1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
25 
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 #include <asm/hyperv-tlfs.h>
36 #include <asm/mshyperv.h>
37 
38 #include "../mm_internal.h"
39 
40 /*
41  * The current flushing context - we pass it instead of 5 arguments:
42  */
43 struct cpa_data {
44 	unsigned long	*vaddr;
45 	pgd_t		*pgd;
46 	pgprot_t	mask_set;
47 	pgprot_t	mask_clr;
48 	unsigned long	numpages;
49 	unsigned long	curpage;
50 	unsigned long	pfn;
51 	unsigned int	flags;
52 	unsigned int	force_split		: 1,
53 			force_static_prot	: 1,
54 			force_flush_all		: 1;
55 	struct page	**pages;
56 };
57 
58 enum cpa_warn {
59 	CPA_CONFLICT,
60 	CPA_PROTECT,
61 	CPA_DETECT,
62 };
63 
64 static const int cpa_warn_level = CPA_PROTECT;
65 
66 /*
67  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69  * entries change the page attribute in parallel to some other cpu
70  * splitting a large page entry along with changing the attribute.
71  */
72 static DEFINE_SPINLOCK(cpa_lock);
73 
74 #define CPA_FLUSHTLB 1
75 #define CPA_ARRAY 2
76 #define CPA_PAGES_ARRAY 4
77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
78 
cachemode2pgprot(enum page_cache_mode pcm)79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
80 {
81 	return __pgprot(cachemode2protval(pcm));
82 }
83 
84 #ifdef CONFIG_PROC_FS
85 static unsigned long direct_pages_count[PG_LEVEL_NUM];
86 
update_page_count(int level,unsigned long pages)87 void update_page_count(int level, unsigned long pages)
88 {
89 	/* Protect against CPA */
90 	spin_lock(&pgd_lock);
91 	direct_pages_count[level] += pages;
92 	spin_unlock(&pgd_lock);
93 }
94 
split_page_count(int level)95 static void split_page_count(int level)
96 {
97 	if (direct_pages_count[level] == 0)
98 		return;
99 
100 	direct_pages_count[level]--;
101 	if (system_state == SYSTEM_RUNNING) {
102 		if (level == PG_LEVEL_2M)
103 			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104 		else if (level == PG_LEVEL_1G)
105 			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106 	}
107 	direct_pages_count[level - 1] += PTRS_PER_PTE;
108 }
109 
arch_report_meminfo(struct seq_file * m)110 void arch_report_meminfo(struct seq_file *m)
111 {
112 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
113 			direct_pages_count[PG_LEVEL_4K] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
116 			direct_pages_count[PG_LEVEL_2M] << 11);
117 #else
118 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
119 			direct_pages_count[PG_LEVEL_2M] << 12);
120 #endif
121 	if (direct_gbpages)
122 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
123 			direct_pages_count[PG_LEVEL_1G] << 20);
124 }
125 #else
split_page_count(int level)126 static inline void split_page_count(int level) { }
127 #endif
128 
129 #ifdef CONFIG_X86_CPA_STATISTICS
130 
131 static unsigned long cpa_1g_checked;
132 static unsigned long cpa_1g_sameprot;
133 static unsigned long cpa_1g_preserved;
134 static unsigned long cpa_2m_checked;
135 static unsigned long cpa_2m_sameprot;
136 static unsigned long cpa_2m_preserved;
137 static unsigned long cpa_4k_install;
138 
cpa_inc_1g_checked(void)139 static inline void cpa_inc_1g_checked(void)
140 {
141 	cpa_1g_checked++;
142 }
143 
cpa_inc_2m_checked(void)144 static inline void cpa_inc_2m_checked(void)
145 {
146 	cpa_2m_checked++;
147 }
148 
cpa_inc_4k_install(void)149 static inline void cpa_inc_4k_install(void)
150 {
151 	data_race(cpa_4k_install++);
152 }
153 
cpa_inc_lp_sameprot(int level)154 static inline void cpa_inc_lp_sameprot(int level)
155 {
156 	if (level == PG_LEVEL_1G)
157 		cpa_1g_sameprot++;
158 	else
159 		cpa_2m_sameprot++;
160 }
161 
cpa_inc_lp_preserved(int level)162 static inline void cpa_inc_lp_preserved(int level)
163 {
164 	if (level == PG_LEVEL_1G)
165 		cpa_1g_preserved++;
166 	else
167 		cpa_2m_preserved++;
168 }
169 
cpastats_show(struct seq_file * m,void * p)170 static int cpastats_show(struct seq_file *m, void *p)
171 {
172 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
173 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
174 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
175 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
176 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
177 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
178 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179 	return 0;
180 }
181 
cpastats_open(struct inode * inode,struct file * file)182 static int cpastats_open(struct inode *inode, struct file *file)
183 {
184 	return single_open(file, cpastats_show, NULL);
185 }
186 
187 static const struct file_operations cpastats_fops = {
188 	.open		= cpastats_open,
189 	.read		= seq_read,
190 	.llseek		= seq_lseek,
191 	.release	= single_release,
192 };
193 
cpa_stats_init(void)194 static int __init cpa_stats_init(void)
195 {
196 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197 			    &cpastats_fops);
198 	return 0;
199 }
200 late_initcall(cpa_stats_init);
201 #else
cpa_inc_1g_checked(void)202 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)203 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)204 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)205 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)206 static inline void cpa_inc_lp_preserved(int level) { }
207 #endif
208 
209 
210 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)211 within(unsigned long addr, unsigned long start, unsigned long end)
212 {
213 	return addr >= start && addr < end;
214 }
215 
216 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218 {
219 	return addr >= start && addr <= end;
220 }
221 
222 #ifdef CONFIG_X86_64
223 
224 /*
225  * The kernel image is mapped into two places in the virtual address space
226  * (addresses without KASLR, of course):
227  *
228  * 1. The kernel direct map (0xffff880000000000)
229  * 2. The "high kernel map" (0xffffffff81000000)
230  *
231  * We actually execute out of #2. If we get the address of a kernel symbol, it
232  * points to #2, but almost all physical-to-virtual translations point to #1.
233  *
234  * This is so that we can have both a directmap of all physical memory *and*
235  * take full advantage of the limited (s32) immediate addressing range (2G)
236  * of x86_64.
237  *
238  * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239  */
240 
highmap_start_pfn(void)241 static inline unsigned long highmap_start_pfn(void)
242 {
243 	return __pa_symbol(_text) >> PAGE_SHIFT;
244 }
245 
highmap_end_pfn(void)246 static inline unsigned long highmap_end_pfn(void)
247 {
248 	/* Do not reference physical address outside the kernel. */
249 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250 }
251 
__cpa_pfn_in_highmap(unsigned long pfn)252 static bool __cpa_pfn_in_highmap(unsigned long pfn)
253 {
254 	/*
255 	 * Kernel text has an alias mapping at a high address, known
256 	 * here as "highmap".
257 	 */
258 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259 }
260 
261 #else
262 
__cpa_pfn_in_highmap(unsigned long pfn)263 static bool __cpa_pfn_in_highmap(unsigned long pfn)
264 {
265 	/* There is no highmap on 32-bit */
266 	return false;
267 }
268 
269 #endif
270 
271 /*
272  * See set_mce_nospec().
273  *
274  * Machine check recovery code needs to change cache mode of poisoned pages to
275  * UC to avoid speculative access logging another error. But passing the
276  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277  * speculative access. So we cheat and flip the top bit of the address. This
278  * works fine for the code that updates the page tables. But at the end of the
279  * process we need to flush the TLB and cache and the non-canonical address
280  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281  *
282  * But in the common case we already have a canonical address. This code
283  * will fix the top bit if needed and is a no-op otherwise.
284  */
fix_addr(unsigned long addr)285 static inline unsigned long fix_addr(unsigned long addr)
286 {
287 #ifdef CONFIG_X86_64
288 	return (long)(addr << 1) >> 1;
289 #else
290 	return addr;
291 #endif
292 }
293 
__cpa_addr(struct cpa_data * cpa,unsigned long idx)294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295 {
296 	if (cpa->flags & CPA_PAGES_ARRAY) {
297 		struct page *page = cpa->pages[idx];
298 
299 		if (unlikely(PageHighMem(page)))
300 			return 0;
301 
302 		return (unsigned long)page_address(page);
303 	}
304 
305 	if (cpa->flags & CPA_ARRAY)
306 		return cpa->vaddr[idx];
307 
308 	return *cpa->vaddr + idx * PAGE_SIZE;
309 }
310 
311 /*
312  * Flushing functions
313  */
314 
clflush_cache_range_opt(void * vaddr,unsigned int size)315 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316 {
317 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319 	void *vend = vaddr + size;
320 
321 	if (p >= vend)
322 		return;
323 
324 	for (; p < vend; p += clflush_size)
325 		clflushopt(p);
326 }
327 
328 /**
329  * clflush_cache_range - flush a cache range with clflush
330  * @vaddr:	virtual start address
331  * @size:	number of bytes to flush
332  *
333  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334  * SFENCE to avoid ordering issues.
335  */
clflush_cache_range(void * vaddr,unsigned int size)336 void clflush_cache_range(void *vaddr, unsigned int size)
337 {
338 	mb();
339 	clflush_cache_range_opt(vaddr, size);
340 	mb();
341 }
342 EXPORT_SYMBOL_GPL(clflush_cache_range);
343 
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)345 void arch_invalidate_pmem(void *addr, size_t size)
346 {
347 	clflush_cache_range(addr, size);
348 }
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350 #endif
351 
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
cpu_cache_has_invalidate_memregion(void)353 bool cpu_cache_has_invalidate_memregion(void)
354 {
355 	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356 }
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358 
cpu_cache_invalidate_memregion(int res_desc)359 int cpu_cache_invalidate_memregion(int res_desc)
360 {
361 	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362 		return -ENXIO;
363 	wbinvd_on_all_cpus();
364 	return 0;
365 }
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367 #endif
368 
__cpa_flush_all(void * arg)369 static void __cpa_flush_all(void *arg)
370 {
371 	unsigned long cache = (unsigned long)arg;
372 
373 	/*
374 	 * Flush all to work around Errata in early athlons regarding
375 	 * large page flushing.
376 	 */
377 	__flush_tlb_all();
378 
379 	if (cache && boot_cpu_data.x86 >= 4)
380 		wbinvd();
381 }
382 
cpa_flush_all(unsigned long cache)383 static void cpa_flush_all(unsigned long cache)
384 {
385 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386 
387 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388 }
389 
__cpa_flush_tlb(void * data)390 static void __cpa_flush_tlb(void *data)
391 {
392 	struct cpa_data *cpa = data;
393 	unsigned int i;
394 
395 	for (i = 0; i < cpa->numpages; i++)
396 		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397 }
398 
cpa_flush(struct cpa_data * data,int cache)399 static void cpa_flush(struct cpa_data *data, int cache)
400 {
401 	struct cpa_data *cpa = data;
402 	unsigned int i;
403 
404 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405 
406 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407 		cpa_flush_all(cache);
408 		return;
409 	}
410 
411 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412 		flush_tlb_all();
413 	else
414 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
415 
416 	if (!cache)
417 		return;
418 
419 	mb();
420 	for (i = 0; i < cpa->numpages; i++) {
421 		unsigned long addr = __cpa_addr(cpa, i);
422 		unsigned int level;
423 
424 		pte_t *pte = lookup_address(addr, &level);
425 
426 		/*
427 		 * Only flush present addresses:
428 		 */
429 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431 	}
432 	mb();
433 }
434 
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)435 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436 		     unsigned long r2_start, unsigned long r2_end)
437 {
438 	return (r1_start <= r2_end && r1_end >= r2_start) ||
439 		(r2_start <= r1_end && r2_end >= r1_start);
440 }
441 
442 #ifdef CONFIG_PCI_BIOS
443 /*
444  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445  * based config access (CONFIG_PCI_GOBIOS) support.
446  */
447 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
449 
protect_pci_bios(unsigned long spfn,unsigned long epfn)450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451 {
452 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453 		return _PAGE_NX;
454 	return 0;
455 }
456 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458 {
459 	return 0;
460 }
461 #endif
462 
463 /*
464  * The .rodata section needs to be read-only. Using the pfn catches all
465  * aliases.  This also includes __ro_after_init, so do not enforce until
466  * kernel_set_to_readonly is true.
467  */
protect_rodata(unsigned long spfn,unsigned long epfn)468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469 {
470 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471 
472 	/*
473 	 * Note: __end_rodata is at page aligned and not inclusive, so
474 	 * subtract 1 to get the last enforced PFN in the rodata area.
475 	 */
476 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477 
478 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479 		return _PAGE_RW;
480 	return 0;
481 }
482 
483 /*
484  * Protect kernel text against becoming non executable by forbidding
485  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
486  * out of which the kernel actually executes.  Do not protect the low
487  * mapping.
488  *
489  * This does not cover __inittext since that is gone after boot.
490  */
protect_kernel_text(unsigned long start,unsigned long end)491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492 {
493 	unsigned long t_end = (unsigned long)_etext - 1;
494 	unsigned long t_start = (unsigned long)_text;
495 
496 	if (overlaps(start, end, t_start, t_end))
497 		return _PAGE_NX;
498 	return 0;
499 }
500 
501 #if defined(CONFIG_X86_64)
502 /*
503  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504  * kernel text mappings for the large page aligned text, rodata sections
505  * will be always read-only. For the kernel identity mappings covering the
506  * holes caused by this alignment can be anything that user asks.
507  *
508  * This will preserve the large page mappings for kernel text/data at no
509  * extra cost.
510  */
protect_kernel_text_ro(unsigned long start,unsigned long end)511 static pgprotval_t protect_kernel_text_ro(unsigned long start,
512 					  unsigned long end)
513 {
514 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515 	unsigned long t_start = (unsigned long)_text;
516 	unsigned int level;
517 
518 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519 		return 0;
520 	/*
521 	 * Don't enforce the !RW mapping for the kernel text mapping, if
522 	 * the current mapping is already using small page mapping.  No
523 	 * need to work hard to preserve large page mappings in this case.
524 	 *
525 	 * This also fixes the Linux Xen paravirt guest boot failure caused
526 	 * by unexpected read-only mappings for kernel identity
527 	 * mappings. In this paravirt guest case, the kernel text mapping
528 	 * and the kernel identity mapping share the same page-table pages,
529 	 * so the protections for kernel text and identity mappings have to
530 	 * be the same.
531 	 */
532 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533 		return _PAGE_RW;
534 	return 0;
535 }
536 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)537 static pgprotval_t protect_kernel_text_ro(unsigned long start,
538 					  unsigned long end)
539 {
540 	return 0;
541 }
542 #endif
543 
conflicts(pgprot_t prot,pgprotval_t val)544 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545 {
546 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547 }
548 
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550 				  unsigned long start, unsigned long end,
551 				  unsigned long pfn, const char *txt)
552 {
553 	static const char *lvltxt[] = {
554 		[CPA_CONFLICT]	= "conflict",
555 		[CPA_PROTECT]	= "protect",
556 		[CPA_DETECT]	= "detect",
557 	};
558 
559 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560 		return;
561 
562 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564 		(unsigned long long)val);
565 }
566 
567 /*
568  * Certain areas of memory on x86 require very specific protection flags,
569  * for example the BIOS area or kernel text. Callers don't always get this
570  * right (again, ioremap() on BIOS memory is not uncommon) so this function
571  * checks and fixes these known static required protection bits.
572  */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574 					  unsigned long pfn, unsigned long npg,
575 					  unsigned long lpsize, int warnlvl)
576 {
577 	pgprotval_t forbidden, res;
578 	unsigned long end;
579 
580 	/*
581 	 * There is no point in checking RW/NX conflicts when the requested
582 	 * mapping is setting the page !PRESENT.
583 	 */
584 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
585 		return prot;
586 
587 	/* Operate on the virtual address */
588 	end = start + npg * PAGE_SIZE - 1;
589 
590 	res = protect_kernel_text(start, end);
591 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592 	forbidden = res;
593 
594 	/*
595 	 * Special case to preserve a large page. If the change spawns the
596 	 * full large page mapping then there is no point to split it
597 	 * up. Happens with ftrace and is going to be removed once ftrace
598 	 * switched to text_poke().
599 	 */
600 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601 		res = protect_kernel_text_ro(start, end);
602 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603 		forbidden |= res;
604 	}
605 
606 	/* Check the PFN directly */
607 	res = protect_pci_bios(pfn, pfn + npg - 1);
608 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609 	forbidden |= res;
610 
611 	res = protect_rodata(pfn, pfn + npg - 1);
612 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613 	forbidden |= res;
614 
615 	return __pgprot(pgprot_val(prot) & ~forbidden);
616 }
617 
618 /*
619  * Validate strict W^X semantics.
620  */
verify_rwx(pgprot_t old,pgprot_t new,unsigned long start,unsigned long pfn,unsigned long npg,bool nx,bool rw)621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622 				  unsigned long pfn, unsigned long npg,
623 				  bool nx, bool rw)
624 {
625 	unsigned long end;
626 
627 	/*
628 	 * 32-bit has some unfixable W+X issues, like EFI code
629 	 * and writeable data being in the same page.  Disable
630 	 * detection and enforcement there.
631 	 */
632 	if (IS_ENABLED(CONFIG_X86_32))
633 		return new;
634 
635 	/* Only verify when NX is supported: */
636 	if (!(__supported_pte_mask & _PAGE_NX))
637 		return new;
638 
639 	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
640 		return new;
641 
642 	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
643 		return new;
644 
645 	/* Non-leaf translation entries can disable writing or execution. */
646 	if (!rw || nx)
647 		return new;
648 
649 	end = start + npg * PAGE_SIZE - 1;
650 	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
651 		  (unsigned long long)pgprot_val(old),
652 		  (unsigned long long)pgprot_val(new),
653 		  start, end, pfn);
654 
655 	/*
656 	 * For now, allow all permission change attempts by returning the
657 	 * attempted permissions.  This can 'return old' to actively
658 	 * refuse the permission change at a later time.
659 	 */
660 	return new;
661 }
662 
663 /*
664  * Lookup the page table entry for a virtual address in a specific pgd.
665  * Return a pointer to the entry (or NULL if the entry does not exist),
666  * the level of the entry, and the effective NX and RW bits of all
667  * page table levels.
668  */
lookup_address_in_pgd_attr(pgd_t * pgd,unsigned long address,unsigned int * level,bool * nx,bool * rw)669 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
670 				  unsigned int *level, bool *nx, bool *rw)
671 {
672 	p4d_t *p4d;
673 	pud_t *pud;
674 	pmd_t *pmd;
675 
676 	*level = PG_LEVEL_256T;
677 	*nx = false;
678 	*rw = true;
679 
680 	if (pgd_none(*pgd))
681 		return NULL;
682 
683 	*level = PG_LEVEL_512G;
684 	*nx |= pgd_flags(*pgd) & _PAGE_NX;
685 	*rw &= pgd_flags(*pgd) & _PAGE_RW;
686 
687 	p4d = p4d_offset(pgd, address);
688 	if (p4d_none(*p4d))
689 		return NULL;
690 
691 	if (p4d_leaf(*p4d) || !p4d_present(*p4d))
692 		return (pte_t *)p4d;
693 
694 	*level = PG_LEVEL_1G;
695 	*nx |= p4d_flags(*p4d) & _PAGE_NX;
696 	*rw &= p4d_flags(*p4d) & _PAGE_RW;
697 
698 	pud = pud_offset(p4d, address);
699 	if (pud_none(*pud))
700 		return NULL;
701 
702 	if (pud_leaf(*pud) || !pud_present(*pud))
703 		return (pte_t *)pud;
704 
705 	*level = PG_LEVEL_2M;
706 	*nx |= pud_flags(*pud) & _PAGE_NX;
707 	*rw &= pud_flags(*pud) & _PAGE_RW;
708 
709 	pmd = pmd_offset(pud, address);
710 	if (pmd_none(*pmd))
711 		return NULL;
712 
713 	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
714 		return (pte_t *)pmd;
715 
716 	*level = PG_LEVEL_4K;
717 	*nx |= pmd_flags(*pmd) & _PAGE_NX;
718 	*rw &= pmd_flags(*pmd) & _PAGE_RW;
719 
720 	return pte_offset_kernel(pmd, address);
721 }
722 
723 /*
724  * Lookup the page table entry for a virtual address in a specific pgd.
725  * Return a pointer to the entry and the level of the mapping.
726  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)727 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
728 			     unsigned int *level)
729 {
730 	bool nx, rw;
731 
732 	return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
733 }
734 
735 /*
736  * Lookup the page table entry for a virtual address. Return a pointer
737  * to the entry and the level of the mapping.
738  *
739  * Note: the function returns p4d, pud or pmd either when the entry is marked
740  * large or when the present bit is not set. Otherwise it returns NULL.
741  */
lookup_address(unsigned long address,unsigned int * level)742 pte_t *lookup_address(unsigned long address, unsigned int *level)
743 {
744 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
745 }
746 EXPORT_SYMBOL_GPL(lookup_address);
747 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level,bool * nx,bool * rw)748 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
749 				  unsigned int *level, bool *nx, bool *rw)
750 {
751 	pgd_t *pgd;
752 
753 	if (!cpa->pgd)
754 		pgd = pgd_offset_k(address);
755 	else
756 		pgd = cpa->pgd + pgd_index(address);
757 
758 	return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
759 }
760 
761 /*
762  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
763  * or NULL if not present.
764  */
lookup_pmd_address(unsigned long address)765 pmd_t *lookup_pmd_address(unsigned long address)
766 {
767 	pgd_t *pgd;
768 	p4d_t *p4d;
769 	pud_t *pud;
770 
771 	pgd = pgd_offset_k(address);
772 	if (pgd_none(*pgd))
773 		return NULL;
774 
775 	p4d = p4d_offset(pgd, address);
776 	if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d))
777 		return NULL;
778 
779 	pud = pud_offset(p4d, address);
780 	if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
781 		return NULL;
782 
783 	return pmd_offset(pud, address);
784 }
785 
786 /*
787  * This is necessary because __pa() does not work on some
788  * kinds of memory, like vmalloc() or the alloc_remap()
789  * areas on 32-bit NUMA systems.  The percpu areas can
790  * end up in this kind of memory, for instance.
791  *
792  * Note that as long as the PTEs are well-formed with correct PFNs, this
793  * works without checking the PRESENT bit in the leaf PTE.  This is unlike
794  * the similar vmalloc_to_page() and derivatives.  Callers may depend on
795  * this behavior.
796  *
797  * This could be optimized, but it is only used in paths that are not perf
798  * sensitive, and keeping it unoptimized should increase the testing coverage
799  * for the more obscure platforms.
800  */
slow_virt_to_phys(void * __virt_addr)801 phys_addr_t slow_virt_to_phys(void *__virt_addr)
802 {
803 	unsigned long virt_addr = (unsigned long)__virt_addr;
804 	phys_addr_t phys_addr;
805 	unsigned long offset;
806 	enum pg_level level;
807 	pte_t *pte;
808 
809 	pte = lookup_address(virt_addr, &level);
810 	BUG_ON(!pte);
811 
812 	/*
813 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
814 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
815 	 * make 32-PAE kernel work correctly.
816 	 */
817 	switch (level) {
818 	case PG_LEVEL_1G:
819 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
820 		offset = virt_addr & ~PUD_MASK;
821 		break;
822 	case PG_LEVEL_2M:
823 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
824 		offset = virt_addr & ~PMD_MASK;
825 		break;
826 	default:
827 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
828 		offset = virt_addr & ~PAGE_MASK;
829 	}
830 
831 	return (phys_addr_t)(phys_addr | offset);
832 }
833 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
834 
835 /*
836  * Set the new pmd in all the pgds we know about:
837  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)838 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
839 {
840 	/* change init_mm */
841 	set_pte_atomic(kpte, pte);
842 #ifdef CONFIG_X86_32
843 	if (!SHARED_KERNEL_PMD) {
844 		struct page *page;
845 
846 		list_for_each_entry(page, &pgd_list, lru) {
847 			pgd_t *pgd;
848 			p4d_t *p4d;
849 			pud_t *pud;
850 			pmd_t *pmd;
851 
852 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
853 			p4d = p4d_offset(pgd, address);
854 			pud = pud_offset(p4d, address);
855 			pmd = pmd_offset(pud, address);
856 			set_pte_atomic((pte_t *)pmd, pte);
857 		}
858 	}
859 #endif
860 }
861 
pgprot_clear_protnone_bits(pgprot_t prot)862 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
863 {
864 	/*
865 	 * _PAGE_GLOBAL means "global page" for present PTEs.
866 	 * But, it is also used to indicate _PAGE_PROTNONE
867 	 * for non-present PTEs.
868 	 *
869 	 * This ensures that a _PAGE_GLOBAL PTE going from
870 	 * present to non-present is not confused as
871 	 * _PAGE_PROTNONE.
872 	 */
873 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
874 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
875 
876 	return prot;
877 }
878 
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)879 static int __should_split_large_page(pte_t *kpte, unsigned long address,
880 				     struct cpa_data *cpa)
881 {
882 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
883 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
884 	pte_t new_pte, *tmp;
885 	enum pg_level level;
886 	bool nx, rw;
887 
888 	/*
889 	 * Check for races, another CPU might have split this page
890 	 * up already:
891 	 */
892 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
893 	if (tmp != kpte)
894 		return 1;
895 
896 	switch (level) {
897 	case PG_LEVEL_2M:
898 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
899 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
900 		cpa_inc_2m_checked();
901 		break;
902 	case PG_LEVEL_1G:
903 		old_prot = pud_pgprot(*(pud_t *)kpte);
904 		old_pfn = pud_pfn(*(pud_t *)kpte);
905 		cpa_inc_1g_checked();
906 		break;
907 	default:
908 		return -EINVAL;
909 	}
910 
911 	psize = page_level_size(level);
912 	pmask = page_level_mask(level);
913 
914 	/*
915 	 * Calculate the number of pages, which fit into this large
916 	 * page starting at address:
917 	 */
918 	lpaddr = (address + psize) & pmask;
919 	numpages = (lpaddr - address) >> PAGE_SHIFT;
920 	if (numpages < cpa->numpages)
921 		cpa->numpages = numpages;
922 
923 	/*
924 	 * We are safe now. Check whether the new pgprot is the same:
925 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
926 	 * up accordingly.
927 	 */
928 
929 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
930 	req_prot = pgprot_large_2_4k(old_prot);
931 
932 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
933 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
934 
935 	/*
936 	 * req_prot is in format of 4k pages. It must be converted to large
937 	 * page format: the caching mode includes the PAT bit located at
938 	 * different bit positions in the two formats.
939 	 */
940 	req_prot = pgprot_4k_2_large(req_prot);
941 	req_prot = pgprot_clear_protnone_bits(req_prot);
942 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
943 		pgprot_val(req_prot) |= _PAGE_PSE;
944 
945 	/*
946 	 * old_pfn points to the large page base pfn. So we need to add the
947 	 * offset of the virtual address:
948 	 */
949 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
950 	cpa->pfn = pfn;
951 
952 	/*
953 	 * Calculate the large page base address and the number of 4K pages
954 	 * in the large page
955 	 */
956 	lpaddr = address & pmask;
957 	numpages = psize >> PAGE_SHIFT;
958 
959 	/*
960 	 * Sanity check that the existing mapping is correct versus the static
961 	 * protections. static_protections() guards against !PRESENT, so no
962 	 * extra conditional required here.
963 	 */
964 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
965 				      psize, CPA_CONFLICT);
966 
967 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
968 		/*
969 		 * Split the large page and tell the split code to
970 		 * enforce static protections.
971 		 */
972 		cpa->force_static_prot = 1;
973 		return 1;
974 	}
975 
976 	/*
977 	 * Optimization: If the requested pgprot is the same as the current
978 	 * pgprot, then the large page can be preserved and no updates are
979 	 * required independent of alignment and length of the requested
980 	 * range. The above already established that the current pgprot is
981 	 * correct, which in consequence makes the requested pgprot correct
982 	 * as well if it is the same. The static protection scan below will
983 	 * not come to a different conclusion.
984 	 */
985 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
986 		cpa_inc_lp_sameprot(level);
987 		return 0;
988 	}
989 
990 	/*
991 	 * If the requested range does not cover the full page, split it up
992 	 */
993 	if (address != lpaddr || cpa->numpages != numpages)
994 		return 1;
995 
996 	/*
997 	 * Check whether the requested pgprot is conflicting with a static
998 	 * protection requirement in the large page.
999 	 */
1000 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
1001 				      psize, CPA_DETECT);
1002 
1003 	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1004 			      nx, rw);
1005 
1006 	/*
1007 	 * If there is a conflict, split the large page.
1008 	 *
1009 	 * There used to be a 4k wise evaluation trying really hard to
1010 	 * preserve the large pages, but experimentation has shown, that this
1011 	 * does not help at all. There might be corner cases which would
1012 	 * preserve one large page occasionally, but it's really not worth the
1013 	 * extra code and cycles for the common case.
1014 	 */
1015 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
1016 		return 1;
1017 
1018 	/* All checks passed. Update the large page mapping. */
1019 	new_pte = pfn_pte(old_pfn, new_prot);
1020 	__set_pmd_pte(kpte, address, new_pte);
1021 	cpa->flags |= CPA_FLUSHTLB;
1022 	cpa_inc_lp_preserved(level);
1023 	return 0;
1024 }
1025 
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)1026 static int should_split_large_page(pte_t *kpte, unsigned long address,
1027 				   struct cpa_data *cpa)
1028 {
1029 	int do_split;
1030 
1031 	if (cpa->force_split)
1032 		return 1;
1033 
1034 	spin_lock(&pgd_lock);
1035 	do_split = __should_split_large_page(kpte, address, cpa);
1036 	spin_unlock(&pgd_lock);
1037 
1038 	return do_split;
1039 }
1040 
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)1041 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1042 			  pgprot_t ref_prot, unsigned long address,
1043 			  unsigned long size)
1044 {
1045 	unsigned int npg = PFN_DOWN(size);
1046 	pgprot_t prot;
1047 
1048 	/*
1049 	 * If should_split_large_page() discovered an inconsistent mapping,
1050 	 * remove the invalid protection in the split mapping.
1051 	 */
1052 	if (!cpa->force_static_prot)
1053 		goto set;
1054 
1055 	/* Hand in lpsize = 0 to enforce the protection mechanism */
1056 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1057 
1058 	if (pgprot_val(prot) == pgprot_val(ref_prot))
1059 		goto set;
1060 
1061 	/*
1062 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1063 	 * fixed trivially as that would require to rescan the newly
1064 	 * installed PMD mappings after returning from split_large_page()
1065 	 * so an eventual further split can allocate the necessary PTE
1066 	 * pages. Warn for now and revisit it in case this actually
1067 	 * happens.
1068 	 */
1069 	if (size == PAGE_SIZE)
1070 		ref_prot = prot;
1071 	else
1072 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1073 set:
1074 	set_pte(pte, pfn_pte(pfn, ref_prot));
1075 }
1076 
1077 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)1078 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1079 		   struct page *base)
1080 {
1081 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1082 	pte_t *pbase = (pte_t *)page_address(base);
1083 	unsigned int i, level;
1084 	pgprot_t ref_prot;
1085 	bool nx, rw;
1086 	pte_t *tmp;
1087 
1088 	spin_lock(&pgd_lock);
1089 	/*
1090 	 * Check for races, another CPU might have split this page
1091 	 * up for us already:
1092 	 */
1093 	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1094 	if (tmp != kpte) {
1095 		spin_unlock(&pgd_lock);
1096 		return 1;
1097 	}
1098 
1099 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1100 
1101 	switch (level) {
1102 	case PG_LEVEL_2M:
1103 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1104 		/*
1105 		 * Clear PSE (aka _PAGE_PAT) and move
1106 		 * PAT bit to correct position.
1107 		 */
1108 		ref_prot = pgprot_large_2_4k(ref_prot);
1109 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1110 		lpaddr = address & PMD_MASK;
1111 		lpinc = PAGE_SIZE;
1112 		break;
1113 
1114 	case PG_LEVEL_1G:
1115 		ref_prot = pud_pgprot(*(pud_t *)kpte);
1116 		ref_pfn = pud_pfn(*(pud_t *)kpte);
1117 		pfninc = PMD_SIZE >> PAGE_SHIFT;
1118 		lpaddr = address & PUD_MASK;
1119 		lpinc = PMD_SIZE;
1120 		/*
1121 		 * Clear the PSE flags if the PRESENT flag is not set
1122 		 * otherwise pmd_present() will return true even on a non
1123 		 * present pmd.
1124 		 */
1125 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1126 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1127 		break;
1128 
1129 	default:
1130 		spin_unlock(&pgd_lock);
1131 		return 1;
1132 	}
1133 
1134 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1135 
1136 	/*
1137 	 * Get the target pfn from the original entry:
1138 	 */
1139 	pfn = ref_pfn;
1140 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1141 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1142 
1143 	if (virt_addr_valid(address)) {
1144 		unsigned long pfn = PFN_DOWN(__pa(address));
1145 
1146 		if (pfn_range_is_mapped(pfn, pfn + 1))
1147 			split_page_count(level);
1148 	}
1149 
1150 	/*
1151 	 * Install the new, split up pagetable.
1152 	 *
1153 	 * We use the standard kernel pagetable protections for the new
1154 	 * pagetable protections, the actual ptes set above control the
1155 	 * primary protection behavior:
1156 	 */
1157 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1158 
1159 	/*
1160 	 * Do a global flush tlb after splitting the large page
1161 	 * and before we do the actual change page attribute in the PTE.
1162 	 *
1163 	 * Without this, we violate the TLB application note, that says:
1164 	 * "The TLBs may contain both ordinary and large-page
1165 	 *  translations for a 4-KByte range of linear addresses. This
1166 	 *  may occur if software modifies the paging structures so that
1167 	 *  the page size used for the address range changes. If the two
1168 	 *  translations differ with respect to page frame or attributes
1169 	 *  (e.g., permissions), processor behavior is undefined and may
1170 	 *  be implementation-specific."
1171 	 *
1172 	 * We do this global tlb flush inside the cpa_lock, so that we
1173 	 * don't allow any other cpu, with stale tlb entries change the
1174 	 * page attribute in parallel, that also falls into the
1175 	 * just split large page entry.
1176 	 */
1177 	flush_tlb_all();
1178 	spin_unlock(&pgd_lock);
1179 
1180 	return 0;
1181 }
1182 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1183 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1184 			    unsigned long address)
1185 {
1186 	struct page *base;
1187 
1188 	if (!debug_pagealloc_enabled())
1189 		spin_unlock(&cpa_lock);
1190 	base = alloc_pages(GFP_KERNEL, 0);
1191 	if (!debug_pagealloc_enabled())
1192 		spin_lock(&cpa_lock);
1193 	if (!base)
1194 		return -ENOMEM;
1195 
1196 	if (__split_large_page(cpa, kpte, address, base))
1197 		__free_page(base);
1198 
1199 	return 0;
1200 }
1201 
try_to_free_pte_page(pte_t * pte)1202 static bool try_to_free_pte_page(pte_t *pte)
1203 {
1204 	int i;
1205 
1206 	for (i = 0; i < PTRS_PER_PTE; i++)
1207 		if (!pte_none(pte[i]))
1208 			return false;
1209 
1210 	free_page((unsigned long)pte);
1211 	return true;
1212 }
1213 
try_to_free_pmd_page(pmd_t * pmd)1214 static bool try_to_free_pmd_page(pmd_t *pmd)
1215 {
1216 	int i;
1217 
1218 	for (i = 0; i < PTRS_PER_PMD; i++)
1219 		if (!pmd_none(pmd[i]))
1220 			return false;
1221 
1222 	free_page((unsigned long)pmd);
1223 	return true;
1224 }
1225 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1226 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1227 {
1228 	pte_t *pte = pte_offset_kernel(pmd, start);
1229 
1230 	while (start < end) {
1231 		set_pte(pte, __pte(0));
1232 
1233 		start += PAGE_SIZE;
1234 		pte++;
1235 	}
1236 
1237 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1238 		pmd_clear(pmd);
1239 		return true;
1240 	}
1241 	return false;
1242 }
1243 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1244 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1245 			      unsigned long start, unsigned long end)
1246 {
1247 	if (unmap_pte_range(pmd, start, end))
1248 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1249 			pud_clear(pud);
1250 }
1251 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1252 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1253 {
1254 	pmd_t *pmd = pmd_offset(pud, start);
1255 
1256 	/*
1257 	 * Not on a 2MB page boundary?
1258 	 */
1259 	if (start & (PMD_SIZE - 1)) {
1260 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1261 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1262 
1263 		__unmap_pmd_range(pud, pmd, start, pre_end);
1264 
1265 		start = pre_end;
1266 		pmd++;
1267 	}
1268 
1269 	/*
1270 	 * Try to unmap in 2M chunks.
1271 	 */
1272 	while (end - start >= PMD_SIZE) {
1273 		if (pmd_leaf(*pmd))
1274 			pmd_clear(pmd);
1275 		else
1276 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1277 
1278 		start += PMD_SIZE;
1279 		pmd++;
1280 	}
1281 
1282 	/*
1283 	 * 4K leftovers?
1284 	 */
1285 	if (start < end)
1286 		return __unmap_pmd_range(pud, pmd, start, end);
1287 
1288 	/*
1289 	 * Try again to free the PMD page if haven't succeeded above.
1290 	 */
1291 	if (!pud_none(*pud))
1292 		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1293 			pud_clear(pud);
1294 }
1295 
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1296 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1297 {
1298 	pud_t *pud = pud_offset(p4d, start);
1299 
1300 	/*
1301 	 * Not on a GB page boundary?
1302 	 */
1303 	if (start & (PUD_SIZE - 1)) {
1304 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1305 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1306 
1307 		unmap_pmd_range(pud, start, pre_end);
1308 
1309 		start = pre_end;
1310 		pud++;
1311 	}
1312 
1313 	/*
1314 	 * Try to unmap in 1G chunks?
1315 	 */
1316 	while (end - start >= PUD_SIZE) {
1317 
1318 		if (pud_leaf(*pud))
1319 			pud_clear(pud);
1320 		else
1321 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1322 
1323 		start += PUD_SIZE;
1324 		pud++;
1325 	}
1326 
1327 	/*
1328 	 * 2M leftovers?
1329 	 */
1330 	if (start < end)
1331 		unmap_pmd_range(pud, start, end);
1332 
1333 	/*
1334 	 * No need to try to free the PUD page because we'll free it in
1335 	 * populate_pgd's error path
1336 	 */
1337 }
1338 
alloc_pte_page(pmd_t * pmd)1339 static int alloc_pte_page(pmd_t *pmd)
1340 {
1341 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1342 	if (!pte)
1343 		return -1;
1344 
1345 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1346 	return 0;
1347 }
1348 
alloc_pmd_page(pud_t * pud)1349 static int alloc_pmd_page(pud_t *pud)
1350 {
1351 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1352 	if (!pmd)
1353 		return -1;
1354 
1355 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1356 	return 0;
1357 }
1358 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1359 static void populate_pte(struct cpa_data *cpa,
1360 			 unsigned long start, unsigned long end,
1361 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1362 {
1363 	pte_t *pte;
1364 
1365 	pte = pte_offset_kernel(pmd, start);
1366 
1367 	pgprot = pgprot_clear_protnone_bits(pgprot);
1368 
1369 	while (num_pages-- && start < end) {
1370 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1371 
1372 		start	 += PAGE_SIZE;
1373 		cpa->pfn++;
1374 		pte++;
1375 	}
1376 }
1377 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1378 static long populate_pmd(struct cpa_data *cpa,
1379 			 unsigned long start, unsigned long end,
1380 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1381 {
1382 	long cur_pages = 0;
1383 	pmd_t *pmd;
1384 	pgprot_t pmd_pgprot;
1385 
1386 	/*
1387 	 * Not on a 2M boundary?
1388 	 */
1389 	if (start & (PMD_SIZE - 1)) {
1390 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1391 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1392 
1393 		pre_end   = min_t(unsigned long, pre_end, next_page);
1394 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1395 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1396 
1397 		/*
1398 		 * Need a PTE page?
1399 		 */
1400 		pmd = pmd_offset(pud, start);
1401 		if (pmd_none(*pmd))
1402 			if (alloc_pte_page(pmd))
1403 				return -1;
1404 
1405 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1406 
1407 		start = pre_end;
1408 	}
1409 
1410 	/*
1411 	 * We mapped them all?
1412 	 */
1413 	if (num_pages == cur_pages)
1414 		return cur_pages;
1415 
1416 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1417 
1418 	while (end - start >= PMD_SIZE) {
1419 
1420 		/*
1421 		 * We cannot use a 1G page so allocate a PMD page if needed.
1422 		 */
1423 		if (pud_none(*pud))
1424 			if (alloc_pmd_page(pud))
1425 				return -1;
1426 
1427 		pmd = pmd_offset(pud, start);
1428 
1429 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1430 					canon_pgprot(pmd_pgprot))));
1431 
1432 		start	  += PMD_SIZE;
1433 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1434 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1435 	}
1436 
1437 	/*
1438 	 * Map trailing 4K pages.
1439 	 */
1440 	if (start < end) {
1441 		pmd = pmd_offset(pud, start);
1442 		if (pmd_none(*pmd))
1443 			if (alloc_pte_page(pmd))
1444 				return -1;
1445 
1446 		populate_pte(cpa, start, end, num_pages - cur_pages,
1447 			     pmd, pgprot);
1448 	}
1449 	return num_pages;
1450 }
1451 
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1452 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1453 			pgprot_t pgprot)
1454 {
1455 	pud_t *pud;
1456 	unsigned long end;
1457 	long cur_pages = 0;
1458 	pgprot_t pud_pgprot;
1459 
1460 	end = start + (cpa->numpages << PAGE_SHIFT);
1461 
1462 	/*
1463 	 * Not on a Gb page boundary? => map everything up to it with
1464 	 * smaller pages.
1465 	 */
1466 	if (start & (PUD_SIZE - 1)) {
1467 		unsigned long pre_end;
1468 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1469 
1470 		pre_end   = min_t(unsigned long, end, next_page);
1471 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1472 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1473 
1474 		pud = pud_offset(p4d, start);
1475 
1476 		/*
1477 		 * Need a PMD page?
1478 		 */
1479 		if (pud_none(*pud))
1480 			if (alloc_pmd_page(pud))
1481 				return -1;
1482 
1483 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1484 					 pud, pgprot);
1485 		if (cur_pages < 0)
1486 			return cur_pages;
1487 
1488 		start = pre_end;
1489 	}
1490 
1491 	/* We mapped them all? */
1492 	if (cpa->numpages == cur_pages)
1493 		return cur_pages;
1494 
1495 	pud = pud_offset(p4d, start);
1496 	pud_pgprot = pgprot_4k_2_large(pgprot);
1497 
1498 	/*
1499 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1500 	 */
1501 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1502 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1503 				   canon_pgprot(pud_pgprot))));
1504 
1505 		start	  += PUD_SIZE;
1506 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1507 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1508 		pud++;
1509 	}
1510 
1511 	/* Map trailing leftover */
1512 	if (start < end) {
1513 		long tmp;
1514 
1515 		pud = pud_offset(p4d, start);
1516 		if (pud_none(*pud))
1517 			if (alloc_pmd_page(pud))
1518 				return -1;
1519 
1520 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1521 				   pud, pgprot);
1522 		if (tmp < 0)
1523 			return cur_pages;
1524 
1525 		cur_pages += tmp;
1526 	}
1527 	return cur_pages;
1528 }
1529 
1530 /*
1531  * Restrictions for kernel page table do not necessarily apply when mapping in
1532  * an alternate PGD.
1533  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1534 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1535 {
1536 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1537 	pud_t *pud = NULL;	/* shut up gcc */
1538 	p4d_t *p4d;
1539 	pgd_t *pgd_entry;
1540 	long ret;
1541 
1542 	pgd_entry = cpa->pgd + pgd_index(addr);
1543 
1544 	if (pgd_none(*pgd_entry)) {
1545 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1546 		if (!p4d)
1547 			return -1;
1548 
1549 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1550 	}
1551 
1552 	/*
1553 	 * Allocate a PUD page and hand it down for mapping.
1554 	 */
1555 	p4d = p4d_offset(pgd_entry, addr);
1556 	if (p4d_none(*p4d)) {
1557 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1558 		if (!pud)
1559 			return -1;
1560 
1561 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1562 	}
1563 
1564 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1565 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1566 
1567 	ret = populate_pud(cpa, addr, p4d, pgprot);
1568 	if (ret < 0) {
1569 		/*
1570 		 * Leave the PUD page in place in case some other CPU or thread
1571 		 * already found it, but remove any useless entries we just
1572 		 * added to it.
1573 		 */
1574 		unmap_pud_range(p4d, addr,
1575 				addr + (cpa->numpages << PAGE_SHIFT));
1576 		return ret;
1577 	}
1578 
1579 	cpa->numpages = ret;
1580 	return 0;
1581 }
1582 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1583 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1584 			       int primary)
1585 {
1586 	if (cpa->pgd) {
1587 		/*
1588 		 * Right now, we only execute this code path when mapping
1589 		 * the EFI virtual memory map regions, no other users
1590 		 * provide a ->pgd value. This may change in the future.
1591 		 */
1592 		return populate_pgd(cpa, vaddr);
1593 	}
1594 
1595 	/*
1596 	 * Ignore all non primary paths.
1597 	 */
1598 	if (!primary) {
1599 		cpa->numpages = 1;
1600 		return 0;
1601 	}
1602 
1603 	/*
1604 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1605 	 * to have holes.
1606 	 * Also set numpages to '1' indicating that we processed cpa req for
1607 	 * one virtual address page and its pfn. TBD: numpages can be set based
1608 	 * on the initial value and the level returned by lookup_address().
1609 	 */
1610 	if (within(vaddr, PAGE_OFFSET,
1611 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1612 		cpa->numpages = 1;
1613 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1614 		return 0;
1615 
1616 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1617 		/* Faults in the highmap are OK, so do not warn: */
1618 		return -EFAULT;
1619 	} else {
1620 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1621 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1622 			*cpa->vaddr);
1623 
1624 		return -EFAULT;
1625 	}
1626 }
1627 
__change_page_attr(struct cpa_data * cpa,int primary)1628 static int __change_page_attr(struct cpa_data *cpa, int primary)
1629 {
1630 	unsigned long address;
1631 	int do_split, err;
1632 	unsigned int level;
1633 	pte_t *kpte, old_pte;
1634 	bool nx, rw;
1635 
1636 	address = __cpa_addr(cpa, cpa->curpage);
1637 repeat:
1638 	kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1639 	if (!kpte)
1640 		return __cpa_process_fault(cpa, address, primary);
1641 
1642 	old_pte = *kpte;
1643 	if (pte_none(old_pte))
1644 		return __cpa_process_fault(cpa, address, primary);
1645 
1646 	if (level == PG_LEVEL_4K) {
1647 		pte_t new_pte;
1648 		pgprot_t old_prot = pte_pgprot(old_pte);
1649 		pgprot_t new_prot = pte_pgprot(old_pte);
1650 		unsigned long pfn = pte_pfn(old_pte);
1651 
1652 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1653 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1654 
1655 		cpa_inc_4k_install();
1656 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1657 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1658 					      CPA_PROTECT);
1659 
1660 		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1661 				      nx, rw);
1662 
1663 		new_prot = pgprot_clear_protnone_bits(new_prot);
1664 
1665 		/*
1666 		 * We need to keep the pfn from the existing PTE,
1667 		 * after all we're only going to change its attributes
1668 		 * not the memory it points to
1669 		 */
1670 		new_pte = pfn_pte(pfn, new_prot);
1671 		cpa->pfn = pfn;
1672 		/*
1673 		 * Do we really change anything ?
1674 		 */
1675 		if (pte_val(old_pte) != pte_val(new_pte)) {
1676 			set_pte_atomic(kpte, new_pte);
1677 			cpa->flags |= CPA_FLUSHTLB;
1678 		}
1679 		cpa->numpages = 1;
1680 		return 0;
1681 	}
1682 
1683 	/*
1684 	 * Check, whether we can keep the large page intact
1685 	 * and just change the pte:
1686 	 */
1687 	do_split = should_split_large_page(kpte, address, cpa);
1688 	/*
1689 	 * When the range fits into the existing large page,
1690 	 * return. cp->numpages and cpa->tlbflush have been updated in
1691 	 * try_large_page:
1692 	 */
1693 	if (do_split <= 0)
1694 		return do_split;
1695 
1696 	/*
1697 	 * We have to split the large page:
1698 	 */
1699 	err = split_large_page(cpa, kpte, address);
1700 	if (!err)
1701 		goto repeat;
1702 
1703 	return err;
1704 }
1705 
1706 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1707 
1708 /*
1709  * Check the directmap and "high kernel map" 'aliases'.
1710  */
cpa_process_alias(struct cpa_data * cpa)1711 static int cpa_process_alias(struct cpa_data *cpa)
1712 {
1713 	struct cpa_data alias_cpa;
1714 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1715 	unsigned long vaddr;
1716 	int ret;
1717 
1718 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1719 		return 0;
1720 
1721 	/*
1722 	 * No need to redo, when the primary call touched the direct
1723 	 * mapping already:
1724 	 */
1725 	vaddr = __cpa_addr(cpa, cpa->curpage);
1726 	if (!(within(vaddr, PAGE_OFFSET,
1727 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1728 
1729 		alias_cpa = *cpa;
1730 		alias_cpa.vaddr = &laddr;
1731 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1732 		alias_cpa.curpage = 0;
1733 
1734 		/* Directmap always has NX set, do not modify. */
1735 		if (__supported_pte_mask & _PAGE_NX) {
1736 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1737 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1738 		}
1739 
1740 		cpa->force_flush_all = 1;
1741 
1742 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1743 		if (ret)
1744 			return ret;
1745 	}
1746 
1747 #ifdef CONFIG_X86_64
1748 	/*
1749 	 * If the primary call didn't touch the high mapping already
1750 	 * and the physical address is inside the kernel map, we need
1751 	 * to touch the high mapped kernel as well:
1752 	 */
1753 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1754 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1755 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1756 					       __START_KERNEL_map - phys_base;
1757 		alias_cpa = *cpa;
1758 		alias_cpa.vaddr = &temp_cpa_vaddr;
1759 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1760 		alias_cpa.curpage = 0;
1761 
1762 		/*
1763 		 * [_text, _brk_end) also covers data, do not modify NX except
1764 		 * in cases where the highmap is the primary target.
1765 		 */
1766 		if (__supported_pte_mask & _PAGE_NX) {
1767 			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1768 			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1769 		}
1770 
1771 		cpa->force_flush_all = 1;
1772 		/*
1773 		 * The high mapping range is imprecise, so ignore the
1774 		 * return value.
1775 		 */
1776 		__change_page_attr_set_clr(&alias_cpa, 0);
1777 	}
1778 #endif
1779 
1780 	return 0;
1781 }
1782 
__change_page_attr_set_clr(struct cpa_data * cpa,int primary)1783 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1784 {
1785 	unsigned long numpages = cpa->numpages;
1786 	unsigned long rempages = numpages;
1787 	int ret = 0;
1788 
1789 	/*
1790 	 * No changes, easy!
1791 	 */
1792 	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1793 	    !cpa->force_split)
1794 		return ret;
1795 
1796 	while (rempages) {
1797 		/*
1798 		 * Store the remaining nr of pages for the large page
1799 		 * preservation check.
1800 		 */
1801 		cpa->numpages = rempages;
1802 		/* for array changes, we can't use large page */
1803 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1804 			cpa->numpages = 1;
1805 
1806 		if (!debug_pagealloc_enabled())
1807 			spin_lock(&cpa_lock);
1808 		ret = __change_page_attr(cpa, primary);
1809 		if (!debug_pagealloc_enabled())
1810 			spin_unlock(&cpa_lock);
1811 		if (ret)
1812 			goto out;
1813 
1814 		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1815 			ret = cpa_process_alias(cpa);
1816 			if (ret)
1817 				goto out;
1818 		}
1819 
1820 		/*
1821 		 * Adjust the number of pages with the result of the
1822 		 * CPA operation. Either a large page has been
1823 		 * preserved or a single page update happened.
1824 		 */
1825 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1826 		rempages -= cpa->numpages;
1827 		cpa->curpage += cpa->numpages;
1828 	}
1829 
1830 out:
1831 	/* Restore the original numpages */
1832 	cpa->numpages = numpages;
1833 	return ret;
1834 }
1835 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1836 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1837 				    pgprot_t mask_set, pgprot_t mask_clr,
1838 				    int force_split, int in_flag,
1839 				    struct page **pages)
1840 {
1841 	struct cpa_data cpa;
1842 	int ret, cache;
1843 
1844 	memset(&cpa, 0, sizeof(cpa));
1845 
1846 	/*
1847 	 * Check, if we are requested to set a not supported
1848 	 * feature.  Clearing non-supported features is OK.
1849 	 */
1850 	mask_set = canon_pgprot(mask_set);
1851 
1852 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1853 		return 0;
1854 
1855 	/* Ensure we are PAGE_SIZE aligned */
1856 	if (in_flag & CPA_ARRAY) {
1857 		int i;
1858 		for (i = 0; i < numpages; i++) {
1859 			if (addr[i] & ~PAGE_MASK) {
1860 				addr[i] &= PAGE_MASK;
1861 				WARN_ON_ONCE(1);
1862 			}
1863 		}
1864 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1865 		/*
1866 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1867 		 * No need to check in that case
1868 		 */
1869 		if (*addr & ~PAGE_MASK) {
1870 			*addr &= PAGE_MASK;
1871 			/*
1872 			 * People should not be passing in unaligned addresses:
1873 			 */
1874 			WARN_ON_ONCE(1);
1875 		}
1876 	}
1877 
1878 	/* Must avoid aliasing mappings in the highmem code */
1879 	kmap_flush_unused();
1880 
1881 	vm_unmap_aliases();
1882 
1883 	cpa.vaddr = addr;
1884 	cpa.pages = pages;
1885 	cpa.numpages = numpages;
1886 	cpa.mask_set = mask_set;
1887 	cpa.mask_clr = mask_clr;
1888 	cpa.flags = in_flag;
1889 	cpa.curpage = 0;
1890 	cpa.force_split = force_split;
1891 
1892 	ret = __change_page_attr_set_clr(&cpa, 1);
1893 
1894 	/*
1895 	 * Check whether we really changed something:
1896 	 */
1897 	if (!(cpa.flags & CPA_FLUSHTLB))
1898 		goto out;
1899 
1900 	/*
1901 	 * No need to flush, when we did not set any of the caching
1902 	 * attributes:
1903 	 */
1904 	cache = !!pgprot2cachemode(mask_set);
1905 
1906 	/*
1907 	 * On error; flush everything to be sure.
1908 	 */
1909 	if (ret) {
1910 		cpa_flush_all(cache);
1911 		goto out;
1912 	}
1913 
1914 	cpa_flush(&cpa, cache);
1915 out:
1916 	return ret;
1917 }
1918 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1919 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1920 				       pgprot_t mask, int array)
1921 {
1922 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1923 		(array ? CPA_ARRAY : 0), NULL);
1924 }
1925 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1926 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1927 					 pgprot_t mask, int array)
1928 {
1929 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1930 		(array ? CPA_ARRAY : 0), NULL);
1931 }
1932 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1933 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1934 				       pgprot_t mask)
1935 {
1936 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1937 		CPA_PAGES_ARRAY, pages);
1938 }
1939 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1940 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1941 					 pgprot_t mask)
1942 {
1943 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1944 		CPA_PAGES_ARRAY, pages);
1945 }
1946 
1947 /*
1948  * __set_memory_prot is an internal helper for callers that have been passed
1949  * a pgprot_t value from upper layers and a reservation has already been taken.
1950  * If you want to set the pgprot to a specific page protocol, use the
1951  * set_memory_xx() functions.
1952  */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)1953 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1954 {
1955 	return change_page_attr_set_clr(&addr, numpages, prot,
1956 					__pgprot(~pgprot_val(prot)), 0, 0,
1957 					NULL);
1958 }
1959 
_set_memory_uc(unsigned long addr,int numpages)1960 int _set_memory_uc(unsigned long addr, int numpages)
1961 {
1962 	/*
1963 	 * for now UC MINUS. see comments in ioremap()
1964 	 * If you really need strong UC use ioremap_uc(), but note
1965 	 * that you cannot override IO areas with set_memory_*() as
1966 	 * these helpers cannot work with IO memory.
1967 	 */
1968 	return change_page_attr_set(&addr, numpages,
1969 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1970 				    0);
1971 }
1972 
set_memory_uc(unsigned long addr,int numpages)1973 int set_memory_uc(unsigned long addr, int numpages)
1974 {
1975 	int ret;
1976 
1977 	/*
1978 	 * for now UC MINUS. see comments in ioremap()
1979 	 */
1980 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1981 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1982 	if (ret)
1983 		goto out_err;
1984 
1985 	ret = _set_memory_uc(addr, numpages);
1986 	if (ret)
1987 		goto out_free;
1988 
1989 	return 0;
1990 
1991 out_free:
1992 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1993 out_err:
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL(set_memory_uc);
1997 
_set_memory_wc(unsigned long addr,int numpages)1998 int _set_memory_wc(unsigned long addr, int numpages)
1999 {
2000 	int ret;
2001 
2002 	ret = change_page_attr_set(&addr, numpages,
2003 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2004 				   0);
2005 	if (!ret) {
2006 		ret = change_page_attr_set_clr(&addr, numpages,
2007 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2008 					       __pgprot(_PAGE_CACHE_MASK),
2009 					       0, 0, NULL);
2010 	}
2011 	return ret;
2012 }
2013 
set_memory_wc(unsigned long addr,int numpages)2014 int set_memory_wc(unsigned long addr, int numpages)
2015 {
2016 	int ret;
2017 
2018 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2019 		_PAGE_CACHE_MODE_WC, NULL);
2020 	if (ret)
2021 		return ret;
2022 
2023 	ret = _set_memory_wc(addr, numpages);
2024 	if (ret)
2025 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2026 
2027 	return ret;
2028 }
2029 EXPORT_SYMBOL(set_memory_wc);
2030 
_set_memory_wt(unsigned long addr,int numpages)2031 int _set_memory_wt(unsigned long addr, int numpages)
2032 {
2033 	return change_page_attr_set(&addr, numpages,
2034 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2035 }
2036 
_set_memory_wb(unsigned long addr,int numpages)2037 int _set_memory_wb(unsigned long addr, int numpages)
2038 {
2039 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2040 	return change_page_attr_clear(&addr, numpages,
2041 				      __pgprot(_PAGE_CACHE_MASK), 0);
2042 }
2043 
set_memory_wb(unsigned long addr,int numpages)2044 int set_memory_wb(unsigned long addr, int numpages)
2045 {
2046 	int ret;
2047 
2048 	ret = _set_memory_wb(addr, numpages);
2049 	if (ret)
2050 		return ret;
2051 
2052 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL(set_memory_wb);
2056 
2057 /* Prevent speculative access to a page by marking it not-present */
2058 #ifdef CONFIG_X86_64
set_mce_nospec(unsigned long pfn)2059 int set_mce_nospec(unsigned long pfn)
2060 {
2061 	unsigned long decoy_addr;
2062 	int rc;
2063 
2064 	/* SGX pages are not in the 1:1 map */
2065 	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2066 		return 0;
2067 	/*
2068 	 * We would like to just call:
2069 	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2070 	 * but doing that would radically increase the odds of a
2071 	 * speculative access to the poison page because we'd have
2072 	 * the virtual address of the kernel 1:1 mapping sitting
2073 	 * around in registers.
2074 	 * Instead we get tricky.  We create a non-canonical address
2075 	 * that looks just like the one we want, but has bit 63 flipped.
2076 	 * This relies on set_memory_XX() properly sanitizing any __pa()
2077 	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2078 	 */
2079 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2080 
2081 	rc = set_memory_np(decoy_addr, 1);
2082 	if (rc)
2083 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2084 	return rc;
2085 }
2086 
2087 /* Restore full speculative operation to the pfn. */
clear_mce_nospec(unsigned long pfn)2088 int clear_mce_nospec(unsigned long pfn)
2089 {
2090 	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2091 
2092 	return set_memory_p(addr, 1);
2093 }
2094 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2095 #endif /* CONFIG_X86_64 */
2096 
set_memory_x(unsigned long addr,int numpages)2097 int set_memory_x(unsigned long addr, int numpages)
2098 {
2099 	if (!(__supported_pte_mask & _PAGE_NX))
2100 		return 0;
2101 
2102 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2103 }
2104 
set_memory_nx(unsigned long addr,int numpages)2105 int set_memory_nx(unsigned long addr, int numpages)
2106 {
2107 	if (!(__supported_pte_mask & _PAGE_NX))
2108 		return 0;
2109 
2110 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2111 }
2112 
set_memory_ro(unsigned long addr,int numpages)2113 int set_memory_ro(unsigned long addr, int numpages)
2114 {
2115 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2116 }
2117 
set_memory_rox(unsigned long addr,int numpages)2118 int set_memory_rox(unsigned long addr, int numpages)
2119 {
2120 	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2121 
2122 	if (__supported_pte_mask & _PAGE_NX)
2123 		clr.pgprot |= _PAGE_NX;
2124 
2125 	return change_page_attr_clear(&addr, numpages, clr, 0);
2126 }
2127 
set_memory_rw(unsigned long addr,int numpages)2128 int set_memory_rw(unsigned long addr, int numpages)
2129 {
2130 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2131 }
2132 
set_memory_np(unsigned long addr,int numpages)2133 int set_memory_np(unsigned long addr, int numpages)
2134 {
2135 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2136 }
2137 
set_memory_np_noalias(unsigned long addr,int numpages)2138 int set_memory_np_noalias(unsigned long addr, int numpages)
2139 {
2140 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2141 					__pgprot(_PAGE_PRESENT), 0,
2142 					CPA_NO_CHECK_ALIAS, NULL);
2143 }
2144 
set_memory_p(unsigned long addr,int numpages)2145 int set_memory_p(unsigned long addr, int numpages)
2146 {
2147 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2148 }
2149 
set_memory_4k(unsigned long addr,int numpages)2150 int set_memory_4k(unsigned long addr, int numpages)
2151 {
2152 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2153 					__pgprot(0), 1, 0, NULL);
2154 }
2155 
set_memory_nonglobal(unsigned long addr,int numpages)2156 int set_memory_nonglobal(unsigned long addr, int numpages)
2157 {
2158 	return change_page_attr_clear(&addr, numpages,
2159 				      __pgprot(_PAGE_GLOBAL), 0);
2160 }
2161 
set_memory_global(unsigned long addr,int numpages)2162 int set_memory_global(unsigned long addr, int numpages)
2163 {
2164 	return change_page_attr_set(&addr, numpages,
2165 				    __pgprot(_PAGE_GLOBAL), 0);
2166 }
2167 
2168 /*
2169  * __set_memory_enc_pgtable() is used for the hypervisors that get
2170  * informed about "encryption" status via page tables.
2171  */
__set_memory_enc_pgtable(unsigned long addr,int numpages,bool enc)2172 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2173 {
2174 	pgprot_t empty = __pgprot(0);
2175 	struct cpa_data cpa;
2176 	int ret;
2177 
2178 	/* Should not be working on unaligned addresses */
2179 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2180 		addr &= PAGE_MASK;
2181 
2182 	memset(&cpa, 0, sizeof(cpa));
2183 	cpa.vaddr = &addr;
2184 	cpa.numpages = numpages;
2185 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2186 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2187 	cpa.pgd = init_mm.pgd;
2188 
2189 	/* Must avoid aliasing mappings in the highmem code */
2190 	kmap_flush_unused();
2191 	vm_unmap_aliases();
2192 
2193 	/* Flush the caches as needed before changing the encryption attribute. */
2194 	if (x86_platform.guest.enc_tlb_flush_required(enc))
2195 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2196 
2197 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2198 	ret = x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2199 	if (ret)
2200 		goto vmm_fail;
2201 
2202 	ret = __change_page_attr_set_clr(&cpa, 1);
2203 
2204 	/*
2205 	 * After changing the encryption attribute, we need to flush TLBs again
2206 	 * in case any speculative TLB caching occurred (but no need to flush
2207 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2208 	 * flushing gets optimized in the cpa_flush() path use the same logic
2209 	 * as above.
2210 	 */
2211 	cpa_flush(&cpa, 0);
2212 
2213 	if (ret)
2214 		return ret;
2215 
2216 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2217 	ret = x86_platform.guest.enc_status_change_finish(addr, numpages, enc);
2218 	if (ret)
2219 		goto vmm_fail;
2220 
2221 	return 0;
2222 
2223 vmm_fail:
2224 	WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n",
2225 		  (void *)addr, numpages, enc ? "private" : "shared", ret);
2226 
2227 	return ret;
2228 }
2229 
2230 /*
2231  * The lock serializes conversions between private and shared memory.
2232  *
2233  * It is taken for read on conversion. A write lock guarantees that no
2234  * concurrent conversions are in progress.
2235  */
2236 static DECLARE_RWSEM(mem_enc_lock);
2237 
2238 /*
2239  * Stop new private<->shared conversions.
2240  *
2241  * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete.
2242  * The lock is not released to prevent new conversions from being started.
2243  */
set_memory_enc_stop_conversion(void)2244 bool set_memory_enc_stop_conversion(void)
2245 {
2246 	/*
2247 	 * In a crash scenario, sleep is not allowed. Try to take the lock.
2248 	 * Failure indicates that there is a race with the conversion.
2249 	 */
2250 	if (oops_in_progress)
2251 		return down_write_trylock(&mem_enc_lock);
2252 
2253 	down_write(&mem_enc_lock);
2254 
2255 	return true;
2256 }
2257 
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)2258 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2259 {
2260 	int ret = 0;
2261 
2262 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
2263 		if (!down_read_trylock(&mem_enc_lock))
2264 			return -EBUSY;
2265 
2266 		ret = __set_memory_enc_pgtable(addr, numpages, enc);
2267 
2268 		up_read(&mem_enc_lock);
2269 	}
2270 
2271 	return ret;
2272 }
2273 
set_memory_encrypted(unsigned long addr,int numpages)2274 int set_memory_encrypted(unsigned long addr, int numpages)
2275 {
2276 	return __set_memory_enc_dec(addr, numpages, true);
2277 }
2278 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2279 
set_memory_decrypted(unsigned long addr,int numpages)2280 int set_memory_decrypted(unsigned long addr, int numpages)
2281 {
2282 	return __set_memory_enc_dec(addr, numpages, false);
2283 }
2284 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2285 
set_pages_uc(struct page * page,int numpages)2286 int set_pages_uc(struct page *page, int numpages)
2287 {
2288 	unsigned long addr = (unsigned long)page_address(page);
2289 
2290 	return set_memory_uc(addr, numpages);
2291 }
2292 EXPORT_SYMBOL(set_pages_uc);
2293 
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2294 static int _set_pages_array(struct page **pages, int numpages,
2295 		enum page_cache_mode new_type)
2296 {
2297 	unsigned long start;
2298 	unsigned long end;
2299 	enum page_cache_mode set_type;
2300 	int i;
2301 	int free_idx;
2302 	int ret;
2303 
2304 	for (i = 0; i < numpages; i++) {
2305 		if (PageHighMem(pages[i]))
2306 			continue;
2307 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2308 		end = start + PAGE_SIZE;
2309 		if (memtype_reserve(start, end, new_type, NULL))
2310 			goto err_out;
2311 	}
2312 
2313 	/* If WC, set to UC- first and then WC */
2314 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2315 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2316 
2317 	ret = cpa_set_pages_array(pages, numpages,
2318 				  cachemode2pgprot(set_type));
2319 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2320 		ret = change_page_attr_set_clr(NULL, numpages,
2321 					       cachemode2pgprot(
2322 						_PAGE_CACHE_MODE_WC),
2323 					       __pgprot(_PAGE_CACHE_MASK),
2324 					       0, CPA_PAGES_ARRAY, pages);
2325 	if (ret)
2326 		goto err_out;
2327 	return 0; /* Success */
2328 err_out:
2329 	free_idx = i;
2330 	for (i = 0; i < free_idx; i++) {
2331 		if (PageHighMem(pages[i]))
2332 			continue;
2333 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2334 		end = start + PAGE_SIZE;
2335 		memtype_free(start, end);
2336 	}
2337 	return -EINVAL;
2338 }
2339 
set_pages_array_uc(struct page ** pages,int numpages)2340 int set_pages_array_uc(struct page **pages, int numpages)
2341 {
2342 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2343 }
2344 EXPORT_SYMBOL(set_pages_array_uc);
2345 
set_pages_array_wc(struct page ** pages,int numpages)2346 int set_pages_array_wc(struct page **pages, int numpages)
2347 {
2348 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2349 }
2350 EXPORT_SYMBOL(set_pages_array_wc);
2351 
set_pages_wb(struct page * page,int numpages)2352 int set_pages_wb(struct page *page, int numpages)
2353 {
2354 	unsigned long addr = (unsigned long)page_address(page);
2355 
2356 	return set_memory_wb(addr, numpages);
2357 }
2358 EXPORT_SYMBOL(set_pages_wb);
2359 
set_pages_array_wb(struct page ** pages,int numpages)2360 int set_pages_array_wb(struct page **pages, int numpages)
2361 {
2362 	int retval;
2363 	unsigned long start;
2364 	unsigned long end;
2365 	int i;
2366 
2367 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2368 	retval = cpa_clear_pages_array(pages, numpages,
2369 			__pgprot(_PAGE_CACHE_MASK));
2370 	if (retval)
2371 		return retval;
2372 
2373 	for (i = 0; i < numpages; i++) {
2374 		if (PageHighMem(pages[i]))
2375 			continue;
2376 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2377 		end = start + PAGE_SIZE;
2378 		memtype_free(start, end);
2379 	}
2380 
2381 	return 0;
2382 }
2383 EXPORT_SYMBOL(set_pages_array_wb);
2384 
set_pages_ro(struct page * page,int numpages)2385 int set_pages_ro(struct page *page, int numpages)
2386 {
2387 	unsigned long addr = (unsigned long)page_address(page);
2388 
2389 	return set_memory_ro(addr, numpages);
2390 }
2391 
set_pages_rw(struct page * page,int numpages)2392 int set_pages_rw(struct page *page, int numpages)
2393 {
2394 	unsigned long addr = (unsigned long)page_address(page);
2395 
2396 	return set_memory_rw(addr, numpages);
2397 }
2398 
__set_pages_p(struct page * page,int numpages)2399 static int __set_pages_p(struct page *page, int numpages)
2400 {
2401 	unsigned long tempaddr = (unsigned long) page_address(page);
2402 	struct cpa_data cpa = { .vaddr = &tempaddr,
2403 				.pgd = NULL,
2404 				.numpages = numpages,
2405 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2406 				.mask_clr = __pgprot(0),
2407 				.flags = CPA_NO_CHECK_ALIAS };
2408 
2409 	/*
2410 	 * No alias checking needed for setting present flag. otherwise,
2411 	 * we may need to break large pages for 64-bit kernel text
2412 	 * mappings (this adds to complexity if we want to do this from
2413 	 * atomic context especially). Let's keep it simple!
2414 	 */
2415 	return __change_page_attr_set_clr(&cpa, 1);
2416 }
2417 
__set_pages_np(struct page * page,int numpages)2418 static int __set_pages_np(struct page *page, int numpages)
2419 {
2420 	unsigned long tempaddr = (unsigned long) page_address(page);
2421 	struct cpa_data cpa = { .vaddr = &tempaddr,
2422 				.pgd = NULL,
2423 				.numpages = numpages,
2424 				.mask_set = __pgprot(0),
2425 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2426 				.flags = CPA_NO_CHECK_ALIAS };
2427 
2428 	/*
2429 	 * No alias checking needed for setting not present flag. otherwise,
2430 	 * we may need to break large pages for 64-bit kernel text
2431 	 * mappings (this adds to complexity if we want to do this from
2432 	 * atomic context especially). Let's keep it simple!
2433 	 */
2434 	return __change_page_attr_set_clr(&cpa, 1);
2435 }
2436 
set_direct_map_invalid_noflush(struct page * page)2437 int set_direct_map_invalid_noflush(struct page *page)
2438 {
2439 	return __set_pages_np(page, 1);
2440 }
2441 
set_direct_map_default_noflush(struct page * page)2442 int set_direct_map_default_noflush(struct page *page)
2443 {
2444 	return __set_pages_p(page, 1);
2445 }
2446 
2447 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2448 void __kernel_map_pages(struct page *page, int numpages, int enable)
2449 {
2450 	if (PageHighMem(page))
2451 		return;
2452 	if (!enable) {
2453 		debug_check_no_locks_freed(page_address(page),
2454 					   numpages * PAGE_SIZE);
2455 	}
2456 
2457 	/*
2458 	 * The return value is ignored as the calls cannot fail.
2459 	 * Large pages for identity mappings are not used at boot time
2460 	 * and hence no memory allocations during large page split.
2461 	 */
2462 	if (enable)
2463 		__set_pages_p(page, numpages);
2464 	else
2465 		__set_pages_np(page, numpages);
2466 
2467 	/*
2468 	 * We should perform an IPI and flush all tlbs,
2469 	 * but that can deadlock->flush only current cpu.
2470 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2471 	 * CR3 reload in __native_flush_tlb().
2472 	 */
2473 	preempt_disable();
2474 	__flush_tlb_all();
2475 	preempt_enable();
2476 
2477 	arch_flush_lazy_mmu_mode();
2478 }
2479 #endif /* CONFIG_DEBUG_PAGEALLOC */
2480 
kernel_page_present(struct page * page)2481 bool kernel_page_present(struct page *page)
2482 {
2483 	unsigned int level;
2484 	pte_t *pte;
2485 
2486 	if (PageHighMem(page))
2487 		return false;
2488 
2489 	pte = lookup_address((unsigned long)page_address(page), &level);
2490 	return (pte_val(*pte) & _PAGE_PRESENT);
2491 }
2492 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2493 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2494 				   unsigned numpages, unsigned long page_flags)
2495 {
2496 	int retval = -EINVAL;
2497 
2498 	struct cpa_data cpa = {
2499 		.vaddr = &address,
2500 		.pfn = pfn,
2501 		.pgd = pgd,
2502 		.numpages = numpages,
2503 		.mask_set = __pgprot(0),
2504 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2505 		.flags = CPA_NO_CHECK_ALIAS,
2506 	};
2507 
2508 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2509 
2510 	if (!(__supported_pte_mask & _PAGE_NX))
2511 		goto out;
2512 
2513 	if (!(page_flags & _PAGE_ENC))
2514 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2515 
2516 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2517 
2518 	retval = __change_page_attr_set_clr(&cpa, 1);
2519 	__flush_tlb_all();
2520 
2521 out:
2522 	return retval;
2523 }
2524 
2525 /*
2526  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2527  * function shouldn't be used in an SMP environment. Presently, it's used only
2528  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2529  */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2530 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2531 				     unsigned long numpages)
2532 {
2533 	int retval;
2534 
2535 	/*
2536 	 * The typical sequence for unmapping is to find a pte through
2537 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2538 	 * the address is already mapped) and change its protections. As pfn is
2539 	 * the *target* of a mapping, it's not useful while unmapping.
2540 	 */
2541 	struct cpa_data cpa = {
2542 		.vaddr		= &address,
2543 		.pfn		= 0,
2544 		.pgd		= pgd,
2545 		.numpages	= numpages,
2546 		.mask_set	= __pgprot(0),
2547 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2548 		.flags		= CPA_NO_CHECK_ALIAS,
2549 	};
2550 
2551 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2552 
2553 	retval = __change_page_attr_set_clr(&cpa, 1);
2554 	__flush_tlb_all();
2555 
2556 	return retval;
2557 }
2558 
2559 /*
2560  * The testcases use internal knowledge of the implementation that shouldn't
2561  * be exposed to the rest of the kernel. Include these directly here.
2562  */
2563 #ifdef CONFIG_CPA_DEBUG
2564 #include "cpa-test.c"
2565 #endif
2566