1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * NTP state machine interfaces and logic.
4   *
5   * This code was mainly moved from kernel/timer.c and kernel/time.c
6   * Please see those files for relevant copyright info and historical
7   * changelogs.
8   */
9  #include <linux/capability.h>
10  #include <linux/clocksource.h>
11  #include <linux/workqueue.h>
12  #include <linux/hrtimer.h>
13  #include <linux/jiffies.h>
14  #include <linux/math64.h>
15  #include <linux/timex.h>
16  #include <linux/time.h>
17  #include <linux/mm.h>
18  #include <linux/module.h>
19  #include <linux/rtc.h>
20  #include <linux/audit.h>
21  
22  #include "ntp_internal.h"
23  #include "timekeeping_internal.h"
24  
25  
26  /*
27   * NTP timekeeping variables:
28   *
29   * Note: All of the NTP state is protected by the timekeeping locks.
30   */
31  
32  
33  /* USER_HZ period (usecs): */
34  unsigned long			tick_usec = USER_TICK_USEC;
35  
36  /* SHIFTED_HZ period (nsecs): */
37  unsigned long			tick_nsec;
38  
39  static u64			tick_length;
40  static u64			tick_length_base;
41  
42  #define SECS_PER_DAY		86400
43  #define MAX_TICKADJ		500LL		/* usecs */
44  #define MAX_TICKADJ_SCALED \
45  	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46  #define MAX_TAI_OFFSET		100000
47  
48  /*
49   * phase-lock loop variables
50   */
51  
52  /*
53   * clock synchronization status
54   *
55   * (TIME_ERROR prevents overwriting the CMOS clock)
56   */
57  static int			time_state = TIME_OK;
58  
59  /* clock status bits:							*/
60  static int			time_status = STA_UNSYNC;
61  
62  /* time adjustment (nsecs):						*/
63  static s64			time_offset;
64  
65  /* pll time constant:							*/
66  static long			time_constant = 2;
67  
68  /* maximum error (usecs):						*/
69  static long			time_maxerror = NTP_PHASE_LIMIT;
70  
71  /* estimated error (usecs):						*/
72  static long			time_esterror = NTP_PHASE_LIMIT;
73  
74  /* frequency offset (scaled nsecs/secs):				*/
75  static s64			time_freq;
76  
77  /* time at last adjustment (secs):					*/
78  static time64_t		time_reftime;
79  
80  static long			time_adjust;
81  
82  /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
83  static s64			ntp_tick_adj;
84  
85  /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86  static time64_t			ntp_next_leap_sec = TIME64_MAX;
87  
88  #ifdef CONFIG_NTP_PPS
89  
90  /*
91   * The following variables are used when a pulse-per-second (PPS) signal
92   * is available. They establish the engineering parameters of the clock
93   * discipline loop when controlled by the PPS signal.
94   */
95  #define PPS_VALID	10	/* PPS signal watchdog max (s) */
96  #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
97  #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
98  #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
99  #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
100  				   increase pps_shift or consecutive bad
101  				   intervals to decrease it */
102  #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
103  
104  static int pps_valid;		/* signal watchdog counter */
105  static long pps_tf[3];		/* phase median filter */
106  static long pps_jitter;		/* current jitter (ns) */
107  static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108  static int pps_shift;		/* current interval duration (s) (shift) */
109  static int pps_intcnt;		/* interval counter */
110  static s64 pps_freq;		/* frequency offset (scaled ns/s) */
111  static long pps_stabil;		/* current stability (scaled ns/s) */
112  
113  /*
114   * PPS signal quality monitors
115   */
116  static long pps_calcnt;		/* calibration intervals */
117  static long pps_jitcnt;		/* jitter limit exceeded */
118  static long pps_stbcnt;		/* stability limit exceeded */
119  static long pps_errcnt;		/* calibration errors */
120  
121  
122  /* PPS kernel consumer compensates the whole phase error immediately.
123   * Otherwise, reduce the offset by a fixed factor times the time constant.
124   */
ntp_offset_chunk(s64 offset)125  static inline s64 ntp_offset_chunk(s64 offset)
126  {
127  	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128  		return offset;
129  	else
130  		return shift_right(offset, SHIFT_PLL + time_constant);
131  }
132  
pps_reset_freq_interval(void)133  static inline void pps_reset_freq_interval(void)
134  {
135  	/* the PPS calibration interval may end
136  	   surprisingly early */
137  	pps_shift = PPS_INTMIN;
138  	pps_intcnt = 0;
139  }
140  
141  /**
142   * pps_clear - Clears the PPS state variables
143   */
pps_clear(void)144  static inline void pps_clear(void)
145  {
146  	pps_reset_freq_interval();
147  	pps_tf[0] = 0;
148  	pps_tf[1] = 0;
149  	pps_tf[2] = 0;
150  	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151  	pps_freq = 0;
152  }
153  
154  /* Decrease pps_valid to indicate that another second has passed since
155   * the last PPS signal. When it reaches 0, indicate that PPS signal is
156   * missing.
157   */
pps_dec_valid(void)158  static inline void pps_dec_valid(void)
159  {
160  	if (pps_valid > 0)
161  		pps_valid--;
162  	else {
163  		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164  				 STA_PPSWANDER | STA_PPSERROR);
165  		pps_clear();
166  	}
167  }
168  
pps_set_freq(s64 freq)169  static inline void pps_set_freq(s64 freq)
170  {
171  	pps_freq = freq;
172  }
173  
is_error_status(int status)174  static inline int is_error_status(int status)
175  {
176  	return (status & (STA_UNSYNC|STA_CLOCKERR))
177  		/* PPS signal lost when either PPS time or
178  		 * PPS frequency synchronization requested
179  		 */
180  		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
181  			&& !(status & STA_PPSSIGNAL))
182  		/* PPS jitter exceeded when
183  		 * PPS time synchronization requested */
184  		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
185  			== (STA_PPSTIME|STA_PPSJITTER))
186  		/* PPS wander exceeded or calibration error when
187  		 * PPS frequency synchronization requested
188  		 */
189  		|| ((status & STA_PPSFREQ)
190  			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
191  }
192  
pps_fill_timex(struct __kernel_timex * txc)193  static inline void pps_fill_timex(struct __kernel_timex *txc)
194  {
195  	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196  					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197  	txc->jitter	   = pps_jitter;
198  	if (!(time_status & STA_NANO))
199  		txc->jitter = pps_jitter / NSEC_PER_USEC;
200  	txc->shift	   = pps_shift;
201  	txc->stabil	   = pps_stabil;
202  	txc->jitcnt	   = pps_jitcnt;
203  	txc->calcnt	   = pps_calcnt;
204  	txc->errcnt	   = pps_errcnt;
205  	txc->stbcnt	   = pps_stbcnt;
206  }
207  
208  #else /* !CONFIG_NTP_PPS */
209  
ntp_offset_chunk(s64 offset)210  static inline s64 ntp_offset_chunk(s64 offset)
211  {
212  	return shift_right(offset, SHIFT_PLL + time_constant);
213  }
214  
pps_reset_freq_interval(void)215  static inline void pps_reset_freq_interval(void) {}
pps_clear(void)216  static inline void pps_clear(void) {}
pps_dec_valid(void)217  static inline void pps_dec_valid(void) {}
pps_set_freq(s64 freq)218  static inline void pps_set_freq(s64 freq) {}
219  
is_error_status(int status)220  static inline int is_error_status(int status)
221  {
222  	return status & (STA_UNSYNC|STA_CLOCKERR);
223  }
224  
pps_fill_timex(struct __kernel_timex * txc)225  static inline void pps_fill_timex(struct __kernel_timex *txc)
226  {
227  	/* PPS is not implemented, so these are zero */
228  	txc->ppsfreq	   = 0;
229  	txc->jitter	   = 0;
230  	txc->shift	   = 0;
231  	txc->stabil	   = 0;
232  	txc->jitcnt	   = 0;
233  	txc->calcnt	   = 0;
234  	txc->errcnt	   = 0;
235  	txc->stbcnt	   = 0;
236  }
237  
238  #endif /* CONFIG_NTP_PPS */
239  
240  
241  /**
242   * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243   *
244   */
ntp_synced(void)245  static inline int ntp_synced(void)
246  {
247  	return !(time_status & STA_UNSYNC);
248  }
249  
250  
251  /*
252   * NTP methods:
253   */
254  
255  /*
256   * Update (tick_length, tick_length_base, tick_nsec), based
257   * on (tick_usec, ntp_tick_adj, time_freq):
258   */
ntp_update_frequency(void)259  static void ntp_update_frequency(void)
260  {
261  	u64 second_length;
262  	u64 new_base;
263  
264  	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265  						<< NTP_SCALE_SHIFT;
266  
267  	second_length		+= ntp_tick_adj;
268  	second_length		+= time_freq;
269  
270  	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271  	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
272  
273  	/*
274  	 * Don't wait for the next second_overflow, apply
275  	 * the change to the tick length immediately:
276  	 */
277  	tick_length		+= new_base - tick_length_base;
278  	tick_length_base	 = new_base;
279  }
280  
ntp_update_offset_fll(s64 offset64,long secs)281  static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282  {
283  	time_status &= ~STA_MODE;
284  
285  	if (secs < MINSEC)
286  		return 0;
287  
288  	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289  		return 0;
290  
291  	time_status |= STA_MODE;
292  
293  	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294  }
295  
ntp_update_offset(long offset)296  static void ntp_update_offset(long offset)
297  {
298  	s64 freq_adj;
299  	s64 offset64;
300  	long secs;
301  
302  	if (!(time_status & STA_PLL))
303  		return;
304  
305  	if (!(time_status & STA_NANO)) {
306  		/* Make sure the multiplication below won't overflow */
307  		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308  		offset *= NSEC_PER_USEC;
309  	}
310  
311  	/*
312  	 * Scale the phase adjustment and
313  	 * clamp to the operating range.
314  	 */
315  	offset = clamp(offset, -MAXPHASE, MAXPHASE);
316  
317  	/*
318  	 * Select how the frequency is to be controlled
319  	 * and in which mode (PLL or FLL).
320  	 */
321  	secs = (long)(__ktime_get_real_seconds() - time_reftime);
322  	if (unlikely(time_status & STA_FREQHOLD))
323  		secs = 0;
324  
325  	time_reftime = __ktime_get_real_seconds();
326  
327  	offset64    = offset;
328  	freq_adj    = ntp_update_offset_fll(offset64, secs);
329  
330  	/*
331  	 * Clamp update interval to reduce PLL gain with low
332  	 * sampling rate (e.g. intermittent network connection)
333  	 * to avoid instability.
334  	 */
335  	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336  		secs = 1 << (SHIFT_PLL + 1 + time_constant);
337  
338  	freq_adj    += (offset64 * secs) <<
339  			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340  
341  	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
342  
343  	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
344  
345  	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346  }
347  
348  /**
349   * ntp_clear - Clears the NTP state variables
350   */
ntp_clear(void)351  void ntp_clear(void)
352  {
353  	time_adjust	= 0;		/* stop active adjtime() */
354  	time_status	|= STA_UNSYNC;
355  	time_maxerror	= NTP_PHASE_LIMIT;
356  	time_esterror	= NTP_PHASE_LIMIT;
357  
358  	ntp_update_frequency();
359  
360  	tick_length	= tick_length_base;
361  	time_offset	= 0;
362  
363  	ntp_next_leap_sec = TIME64_MAX;
364  	/* Clear PPS state variables */
365  	pps_clear();
366  }
367  
368  
ntp_tick_length(void)369  u64 ntp_tick_length(void)
370  {
371  	return tick_length;
372  }
373  
374  /**
375   * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376   *
377   * Provides the time of the next leapsecond against CLOCK_REALTIME in
378   * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379   */
ntp_get_next_leap(void)380  ktime_t ntp_get_next_leap(void)
381  {
382  	ktime_t ret;
383  
384  	if ((time_state == TIME_INS) && (time_status & STA_INS))
385  		return ktime_set(ntp_next_leap_sec, 0);
386  	ret = KTIME_MAX;
387  	return ret;
388  }
389  
390  /*
391   * this routine handles the overflow of the microsecond field
392   *
393   * The tricky bits of code to handle the accurate clock support
394   * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395   * They were originally developed for SUN and DEC kernels.
396   * All the kudos should go to Dave for this stuff.
397   *
398   * Also handles leap second processing, and returns leap offset
399   */
second_overflow(time64_t secs)400  int second_overflow(time64_t secs)
401  {
402  	s64 delta;
403  	int leap = 0;
404  	s32 rem;
405  
406  	/*
407  	 * Leap second processing. If in leap-insert state at the end of the
408  	 * day, the system clock is set back one second; if in leap-delete
409  	 * state, the system clock is set ahead one second.
410  	 */
411  	switch (time_state) {
412  	case TIME_OK:
413  		if (time_status & STA_INS) {
414  			time_state = TIME_INS;
415  			div_s64_rem(secs, SECS_PER_DAY, &rem);
416  			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417  		} else if (time_status & STA_DEL) {
418  			time_state = TIME_DEL;
419  			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420  			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421  		}
422  		break;
423  	case TIME_INS:
424  		if (!(time_status & STA_INS)) {
425  			ntp_next_leap_sec = TIME64_MAX;
426  			time_state = TIME_OK;
427  		} else if (secs == ntp_next_leap_sec) {
428  			leap = -1;
429  			time_state = TIME_OOP;
430  			printk(KERN_NOTICE
431  				"Clock: inserting leap second 23:59:60 UTC\n");
432  		}
433  		break;
434  	case TIME_DEL:
435  		if (!(time_status & STA_DEL)) {
436  			ntp_next_leap_sec = TIME64_MAX;
437  			time_state = TIME_OK;
438  		} else if (secs == ntp_next_leap_sec) {
439  			leap = 1;
440  			ntp_next_leap_sec = TIME64_MAX;
441  			time_state = TIME_WAIT;
442  			printk(KERN_NOTICE
443  				"Clock: deleting leap second 23:59:59 UTC\n");
444  		}
445  		break;
446  	case TIME_OOP:
447  		ntp_next_leap_sec = TIME64_MAX;
448  		time_state = TIME_WAIT;
449  		break;
450  	case TIME_WAIT:
451  		if (!(time_status & (STA_INS | STA_DEL)))
452  			time_state = TIME_OK;
453  		break;
454  	}
455  
456  
457  	/* Bump the maxerror field */
458  	time_maxerror += MAXFREQ / NSEC_PER_USEC;
459  	if (time_maxerror > NTP_PHASE_LIMIT) {
460  		time_maxerror = NTP_PHASE_LIMIT;
461  		time_status |= STA_UNSYNC;
462  	}
463  
464  	/* Compute the phase adjustment for the next second */
465  	tick_length	 = tick_length_base;
466  
467  	delta		 = ntp_offset_chunk(time_offset);
468  	time_offset	-= delta;
469  	tick_length	+= delta;
470  
471  	/* Check PPS signal */
472  	pps_dec_valid();
473  
474  	if (!time_adjust)
475  		goto out;
476  
477  	if (time_adjust > MAX_TICKADJ) {
478  		time_adjust -= MAX_TICKADJ;
479  		tick_length += MAX_TICKADJ_SCALED;
480  		goto out;
481  	}
482  
483  	if (time_adjust < -MAX_TICKADJ) {
484  		time_adjust += MAX_TICKADJ;
485  		tick_length -= MAX_TICKADJ_SCALED;
486  		goto out;
487  	}
488  
489  	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490  							 << NTP_SCALE_SHIFT;
491  	time_adjust = 0;
492  
493  out:
494  	return leap;
495  }
496  
497  #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
498  static void sync_hw_clock(struct work_struct *work);
499  static DECLARE_WORK(sync_work, sync_hw_clock);
500  static struct hrtimer sync_hrtimer;
501  #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
502  
sync_timer_callback(struct hrtimer * timer)503  static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
504  {
505  	queue_work(system_freezable_power_efficient_wq, &sync_work);
506  
507  	return HRTIMER_NORESTART;
508  }
509  
sched_sync_hw_clock(unsigned long offset_nsec,bool retry)510  static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
511  {
512  	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
513  
514  	if (retry)
515  		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
516  	else
517  		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
518  
519  	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
520  }
521  
522  /*
523   * Check whether @now is correct versus the required time to update the RTC
524   * and calculate the value which needs to be written to the RTC so that the
525   * next seconds increment of the RTC after the write is aligned with the next
526   * seconds increment of clock REALTIME.
527   *
528   * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
529   *
530   * t2.tv_nsec == 0
531   * tsched = t2 - set_offset_nsec
532   * newval = t2 - NSEC_PER_SEC
533   *
534   * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
535   *
536   * As the execution of this code is not guaranteed to happen exactly at
537   * tsched this allows it to happen within a fuzzy region:
538   *
539   *	abs(now - tsched) < FUZZ
540   *
541   * If @now is not inside the allowed window the function returns false.
542   */
rtc_tv_nsec_ok(unsigned long set_offset_nsec,struct timespec64 * to_set,const struct timespec64 * now)543  static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
544  				  struct timespec64 *to_set,
545  				  const struct timespec64 *now)
546  {
547  	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
548  	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
549  	struct timespec64 delay = {.tv_sec = -1,
550  				   .tv_nsec = set_offset_nsec};
551  
552  	*to_set = timespec64_add(*now, delay);
553  
554  	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
555  		to_set->tv_nsec = 0;
556  		return true;
557  	}
558  
559  	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
560  		to_set->tv_sec++;
561  		to_set->tv_nsec = 0;
562  		return true;
563  	}
564  	return false;
565  }
566  
567  #ifdef CONFIG_GENERIC_CMOS_UPDATE
update_persistent_clock64(struct timespec64 now64)568  int __weak update_persistent_clock64(struct timespec64 now64)
569  {
570  	return -ENODEV;
571  }
572  #else
update_persistent_clock64(struct timespec64 now64)573  static inline int update_persistent_clock64(struct timespec64 now64)
574  {
575  	return -ENODEV;
576  }
577  #endif
578  
579  #ifdef CONFIG_RTC_SYSTOHC
580  /* Save NTP synchronized time to the RTC */
update_rtc(struct timespec64 * to_set,unsigned long * offset_nsec)581  static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
582  {
583  	struct rtc_device *rtc;
584  	struct rtc_time tm;
585  	int err = -ENODEV;
586  
587  	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
588  	if (!rtc)
589  		return -ENODEV;
590  
591  	if (!rtc->ops || !rtc->ops->set_time)
592  		goto out_close;
593  
594  	/* First call might not have the correct offset */
595  	if (*offset_nsec == rtc->set_offset_nsec) {
596  		rtc_time64_to_tm(to_set->tv_sec, &tm);
597  		err = rtc_set_time(rtc, &tm);
598  	} else {
599  		/* Store the update offset and let the caller try again */
600  		*offset_nsec = rtc->set_offset_nsec;
601  		err = -EAGAIN;
602  	}
603  out_close:
604  	rtc_class_close(rtc);
605  	return err;
606  }
607  #else
update_rtc(struct timespec64 * to_set,unsigned long * offset_nsec)608  static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
609  {
610  	return -ENODEV;
611  }
612  #endif
613  
614  /*
615   * If we have an externally synchronized Linux clock, then update RTC clock
616   * accordingly every ~11 minutes. Generally RTCs can only store second
617   * precision, but many RTCs will adjust the phase of their second tick to
618   * match the moment of update. This infrastructure arranges to call to the RTC
619   * set at the correct moment to phase synchronize the RTC second tick over
620   * with the kernel clock.
621   */
sync_hw_clock(struct work_struct * work)622  static void sync_hw_clock(struct work_struct *work)
623  {
624  	/*
625  	 * The default synchronization offset is 500ms for the deprecated
626  	 * update_persistent_clock64() under the assumption that it uses
627  	 * the infamous CMOS clock (MC146818).
628  	 */
629  	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
630  	struct timespec64 now, to_set;
631  	int res = -EAGAIN;
632  
633  	/*
634  	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
635  	 * managed to schedule the work between the timer firing and the
636  	 * work being able to rearm the timer. Wait for the timer to expire.
637  	 */
638  	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
639  		return;
640  
641  	ktime_get_real_ts64(&now);
642  	/* If @now is not in the allowed window, try again */
643  	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
644  		goto rearm;
645  
646  	/* Take timezone adjusted RTCs into account */
647  	if (persistent_clock_is_local)
648  		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
649  
650  	/* Try the legacy RTC first. */
651  	res = update_persistent_clock64(to_set);
652  	if (res != -ENODEV)
653  		goto rearm;
654  
655  	/* Try the RTC class */
656  	res = update_rtc(&to_set, &offset_nsec);
657  	if (res == -ENODEV)
658  		return;
659  rearm:
660  	sched_sync_hw_clock(offset_nsec, res != 0);
661  }
662  
ntp_notify_cmos_timer(bool offset_set)663  void ntp_notify_cmos_timer(bool offset_set)
664  {
665  	/*
666  	 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
667  	 * which may have been running if the time was synchronized
668  	 * prior to the ADJ_SETOFFSET call.
669  	 */
670  	if (offset_set)
671  		hrtimer_cancel(&sync_hrtimer);
672  
673  	/*
674  	 * When the work is currently executed but has not yet the timer
675  	 * rearmed this queues the work immediately again. No big issue,
676  	 * just a pointless work scheduled.
677  	 */
678  	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
679  		queue_work(system_freezable_power_efficient_wq, &sync_work);
680  }
681  
ntp_init_cmos_sync(void)682  static void __init ntp_init_cmos_sync(void)
683  {
684  	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
685  	sync_hrtimer.function = sync_timer_callback;
686  }
687  #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
ntp_init_cmos_sync(void)688  static inline void __init ntp_init_cmos_sync(void) { }
689  #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
690  
691  /*
692   * Propagate a new txc->status value into the NTP state:
693   */
process_adj_status(const struct __kernel_timex * txc)694  static inline void process_adj_status(const struct __kernel_timex *txc)
695  {
696  	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
697  		time_state = TIME_OK;
698  		time_status = STA_UNSYNC;
699  		ntp_next_leap_sec = TIME64_MAX;
700  		/* restart PPS frequency calibration */
701  		pps_reset_freq_interval();
702  	}
703  
704  	/*
705  	 * If we turn on PLL adjustments then reset the
706  	 * reference time to current time.
707  	 */
708  	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
709  		time_reftime = __ktime_get_real_seconds();
710  
711  	/* only set allowed bits */
712  	time_status &= STA_RONLY;
713  	time_status |= txc->status & ~STA_RONLY;
714  }
715  
716  
process_adjtimex_modes(const struct __kernel_timex * txc,s32 * time_tai)717  static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
718  					  s32 *time_tai)
719  {
720  	if (txc->modes & ADJ_STATUS)
721  		process_adj_status(txc);
722  
723  	if (txc->modes & ADJ_NANO)
724  		time_status |= STA_NANO;
725  
726  	if (txc->modes & ADJ_MICRO)
727  		time_status &= ~STA_NANO;
728  
729  	if (txc->modes & ADJ_FREQUENCY) {
730  		time_freq = txc->freq * PPM_SCALE;
731  		time_freq = min(time_freq, MAXFREQ_SCALED);
732  		time_freq = max(time_freq, -MAXFREQ_SCALED);
733  		/* update pps_freq */
734  		pps_set_freq(time_freq);
735  	}
736  
737  	if (txc->modes & ADJ_MAXERROR)
738  		time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
739  
740  	if (txc->modes & ADJ_ESTERROR)
741  		time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
742  
743  	if (txc->modes & ADJ_TIMECONST) {
744  		time_constant = clamp(txc->constant, 0, MAXTC);
745  		if (!(time_status & STA_NANO))
746  			time_constant += 4;
747  		time_constant = clamp(time_constant, 0, MAXTC);
748  	}
749  
750  	if (txc->modes & ADJ_TAI &&
751  			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
752  		*time_tai = txc->constant;
753  
754  	if (txc->modes & ADJ_OFFSET)
755  		ntp_update_offset(txc->offset);
756  
757  	if (txc->modes & ADJ_TICK)
758  		tick_usec = txc->tick;
759  
760  	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
761  		ntp_update_frequency();
762  }
763  
764  
765  /*
766   * adjtimex mainly allows reading (and writing, if superuser) of
767   * kernel time-keeping variables. used by xntpd.
768   */
__do_adjtimex(struct __kernel_timex * txc,const struct timespec64 * ts,s32 * time_tai,struct audit_ntp_data * ad)769  int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
770  		  s32 *time_tai, struct audit_ntp_data *ad)
771  {
772  	int result;
773  
774  	if (txc->modes & ADJ_ADJTIME) {
775  		long save_adjust = time_adjust;
776  
777  		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
778  			/* adjtime() is independent from ntp_adjtime() */
779  			time_adjust = txc->offset;
780  			ntp_update_frequency();
781  
782  			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
783  			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
784  		}
785  		txc->offset = save_adjust;
786  	} else {
787  		/* If there are input parameters, then process them: */
788  		if (txc->modes) {
789  			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
790  			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
791  			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
792  			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
793  			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
794  
795  			process_adjtimex_modes(txc, time_tai);
796  
797  			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
798  			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
799  			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
800  			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
801  			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
802  		}
803  
804  		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
805  				  NTP_SCALE_SHIFT);
806  		if (!(time_status & STA_NANO))
807  			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
808  	}
809  
810  	result = time_state;	/* mostly `TIME_OK' */
811  	/* check for errors */
812  	if (is_error_status(time_status))
813  		result = TIME_ERROR;
814  
815  	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
816  					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
817  	txc->maxerror	   = time_maxerror;
818  	txc->esterror	   = time_esterror;
819  	txc->status	   = time_status;
820  	txc->constant	   = time_constant;
821  	txc->precision	   = 1;
822  	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
823  	txc->tick	   = tick_usec;
824  	txc->tai	   = *time_tai;
825  
826  	/* fill PPS status fields */
827  	pps_fill_timex(txc);
828  
829  	txc->time.tv_sec = ts->tv_sec;
830  	txc->time.tv_usec = ts->tv_nsec;
831  	if (!(time_status & STA_NANO))
832  		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
833  
834  	/* Handle leapsec adjustments */
835  	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
836  		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
837  			result = TIME_OOP;
838  			txc->tai++;
839  			txc->time.tv_sec--;
840  		}
841  		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
842  			result = TIME_WAIT;
843  			txc->tai--;
844  			txc->time.tv_sec++;
845  		}
846  		if ((time_state == TIME_OOP) &&
847  					(ts->tv_sec == ntp_next_leap_sec)) {
848  			result = TIME_WAIT;
849  		}
850  	}
851  
852  	return result;
853  }
854  
855  #ifdef	CONFIG_NTP_PPS
856  
857  /* actually struct pps_normtime is good old struct timespec, but it is
858   * semantically different (and it is the reason why it was invented):
859   * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
860   * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
861  struct pps_normtime {
862  	s64		sec;	/* seconds */
863  	long		nsec;	/* nanoseconds */
864  };
865  
866  /* normalize the timestamp so that nsec is in the
867     ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
pps_normalize_ts(struct timespec64 ts)868  static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
869  {
870  	struct pps_normtime norm = {
871  		.sec = ts.tv_sec,
872  		.nsec = ts.tv_nsec
873  	};
874  
875  	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
876  		norm.nsec -= NSEC_PER_SEC;
877  		norm.sec++;
878  	}
879  
880  	return norm;
881  }
882  
883  /* get current phase correction and jitter */
pps_phase_filter_get(long * jitter)884  static inline long pps_phase_filter_get(long *jitter)
885  {
886  	*jitter = pps_tf[0] - pps_tf[1];
887  	if (*jitter < 0)
888  		*jitter = -*jitter;
889  
890  	/* TODO: test various filters */
891  	return pps_tf[0];
892  }
893  
894  /* add the sample to the phase filter */
pps_phase_filter_add(long err)895  static inline void pps_phase_filter_add(long err)
896  {
897  	pps_tf[2] = pps_tf[1];
898  	pps_tf[1] = pps_tf[0];
899  	pps_tf[0] = err;
900  }
901  
902  /* decrease frequency calibration interval length.
903   * It is halved after four consecutive unstable intervals.
904   */
pps_dec_freq_interval(void)905  static inline void pps_dec_freq_interval(void)
906  {
907  	if (--pps_intcnt <= -PPS_INTCOUNT) {
908  		pps_intcnt = -PPS_INTCOUNT;
909  		if (pps_shift > PPS_INTMIN) {
910  			pps_shift--;
911  			pps_intcnt = 0;
912  		}
913  	}
914  }
915  
916  /* increase frequency calibration interval length.
917   * It is doubled after four consecutive stable intervals.
918   */
pps_inc_freq_interval(void)919  static inline void pps_inc_freq_interval(void)
920  {
921  	if (++pps_intcnt >= PPS_INTCOUNT) {
922  		pps_intcnt = PPS_INTCOUNT;
923  		if (pps_shift < PPS_INTMAX) {
924  			pps_shift++;
925  			pps_intcnt = 0;
926  		}
927  	}
928  }
929  
930  /* update clock frequency based on MONOTONIC_RAW clock PPS signal
931   * timestamps
932   *
933   * At the end of the calibration interval the difference between the
934   * first and last MONOTONIC_RAW clock timestamps divided by the length
935   * of the interval becomes the frequency update. If the interval was
936   * too long, the data are discarded.
937   * Returns the difference between old and new frequency values.
938   */
hardpps_update_freq(struct pps_normtime freq_norm)939  static long hardpps_update_freq(struct pps_normtime freq_norm)
940  {
941  	long delta, delta_mod;
942  	s64 ftemp;
943  
944  	/* check if the frequency interval was too long */
945  	if (freq_norm.sec > (2 << pps_shift)) {
946  		time_status |= STA_PPSERROR;
947  		pps_errcnt++;
948  		pps_dec_freq_interval();
949  		printk_deferred(KERN_ERR
950  			"hardpps: PPSERROR: interval too long - %lld s\n",
951  			freq_norm.sec);
952  		return 0;
953  	}
954  
955  	/* here the raw frequency offset and wander (stability) is
956  	 * calculated. If the wander is less than the wander threshold
957  	 * the interval is increased; otherwise it is decreased.
958  	 */
959  	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
960  			freq_norm.sec);
961  	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
962  	pps_freq = ftemp;
963  	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
964  		printk_deferred(KERN_WARNING
965  				"hardpps: PPSWANDER: change=%ld\n", delta);
966  		time_status |= STA_PPSWANDER;
967  		pps_stbcnt++;
968  		pps_dec_freq_interval();
969  	} else {	/* good sample */
970  		pps_inc_freq_interval();
971  	}
972  
973  	/* the stability metric is calculated as the average of recent
974  	 * frequency changes, but is used only for performance
975  	 * monitoring
976  	 */
977  	delta_mod = delta;
978  	if (delta_mod < 0)
979  		delta_mod = -delta_mod;
980  	pps_stabil += (div_s64(((s64)delta_mod) <<
981  				(NTP_SCALE_SHIFT - SHIFT_USEC),
982  				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
983  
984  	/* if enabled, the system clock frequency is updated */
985  	if ((time_status & STA_PPSFREQ) != 0 &&
986  	    (time_status & STA_FREQHOLD) == 0) {
987  		time_freq = pps_freq;
988  		ntp_update_frequency();
989  	}
990  
991  	return delta;
992  }
993  
994  /* correct REALTIME clock phase error against PPS signal */
hardpps_update_phase(long error)995  static void hardpps_update_phase(long error)
996  {
997  	long correction = -error;
998  	long jitter;
999  
1000  	/* add the sample to the median filter */
1001  	pps_phase_filter_add(correction);
1002  	correction = pps_phase_filter_get(&jitter);
1003  
1004  	/* Nominal jitter is due to PPS signal noise. If it exceeds the
1005  	 * threshold, the sample is discarded; otherwise, if so enabled,
1006  	 * the time offset is updated.
1007  	 */
1008  	if (jitter > (pps_jitter << PPS_POPCORN)) {
1009  		printk_deferred(KERN_WARNING
1010  				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1011  				jitter, (pps_jitter << PPS_POPCORN));
1012  		time_status |= STA_PPSJITTER;
1013  		pps_jitcnt++;
1014  	} else if (time_status & STA_PPSTIME) {
1015  		/* correct the time using the phase offset */
1016  		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1017  				NTP_INTERVAL_FREQ);
1018  		/* cancel running adjtime() */
1019  		time_adjust = 0;
1020  	}
1021  	/* update jitter */
1022  	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1023  }
1024  
1025  /*
1026   * __hardpps() - discipline CPU clock oscillator to external PPS signal
1027   *
1028   * This routine is called at each PPS signal arrival in order to
1029   * discipline the CPU clock oscillator to the PPS signal. It takes two
1030   * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1031   * is used to correct clock phase error and the latter is used to
1032   * correct the frequency.
1033   *
1034   * This code is based on David Mills's reference nanokernel
1035   * implementation. It was mostly rewritten but keeps the same idea.
1036   */
__hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)1037  void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1038  {
1039  	struct pps_normtime pts_norm, freq_norm;
1040  
1041  	pts_norm = pps_normalize_ts(*phase_ts);
1042  
1043  	/* clear the error bits, they will be set again if needed */
1044  	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1045  
1046  	/* indicate signal presence */
1047  	time_status |= STA_PPSSIGNAL;
1048  	pps_valid = PPS_VALID;
1049  
1050  	/* when called for the first time,
1051  	 * just start the frequency interval */
1052  	if (unlikely(pps_fbase.tv_sec == 0)) {
1053  		pps_fbase = *raw_ts;
1054  		return;
1055  	}
1056  
1057  	/* ok, now we have a base for frequency calculation */
1058  	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1059  
1060  	/* check that the signal is in the range
1061  	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1062  	if ((freq_norm.sec == 0) ||
1063  			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1064  			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1065  		time_status |= STA_PPSJITTER;
1066  		/* restart the frequency calibration interval */
1067  		pps_fbase = *raw_ts;
1068  		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1069  		return;
1070  	}
1071  
1072  	/* signal is ok */
1073  
1074  	/* check if the current frequency interval is finished */
1075  	if (freq_norm.sec >= (1 << pps_shift)) {
1076  		pps_calcnt++;
1077  		/* restart the frequency calibration interval */
1078  		pps_fbase = *raw_ts;
1079  		hardpps_update_freq(freq_norm);
1080  	}
1081  
1082  	hardpps_update_phase(pts_norm.nsec);
1083  
1084  }
1085  #endif	/* CONFIG_NTP_PPS */
1086  
ntp_tick_adj_setup(char * str)1087  static int __init ntp_tick_adj_setup(char *str)
1088  {
1089  	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1090  	if (rc)
1091  		return rc;
1092  
1093  	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1094  	return 1;
1095  }
1096  
1097  __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1098  
ntp_init(void)1099  void __init ntp_init(void)
1100  {
1101  	ntp_clear();
1102  	ntp_init_cmos_sync();
1103  }
1104