1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Network node table
4   *
5   * SELinux must keep a mapping of network nodes to labels/SIDs.  This
6   * mapping is maintained as part of the normal policy but a fast cache is
7   * needed to reduce the lookup overhead since most of these queries happen on
8   * a per-packet basis.
9   *
10   * Author: Paul Moore <paul@paul-moore.com>
11   *
12   * This code is heavily based on the "netif" concept originally developed by
13   * James Morris <jmorris@redhat.com>
14   *   (see security/selinux/netif.c for more information)
15   */
16  
17  /*
18   * (c) Copyright Hewlett-Packard Development Company, L.P., 2007
19   */
20  
21  #include <linux/types.h>
22  #include <linux/rcupdate.h>
23  #include <linux/list.h>
24  #include <linux/slab.h>
25  #include <linux/spinlock.h>
26  #include <linux/in.h>
27  #include <linux/in6.h>
28  #include <linux/ip.h>
29  #include <linux/ipv6.h>
30  #include <net/ip.h>
31  #include <net/ipv6.h>
32  
33  #include "netnode.h"
34  #include "objsec.h"
35  
36  #define SEL_NETNODE_HASH_SIZE       256
37  #define SEL_NETNODE_HASH_BKT_LIMIT   16
38  
39  struct sel_netnode_bkt {
40  	unsigned int size;
41  	struct list_head list;
42  };
43  
44  struct sel_netnode {
45  	struct netnode_security_struct nsec;
46  
47  	struct list_head list;
48  	struct rcu_head rcu;
49  };
50  
51  /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason
52   * for this is that I suspect most users will not make heavy use of both
53   * address families at the same time so one table will usually end up wasted,
54   * if this becomes a problem we can always add a hash table for each address
55   * family later */
56  
57  static DEFINE_SPINLOCK(sel_netnode_lock);
58  static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE];
59  
60  /**
61   * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table
62   * @addr: IPv4 address
63   *
64   * Description:
65   * This is the IPv4 hashing function for the node interface table, it returns
66   * the bucket number for the given IP address.
67   *
68   */
sel_netnode_hashfn_ipv4(__be32 addr)69  static unsigned int sel_netnode_hashfn_ipv4(__be32 addr)
70  {
71  	/* at some point we should determine if the mismatch in byte order
72  	 * affects the hash function dramatically */
73  	return (addr & (SEL_NETNODE_HASH_SIZE - 1));
74  }
75  
76  /**
77   * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table
78   * @addr: IPv6 address
79   *
80   * Description:
81   * This is the IPv6 hashing function for the node interface table, it returns
82   * the bucket number for the given IP address.
83   *
84   */
sel_netnode_hashfn_ipv6(const struct in6_addr * addr)85  static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr)
86  {
87  	/* just hash the least significant 32 bits to keep things fast (they
88  	 * are the most likely to be different anyway), we can revisit this
89  	 * later if needed */
90  	return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1));
91  }
92  
93  /**
94   * sel_netnode_find - Search for a node record
95   * @addr: IP address
96   * @family: address family
97   *
98   * Description:
99   * Search the network node table and return the record matching @addr.  If an
100   * entry can not be found in the table return NULL.
101   *
102   */
sel_netnode_find(const void * addr,u16 family)103  static struct sel_netnode *sel_netnode_find(const void *addr, u16 family)
104  {
105  	unsigned int idx;
106  	struct sel_netnode *node;
107  
108  	switch (family) {
109  	case PF_INET:
110  		idx = sel_netnode_hashfn_ipv4(*(const __be32 *)addr);
111  		break;
112  	case PF_INET6:
113  		idx = sel_netnode_hashfn_ipv6(addr);
114  		break;
115  	default:
116  		BUG();
117  		return NULL;
118  	}
119  
120  	list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list)
121  		if (node->nsec.family == family)
122  			switch (family) {
123  			case PF_INET:
124  				if (node->nsec.addr.ipv4 == *(const __be32 *)addr)
125  					return node;
126  				break;
127  			case PF_INET6:
128  				if (ipv6_addr_equal(&node->nsec.addr.ipv6,
129  						    addr))
130  					return node;
131  				break;
132  			}
133  
134  	return NULL;
135  }
136  
137  /**
138   * sel_netnode_insert - Insert a new node into the table
139   * @node: the new node record
140   *
141   * Description:
142   * Add a new node record to the network address hash table.
143   *
144   */
sel_netnode_insert(struct sel_netnode * node)145  static void sel_netnode_insert(struct sel_netnode *node)
146  {
147  	unsigned int idx;
148  
149  	switch (node->nsec.family) {
150  	case PF_INET:
151  		idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4);
152  		break;
153  	case PF_INET6:
154  		idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6);
155  		break;
156  	default:
157  		BUG();
158  		return;
159  	}
160  
161  	/* we need to impose a limit on the growth of the hash table so check
162  	 * this bucket to make sure it is within the specified bounds */
163  	list_add_rcu(&node->list, &sel_netnode_hash[idx].list);
164  	if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) {
165  		struct sel_netnode *tail;
166  		tail = list_entry(
167  			rcu_dereference_protected(
168  				list_tail_rcu(&sel_netnode_hash[idx].list),
169  				lockdep_is_held(&sel_netnode_lock)),
170  			struct sel_netnode, list);
171  		list_del_rcu(&tail->list);
172  		kfree_rcu(tail, rcu);
173  	} else
174  		sel_netnode_hash[idx].size++;
175  }
176  
177  /**
178   * sel_netnode_sid_slow - Lookup the SID of a network address using the policy
179   * @addr: the IP address
180   * @family: the address family
181   * @sid: node SID
182   *
183   * Description:
184   * This function determines the SID of a network address by querying the
185   * security policy.  The result is added to the network address table to
186   * speedup future queries.  Returns zero on success, negative values on
187   * failure.
188   *
189   */
sel_netnode_sid_slow(void * addr,u16 family,u32 * sid)190  static int sel_netnode_sid_slow(void *addr, u16 family, u32 *sid)
191  {
192  	int ret;
193  	struct sel_netnode *node;
194  	struct sel_netnode *new;
195  
196  	spin_lock_bh(&sel_netnode_lock);
197  	node = sel_netnode_find(addr, family);
198  	if (node != NULL) {
199  		*sid = node->nsec.sid;
200  		spin_unlock_bh(&sel_netnode_lock);
201  		return 0;
202  	}
203  
204  	new = kzalloc(sizeof(*new), GFP_ATOMIC);
205  	switch (family) {
206  	case PF_INET:
207  		ret = security_node_sid(PF_INET,
208  					addr, sizeof(struct in_addr), sid);
209  		if (new)
210  			new->nsec.addr.ipv4 = *(__be32 *)addr;
211  		break;
212  	case PF_INET6:
213  		ret = security_node_sid(PF_INET6,
214  					addr, sizeof(struct in6_addr), sid);
215  		if (new)
216  			new->nsec.addr.ipv6 = *(struct in6_addr *)addr;
217  		break;
218  	default:
219  		BUG();
220  		ret = -EINVAL;
221  	}
222  	if (ret == 0 && new) {
223  		new->nsec.family = family;
224  		new->nsec.sid = *sid;
225  		sel_netnode_insert(new);
226  	} else
227  		kfree(new);
228  
229  	spin_unlock_bh(&sel_netnode_lock);
230  	if (unlikely(ret))
231  		pr_warn("SELinux: failure in %s(), unable to determine network node label\n",
232  			__func__);
233  	return ret;
234  }
235  
236  /**
237   * sel_netnode_sid - Lookup the SID of a network address
238   * @addr: the IP address
239   * @family: the address family
240   * @sid: node SID
241   *
242   * Description:
243   * This function determines the SID of a network address using the fastest
244   * method possible.  First the address table is queried, but if an entry
245   * can't be found then the policy is queried and the result is added to the
246   * table to speedup future queries.  Returns zero on success, negative values
247   * on failure.
248   *
249   */
sel_netnode_sid(void * addr,u16 family,u32 * sid)250  int sel_netnode_sid(void *addr, u16 family, u32 *sid)
251  {
252  	struct sel_netnode *node;
253  
254  	rcu_read_lock();
255  	node = sel_netnode_find(addr, family);
256  	if (node != NULL) {
257  		*sid = node->nsec.sid;
258  		rcu_read_unlock();
259  		return 0;
260  	}
261  	rcu_read_unlock();
262  
263  	return sel_netnode_sid_slow(addr, family, sid);
264  }
265  
266  /**
267   * sel_netnode_flush - Flush the entire network address table
268   *
269   * Description:
270   * Remove all entries from the network address table.
271   *
272   */
sel_netnode_flush(void)273  void sel_netnode_flush(void)
274  {
275  	unsigned int idx;
276  	struct sel_netnode *node, *node_tmp;
277  
278  	spin_lock_bh(&sel_netnode_lock);
279  	for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) {
280  		list_for_each_entry_safe(node, node_tmp,
281  					 &sel_netnode_hash[idx].list, list) {
282  				list_del_rcu(&node->list);
283  				kfree_rcu(node, rcu);
284  		}
285  		sel_netnode_hash[idx].size = 0;
286  	}
287  	spin_unlock_bh(&sel_netnode_lock);
288  }
289  
sel_netnode_init(void)290  static __init int sel_netnode_init(void)
291  {
292  	int iter;
293  
294  	if (!selinux_enabled_boot)
295  		return 0;
296  
297  	for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) {
298  		INIT_LIST_HEAD(&sel_netnode_hash[iter].list);
299  		sel_netnode_hash[iter].size = 0;
300  	}
301  
302  	return 0;
303  }
304  
305  __initcall(sel_netnode_init);
306