1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /* SCTP kernel implementation
3   * Copyright (c) 1999-2000 Cisco, Inc.
4   * Copyright (c) 1999-2001 Motorola, Inc.
5   * Copyright (c) 2001-2003 International Business Machines Corp.
6   * Copyright (c) 2001 Intel Corp.
7   * Copyright (c) 2001 La Monte H.P. Yarroll
8   *
9   * This file is part of the SCTP kernel implementation
10   *
11   * This module provides the abstraction for an SCTP transport representing
12   * a remote transport address.  For local transport addresses, we just use
13   * union sctp_addr.
14   *
15   * Please send any bug reports or fixes you make to the
16   * email address(es):
17   *    lksctp developers <linux-sctp@vger.kernel.org>
18   *
19   * Written or modified by:
20   *    La Monte H.P. Yarroll <piggy@acm.org>
21   *    Karl Knutson          <karl@athena.chicago.il.us>
22   *    Jon Grimm             <jgrimm@us.ibm.com>
23   *    Xingang Guo           <xingang.guo@intel.com>
24   *    Hui Huang             <hui.huang@nokia.com>
25   *    Sridhar Samudrala	    <sri@us.ibm.com>
26   *    Ardelle Fan	    <ardelle.fan@intel.com>
27   */
28  
29  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30  
31  #include <linux/slab.h>
32  #include <linux/types.h>
33  #include <linux/random.h>
34  #include <net/sctp/sctp.h>
35  #include <net/sctp/sm.h>
36  
37  /* 1st Level Abstractions.  */
38  
39  /* Initialize a new transport from provided memory.  */
sctp_transport_init(struct net * net,struct sctp_transport * peer,const union sctp_addr * addr,gfp_t gfp)40  static struct sctp_transport *sctp_transport_init(struct net *net,
41  						  struct sctp_transport *peer,
42  						  const union sctp_addr *addr,
43  						  gfp_t gfp)
44  {
45  	/* Copy in the address.  */
46  	peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
47  	memcpy(&peer->ipaddr, addr, peer->af_specific->sockaddr_len);
48  	memset(&peer->saddr, 0, sizeof(union sctp_addr));
49  
50  	peer->sack_generation = 0;
51  
52  	/* From 6.3.1 RTO Calculation:
53  	 *
54  	 * C1) Until an RTT measurement has been made for a packet sent to the
55  	 * given destination transport address, set RTO to the protocol
56  	 * parameter 'RTO.Initial'.
57  	 */
58  	peer->rto = msecs_to_jiffies(net->sctp.rto_initial);
59  
60  	peer->last_time_heard = 0;
61  	peer->last_time_ecne_reduced = jiffies;
62  
63  	peer->param_flags = SPP_HB_DISABLE |
64  			    SPP_PMTUD_ENABLE |
65  			    SPP_SACKDELAY_ENABLE;
66  
67  	/* Initialize the default path max_retrans.  */
68  	peer->pathmaxrxt  = net->sctp.max_retrans_path;
69  	peer->pf_retrans  = net->sctp.pf_retrans;
70  
71  	INIT_LIST_HEAD(&peer->transmitted);
72  	INIT_LIST_HEAD(&peer->send_ready);
73  	INIT_LIST_HEAD(&peer->transports);
74  
75  	timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0);
76  	timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0);
77  	timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0);
78  	timer_setup(&peer->probe_timer, sctp_generate_probe_event, 0);
79  	timer_setup(&peer->proto_unreach_timer,
80  		    sctp_generate_proto_unreach_event, 0);
81  
82  	/* Initialize the 64-bit random nonce sent with heartbeat. */
83  	get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
84  
85  	refcount_set(&peer->refcnt, 1);
86  
87  	return peer;
88  }
89  
90  /* Allocate and initialize a new transport.  */
sctp_transport_new(struct net * net,const union sctp_addr * addr,gfp_t gfp)91  struct sctp_transport *sctp_transport_new(struct net *net,
92  					  const union sctp_addr *addr,
93  					  gfp_t gfp)
94  {
95  	struct sctp_transport *transport;
96  
97  	transport = kzalloc(sizeof(*transport), gfp);
98  	if (!transport)
99  		goto fail;
100  
101  	if (!sctp_transport_init(net, transport, addr, gfp))
102  		goto fail_init;
103  
104  	SCTP_DBG_OBJCNT_INC(transport);
105  
106  	return transport;
107  
108  fail_init:
109  	kfree(transport);
110  
111  fail:
112  	return NULL;
113  }
114  
115  /* This transport is no longer needed.  Free up if possible, or
116   * delay until it last reference count.
117   */
sctp_transport_free(struct sctp_transport * transport)118  void sctp_transport_free(struct sctp_transport *transport)
119  {
120  	/* Try to delete the heartbeat timer.  */
121  	if (del_timer(&transport->hb_timer))
122  		sctp_transport_put(transport);
123  
124  	/* Delete the T3_rtx timer if it's active.
125  	 * There is no point in not doing this now and letting
126  	 * structure hang around in memory since we know
127  	 * the transport is going away.
128  	 */
129  	if (del_timer(&transport->T3_rtx_timer))
130  		sctp_transport_put(transport);
131  
132  	if (del_timer(&transport->reconf_timer))
133  		sctp_transport_put(transport);
134  
135  	if (del_timer(&transport->probe_timer))
136  		sctp_transport_put(transport);
137  
138  	/* Delete the ICMP proto unreachable timer if it's active. */
139  	if (del_timer(&transport->proto_unreach_timer))
140  		sctp_transport_put(transport);
141  
142  	sctp_transport_put(transport);
143  }
144  
sctp_transport_destroy_rcu(struct rcu_head * head)145  static void sctp_transport_destroy_rcu(struct rcu_head *head)
146  {
147  	struct sctp_transport *transport;
148  
149  	transport = container_of(head, struct sctp_transport, rcu);
150  
151  	dst_release(transport->dst);
152  	kfree(transport);
153  	SCTP_DBG_OBJCNT_DEC(transport);
154  }
155  
156  /* Destroy the transport data structure.
157   * Assumes there are no more users of this structure.
158   */
sctp_transport_destroy(struct sctp_transport * transport)159  static void sctp_transport_destroy(struct sctp_transport *transport)
160  {
161  	if (unlikely(refcount_read(&transport->refcnt))) {
162  		WARN(1, "Attempt to destroy undead transport %p!\n", transport);
163  		return;
164  	}
165  
166  	sctp_packet_free(&transport->packet);
167  
168  	if (transport->asoc)
169  		sctp_association_put(transport->asoc);
170  
171  	call_rcu(&transport->rcu, sctp_transport_destroy_rcu);
172  }
173  
174  /* Start T3_rtx timer if it is not already running and update the heartbeat
175   * timer.  This routine is called every time a DATA chunk is sent.
176   */
sctp_transport_reset_t3_rtx(struct sctp_transport * transport)177  void sctp_transport_reset_t3_rtx(struct sctp_transport *transport)
178  {
179  	/* RFC 2960 6.3.2 Retransmission Timer Rules
180  	 *
181  	 * R1) Every time a DATA chunk is sent to any address(including a
182  	 * retransmission), if the T3-rtx timer of that address is not running
183  	 * start it running so that it will expire after the RTO of that
184  	 * address.
185  	 */
186  
187  	if (!timer_pending(&transport->T3_rtx_timer))
188  		if (!mod_timer(&transport->T3_rtx_timer,
189  			       jiffies + transport->rto))
190  			sctp_transport_hold(transport);
191  }
192  
sctp_transport_reset_hb_timer(struct sctp_transport * transport)193  void sctp_transport_reset_hb_timer(struct sctp_transport *transport)
194  {
195  	unsigned long expires;
196  
197  	/* When a data chunk is sent, reset the heartbeat interval.  */
198  	expires = jiffies + sctp_transport_timeout(transport);
199  	if (!mod_timer(&transport->hb_timer,
200  		       expires + get_random_u32_below(transport->rto)))
201  		sctp_transport_hold(transport);
202  }
203  
sctp_transport_reset_reconf_timer(struct sctp_transport * transport)204  void sctp_transport_reset_reconf_timer(struct sctp_transport *transport)
205  {
206  	if (!timer_pending(&transport->reconf_timer))
207  		if (!mod_timer(&transport->reconf_timer,
208  			       jiffies + transport->rto))
209  			sctp_transport_hold(transport);
210  }
211  
sctp_transport_reset_probe_timer(struct sctp_transport * transport)212  void sctp_transport_reset_probe_timer(struct sctp_transport *transport)
213  {
214  	if (!mod_timer(&transport->probe_timer,
215  		       jiffies + transport->probe_interval))
216  		sctp_transport_hold(transport);
217  }
218  
sctp_transport_reset_raise_timer(struct sctp_transport * transport)219  void sctp_transport_reset_raise_timer(struct sctp_transport *transport)
220  {
221  	if (!mod_timer(&transport->probe_timer,
222  		       jiffies + transport->probe_interval * 30))
223  		sctp_transport_hold(transport);
224  }
225  
226  /* This transport has been assigned to an association.
227   * Initialize fields from the association or from the sock itself.
228   * Register the reference count in the association.
229   */
sctp_transport_set_owner(struct sctp_transport * transport,struct sctp_association * asoc)230  void sctp_transport_set_owner(struct sctp_transport *transport,
231  			      struct sctp_association *asoc)
232  {
233  	transport->asoc = asoc;
234  	sctp_association_hold(asoc);
235  }
236  
237  /* Initialize the pmtu of a transport. */
sctp_transport_pmtu(struct sctp_transport * transport,struct sock * sk)238  void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk)
239  {
240  	/* If we don't have a fresh route, look one up */
241  	if (!transport->dst || transport->dst->obsolete) {
242  		sctp_transport_dst_release(transport);
243  		transport->af_specific->get_dst(transport, &transport->saddr,
244  						&transport->fl, sk);
245  	}
246  
247  	if (transport->param_flags & SPP_PMTUD_DISABLE) {
248  		struct sctp_association *asoc = transport->asoc;
249  
250  		if (!transport->pathmtu && asoc && asoc->pathmtu)
251  			transport->pathmtu = asoc->pathmtu;
252  		if (transport->pathmtu)
253  			return;
254  	}
255  
256  	if (transport->dst)
257  		transport->pathmtu = sctp_dst_mtu(transport->dst);
258  	else
259  		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
260  
261  	sctp_transport_pl_update(transport);
262  }
263  
sctp_transport_pl_send(struct sctp_transport * t)264  void sctp_transport_pl_send(struct sctp_transport *t)
265  {
266  	if (t->pl.probe_count < SCTP_MAX_PROBES)
267  		goto out;
268  
269  	t->pl.probe_count = 0;
270  	if (t->pl.state == SCTP_PL_BASE) {
271  		if (t->pl.probe_size == SCTP_BASE_PLPMTU) { /* BASE_PLPMTU Confirmation Failed */
272  			t->pl.state = SCTP_PL_ERROR; /* Base -> Error */
273  
274  			t->pl.pmtu = SCTP_BASE_PLPMTU;
275  			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
276  			sctp_assoc_sync_pmtu(t->asoc);
277  		}
278  	} else if (t->pl.state == SCTP_PL_SEARCH) {
279  		if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */
280  			t->pl.state = SCTP_PL_BASE;  /* Search -> Base */
281  			t->pl.probe_size = SCTP_BASE_PLPMTU;
282  			t->pl.probe_high = 0;
283  
284  			t->pl.pmtu = SCTP_BASE_PLPMTU;
285  			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
286  			sctp_assoc_sync_pmtu(t->asoc);
287  		} else { /* Normal probe failure. */
288  			t->pl.probe_high = t->pl.probe_size;
289  			t->pl.probe_size = t->pl.pmtu;
290  		}
291  	} else if (t->pl.state == SCTP_PL_COMPLETE) {
292  		if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */
293  			t->pl.state = SCTP_PL_BASE;  /* Search Complete -> Base */
294  			t->pl.probe_size = SCTP_BASE_PLPMTU;
295  
296  			t->pl.pmtu = SCTP_BASE_PLPMTU;
297  			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
298  			sctp_assoc_sync_pmtu(t->asoc);
299  		}
300  	}
301  
302  out:
303  	pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n",
304  		 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high);
305  	t->pl.probe_count++;
306  }
307  
sctp_transport_pl_recv(struct sctp_transport * t)308  bool sctp_transport_pl_recv(struct sctp_transport *t)
309  {
310  	pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n",
311  		 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high);
312  
313  	t->pl.pmtu = t->pl.probe_size;
314  	t->pl.probe_count = 0;
315  	if (t->pl.state == SCTP_PL_BASE) {
316  		t->pl.state = SCTP_PL_SEARCH; /* Base -> Search */
317  		t->pl.probe_size += SCTP_PL_BIG_STEP;
318  	} else if (t->pl.state == SCTP_PL_ERROR) {
319  		t->pl.state = SCTP_PL_SEARCH; /* Error -> Search */
320  
321  		t->pl.pmtu = t->pl.probe_size;
322  		t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
323  		sctp_assoc_sync_pmtu(t->asoc);
324  		t->pl.probe_size += SCTP_PL_BIG_STEP;
325  	} else if (t->pl.state == SCTP_PL_SEARCH) {
326  		if (!t->pl.probe_high) {
327  			if (t->pl.probe_size < SCTP_MAX_PLPMTU) {
328  				t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_BIG_STEP,
329  						       SCTP_MAX_PLPMTU);
330  				return false;
331  			}
332  			t->pl.probe_high = SCTP_MAX_PLPMTU;
333  		}
334  		t->pl.probe_size += SCTP_PL_MIN_STEP;
335  		if (t->pl.probe_size >= t->pl.probe_high) {
336  			t->pl.probe_high = 0;
337  			t->pl.state = SCTP_PL_COMPLETE; /* Search -> Search Complete */
338  
339  			t->pl.probe_size = t->pl.pmtu;
340  			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
341  			sctp_assoc_sync_pmtu(t->asoc);
342  			sctp_transport_reset_raise_timer(t);
343  		}
344  	} else if (t->pl.state == SCTP_PL_COMPLETE) {
345  		/* Raise probe_size again after 30 * interval in Search Complete */
346  		t->pl.state = SCTP_PL_SEARCH; /* Search Complete -> Search */
347  		t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_MIN_STEP, SCTP_MAX_PLPMTU);
348  	}
349  
350  	return t->pl.state == SCTP_PL_COMPLETE;
351  }
352  
sctp_transport_pl_toobig(struct sctp_transport * t,u32 pmtu)353  static bool sctp_transport_pl_toobig(struct sctp_transport *t, u32 pmtu)
354  {
355  	pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, ptb: %d\n",
356  		 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, pmtu);
357  
358  	if (pmtu < SCTP_MIN_PLPMTU || pmtu >= t->pl.probe_size)
359  		return false;
360  
361  	if (t->pl.state == SCTP_PL_BASE) {
362  		if (pmtu >= SCTP_MIN_PLPMTU && pmtu < SCTP_BASE_PLPMTU) {
363  			t->pl.state = SCTP_PL_ERROR; /* Base -> Error */
364  
365  			t->pl.pmtu = SCTP_BASE_PLPMTU;
366  			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
367  			return true;
368  		}
369  	} else if (t->pl.state == SCTP_PL_SEARCH) {
370  		if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) {
371  			t->pl.state = SCTP_PL_BASE;  /* Search -> Base */
372  			t->pl.probe_size = SCTP_BASE_PLPMTU;
373  			t->pl.probe_count = 0;
374  
375  			t->pl.probe_high = 0;
376  			t->pl.pmtu = SCTP_BASE_PLPMTU;
377  			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
378  			return true;
379  		} else if (pmtu > t->pl.pmtu && pmtu < t->pl.probe_size) {
380  			t->pl.probe_size = pmtu;
381  			t->pl.probe_count = 0;
382  		}
383  	} else if (t->pl.state == SCTP_PL_COMPLETE) {
384  		if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) {
385  			t->pl.state = SCTP_PL_BASE;  /* Complete -> Base */
386  			t->pl.probe_size = SCTP_BASE_PLPMTU;
387  			t->pl.probe_count = 0;
388  
389  			t->pl.probe_high = 0;
390  			t->pl.pmtu = SCTP_BASE_PLPMTU;
391  			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
392  			sctp_transport_reset_probe_timer(t);
393  			return true;
394  		}
395  	}
396  
397  	return false;
398  }
399  
sctp_transport_update_pmtu(struct sctp_transport * t,u32 pmtu)400  bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
401  {
402  	struct sock *sk = t->asoc->base.sk;
403  	struct dst_entry *dst;
404  	bool change = true;
405  
406  	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
407  		pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n",
408  				    __func__, pmtu, SCTP_DEFAULT_MINSEGMENT);
409  		/* Use default minimum segment instead */
410  		pmtu = SCTP_DEFAULT_MINSEGMENT;
411  	}
412  	pmtu = SCTP_TRUNC4(pmtu);
413  
414  	if (sctp_transport_pl_enabled(t))
415  		return sctp_transport_pl_toobig(t, pmtu - sctp_transport_pl_hlen(t));
416  
417  	dst = sctp_transport_dst_check(t);
418  	if (dst) {
419  		struct sctp_pf *pf = sctp_get_pf_specific(dst->ops->family);
420  		union sctp_addr addr;
421  
422  		pf->af->from_sk(&addr, sk);
423  		pf->to_sk_daddr(&t->ipaddr, sk);
424  		dst->ops->update_pmtu(dst, sk, NULL, pmtu, true);
425  		pf->to_sk_daddr(&addr, sk);
426  
427  		dst = sctp_transport_dst_check(t);
428  	}
429  
430  	if (!dst) {
431  		t->af_specific->get_dst(t, &t->saddr, &t->fl, sk);
432  		dst = t->dst;
433  	}
434  
435  	if (dst) {
436  		/* Re-fetch, as under layers may have a higher minimum size */
437  		pmtu = sctp_dst_mtu(dst);
438  		change = t->pathmtu != pmtu;
439  	}
440  	t->pathmtu = pmtu;
441  
442  	return change;
443  }
444  
445  /* Caches the dst entry and source address for a transport's destination
446   * address.
447   */
sctp_transport_route(struct sctp_transport * transport,union sctp_addr * saddr,struct sctp_sock * opt)448  void sctp_transport_route(struct sctp_transport *transport,
449  			  union sctp_addr *saddr, struct sctp_sock *opt)
450  {
451  	struct sctp_association *asoc = transport->asoc;
452  	struct sctp_af *af = transport->af_specific;
453  
454  	sctp_transport_dst_release(transport);
455  	af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt));
456  
457  	if (saddr)
458  		memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
459  	else
460  		af->get_saddr(opt, transport, &transport->fl);
461  
462  	sctp_transport_pmtu(transport, sctp_opt2sk(opt));
463  
464  	/* Initialize sk->sk_rcv_saddr, if the transport is the
465  	 * association's active path for getsockname().
466  	 */
467  	if (transport->dst && asoc &&
468  	    (!asoc->peer.primary_path || transport == asoc->peer.active_path))
469  		opt->pf->to_sk_saddr(&transport->saddr, asoc->base.sk);
470  }
471  
472  /* Hold a reference to a transport.  */
sctp_transport_hold(struct sctp_transport * transport)473  int sctp_transport_hold(struct sctp_transport *transport)
474  {
475  	return refcount_inc_not_zero(&transport->refcnt);
476  }
477  
478  /* Release a reference to a transport and clean up
479   * if there are no more references.
480   */
sctp_transport_put(struct sctp_transport * transport)481  void sctp_transport_put(struct sctp_transport *transport)
482  {
483  	if (refcount_dec_and_test(&transport->refcnt))
484  		sctp_transport_destroy(transport);
485  }
486  
487  /* Update transport's RTO based on the newly calculated RTT. */
sctp_transport_update_rto(struct sctp_transport * tp,__u32 rtt)488  void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
489  {
490  	if (unlikely(!tp->rto_pending))
491  		/* We should not be doing any RTO updates unless rto_pending is set.  */
492  		pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp);
493  
494  	if (tp->rttvar || tp->srtt) {
495  		struct net *net = tp->asoc->base.net;
496  		/* 6.3.1 C3) When a new RTT measurement R' is made, set
497  		 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
498  		 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
499  		 */
500  
501  		/* Note:  The above algorithm has been rewritten to
502  		 * express rto_beta and rto_alpha as inverse powers
503  		 * of two.
504  		 * For example, assuming the default value of RTO.Alpha of
505  		 * 1/8, rto_alpha would be expressed as 3.
506  		 */
507  		tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta)
508  			+ (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta);
509  		tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha)
510  			+ (rtt >> net->sctp.rto_alpha);
511  	} else {
512  		/* 6.3.1 C2) When the first RTT measurement R is made, set
513  		 * SRTT <- R, RTTVAR <- R/2.
514  		 */
515  		tp->srtt = rtt;
516  		tp->rttvar = rtt >> 1;
517  	}
518  
519  	/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
520  	 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
521  	 */
522  	if (tp->rttvar == 0)
523  		tp->rttvar = SCTP_CLOCK_GRANULARITY;
524  
525  	/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
526  	tp->rto = tp->srtt + (tp->rttvar << 2);
527  
528  	/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
529  	 * seconds then it is rounded up to RTO.Min seconds.
530  	 */
531  	if (tp->rto < tp->asoc->rto_min)
532  		tp->rto = tp->asoc->rto_min;
533  
534  	/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
535  	 * at least RTO.max seconds.
536  	 */
537  	if (tp->rto > tp->asoc->rto_max)
538  		tp->rto = tp->asoc->rto_max;
539  
540  	sctp_max_rto(tp->asoc, tp);
541  	tp->rtt = rtt;
542  
543  	/* Reset rto_pending so that a new RTT measurement is started when a
544  	 * new data chunk is sent.
545  	 */
546  	tp->rto_pending = 0;
547  
548  	pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n",
549  		 __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto);
550  }
551  
552  /* This routine updates the transport's cwnd and partial_bytes_acked
553   * parameters based on the bytes acked in the received SACK.
554   */
sctp_transport_raise_cwnd(struct sctp_transport * transport,__u32 sack_ctsn,__u32 bytes_acked)555  void sctp_transport_raise_cwnd(struct sctp_transport *transport,
556  			       __u32 sack_ctsn, __u32 bytes_acked)
557  {
558  	struct sctp_association *asoc = transport->asoc;
559  	__u32 cwnd, ssthresh, flight_size, pba, pmtu;
560  
561  	cwnd = transport->cwnd;
562  	flight_size = transport->flight_size;
563  
564  	/* See if we need to exit Fast Recovery first */
565  	if (asoc->fast_recovery &&
566  	    TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
567  		asoc->fast_recovery = 0;
568  
569  	ssthresh = transport->ssthresh;
570  	pba = transport->partial_bytes_acked;
571  	pmtu = transport->asoc->pathmtu;
572  
573  	if (cwnd <= ssthresh) {
574  		/* RFC 4960 7.2.1
575  		 * o  When cwnd is less than or equal to ssthresh, an SCTP
576  		 *    endpoint MUST use the slow-start algorithm to increase
577  		 *    cwnd only if the current congestion window is being fully
578  		 *    utilized, an incoming SACK advances the Cumulative TSN
579  		 *    Ack Point, and the data sender is not in Fast Recovery.
580  		 *    Only when these three conditions are met can the cwnd be
581  		 *    increased; otherwise, the cwnd MUST not be increased.
582  		 *    If these conditions are met, then cwnd MUST be increased
583  		 *    by, at most, the lesser of 1) the total size of the
584  		 *    previously outstanding DATA chunk(s) acknowledged, and
585  		 *    2) the destination's path MTU.  This upper bound protects
586  		 *    against the ACK-Splitting attack outlined in [SAVAGE99].
587  		 */
588  		if (asoc->fast_recovery)
589  			return;
590  
591  		/* The appropriate cwnd increase algorithm is performed
592  		 * if, and only if the congestion window is being fully
593  		 * utilized.  Note that RFC4960 Errata 3.22 removed the
594  		 * other condition on ctsn moving.
595  		 */
596  		if (flight_size < cwnd)
597  			return;
598  
599  		if (bytes_acked > pmtu)
600  			cwnd += pmtu;
601  		else
602  			cwnd += bytes_acked;
603  
604  		pr_debug("%s: slow start: transport:%p, bytes_acked:%d, "
605  			 "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n",
606  			 __func__, transport, bytes_acked, cwnd, ssthresh,
607  			 flight_size, pba);
608  	} else {
609  		/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
610  		 * upon each SACK arrival, increase partial_bytes_acked
611  		 * by the total number of bytes of all new chunks
612  		 * acknowledged in that SACK including chunks
613  		 * acknowledged by the new Cumulative TSN Ack and by Gap
614  		 * Ack Blocks. (updated by RFC4960 Errata 3.22)
615  		 *
616  		 * When partial_bytes_acked is greater than cwnd and
617  		 * before the arrival of the SACK the sender had less
618  		 * bytes of data outstanding than cwnd (i.e., before
619  		 * arrival of the SACK, flightsize was less than cwnd),
620  		 * reset partial_bytes_acked to cwnd. (RFC 4960 Errata
621  		 * 3.26)
622  		 *
623  		 * When partial_bytes_acked is equal to or greater than
624  		 * cwnd and before the arrival of the SACK the sender
625  		 * had cwnd or more bytes of data outstanding (i.e.,
626  		 * before arrival of the SACK, flightsize was greater
627  		 * than or equal to cwnd), partial_bytes_acked is reset
628  		 * to (partial_bytes_acked - cwnd). Next, cwnd is
629  		 * increased by MTU. (RFC 4960 Errata 3.12)
630  		 */
631  		pba += bytes_acked;
632  		if (pba > cwnd && flight_size < cwnd)
633  			pba = cwnd;
634  		if (pba >= cwnd && flight_size >= cwnd) {
635  			pba = pba - cwnd;
636  			cwnd += pmtu;
637  		}
638  
639  		pr_debug("%s: congestion avoidance: transport:%p, "
640  			 "bytes_acked:%d, cwnd:%d, ssthresh:%d, "
641  			 "flight_size:%d, pba:%d\n", __func__,
642  			 transport, bytes_acked, cwnd, ssthresh,
643  			 flight_size, pba);
644  	}
645  
646  	transport->cwnd = cwnd;
647  	transport->partial_bytes_acked = pba;
648  }
649  
650  /* This routine is used to lower the transport's cwnd when congestion is
651   * detected.
652   */
sctp_transport_lower_cwnd(struct sctp_transport * transport,enum sctp_lower_cwnd reason)653  void sctp_transport_lower_cwnd(struct sctp_transport *transport,
654  			       enum sctp_lower_cwnd reason)
655  {
656  	struct sctp_association *asoc = transport->asoc;
657  
658  	switch (reason) {
659  	case SCTP_LOWER_CWND_T3_RTX:
660  		/* RFC 2960 Section 7.2.3, sctpimpguide
661  		 * When the T3-rtx timer expires on an address, SCTP should
662  		 * perform slow start by:
663  		 *      ssthresh = max(cwnd/2, 4*MTU)
664  		 *      cwnd = 1*MTU
665  		 *      partial_bytes_acked = 0
666  		 */
667  		transport->ssthresh = max(transport->cwnd/2,
668  					  4*asoc->pathmtu);
669  		transport->cwnd = asoc->pathmtu;
670  
671  		/* T3-rtx also clears fast recovery */
672  		asoc->fast_recovery = 0;
673  		break;
674  
675  	case SCTP_LOWER_CWND_FAST_RTX:
676  		/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
677  		 * destination address(es) to which the missing DATA chunks
678  		 * were last sent, according to the formula described in
679  		 * Section 7.2.3.
680  		 *
681  		 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet
682  		 * losses from SACK (see Section 7.2.4), An endpoint
683  		 * should do the following:
684  		 *      ssthresh = max(cwnd/2, 4*MTU)
685  		 *      cwnd = ssthresh
686  		 *      partial_bytes_acked = 0
687  		 */
688  		if (asoc->fast_recovery)
689  			return;
690  
691  		/* Mark Fast recovery */
692  		asoc->fast_recovery = 1;
693  		asoc->fast_recovery_exit = asoc->next_tsn - 1;
694  
695  		transport->ssthresh = max(transport->cwnd/2,
696  					  4*asoc->pathmtu);
697  		transport->cwnd = transport->ssthresh;
698  		break;
699  
700  	case SCTP_LOWER_CWND_ECNE:
701  		/* RFC 2481 Section 6.1.2.
702  		 * If the sender receives an ECN-Echo ACK packet
703  		 * then the sender knows that congestion was encountered in the
704  		 * network on the path from the sender to the receiver. The
705  		 * indication of congestion should be treated just as a
706  		 * congestion loss in non-ECN Capable TCP. That is, the TCP
707  		 * source halves the congestion window "cwnd" and reduces the
708  		 * slow start threshold "ssthresh".
709  		 * A critical condition is that TCP does not react to
710  		 * congestion indications more than once every window of
711  		 * data (or more loosely more than once every round-trip time).
712  		 */
713  		if (time_after(jiffies, transport->last_time_ecne_reduced +
714  					transport->rtt)) {
715  			transport->ssthresh = max(transport->cwnd/2,
716  						  4*asoc->pathmtu);
717  			transport->cwnd = transport->ssthresh;
718  			transport->last_time_ecne_reduced = jiffies;
719  		}
720  		break;
721  
722  	case SCTP_LOWER_CWND_INACTIVE:
723  		/* RFC 2960 Section 7.2.1, sctpimpguide
724  		 * When the endpoint does not transmit data on a given
725  		 * transport address, the cwnd of the transport address
726  		 * should be adjusted to max(cwnd/2, 4*MTU) per RTO.
727  		 * NOTE: Although the draft recommends that this check needs
728  		 * to be done every RTO interval, we do it every hearbeat
729  		 * interval.
730  		 */
731  		transport->cwnd = max(transport->cwnd/2,
732  					 4*asoc->pathmtu);
733  		/* RFC 4960 Errata 3.27.2: also adjust sshthresh */
734  		transport->ssthresh = transport->cwnd;
735  		break;
736  	}
737  
738  	transport->partial_bytes_acked = 0;
739  
740  	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n",
741  		 __func__, transport, reason, transport->cwnd,
742  		 transport->ssthresh);
743  }
744  
745  /* Apply Max.Burst limit to the congestion window:
746   * sctpimpguide-05 2.14.2
747   * D) When the time comes for the sender to
748   * transmit new DATA chunks, the protocol parameter Max.Burst MUST
749   * first be applied to limit how many new DATA chunks may be sent.
750   * The limit is applied by adjusting cwnd as follows:
751   * 	if ((flightsize+ Max.Burst * MTU) < cwnd)
752   * 		cwnd = flightsize + Max.Burst * MTU
753   */
754  
sctp_transport_burst_limited(struct sctp_transport * t)755  void sctp_transport_burst_limited(struct sctp_transport *t)
756  {
757  	struct sctp_association *asoc = t->asoc;
758  	u32 old_cwnd = t->cwnd;
759  	u32 max_burst_bytes;
760  
761  	if (t->burst_limited || asoc->max_burst == 0)
762  		return;
763  
764  	max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
765  	if (max_burst_bytes < old_cwnd) {
766  		t->cwnd = max_burst_bytes;
767  		t->burst_limited = old_cwnd;
768  	}
769  }
770  
771  /* Restore the old cwnd congestion window, after the burst had it's
772   * desired effect.
773   */
sctp_transport_burst_reset(struct sctp_transport * t)774  void sctp_transport_burst_reset(struct sctp_transport *t)
775  {
776  	if (t->burst_limited) {
777  		t->cwnd = t->burst_limited;
778  		t->burst_limited = 0;
779  	}
780  }
781  
782  /* What is the next timeout value for this transport? */
sctp_transport_timeout(struct sctp_transport * trans)783  unsigned long sctp_transport_timeout(struct sctp_transport *trans)
784  {
785  	/* RTO + timer slack +/- 50% of RTO */
786  	unsigned long timeout = trans->rto >> 1;
787  
788  	if (trans->state != SCTP_UNCONFIRMED &&
789  	    trans->state != SCTP_PF)
790  		timeout += trans->hbinterval;
791  
792  	return max_t(unsigned long, timeout, HZ / 5);
793  }
794  
795  /* Reset transport variables to their initial values */
sctp_transport_reset(struct sctp_transport * t)796  void sctp_transport_reset(struct sctp_transport *t)
797  {
798  	struct sctp_association *asoc = t->asoc;
799  
800  	/* RFC 2960 (bis), Section 5.2.4
801  	 * All the congestion control parameters (e.g., cwnd, ssthresh)
802  	 * related to this peer MUST be reset to their initial values
803  	 * (see Section 6.2.1)
804  	 */
805  	t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
806  	t->burst_limited = 0;
807  	t->ssthresh = asoc->peer.i.a_rwnd;
808  	t->rto = asoc->rto_initial;
809  	sctp_max_rto(asoc, t);
810  	t->rtt = 0;
811  	t->srtt = 0;
812  	t->rttvar = 0;
813  
814  	/* Reset these additional variables so that we have a clean slate. */
815  	t->partial_bytes_acked = 0;
816  	t->flight_size = 0;
817  	t->error_count = 0;
818  	t->rto_pending = 0;
819  	t->hb_sent = 0;
820  
821  	/* Initialize the state information for SFR-CACC */
822  	t->cacc.changeover_active = 0;
823  	t->cacc.cycling_changeover = 0;
824  	t->cacc.next_tsn_at_change = 0;
825  	t->cacc.cacc_saw_newack = 0;
826  }
827  
828  /* Schedule retransmission on the given transport */
sctp_transport_immediate_rtx(struct sctp_transport * t)829  void sctp_transport_immediate_rtx(struct sctp_transport *t)
830  {
831  	/* Stop pending T3_rtx_timer */
832  	if (del_timer(&t->T3_rtx_timer))
833  		sctp_transport_put(t);
834  
835  	sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX);
836  	if (!timer_pending(&t->T3_rtx_timer)) {
837  		if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto))
838  			sctp_transport_hold(t);
839  	}
840  }
841  
842  /* Drop dst */
sctp_transport_dst_release(struct sctp_transport * t)843  void sctp_transport_dst_release(struct sctp_transport *t)
844  {
845  	dst_release(t->dst);
846  	t->dst = NULL;
847  	t->dst_pending_confirm = 0;
848  }
849  
850  /* Schedule neighbour confirm */
sctp_transport_dst_confirm(struct sctp_transport * t)851  void sctp_transport_dst_confirm(struct sctp_transport *t)
852  {
853  	t->dst_pending_confirm = 1;
854  }
855