put_device(&gadget->dev);
478  }
479  extern void usb_initialize_gadget(struct device *parent,
480  		struct usb_gadget *gadget, void (*release)(struct device *dev));
481  extern int usb_add_gadget(struct usb_gadget *gadget);
482  extern void usb_del_gadget(struct usb_gadget *gadget);
483  
484  /* Legacy device-model interface */
485  extern int usb_add_gadget_udc_release(struct device *parent,
486  		struct usb_gadget *gadget, void (*release)(struct device *dev));
487  extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
488  extern void usb_del_gadget_udc(struct usb_gadget *gadget);
489  extern char *usb_get_gadget_udc_name(void);
490  
491  /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
492  #define gadget_for_each_ep(tmp, gadget) \
493  	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
494  
495  /**
496   * usb_ep_align - returns @len aligned to ep's maxpacketsize.
497   * @ep: the endpoint whose maxpacketsize is used to align @len
498   * @len: buffer size's length to align to @ep's maxpacketsize
499   *
500   * This helper is used to align buffer's size to an ep's maxpacketsize.
501   */
usb_ep_align(struct usb_ep * ep,size_t len)502  static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
503  {
504  	int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc);
505  
506  	return round_up(len, max_packet_size);
507  }
508  
509  /**
510   * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
511   *	requires quirk_ep_out_aligned_size, otherwise returns len.
512   * @g: controller to check for quirk
513   * @ep: the endpoint whose maxpacketsize is used to align @len
514   * @len: buffer size's length to align to @ep's maxpacketsize
515   *
516   * This helper is used in case it's required for any reason to check and maybe
517   * align buffer's size to an ep's maxpacketsize.
518   */
519  static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)520  usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
521  {
522  	return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
523  }
524  
525  /**
526   * gadget_is_altset_supported - return true iff the hardware supports
527   *	altsettings
528   * @g: controller to check for quirk
529   */
gadget_is_altset_supported(struct usb_gadget * g)530  static inline int gadget_is_altset_supported(struct usb_gadget *g)
531  {
532  	return !g->quirk_altset_not_supp;
533  }
534  
535  /**
536   * gadget_is_stall_supported - return true iff the hardware supports stalling
537   * @g: controller to check for quirk
538   */
gadget_is_stall_supported(struct usb_gadget * g)539  static inline int gadget_is_stall_supported(struct usb_gadget *g)
540  {
541  	return !g->quirk_stall_not_supp;
542  }
543  
544  /**
545   * gadget_is_zlp_supported - return true iff the hardware supports zlp
546   * @g: controller to check for quirk
547   */
gadget_is_zlp_supported(struct usb_gadget * g)548  static inline int gadget_is_zlp_supported(struct usb_gadget *g)
549  {
550  	return !g->quirk_zlp_not_supp;
551  }
552  
553  /**
554   * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
555   *	skb_reserve to improve performance.
556   * @g: controller to check for quirk
557   */
gadget_avoids_skb_reserve(struct usb_gadget * g)558  static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
559  {
560  	return g->quirk_avoids_skb_reserve;
561  }
562  
563  /**
564   * gadget_is_dualspeed - return true iff the hardware handles high speed
565   * @g: controller that might support both high and full speeds
566   */
gadget_is_dualspeed(struct usb_gadget * g)567  static inline int gadget_is_dualspeed(struct usb_gadget *g)
568  {
569  	return g->max_speed >= USB_SPEED_HIGH;
570  }
571  
572  /**
573   * gadget_is_superspeed() - return true if the hardware handles superspeed
574   * @g: controller that might support superspeed
575   */
gadget_is_superspeed(struct usb_gadget * g)576  static inline int gadget_is_superspeed(struct usb_gadget *g)
577  {
578  	return g->max_speed >= USB_SPEED_SUPER;
579  }
580  
581  /**
582   * gadget_is_superspeed_plus() - return true if the hardware handles
583   *	superspeed plus
584   * @g: controller that might support superspeed plus
585   */
gadget_is_superspeed_plus(struct usb_gadget * g)586  static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
587  {
588  	return g->max_speed >= USB_SPEED_SUPER_PLUS;
589  }
590  
591  /**
592   * gadget_is_otg - return true iff the hardware is OTG-ready
593   * @g: controller that might have a Mini-AB connector
594   *
595   * This is a runtime test, since kernels with a USB-OTG stack sometimes
596   * run on boards which only have a Mini-B (or Mini-A) connector.
597   */
gadget_is_otg(struct usb_gadget * g)598  static inline int gadget_is_otg(struct usb_gadget *g)
599  {
600  #ifdef CONFIG_USB_OTG
601  	return g->is_otg;
602  #else
603  	return 0;
604  #endif
605  }
606  
607  /*-------------------------------------------------------------------------*/
608  
609  #if IS_ENABLED(CONFIG_USB_GADGET)
610  int usb_gadget_frame_number(struct usb_gadget *gadget);
611  int usb_gadget_wakeup(struct usb_gadget *gadget);
612  int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set);
613  int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
614  int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
615  int usb_gadget_vbus_connect(struct usb_gadget *gadget);
616  int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
617  int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
618  int usb_gadget_connect(struct usb_gadget *gadget);
619  int usb_gadget_disconnect(struct usb_gadget *gadget);
620  int usb_gadget_deactivate(struct usb_gadget *gadget);
621  int usb_gadget_activate(struct usb_gadget *gadget);
622  int usb_gadget_check_config(struct usb_gadget *gadget);
623  #else
usb_gadget_frame_number(struct usb_gadget * gadget)624  static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
625  { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)626  static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
627  { return 0; }
usb_gadget_set_remote_wakeup(struct usb_gadget * gadget,int set)628  static inline int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
629  { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)630  static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
631  { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)632  static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
633  { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)634  static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
635  { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)636  static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
637  { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)638  static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
639  { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)640  static inline int usb_gadget_connect(struct usb_gadget *gadget)
641  { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)642  static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
643  { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)644  static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
645  { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)646  static inline int usb_gadget_activate(struct usb_gadget *gadget)
647  { return 0; }
usb_gadget_check_config(struct usb_gadget * gadget)648  static inline int usb_gadget_check_config(struct usb_gadget *gadget)
649  { return 0; }
650  #endif /* CONFIG_USB_GADGET */
651  
652  /*-------------------------------------------------------------------------*/
653  
654  /**
655   * struct usb_gadget_driver - driver for usb gadget devices
656   * @function: String describing the gadget's function
657   * @max_speed: Highest speed the driver handles.
658   * @setup: Invoked for ep0 control requests that aren't handled by
659   *	the hardware level driver. Most calls must be handled by
660   *	the gadget driver, including descriptor and configuration
661   *	management.  The 16 bit members of the setup data are in
662   *	USB byte order. Called in_interrupt; this may not sleep.  Driver
663   *	queues a response to ep0, or returns negative to stall.
664   * @disconnect: Invoked after all transfers have been stopped,
665   *	when the host is disconnected.  May be called in_interrupt; this
666   *	may not sleep.  Some devices can't detect disconnect, so this might
667   *	not be called except as part of controller shutdown.
668   * @bind: the driver's bind callback
669   * @unbind: Invoked when the driver is unbound from a gadget,
670   *	usually from rmmod (after a disconnect is reported).
671   *	Called in a context that permits sleeping.
672   * @suspend: Invoked on USB suspend.  May be called in_interrupt.
673   * @resume: Invoked on USB resume.  May be called in_interrupt.
674   * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
675   *	and should be called in_interrupt.
676   * @driver: Driver model state for this driver.
677   * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
678   *	this driver will be bound to any available UDC.
679   * @match_existing_only: If udc is not found, return an error and fail
680   *	the driver registration
681   * @is_bound: Allow a driver to be bound to only one gadget
682   *
683   * Devices are disabled till a gadget driver successfully bind()s, which
684   * means the driver will handle setup() requests needed to enumerate (and
685   * meet "chapter 9" requirements) then do some useful work.
686   *
687   * If gadget->is_otg is true, the gadget driver must provide an OTG
688   * descriptor during enumeration, or else fail the bind() call.  In such
689   * cases, no USB traffic may flow until both bind() returns without
690   * having called usb_gadget_disconnect(), and the USB host stack has
691   * initialized.
692   *
693   * Drivers use hardware-specific knowledge to configure the usb hardware.
694   * endpoint addressing is only one of several hardware characteristics that
695   * are in descriptors the ep0 implementation returns from setup() calls.
696   *
697   * Except for ep0 implementation, most driver code shouldn't need change to
698   * run on top of different usb controllers.  It'll use endpoints set up by
699   * that ep0 implementation.
700   *
701   * The usb controller driver handles a few standard usb requests.  Those
702   * include set_address, and feature flags for devices, interfaces, and
703   * endpoints (the get_status, set_feature, and clear_feature requests).
704   *
705   * Accordingly, the driver's setup() callback must always implement all
706   * get_descriptor requests, returning at least a device descriptor and
707   * a configuration descriptor.  Drivers must make sure the endpoint
708   * descriptors match any hardware constraints. Some hardware also constrains
709   * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
710   *
711   * The driver's setup() callback must also implement set_configuration,
712   * and should also implement set_interface, get_configuration, and
713   * get_interface.  Setting a configuration (or interface) is where
714   * endpoints should be activated or (config 0) shut down.
715   *
716   * The gadget driver's setup() callback does not have to queue a response to
717   * ep0 within the setup() call, the driver can do it after setup() returns.
718   * The UDC driver must wait until such a response is queued before proceeding
719   * with the data/status stages of the control transfer.
720   *
721   * NOTE: Currently, a number of UDC drivers rely on USB_GADGET_DELAYED_STATUS
722   * being returned from the setup() callback, which is a bug. See the comment
723   * next to USB_GADGET_DELAYED_STATUS for details.
724   *
725   * (Note that only the default control endpoint is supported.  Neither
726   * hosts nor devices generally support control traffic except to ep0.)
727   *
728   * Most devices will ignore USB suspend/resume operations, and so will
729   * not provide those callbacks.  However, some may need to change modes
730   * when the host is not longer directing those activities.  For example,
731   * local controls (buttons, dials, etc) may need to be re-enabled since
732   * the (remote) host can't do that any longer; or an error state might
733   * be cleared, to make the device behave identically whether or not
734   * power is maintained.
735   */
736  struct usb_gadget_driver {
737  	char			*function;
738  	enum usb_device_speed	max_speed;
739  	int			(*bind)(struct usb_gadget *gadget,
740  					struct usb_gadget_driver *driver);
741  	void			(*unbind)(struct usb_gadget *);
742  	int			(*setup)(struct usb_gadget *,
743  					const struct usb_ctrlrequest *);
744  	void			(*disconnect)(struct usb_gadget *);
745  	void			(*suspend)(struct usb_gadget *);
746  	void			(*resume)(struct usb_gadget *);
747  	void			(*reset)(struct usb_gadget *);
748  
749  	/* FIXME support safe rmmod */
750  	struct device_driver	driver;
751  
752  	char			*udc_name;
753  	unsigned                match_existing_only:1;
754  	bool			is_bound:1;
755  };
756  
757  
758  
759  /*-------------------------------------------------------------------------*/
760  
761  /* driver modules register and unregister, as usual.
762   * these calls must be made in a context that can sleep.
763   *
764   * A gadget driver can be bound to only one gadget at a time.
765   */
766  
767  /**
768   * usb_gadget_register_driver_owner - register a gadget driver
769   * @driver: the driver being registered
770   * @owner: the driver module
771   * @mod_name: the driver module's build name
772   * Context: can sleep
773   *
774   * Call this in your gadget driver's module initialization function,
775   * to tell the underlying UDC controller driver about your driver.
776   * The @bind() function will be called to bind it to a gadget before this
777   * registration call returns.  It's expected that the @bind() function will
778   * be in init sections.
779   *
780   * Use the macro defined below instead of calling this directly.
781   */
782  int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
783  		struct module *owner, const char *mod_name);
784  
785  /* use a define to avoid include chaining to get THIS_MODULE & friends */
786  #define usb_gadget_register_driver(driver) \
787  	usb_gadget_register_driver_owner(driver, THIS_MODULE, KBUILD_MODNAME)
788  
789  /**
790   * usb_gadget_unregister_driver - unregister a gadget driver
791   * @driver:the driver being unregistered
792   * Context: can sleep
793   *
794   * Call this in your gadget driver's module cleanup function,
795   * to tell the underlying usb controller that your driver is
796   * going away.  If the controller is connected to a USB host,
797   * it will first disconnect().  The driver is also requested
798   * to unbind() and clean up any device state, before this procedure
799   * finally returns.  It's expected that the unbind() functions
800   * will be in exit sections, so may not be linked in some kernels.
801   */
802  int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
803  
804  /*-------------------------------------------------------------------------*/
805  
806  /* utility to simplify dealing with string descriptors */
807  
808  /**
809   * struct usb_string - wraps a C string and its USB id
810   * @id:the (nonzero) ID for this string
811   * @s:the string, in UTF-8 encoding
812   *
813   * If you're using usb_gadget_get_string(), use this to wrap a string
814   * together with its ID.
815   */
816  struct usb_string {
817  	u8			id;
818  	const char		*s;
819  };
820  
821  /**
822   * struct usb_gadget_strings - a set of USB strings in a given language
823   * @language:identifies the strings' language (0x0409 for en-us)
824   * @strings:array of strings with their ids
825   *
826   * If you're using usb_gadget_get_string(), use this to wrap all the
827   * strings for a given language.
828   */
829  struct usb_gadget_strings {
830  	u16			language;	/* 0x0409 for en-us */
831  	struct usb_string	*strings;
832  };
833  
834  struct usb_gadget_string_container {
835  	struct list_head        list;
836  	u8                      *stash[];
837  };
838  
839  /* put descriptor for string with that id into buf (buflen >= 256) */
840  int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
841  
842  /* check if the given language identifier is valid */
843  bool usb_validate_langid(u16 langid);
844  
845  struct gadget_string {
846  	struct config_item item;
847  	struct list_head list;
848  	char string[USB_MAX_STRING_LEN];
849  	struct usb_string usb_string;
850  };
851  
852  #define to_gadget_string(str_item)\
853  container_of(str_item, struct gadget_string, item)
854  
855  /*-------------------------------------------------------------------------*/
856  
857  /* utility to simplify managing config descriptors */
858  
859  /* write vector of descriptors into buffer */
860  int usb_descriptor_fillbuf(void *, unsigned,
861  		const struct usb_descriptor_header **);
862  
863  /* build config descriptor from single descriptor vector */
864  int usb_gadget_config_buf(const struct usb_config_descriptor *config,
865  	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
866  
867  /* copy a NULL-terminated vector of descriptors */
868  struct usb_descriptor_header **usb_copy_descriptors(
869  		struct usb_descriptor_header **);
870  
871  /**
872   * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
873   * @v: vector of descriptors
874   */
usb_free_descriptors(struct usb_descriptor_header ** v)875  static inline void usb_free_descriptors(struct usb_descriptor_header **v)
876  {
877  	kfree(v);
878  }
879  
880  struct usb_function;
881  int usb_assign_descriptors(struct usb_function *f,
882  		struct usb_descriptor_header **fs,
883  		struct usb_descriptor_header **hs,
884  		struct usb_descriptor_header **ss,
885  		struct usb_descriptor_header **ssp);
886  void usb_free_all_descriptors(struct usb_function *f);
887  
888  struct usb_descriptor_header *usb_otg_descriptor_alloc(
889  				struct usb_gadget *gadget);
890  int usb_otg_descriptor_init(struct usb_gadget *gadget,
891  		struct usb_descriptor_header *otg_desc);
892  /*-------------------------------------------------------------------------*/
893  
894  /* utility to simplify map/unmap of usb_requests to/from DMA */
895  
896  #ifdef	CONFIG_HAS_DMA
897  extern int usb_gadget_map_request_by_dev(struct device *dev,
898  		struct usb_request *req, int is_in);
899  extern int usb_gadget_map_request(struct usb_gadget *gadget,
900  		struct usb_request *req, int is_in);
901  
902  extern void usb_gadget_unmap_request_by_dev(struct device *dev,
903  		struct usb_request *req, int is_in);
904  extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
905  		struct usb_request *req, int is_in);
906  #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)907  static inline int usb_gadget_map_request_by_dev(struct device *dev,
908  		struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)909  static inline int usb_gadget_map_request(struct usb_gadget *gadget,
910  		struct usb_request *req, int is_in) { return -ENOSYS; }
911  
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)912  static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
913  		struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)914  static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
915  		struct usb_request *req, int is_in) { }
916  #endif /* !CONFIG_HAS_DMA */
917  
918  /*-------------------------------------------------------------------------*/
919  
920  /* utility to set gadget state properly */
921  
922  extern void usb_gadget_set_state(struct usb_gadget *gadget,
923  		enum usb_device_state state);
924  
925  /*-------------------------------------------------------------------------*/
926  
927  /* utility to tell udc core that the bus reset occurs */
928  extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
929  		struct usb_gadget_driver *driver);
930  
931  /*-------------------------------------------------------------------------*/
932  
933  /* utility to give requests back to the gadget layer */
934  
935  extern void usb_gadget_giveback_request(struct usb_ep *ep,
936  		struct usb_request *req);
937  
938  /*-------------------------------------------------------------------------*/
939  
940  /* utility to find endpoint by name */
941  
942  extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
943  		const char *name);
944  
945  /*-------------------------------------------------------------------------*/
946  
947  /* utility to check if endpoint caps match descriptor needs */
948  
949  extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
950  		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
951  		struct usb_ss_ep_comp_descriptor *ep_comp);
952  
953  /*-------------------------------------------------------------------------*/
954  
955  /* utility to update vbus status for udc core, it may be scheduled */
956  extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
957  
958  /*-------------------------------------------------------------------------*/
959  
960  /* utility wrapping a simple endpoint selection policy */
961  
962  extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
963  			struct usb_endpoint_descriptor *);
964  
965  
966  extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
967  			struct usb_endpoint_descriptor *,
968  			struct usb_ss_ep_comp_descriptor *);
969  
970  extern void usb_ep_autoconfig_release(struct usb_ep *);
971  
972  extern void usb_ep_autoconfig_reset(struct usb_gadget *);
973  
974  #endif /* __LINUX_USB_GADGET_H */
975