1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 1999 Eric Youngdale
4   * Copyright (C) 2014 Christoph Hellwig
5   *
6   *  SCSI queueing library.
7   *      Initial versions: Eric Youngdale (eric@andante.org).
8   *                        Based upon conversations with large numbers
9   *                        of people at Linux Expo.
10   */
11  
12  #include <linux/bio.h>
13  #include <linux/bitops.h>
14  #include <linux/blkdev.h>
15  #include <linux/completion.h>
16  #include <linux/kernel.h>
17  #include <linux/export.h>
18  #include <linux/init.h>
19  #include <linux/pci.h>
20  #include <linux/delay.h>
21  #include <linux/hardirq.h>
22  #include <linux/scatterlist.h>
23  #include <linux/blk-mq.h>
24  #include <linux/blk-integrity.h>
25  #include <linux/ratelimit.h>
26  #include <linux/unaligned.h>
27  
28  #include <scsi/scsi.h>
29  #include <scsi/scsi_cmnd.h>
30  #include <scsi/scsi_dbg.h>
31  #include <scsi/scsi_device.h>
32  #include <scsi/scsi_driver.h>
33  #include <scsi/scsi_eh.h>
34  #include <scsi/scsi_host.h>
35  #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36  #include <scsi/scsi_dh.h>
37  
38  #include <trace/events/scsi.h>
39  
40  #include "scsi_debugfs.h"
41  #include "scsi_priv.h"
42  #include "scsi_logging.h"
43  
44  /*
45   * Size of integrity metadata is usually small, 1 inline sg should
46   * cover normal cases.
47   */
48  #ifdef CONFIG_ARCH_NO_SG_CHAIN
49  #define  SCSI_INLINE_PROT_SG_CNT  0
50  #define  SCSI_INLINE_SG_CNT  0
51  #else
52  #define  SCSI_INLINE_PROT_SG_CNT  1
53  #define  SCSI_INLINE_SG_CNT  2
54  #endif
55  
56  static struct kmem_cache *scsi_sense_cache;
57  static DEFINE_MUTEX(scsi_sense_cache_mutex);
58  
59  static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60  
scsi_init_sense_cache(struct Scsi_Host * shost)61  int scsi_init_sense_cache(struct Scsi_Host *shost)
62  {
63  	int ret = 0;
64  
65  	mutex_lock(&scsi_sense_cache_mutex);
66  	if (!scsi_sense_cache) {
67  		scsi_sense_cache =
68  			kmem_cache_create_usercopy("scsi_sense_cache",
69  				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70  				0, SCSI_SENSE_BUFFERSIZE, NULL);
71  		if (!scsi_sense_cache)
72  			ret = -ENOMEM;
73  	}
74  	mutex_unlock(&scsi_sense_cache_mutex);
75  	return ret;
76  }
77  
78  static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79  scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80  {
81  	struct Scsi_Host *host = cmd->device->host;
82  	struct scsi_device *device = cmd->device;
83  	struct scsi_target *starget = scsi_target(device);
84  
85  	/*
86  	 * Set the appropriate busy bit for the device/host.
87  	 *
88  	 * If the host/device isn't busy, assume that something actually
89  	 * completed, and that we should be able to queue a command now.
90  	 *
91  	 * Note that the prior mid-layer assumption that any host could
92  	 * always queue at least one command is now broken.  The mid-layer
93  	 * will implement a user specifiable stall (see
94  	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95  	 * if a command is requeued with no other commands outstanding
96  	 * either for the device or for the host.
97  	 */
98  	switch (reason) {
99  	case SCSI_MLQUEUE_HOST_BUSY:
100  		atomic_set(&host->host_blocked, host->max_host_blocked);
101  		break;
102  	case SCSI_MLQUEUE_DEVICE_BUSY:
103  	case SCSI_MLQUEUE_EH_RETRY:
104  		atomic_set(&device->device_blocked,
105  			   device->max_device_blocked);
106  		break;
107  	case SCSI_MLQUEUE_TARGET_BUSY:
108  		atomic_set(&starget->target_blocked,
109  			   starget->max_target_blocked);
110  		break;
111  	}
112  }
113  
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114  static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115  {
116  	struct request *rq = scsi_cmd_to_rq(cmd);
117  
118  	if (rq->rq_flags & RQF_DONTPREP) {
119  		rq->rq_flags &= ~RQF_DONTPREP;
120  		scsi_mq_uninit_cmd(cmd);
121  	} else {
122  		WARN_ON_ONCE(true);
123  	}
124  
125  	blk_mq_requeue_request(rq, false);
126  	if (!scsi_host_in_recovery(cmd->device->host))
127  		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128  }
129  
130  /**
131   * __scsi_queue_insert - private queue insertion
132   * @cmd: The SCSI command being requeued
133   * @reason:  The reason for the requeue
134   * @unbusy: Whether the queue should be unbusied
135   *
136   * This is a private queue insertion.  The public interface
137   * scsi_queue_insert() always assumes the queue should be unbusied
138   * because it's always called before the completion.  This function is
139   * for a requeue after completion, which should only occur in this
140   * file.
141   */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142  static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143  {
144  	struct scsi_device *device = cmd->device;
145  
146  	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147  		"Inserting command %p into mlqueue\n", cmd));
148  
149  	scsi_set_blocked(cmd, reason);
150  
151  	/*
152  	 * Decrement the counters, since these commands are no longer
153  	 * active on the host/device.
154  	 */
155  	if (unbusy)
156  		scsi_device_unbusy(device, cmd);
157  
158  	/*
159  	 * Requeue this command.  It will go before all other commands
160  	 * that are already in the queue. Schedule requeue work under
161  	 * lock such that the kblockd_schedule_work() call happens
162  	 * before blk_mq_destroy_queue() finishes.
163  	 */
164  	cmd->result = 0;
165  
166  	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167  			       !scsi_host_in_recovery(cmd->device->host));
168  }
169  
170  /**
171   * scsi_queue_insert - Reinsert a command in the queue.
172   * @cmd:    command that we are adding to queue.
173   * @reason: why we are inserting command to queue.
174   *
175   * We do this for one of two cases. Either the host is busy and it cannot accept
176   * any more commands for the time being, or the device returned QUEUE_FULL and
177   * can accept no more commands.
178   *
179   * Context: This could be called either from an interrupt context or a normal
180   * process context.
181   */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182  void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183  {
184  	__scsi_queue_insert(cmd, reason, true);
185  }
186  
scsi_failures_reset_retries(struct scsi_failures * failures)187  void scsi_failures_reset_retries(struct scsi_failures *failures)
188  {
189  	struct scsi_failure *failure;
190  
191  	failures->total_retries = 0;
192  
193  	for (failure = failures->failure_definitions; failure->result;
194  	     failure++)
195  		failure->retries = 0;
196  }
197  EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198  
199  /**
200   * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201   * @scmd: scsi_cmnd to check.
202   * @failures: scsi_failures struct that lists failures to check for.
203   *
204   * Returns -EAGAIN if the caller should retry else 0.
205   */
scsi_check_passthrough(struct scsi_cmnd * scmd,struct scsi_failures * failures)206  static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207  				  struct scsi_failures *failures)
208  {
209  	struct scsi_failure *failure;
210  	struct scsi_sense_hdr sshdr;
211  	enum sam_status status;
212  
213  	if (!failures)
214  		return 0;
215  
216  	for (failure = failures->failure_definitions; failure->result;
217  	     failure++) {
218  		if (failure->result == SCMD_FAILURE_RESULT_ANY)
219  			goto maybe_retry;
220  
221  		if (host_byte(scmd->result) &&
222  		    host_byte(scmd->result) == host_byte(failure->result))
223  			goto maybe_retry;
224  
225  		status = status_byte(scmd->result);
226  		if (!status)
227  			continue;
228  
229  		if (failure->result == SCMD_FAILURE_STAT_ANY &&
230  		    !scsi_status_is_good(scmd->result))
231  			goto maybe_retry;
232  
233  		if (status != status_byte(failure->result))
234  			continue;
235  
236  		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237  		    failure->sense == SCMD_FAILURE_SENSE_ANY)
238  			goto maybe_retry;
239  
240  		if (!scsi_command_normalize_sense(scmd, &sshdr))
241  			return 0;
242  
243  		if (failure->sense != sshdr.sense_key)
244  			continue;
245  
246  		if (failure->asc == SCMD_FAILURE_ASC_ANY)
247  			goto maybe_retry;
248  
249  		if (failure->asc != sshdr.asc)
250  			continue;
251  
252  		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253  		    failure->ascq == sshdr.ascq)
254  			goto maybe_retry;
255  	}
256  
257  	return 0;
258  
259  maybe_retry:
260  	if (failure->allowed) {
261  		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262  		    ++failure->retries <= failure->allowed)
263  			return -EAGAIN;
264  	} else {
265  		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266  		    ++failures->total_retries <= failures->total_allowed)
267  			return -EAGAIN;
268  	}
269  
270  	return 0;
271  }
272  
273  /**
274   * scsi_execute_cmd - insert request and wait for the result
275   * @sdev:	scsi_device
276   * @cmd:	scsi command
277   * @opf:	block layer request cmd_flags
278   * @buffer:	data buffer
279   * @bufflen:	len of buffer
280   * @timeout:	request timeout in HZ
281   * @ml_retries:	number of times SCSI midlayer will retry request
282   * @args:	Optional args. See struct definition for field descriptions
283   *
284   * Returns the scsi_cmnd result field if a command was executed, or a negative
285   * Linux error code if we didn't get that far.
286   */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int ml_retries,const struct scsi_exec_args * args)287  int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288  		     blk_opf_t opf, void *buffer, unsigned int bufflen,
289  		     int timeout, int ml_retries,
290  		     const struct scsi_exec_args *args)
291  {
292  	static const struct scsi_exec_args default_args;
293  	struct request *req;
294  	struct scsi_cmnd *scmd;
295  	int ret;
296  
297  	if (!args)
298  		args = &default_args;
299  	else if (WARN_ON_ONCE(args->sense &&
300  			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
301  		return -EINVAL;
302  
303  retry:
304  	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305  	if (IS_ERR(req))
306  		return PTR_ERR(req);
307  
308  	if (bufflen) {
309  		ret = blk_rq_map_kern(sdev->request_queue, req,
310  				      buffer, bufflen, GFP_NOIO);
311  		if (ret)
312  			goto out;
313  	}
314  	scmd = blk_mq_rq_to_pdu(req);
315  	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316  	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317  	scmd->allowed = ml_retries;
318  	scmd->flags |= args->scmd_flags;
319  	req->timeout = timeout;
320  	req->rq_flags |= RQF_QUIET;
321  
322  	/*
323  	 * head injection *required* here otherwise quiesce won't work
324  	 */
325  	blk_execute_rq(req, true);
326  
327  	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328  		blk_mq_free_request(req);
329  		goto retry;
330  	}
331  
332  	/*
333  	 * Some devices (USB mass-storage in particular) may transfer
334  	 * garbage data together with a residue indicating that the data
335  	 * is invalid.  Prevent the garbage from being misinterpreted
336  	 * and prevent security leaks by zeroing out the excess data.
337  	 */
338  	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339  		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340  
341  	if (args->resid)
342  		*args->resid = scmd->resid_len;
343  	if (args->sense)
344  		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345  	if (args->sshdr)
346  		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347  				     args->sshdr);
348  
349  	ret = scmd->result;
350   out:
351  	blk_mq_free_request(req);
352  
353  	return ret;
354  }
355  EXPORT_SYMBOL(scsi_execute_cmd);
356  
357  /*
358   * Wake up the error handler if necessary. Avoid as follows that the error
359   * handler is not woken up if host in-flight requests number ==
360   * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361   * with an RCU read lock in this function to ensure that this function in
362   * its entirety either finishes before scsi_eh_scmd_add() increases the
363   * host_failed counter or that it notices the shost state change made by
364   * scsi_eh_scmd_add().
365   */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)366  static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367  {
368  	unsigned long flags;
369  
370  	rcu_read_lock();
371  	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372  	if (unlikely(scsi_host_in_recovery(shost))) {
373  		unsigned int busy = scsi_host_busy(shost);
374  
375  		spin_lock_irqsave(shost->host_lock, flags);
376  		if (shost->host_failed || shost->host_eh_scheduled)
377  			scsi_eh_wakeup(shost, busy);
378  		spin_unlock_irqrestore(shost->host_lock, flags);
379  	}
380  	rcu_read_unlock();
381  }
382  
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)383  void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384  {
385  	struct Scsi_Host *shost = sdev->host;
386  	struct scsi_target *starget = scsi_target(sdev);
387  
388  	scsi_dec_host_busy(shost, cmd);
389  
390  	if (starget->can_queue > 0)
391  		atomic_dec(&starget->target_busy);
392  
393  	sbitmap_put(&sdev->budget_map, cmd->budget_token);
394  	cmd->budget_token = -1;
395  }
396  
397  /*
398   * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399   * interrupts disabled.
400   */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)401  static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402  {
403  	struct scsi_device *current_sdev = data;
404  
405  	if (sdev != current_sdev)
406  		blk_mq_run_hw_queues(sdev->request_queue, true);
407  }
408  
409  /*
410   * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411   * and call blk_run_queue for all the scsi_devices on the target -
412   * including current_sdev first.
413   *
414   * Called with *no* scsi locks held.
415   */
scsi_single_lun_run(struct scsi_device * current_sdev)416  static void scsi_single_lun_run(struct scsi_device *current_sdev)
417  {
418  	struct Scsi_Host *shost = current_sdev->host;
419  	struct scsi_target *starget = scsi_target(current_sdev);
420  	unsigned long flags;
421  
422  	spin_lock_irqsave(shost->host_lock, flags);
423  	starget->starget_sdev_user = NULL;
424  	spin_unlock_irqrestore(shost->host_lock, flags);
425  
426  	/*
427  	 * Call blk_run_queue for all LUNs on the target, starting with
428  	 * current_sdev. We race with others (to set starget_sdev_user),
429  	 * but in most cases, we will be first. Ideally, each LU on the
430  	 * target would get some limited time or requests on the target.
431  	 */
432  	blk_mq_run_hw_queues(current_sdev->request_queue,
433  			     shost->queuecommand_may_block);
434  
435  	spin_lock_irqsave(shost->host_lock, flags);
436  	if (!starget->starget_sdev_user)
437  		__starget_for_each_device(starget, current_sdev,
438  					  scsi_kick_sdev_queue);
439  	spin_unlock_irqrestore(shost->host_lock, flags);
440  }
441  
scsi_device_is_busy(struct scsi_device * sdev)442  static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443  {
444  	if (scsi_device_busy(sdev) >= sdev->queue_depth)
445  		return true;
446  	if (atomic_read(&sdev->device_blocked) > 0)
447  		return true;
448  	return false;
449  }
450  
scsi_target_is_busy(struct scsi_target * starget)451  static inline bool scsi_target_is_busy(struct scsi_target *starget)
452  {
453  	if (starget->can_queue > 0) {
454  		if (atomic_read(&starget->target_busy) >= starget->can_queue)
455  			return true;
456  		if (atomic_read(&starget->target_blocked) > 0)
457  			return true;
458  	}
459  	return false;
460  }
461  
scsi_host_is_busy(struct Scsi_Host * shost)462  static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463  {
464  	if (atomic_read(&shost->host_blocked) > 0)
465  		return true;
466  	if (shost->host_self_blocked)
467  		return true;
468  	return false;
469  }
470  
scsi_starved_list_run(struct Scsi_Host * shost)471  static void scsi_starved_list_run(struct Scsi_Host *shost)
472  {
473  	LIST_HEAD(starved_list);
474  	struct scsi_device *sdev;
475  	unsigned long flags;
476  
477  	spin_lock_irqsave(shost->host_lock, flags);
478  	list_splice_init(&shost->starved_list, &starved_list);
479  
480  	while (!list_empty(&starved_list)) {
481  		struct request_queue *slq;
482  
483  		/*
484  		 * As long as shost is accepting commands and we have
485  		 * starved queues, call blk_run_queue. scsi_request_fn
486  		 * drops the queue_lock and can add us back to the
487  		 * starved_list.
488  		 *
489  		 * host_lock protects the starved_list and starved_entry.
490  		 * scsi_request_fn must get the host_lock before checking
491  		 * or modifying starved_list or starved_entry.
492  		 */
493  		if (scsi_host_is_busy(shost))
494  			break;
495  
496  		sdev = list_entry(starved_list.next,
497  				  struct scsi_device, starved_entry);
498  		list_del_init(&sdev->starved_entry);
499  		if (scsi_target_is_busy(scsi_target(sdev))) {
500  			list_move_tail(&sdev->starved_entry,
501  				       &shost->starved_list);
502  			continue;
503  		}
504  
505  		/*
506  		 * Once we drop the host lock, a racing scsi_remove_device()
507  		 * call may remove the sdev from the starved list and destroy
508  		 * it and the queue.  Mitigate by taking a reference to the
509  		 * queue and never touching the sdev again after we drop the
510  		 * host lock.  Note: if __scsi_remove_device() invokes
511  		 * blk_mq_destroy_queue() before the queue is run from this
512  		 * function then blk_run_queue() will return immediately since
513  		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514  		 */
515  		slq = sdev->request_queue;
516  		if (!blk_get_queue(slq))
517  			continue;
518  		spin_unlock_irqrestore(shost->host_lock, flags);
519  
520  		blk_mq_run_hw_queues(slq, false);
521  		blk_put_queue(slq);
522  
523  		spin_lock_irqsave(shost->host_lock, flags);
524  	}
525  	/* put any unprocessed entries back */
526  	list_splice(&starved_list, &shost->starved_list);
527  	spin_unlock_irqrestore(shost->host_lock, flags);
528  }
529  
530  /**
531   * scsi_run_queue - Select a proper request queue to serve next.
532   * @q:  last request's queue
533   *
534   * The previous command was completely finished, start a new one if possible.
535   */
scsi_run_queue(struct request_queue * q)536  static void scsi_run_queue(struct request_queue *q)
537  {
538  	struct scsi_device *sdev = q->queuedata;
539  
540  	if (scsi_target(sdev)->single_lun)
541  		scsi_single_lun_run(sdev);
542  	if (!list_empty(&sdev->host->starved_list))
543  		scsi_starved_list_run(sdev->host);
544  
545  	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546  	blk_mq_kick_requeue_list(q);
547  }
548  
scsi_requeue_run_queue(struct work_struct * work)549  void scsi_requeue_run_queue(struct work_struct *work)
550  {
551  	struct scsi_device *sdev;
552  	struct request_queue *q;
553  
554  	sdev = container_of(work, struct scsi_device, requeue_work);
555  	q = sdev->request_queue;
556  	scsi_run_queue(q);
557  }
558  
scsi_run_host_queues(struct Scsi_Host * shost)559  void scsi_run_host_queues(struct Scsi_Host *shost)
560  {
561  	struct scsi_device *sdev;
562  
563  	shost_for_each_device(sdev, shost)
564  		scsi_run_queue(sdev->request_queue);
565  }
566  
scsi_uninit_cmd(struct scsi_cmnd * cmd)567  static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568  {
569  	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570  		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571  
572  		if (drv->uninit_command)
573  			drv->uninit_command(cmd);
574  	}
575  }
576  
scsi_free_sgtables(struct scsi_cmnd * cmd)577  void scsi_free_sgtables(struct scsi_cmnd *cmd)
578  {
579  	if (cmd->sdb.table.nents)
580  		sg_free_table_chained(&cmd->sdb.table,
581  				SCSI_INLINE_SG_CNT);
582  	if (scsi_prot_sg_count(cmd))
583  		sg_free_table_chained(&cmd->prot_sdb->table,
584  				SCSI_INLINE_PROT_SG_CNT);
585  }
586  EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587  
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)588  static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589  {
590  	scsi_free_sgtables(cmd);
591  	scsi_uninit_cmd(cmd);
592  }
593  
scsi_run_queue_async(struct scsi_device * sdev)594  static void scsi_run_queue_async(struct scsi_device *sdev)
595  {
596  	if (scsi_host_in_recovery(sdev->host))
597  		return;
598  
599  	if (scsi_target(sdev)->single_lun ||
600  	    !list_empty(&sdev->host->starved_list)) {
601  		kblockd_schedule_work(&sdev->requeue_work);
602  	} else {
603  		/*
604  		 * smp_mb() present in sbitmap_queue_clear() or implied in
605  		 * .end_io is for ordering writing .device_busy in
606  		 * scsi_device_unbusy() and reading sdev->restarts.
607  		 */
608  		int old = atomic_read(&sdev->restarts);
609  
610  		/*
611  		 * ->restarts has to be kept as non-zero if new budget
612  		 *  contention occurs.
613  		 *
614  		 *  No need to run queue when either another re-run
615  		 *  queue wins in updating ->restarts or a new budget
616  		 *  contention occurs.
617  		 */
618  		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619  			blk_mq_run_hw_queues(sdev->request_queue, true);
620  	}
621  }
622  
623  /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)624  static bool scsi_end_request(struct request *req, blk_status_t error,
625  		unsigned int bytes)
626  {
627  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628  	struct scsi_device *sdev = cmd->device;
629  	struct request_queue *q = sdev->request_queue;
630  
631  	if (blk_update_request(req, error, bytes))
632  		return true;
633  
634  	if (q->limits.features & BLK_FEAT_ADD_RANDOM)
635  		add_disk_randomness(req->q->disk);
636  
637  	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
638  		     !(cmd->flags & SCMD_INITIALIZED));
639  	cmd->flags = 0;
640  
641  	/*
642  	 * Calling rcu_barrier() is not necessary here because the
643  	 * SCSI error handler guarantees that the function called by
644  	 * call_rcu() has been called before scsi_end_request() is
645  	 * called.
646  	 */
647  	destroy_rcu_head(&cmd->rcu);
648  
649  	/*
650  	 * In the MQ case the command gets freed by __blk_mq_end_request,
651  	 * so we have to do all cleanup that depends on it earlier.
652  	 *
653  	 * We also can't kick the queues from irq context, so we
654  	 * will have to defer it to a workqueue.
655  	 */
656  	scsi_mq_uninit_cmd(cmd);
657  
658  	/*
659  	 * queue is still alive, so grab the ref for preventing it
660  	 * from being cleaned up during running queue.
661  	 */
662  	percpu_ref_get(&q->q_usage_counter);
663  
664  	__blk_mq_end_request(req, error);
665  
666  	scsi_run_queue_async(sdev);
667  
668  	percpu_ref_put(&q->q_usage_counter);
669  	return false;
670  }
671  
672  /**
673   * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
674   * @result:	scsi error code
675   *
676   * Translate a SCSI result code into a blk_status_t value.
677   */
scsi_result_to_blk_status(int result)678  static blk_status_t scsi_result_to_blk_status(int result)
679  {
680  	/*
681  	 * Check the scsi-ml byte first in case we converted a host or status
682  	 * byte.
683  	 */
684  	switch (scsi_ml_byte(result)) {
685  	case SCSIML_STAT_OK:
686  		break;
687  	case SCSIML_STAT_RESV_CONFLICT:
688  		return BLK_STS_RESV_CONFLICT;
689  	case SCSIML_STAT_NOSPC:
690  		return BLK_STS_NOSPC;
691  	case SCSIML_STAT_MED_ERROR:
692  		return BLK_STS_MEDIUM;
693  	case SCSIML_STAT_TGT_FAILURE:
694  		return BLK_STS_TARGET;
695  	case SCSIML_STAT_DL_TIMEOUT:
696  		return BLK_STS_DURATION_LIMIT;
697  	}
698  
699  	switch (host_byte(result)) {
700  	case DID_OK:
701  		if (scsi_status_is_good(result))
702  			return BLK_STS_OK;
703  		return BLK_STS_IOERR;
704  	case DID_TRANSPORT_FAILFAST:
705  	case DID_TRANSPORT_MARGINAL:
706  		return BLK_STS_TRANSPORT;
707  	default:
708  		return BLK_STS_IOERR;
709  	}
710  }
711  
712  /**
713   * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
714   * @rq: request to examine
715   *
716   * Description:
717   *     A request could be merge of IOs which require different failure
718   *     handling.  This function determines the number of bytes which
719   *     can be failed from the beginning of the request without
720   *     crossing into area which need to be retried further.
721   *
722   * Return:
723   *     The number of bytes to fail.
724   */
scsi_rq_err_bytes(const struct request * rq)725  static unsigned int scsi_rq_err_bytes(const struct request *rq)
726  {
727  	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
728  	unsigned int bytes = 0;
729  	struct bio *bio;
730  
731  	if (!(rq->rq_flags & RQF_MIXED_MERGE))
732  		return blk_rq_bytes(rq);
733  
734  	/*
735  	 * Currently the only 'mixing' which can happen is between
736  	 * different fastfail types.  We can safely fail portions
737  	 * which have all the failfast bits that the first one has -
738  	 * the ones which are at least as eager to fail as the first
739  	 * one.
740  	 */
741  	for (bio = rq->bio; bio; bio = bio->bi_next) {
742  		if ((bio->bi_opf & ff) != ff)
743  			break;
744  		bytes += bio->bi_iter.bi_size;
745  	}
746  
747  	/* this could lead to infinite loop */
748  	BUG_ON(blk_rq_bytes(rq) && !bytes);
749  	return bytes;
750  }
751  
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)752  static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
753  {
754  	struct request *req = scsi_cmd_to_rq(cmd);
755  	unsigned long wait_for;
756  
757  	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
758  		return false;
759  
760  	wait_for = (cmd->allowed + 1) * req->timeout;
761  	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
762  		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
763  			    wait_for/HZ);
764  		return true;
765  	}
766  	return false;
767  }
768  
769  /*
770   * When ALUA transition state is returned, reprep the cmd to
771   * use the ALUA handler's transition timeout. Delay the reprep
772   * 1 sec to avoid aggressive retries of the target in that
773   * state.
774   */
775  #define ALUA_TRANSITION_REPREP_DELAY	1000
776  
777  /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)778  static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
779  {
780  	struct request *req = scsi_cmd_to_rq(cmd);
781  	int level = 0;
782  	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
783  	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
784  	struct scsi_sense_hdr sshdr;
785  	bool sense_valid;
786  	bool sense_current = true;      /* false implies "deferred sense" */
787  	blk_status_t blk_stat;
788  
789  	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
790  	if (sense_valid)
791  		sense_current = !scsi_sense_is_deferred(&sshdr);
792  
793  	blk_stat = scsi_result_to_blk_status(result);
794  
795  	if (host_byte(result) == DID_RESET) {
796  		/* Third party bus reset or reset for error recovery
797  		 * reasons.  Just retry the command and see what
798  		 * happens.
799  		 */
800  		action = ACTION_RETRY;
801  	} else if (sense_valid && sense_current) {
802  		switch (sshdr.sense_key) {
803  		case UNIT_ATTENTION:
804  			if (cmd->device->removable) {
805  				/* Detected disc change.  Set a bit
806  				 * and quietly refuse further access.
807  				 */
808  				cmd->device->changed = 1;
809  				action = ACTION_FAIL;
810  			} else {
811  				/* Must have been a power glitch, or a
812  				 * bus reset.  Could not have been a
813  				 * media change, so we just retry the
814  				 * command and see what happens.
815  				 */
816  				action = ACTION_RETRY;
817  			}
818  			break;
819  		case ILLEGAL_REQUEST:
820  			/* If we had an ILLEGAL REQUEST returned, then
821  			 * we may have performed an unsupported
822  			 * command.  The only thing this should be
823  			 * would be a ten byte read where only a six
824  			 * byte read was supported.  Also, on a system
825  			 * where READ CAPACITY failed, we may have
826  			 * read past the end of the disk.
827  			 */
828  			if ((cmd->device->use_10_for_rw &&
829  			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
830  			    (cmd->cmnd[0] == READ_10 ||
831  			     cmd->cmnd[0] == WRITE_10)) {
832  				/* This will issue a new 6-byte command. */
833  				cmd->device->use_10_for_rw = 0;
834  				action = ACTION_REPREP;
835  			} else if (sshdr.asc == 0x10) /* DIX */ {
836  				action = ACTION_FAIL;
837  				blk_stat = BLK_STS_PROTECTION;
838  			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
839  			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
840  				action = ACTION_FAIL;
841  				blk_stat = BLK_STS_TARGET;
842  			} else
843  				action = ACTION_FAIL;
844  			break;
845  		case ABORTED_COMMAND:
846  			action = ACTION_FAIL;
847  			if (sshdr.asc == 0x10) /* DIF */
848  				blk_stat = BLK_STS_PROTECTION;
849  			break;
850  		case NOT_READY:
851  			/* If the device is in the process of becoming
852  			 * ready, or has a temporary blockage, retry.
853  			 */
854  			if (sshdr.asc == 0x04) {
855  				switch (sshdr.ascq) {
856  				case 0x01: /* becoming ready */
857  				case 0x04: /* format in progress */
858  				case 0x05: /* rebuild in progress */
859  				case 0x06: /* recalculation in progress */
860  				case 0x07: /* operation in progress */
861  				case 0x08: /* Long write in progress */
862  				case 0x09: /* self test in progress */
863  				case 0x11: /* notify (enable spinup) required */
864  				case 0x14: /* space allocation in progress */
865  				case 0x1a: /* start stop unit in progress */
866  				case 0x1b: /* sanitize in progress */
867  				case 0x1d: /* configuration in progress */
868  				case 0x24: /* depopulation in progress */
869  				case 0x25: /* depopulation restore in progress */
870  					action = ACTION_DELAYED_RETRY;
871  					break;
872  				case 0x0a: /* ALUA state transition */
873  					action = ACTION_DELAYED_REPREP;
874  					break;
875  				default:
876  					action = ACTION_FAIL;
877  					break;
878  				}
879  			} else
880  				action = ACTION_FAIL;
881  			break;
882  		case VOLUME_OVERFLOW:
883  			/* See SSC3rXX or current. */
884  			action = ACTION_FAIL;
885  			break;
886  		case DATA_PROTECT:
887  			action = ACTION_FAIL;
888  			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
889  			    (sshdr.asc == 0x55 &&
890  			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
891  				/* Insufficient zone resources */
892  				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
893  			}
894  			break;
895  		case COMPLETED:
896  			fallthrough;
897  		default:
898  			action = ACTION_FAIL;
899  			break;
900  		}
901  	} else
902  		action = ACTION_FAIL;
903  
904  	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
905  		action = ACTION_FAIL;
906  
907  	switch (action) {
908  	case ACTION_FAIL:
909  		/* Give up and fail the remainder of the request */
910  		if (!(req->rq_flags & RQF_QUIET)) {
911  			static DEFINE_RATELIMIT_STATE(_rs,
912  					DEFAULT_RATELIMIT_INTERVAL,
913  					DEFAULT_RATELIMIT_BURST);
914  
915  			if (unlikely(scsi_logging_level))
916  				level =
917  				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
918  						    SCSI_LOG_MLCOMPLETE_BITS);
919  
920  			/*
921  			 * if logging is enabled the failure will be printed
922  			 * in scsi_log_completion(), so avoid duplicate messages
923  			 */
924  			if (!level && __ratelimit(&_rs)) {
925  				scsi_print_result(cmd, NULL, FAILED);
926  				if (sense_valid)
927  					scsi_print_sense(cmd);
928  				scsi_print_command(cmd);
929  			}
930  		}
931  		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
932  			return;
933  		fallthrough;
934  	case ACTION_REPREP:
935  		scsi_mq_requeue_cmd(cmd, 0);
936  		break;
937  	case ACTION_DELAYED_REPREP:
938  		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
939  		break;
940  	case ACTION_RETRY:
941  		/* Retry the same command immediately */
942  		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
943  		break;
944  	case ACTION_DELAYED_RETRY:
945  		/* Retry the same command after a delay */
946  		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
947  		break;
948  	}
949  }
950  
951  /*
952   * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
953   * new result that may suppress further error checking. Also modifies
954   * *blk_statp in some cases.
955   */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)956  static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
957  					blk_status_t *blk_statp)
958  {
959  	bool sense_valid;
960  	bool sense_current = true;	/* false implies "deferred sense" */
961  	struct request *req = scsi_cmd_to_rq(cmd);
962  	struct scsi_sense_hdr sshdr;
963  
964  	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
965  	if (sense_valid)
966  		sense_current = !scsi_sense_is_deferred(&sshdr);
967  
968  	if (blk_rq_is_passthrough(req)) {
969  		if (sense_valid) {
970  			/*
971  			 * SG_IO wants current and deferred errors
972  			 */
973  			cmd->sense_len = min(8 + cmd->sense_buffer[7],
974  					     SCSI_SENSE_BUFFERSIZE);
975  		}
976  		if (sense_current)
977  			*blk_statp = scsi_result_to_blk_status(result);
978  	} else if (blk_rq_bytes(req) == 0 && sense_current) {
979  		/*
980  		 * Flush commands do not transfers any data, and thus cannot use
981  		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
982  		 * This sets *blk_statp explicitly for the problem case.
983  		 */
984  		*blk_statp = scsi_result_to_blk_status(result);
985  	}
986  	/*
987  	 * Recovered errors need reporting, but they're always treated as
988  	 * success, so fiddle the result code here.  For passthrough requests
989  	 * we already took a copy of the original into sreq->result which
990  	 * is what gets returned to the user
991  	 */
992  	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
993  		bool do_print = true;
994  		/*
995  		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
996  		 * skip print since caller wants ATA registers. Only occurs
997  		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
998  		 */
999  		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1000  			do_print = false;
1001  		else if (req->rq_flags & RQF_QUIET)
1002  			do_print = false;
1003  		if (do_print)
1004  			scsi_print_sense(cmd);
1005  		result = 0;
1006  		/* for passthrough, *blk_statp may be set */
1007  		*blk_statp = BLK_STS_OK;
1008  	}
1009  	/*
1010  	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1011  	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1012  	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1013  	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1014  	 * intermediate statuses (both obsolete in SAM-4) as good.
1015  	 */
1016  	if ((result & 0xff) && scsi_status_is_good(result)) {
1017  		result = 0;
1018  		*blk_statp = BLK_STS_OK;
1019  	}
1020  	return result;
1021  }
1022  
1023  /**
1024   * scsi_io_completion - Completion processing for SCSI commands.
1025   * @cmd:	command that is finished.
1026   * @good_bytes:	number of processed bytes.
1027   *
1028   * We will finish off the specified number of sectors. If we are done, the
1029   * command block will be released and the queue function will be goosed. If we
1030   * are not done then we have to figure out what to do next:
1031   *
1032   *   a) We can call scsi_mq_requeue_cmd().  The request will be
1033   *	unprepared and put back on the queue.  Then a new command will
1034   *	be created for it.  This should be used if we made forward
1035   *	progress, or if we want to switch from READ(10) to READ(6) for
1036   *	example.
1037   *
1038   *   b) We can call scsi_io_completion_action().  The request will be
1039   *	put back on the queue and retried using the same command as
1040   *	before, possibly after a delay.
1041   *
1042   *   c) We can call scsi_end_request() with blk_stat other than
1043   *	BLK_STS_OK, to fail the remainder of the request.
1044   */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)1045  void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1046  {
1047  	int result = cmd->result;
1048  	struct request *req = scsi_cmd_to_rq(cmd);
1049  	blk_status_t blk_stat = BLK_STS_OK;
1050  
1051  	if (unlikely(result))	/* a nz result may or may not be an error */
1052  		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1053  
1054  	/*
1055  	 * Next deal with any sectors which we were able to correctly
1056  	 * handle.
1057  	 */
1058  	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1059  		"%u sectors total, %d bytes done.\n",
1060  		blk_rq_sectors(req), good_bytes));
1061  
1062  	/*
1063  	 * Failed, zero length commands always need to drop down
1064  	 * to retry code. Fast path should return in this block.
1065  	 */
1066  	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1067  		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1068  			return; /* no bytes remaining */
1069  	}
1070  
1071  	/* Kill remainder if no retries. */
1072  	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1073  		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1074  			WARN_ONCE(true,
1075  			    "Bytes remaining after failed, no-retry command");
1076  		return;
1077  	}
1078  
1079  	/*
1080  	 * If there had been no error, but we have leftover bytes in the
1081  	 * request just queue the command up again.
1082  	 */
1083  	if (likely(result == 0))
1084  		scsi_mq_requeue_cmd(cmd, 0);
1085  	else
1086  		scsi_io_completion_action(cmd, result);
1087  }
1088  
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1089  static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1090  		struct request *rq)
1091  {
1092  	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1093  	       !op_is_write(req_op(rq)) &&
1094  	       sdev->host->hostt->dma_need_drain(rq);
1095  }
1096  
1097  /**
1098   * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1099   * @cmd: SCSI command data structure to initialize.
1100   *
1101   * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1102   * for @cmd.
1103   *
1104   * Returns:
1105   * * BLK_STS_OK       - on success
1106   * * BLK_STS_RESOURCE - if the failure is retryable
1107   * * BLK_STS_IOERR    - if the failure is fatal
1108   */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1109  blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1110  {
1111  	struct scsi_device *sdev = cmd->device;
1112  	struct request *rq = scsi_cmd_to_rq(cmd);
1113  	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1114  	struct scatterlist *last_sg = NULL;
1115  	blk_status_t ret;
1116  	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1117  	int count;
1118  
1119  	if (WARN_ON_ONCE(!nr_segs))
1120  		return BLK_STS_IOERR;
1121  
1122  	/*
1123  	 * Make sure there is space for the drain.  The driver must adjust
1124  	 * max_hw_segments to be prepared for this.
1125  	 */
1126  	if (need_drain)
1127  		nr_segs++;
1128  
1129  	/*
1130  	 * If sg table allocation fails, requeue request later.
1131  	 */
1132  	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1133  			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1134  		return BLK_STS_RESOURCE;
1135  
1136  	/*
1137  	 * Next, walk the list, and fill in the addresses and sizes of
1138  	 * each segment.
1139  	 */
1140  	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1141  
1142  	if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1143  		unsigned int pad_len =
1144  			(rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1145  
1146  		last_sg->length += pad_len;
1147  		cmd->extra_len += pad_len;
1148  	}
1149  
1150  	if (need_drain) {
1151  		sg_unmark_end(last_sg);
1152  		last_sg = sg_next(last_sg);
1153  		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1154  		sg_mark_end(last_sg);
1155  
1156  		cmd->extra_len += sdev->dma_drain_len;
1157  		count++;
1158  	}
1159  
1160  	BUG_ON(count > cmd->sdb.table.nents);
1161  	cmd->sdb.table.nents = count;
1162  	cmd->sdb.length = blk_rq_payload_bytes(rq);
1163  
1164  	if (blk_integrity_rq(rq)) {
1165  		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1166  
1167  		if (WARN_ON_ONCE(!prot_sdb)) {
1168  			/*
1169  			 * This can happen if someone (e.g. multipath)
1170  			 * queues a command to a device on an adapter
1171  			 * that does not support DIX.
1172  			 */
1173  			ret = BLK_STS_IOERR;
1174  			goto out_free_sgtables;
1175  		}
1176  
1177  		if (sg_alloc_table_chained(&prot_sdb->table,
1178  				rq->nr_integrity_segments,
1179  				prot_sdb->table.sgl,
1180  				SCSI_INLINE_PROT_SG_CNT)) {
1181  			ret = BLK_STS_RESOURCE;
1182  			goto out_free_sgtables;
1183  		}
1184  
1185  		count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1186  		cmd->prot_sdb = prot_sdb;
1187  		cmd->prot_sdb->table.nents = count;
1188  	}
1189  
1190  	return BLK_STS_OK;
1191  out_free_sgtables:
1192  	scsi_free_sgtables(cmd);
1193  	return ret;
1194  }
1195  EXPORT_SYMBOL(scsi_alloc_sgtables);
1196  
1197  /**
1198   * scsi_initialize_rq - initialize struct scsi_cmnd partially
1199   * @rq: Request associated with the SCSI command to be initialized.
1200   *
1201   * This function initializes the members of struct scsi_cmnd that must be
1202   * initialized before request processing starts and that won't be
1203   * reinitialized if a SCSI command is requeued.
1204   */
scsi_initialize_rq(struct request * rq)1205  static void scsi_initialize_rq(struct request *rq)
1206  {
1207  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1208  
1209  	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1210  	cmd->cmd_len = MAX_COMMAND_SIZE;
1211  	cmd->sense_len = 0;
1212  	init_rcu_head(&cmd->rcu);
1213  	cmd->jiffies_at_alloc = jiffies;
1214  	cmd->retries = 0;
1215  }
1216  
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1217  struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1218  				   blk_mq_req_flags_t flags)
1219  {
1220  	struct request *rq;
1221  
1222  	rq = blk_mq_alloc_request(q, opf, flags);
1223  	if (!IS_ERR(rq))
1224  		scsi_initialize_rq(rq);
1225  	return rq;
1226  }
1227  EXPORT_SYMBOL_GPL(scsi_alloc_request);
1228  
1229  /*
1230   * Only called when the request isn't completed by SCSI, and not freed by
1231   * SCSI
1232   */
scsi_cleanup_rq(struct request * rq)1233  static void scsi_cleanup_rq(struct request *rq)
1234  {
1235  	if (rq->rq_flags & RQF_DONTPREP) {
1236  		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1237  		rq->rq_flags &= ~RQF_DONTPREP;
1238  	}
1239  }
1240  
1241  /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1242  void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1243  {
1244  	struct request *rq = scsi_cmd_to_rq(cmd);
1245  
1246  	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1247  		cmd->flags |= SCMD_INITIALIZED;
1248  		scsi_initialize_rq(rq);
1249  	}
1250  
1251  	cmd->device = dev;
1252  	INIT_LIST_HEAD(&cmd->eh_entry);
1253  	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1254  }
1255  
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1256  static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1257  		struct request *req)
1258  {
1259  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1260  
1261  	/*
1262  	 * Passthrough requests may transfer data, in which case they must
1263  	 * a bio attached to them.  Or they might contain a SCSI command
1264  	 * that does not transfer data, in which case they may optionally
1265  	 * submit a request without an attached bio.
1266  	 */
1267  	if (req->bio) {
1268  		blk_status_t ret = scsi_alloc_sgtables(cmd);
1269  		if (unlikely(ret != BLK_STS_OK))
1270  			return ret;
1271  	} else {
1272  		BUG_ON(blk_rq_bytes(req));
1273  
1274  		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1275  	}
1276  
1277  	cmd->transfersize = blk_rq_bytes(req);
1278  	return BLK_STS_OK;
1279  }
1280  
1281  static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1282  scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1283  {
1284  	switch (sdev->sdev_state) {
1285  	case SDEV_CREATED:
1286  		return BLK_STS_OK;
1287  	case SDEV_OFFLINE:
1288  	case SDEV_TRANSPORT_OFFLINE:
1289  		/*
1290  		 * If the device is offline we refuse to process any
1291  		 * commands.  The device must be brought online
1292  		 * before trying any recovery commands.
1293  		 */
1294  		if (!sdev->offline_already) {
1295  			sdev->offline_already = true;
1296  			sdev_printk(KERN_ERR, sdev,
1297  				    "rejecting I/O to offline device\n");
1298  		}
1299  		return BLK_STS_IOERR;
1300  	case SDEV_DEL:
1301  		/*
1302  		 * If the device is fully deleted, we refuse to
1303  		 * process any commands as well.
1304  		 */
1305  		sdev_printk(KERN_ERR, sdev,
1306  			    "rejecting I/O to dead device\n");
1307  		return BLK_STS_IOERR;
1308  	case SDEV_BLOCK:
1309  	case SDEV_CREATED_BLOCK:
1310  		return BLK_STS_RESOURCE;
1311  	case SDEV_QUIESCE:
1312  		/*
1313  		 * If the device is blocked we only accept power management
1314  		 * commands.
1315  		 */
1316  		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1317  			return BLK_STS_RESOURCE;
1318  		return BLK_STS_OK;
1319  	default:
1320  		/*
1321  		 * For any other not fully online state we only allow
1322  		 * power management commands.
1323  		 */
1324  		if (req && !(req->rq_flags & RQF_PM))
1325  			return BLK_STS_OFFLINE;
1326  		return BLK_STS_OK;
1327  	}
1328  }
1329  
1330  /*
1331   * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1332   * and return the token else return -1.
1333   */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1334  static inline int scsi_dev_queue_ready(struct request_queue *q,
1335  				  struct scsi_device *sdev)
1336  {
1337  	int token;
1338  
1339  	token = sbitmap_get(&sdev->budget_map);
1340  	if (token < 0)
1341  		return -1;
1342  
1343  	if (!atomic_read(&sdev->device_blocked))
1344  		return token;
1345  
1346  	/*
1347  	 * Only unblock if no other commands are pending and
1348  	 * if device_blocked has decreased to zero
1349  	 */
1350  	if (scsi_device_busy(sdev) > 1 ||
1351  	    atomic_dec_return(&sdev->device_blocked) > 0) {
1352  		sbitmap_put(&sdev->budget_map, token);
1353  		return -1;
1354  	}
1355  
1356  	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1357  			 "unblocking device at zero depth\n"));
1358  
1359  	return token;
1360  }
1361  
1362  /*
1363   * scsi_target_queue_ready: checks if there we can send commands to target
1364   * @sdev: scsi device on starget to check.
1365   */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1366  static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1367  					   struct scsi_device *sdev)
1368  {
1369  	struct scsi_target *starget = scsi_target(sdev);
1370  	unsigned int busy;
1371  
1372  	if (starget->single_lun) {
1373  		spin_lock_irq(shost->host_lock);
1374  		if (starget->starget_sdev_user &&
1375  		    starget->starget_sdev_user != sdev) {
1376  			spin_unlock_irq(shost->host_lock);
1377  			return 0;
1378  		}
1379  		starget->starget_sdev_user = sdev;
1380  		spin_unlock_irq(shost->host_lock);
1381  	}
1382  
1383  	if (starget->can_queue <= 0)
1384  		return 1;
1385  
1386  	busy = atomic_inc_return(&starget->target_busy) - 1;
1387  	if (atomic_read(&starget->target_blocked) > 0) {
1388  		if (busy)
1389  			goto starved;
1390  
1391  		/*
1392  		 * unblock after target_blocked iterates to zero
1393  		 */
1394  		if (atomic_dec_return(&starget->target_blocked) > 0)
1395  			goto out_dec;
1396  
1397  		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1398  				 "unblocking target at zero depth\n"));
1399  	}
1400  
1401  	if (busy >= starget->can_queue)
1402  		goto starved;
1403  
1404  	return 1;
1405  
1406  starved:
1407  	spin_lock_irq(shost->host_lock);
1408  	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1409  	spin_unlock_irq(shost->host_lock);
1410  out_dec:
1411  	if (starget->can_queue > 0)
1412  		atomic_dec(&starget->target_busy);
1413  	return 0;
1414  }
1415  
1416  /*
1417   * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1418   * return 0. We must end up running the queue again whenever 0 is
1419   * returned, else IO can hang.
1420   */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1421  static inline int scsi_host_queue_ready(struct request_queue *q,
1422  				   struct Scsi_Host *shost,
1423  				   struct scsi_device *sdev,
1424  				   struct scsi_cmnd *cmd)
1425  {
1426  	if (atomic_read(&shost->host_blocked) > 0) {
1427  		if (scsi_host_busy(shost) > 0)
1428  			goto starved;
1429  
1430  		/*
1431  		 * unblock after host_blocked iterates to zero
1432  		 */
1433  		if (atomic_dec_return(&shost->host_blocked) > 0)
1434  			goto out_dec;
1435  
1436  		SCSI_LOG_MLQUEUE(3,
1437  			shost_printk(KERN_INFO, shost,
1438  				     "unblocking host at zero depth\n"));
1439  	}
1440  
1441  	if (shost->host_self_blocked)
1442  		goto starved;
1443  
1444  	/* We're OK to process the command, so we can't be starved */
1445  	if (!list_empty(&sdev->starved_entry)) {
1446  		spin_lock_irq(shost->host_lock);
1447  		if (!list_empty(&sdev->starved_entry))
1448  			list_del_init(&sdev->starved_entry);
1449  		spin_unlock_irq(shost->host_lock);
1450  	}
1451  
1452  	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1453  
1454  	return 1;
1455  
1456  starved:
1457  	spin_lock_irq(shost->host_lock);
1458  	if (list_empty(&sdev->starved_entry))
1459  		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1460  	spin_unlock_irq(shost->host_lock);
1461  out_dec:
1462  	scsi_dec_host_busy(shost, cmd);
1463  	return 0;
1464  }
1465  
1466  /*
1467   * Busy state exporting function for request stacking drivers.
1468   *
1469   * For efficiency, no lock is taken to check the busy state of
1470   * shost/starget/sdev, since the returned value is not guaranteed and
1471   * may be changed after request stacking drivers call the function,
1472   * regardless of taking lock or not.
1473   *
1474   * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1475   * needs to return 'not busy'. Otherwise, request stacking drivers
1476   * may hold requests forever.
1477   */
scsi_mq_lld_busy(struct request_queue * q)1478  static bool scsi_mq_lld_busy(struct request_queue *q)
1479  {
1480  	struct scsi_device *sdev = q->queuedata;
1481  	struct Scsi_Host *shost;
1482  
1483  	if (blk_queue_dying(q))
1484  		return false;
1485  
1486  	shost = sdev->host;
1487  
1488  	/*
1489  	 * Ignore host/starget busy state.
1490  	 * Since block layer does not have a concept of fairness across
1491  	 * multiple queues, congestion of host/starget needs to be handled
1492  	 * in SCSI layer.
1493  	 */
1494  	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1495  		return true;
1496  
1497  	return false;
1498  }
1499  
1500  /*
1501   * Block layer request completion callback. May be called from interrupt
1502   * context.
1503   */
scsi_complete(struct request * rq)1504  static void scsi_complete(struct request *rq)
1505  {
1506  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1507  	enum scsi_disposition disposition;
1508  
1509  	INIT_LIST_HEAD(&cmd->eh_entry);
1510  
1511  	atomic_inc(&cmd->device->iodone_cnt);
1512  	if (cmd->result)
1513  		atomic_inc(&cmd->device->ioerr_cnt);
1514  
1515  	disposition = scsi_decide_disposition(cmd);
1516  	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1517  		disposition = SUCCESS;
1518  
1519  	scsi_log_completion(cmd, disposition);
1520  
1521  	switch (disposition) {
1522  	case SUCCESS:
1523  		scsi_finish_command(cmd);
1524  		break;
1525  	case NEEDS_RETRY:
1526  		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1527  		break;
1528  	case ADD_TO_MLQUEUE:
1529  		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1530  		break;
1531  	default:
1532  		scsi_eh_scmd_add(cmd);
1533  		break;
1534  	}
1535  }
1536  
1537  /**
1538   * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1539   * @cmd: command block we are dispatching.
1540   *
1541   * Return: nonzero return request was rejected and device's queue needs to be
1542   * plugged.
1543   */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1544  static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1545  {
1546  	struct Scsi_Host *host = cmd->device->host;
1547  	int rtn = 0;
1548  
1549  	atomic_inc(&cmd->device->iorequest_cnt);
1550  
1551  	/* check if the device is still usable */
1552  	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1553  		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1554  		 * returns an immediate error upwards, and signals
1555  		 * that the device is no longer present */
1556  		cmd->result = DID_NO_CONNECT << 16;
1557  		goto done;
1558  	}
1559  
1560  	/* Check to see if the scsi lld made this device blocked. */
1561  	if (unlikely(scsi_device_blocked(cmd->device))) {
1562  		/*
1563  		 * in blocked state, the command is just put back on
1564  		 * the device queue.  The suspend state has already
1565  		 * blocked the queue so future requests should not
1566  		 * occur until the device transitions out of the
1567  		 * suspend state.
1568  		 */
1569  		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1570  			"queuecommand : device blocked\n"));
1571  		atomic_dec(&cmd->device->iorequest_cnt);
1572  		return SCSI_MLQUEUE_DEVICE_BUSY;
1573  	}
1574  
1575  	/* Store the LUN value in cmnd, if needed. */
1576  	if (cmd->device->lun_in_cdb)
1577  		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1578  			       (cmd->device->lun << 5 & 0xe0);
1579  
1580  	scsi_log_send(cmd);
1581  
1582  	/*
1583  	 * Before we queue this command, check if the command
1584  	 * length exceeds what the host adapter can handle.
1585  	 */
1586  	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1587  		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1588  			       "queuecommand : command too long. "
1589  			       "cdb_size=%d host->max_cmd_len=%d\n",
1590  			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1591  		cmd->result = (DID_ABORT << 16);
1592  		goto done;
1593  	}
1594  
1595  	if (unlikely(host->shost_state == SHOST_DEL)) {
1596  		cmd->result = (DID_NO_CONNECT << 16);
1597  		goto done;
1598  
1599  	}
1600  
1601  	trace_scsi_dispatch_cmd_start(cmd);
1602  	rtn = host->hostt->queuecommand(host, cmd);
1603  	if (rtn) {
1604  		atomic_dec(&cmd->device->iorequest_cnt);
1605  		trace_scsi_dispatch_cmd_error(cmd, rtn);
1606  		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1607  		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1608  			rtn = SCSI_MLQUEUE_HOST_BUSY;
1609  
1610  		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1611  			"queuecommand : request rejected\n"));
1612  	}
1613  
1614  	return rtn;
1615   done:
1616  	scsi_done(cmd);
1617  	return 0;
1618  }
1619  
1620  /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1621  static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1622  {
1623  	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1624  		sizeof(struct scatterlist);
1625  }
1626  
scsi_prepare_cmd(struct request * req)1627  static blk_status_t scsi_prepare_cmd(struct request *req)
1628  {
1629  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630  	struct scsi_device *sdev = req->q->queuedata;
1631  	struct Scsi_Host *shost = sdev->host;
1632  	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1633  	struct scatterlist *sg;
1634  
1635  	scsi_init_command(sdev, cmd);
1636  
1637  	cmd->eh_eflags = 0;
1638  	cmd->prot_type = 0;
1639  	cmd->prot_flags = 0;
1640  	cmd->submitter = 0;
1641  	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1642  	cmd->underflow = 0;
1643  	cmd->transfersize = 0;
1644  	cmd->host_scribble = NULL;
1645  	cmd->result = 0;
1646  	cmd->extra_len = 0;
1647  	cmd->state = 0;
1648  	if (in_flight)
1649  		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1650  
1651  	/*
1652  	 * Only clear the driver-private command data if the LLD does not supply
1653  	 * a function to initialize that data.
1654  	 */
1655  	if (!shost->hostt->init_cmd_priv)
1656  		memset(cmd + 1, 0, shost->hostt->cmd_size);
1657  
1658  	cmd->prot_op = SCSI_PROT_NORMAL;
1659  	if (blk_rq_bytes(req))
1660  		cmd->sc_data_direction = rq_dma_dir(req);
1661  	else
1662  		cmd->sc_data_direction = DMA_NONE;
1663  
1664  	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1665  	cmd->sdb.table.sgl = sg;
1666  
1667  	if (scsi_host_get_prot(shost)) {
1668  		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1669  
1670  		cmd->prot_sdb->table.sgl =
1671  			(struct scatterlist *)(cmd->prot_sdb + 1);
1672  	}
1673  
1674  	/*
1675  	 * Special handling for passthrough commands, which don't go to the ULP
1676  	 * at all:
1677  	 */
1678  	if (blk_rq_is_passthrough(req))
1679  		return scsi_setup_scsi_cmnd(sdev, req);
1680  
1681  	if (sdev->handler && sdev->handler->prep_fn) {
1682  		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1683  
1684  		if (ret != BLK_STS_OK)
1685  			return ret;
1686  	}
1687  
1688  	/* Usually overridden by the ULP */
1689  	cmd->allowed = 0;
1690  	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1691  	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1692  }
1693  
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1694  static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1695  {
1696  	struct request *req = scsi_cmd_to_rq(cmd);
1697  
1698  	switch (cmd->submitter) {
1699  	case SUBMITTED_BY_BLOCK_LAYER:
1700  		break;
1701  	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1702  		return scsi_eh_done(cmd);
1703  	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1704  		return;
1705  	}
1706  
1707  	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1708  		return;
1709  	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1710  		return;
1711  	trace_scsi_dispatch_cmd_done(cmd);
1712  
1713  	if (complete_directly)
1714  		blk_mq_complete_request_direct(req, scsi_complete);
1715  	else
1716  		blk_mq_complete_request(req);
1717  }
1718  
scsi_done(struct scsi_cmnd * cmd)1719  void scsi_done(struct scsi_cmnd *cmd)
1720  {
1721  	scsi_done_internal(cmd, false);
1722  }
1723  EXPORT_SYMBOL(scsi_done);
1724  
scsi_done_direct(struct scsi_cmnd * cmd)1725  void scsi_done_direct(struct scsi_cmnd *cmd)
1726  {
1727  	scsi_done_internal(cmd, true);
1728  }
1729  EXPORT_SYMBOL(scsi_done_direct);
1730  
scsi_mq_put_budget(struct request_queue * q,int budget_token)1731  static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1732  {
1733  	struct scsi_device *sdev = q->queuedata;
1734  
1735  	sbitmap_put(&sdev->budget_map, budget_token);
1736  }
1737  
1738  /*
1739   * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1740   * not change behaviour from the previous unplug mechanism, experimentation
1741   * may prove this needs changing.
1742   */
1743  #define SCSI_QUEUE_DELAY 3
1744  
scsi_mq_get_budget(struct request_queue * q)1745  static int scsi_mq_get_budget(struct request_queue *q)
1746  {
1747  	struct scsi_device *sdev = q->queuedata;
1748  	int token = scsi_dev_queue_ready(q, sdev);
1749  
1750  	if (token >= 0)
1751  		return token;
1752  
1753  	atomic_inc(&sdev->restarts);
1754  
1755  	/*
1756  	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1757  	 * .restarts must be incremented before .device_busy is read because the
1758  	 * code in scsi_run_queue_async() depends on the order of these operations.
1759  	 */
1760  	smp_mb__after_atomic();
1761  
1762  	/*
1763  	 * If all in-flight requests originated from this LUN are completed
1764  	 * before reading .device_busy, sdev->device_busy will be observed as
1765  	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1766  	 * soon. Otherwise, completion of one of these requests will observe
1767  	 * the .restarts flag, and the request queue will be run for handling
1768  	 * this request, see scsi_end_request().
1769  	 */
1770  	if (unlikely(scsi_device_busy(sdev) == 0 &&
1771  				!scsi_device_blocked(sdev)))
1772  		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1773  	return -1;
1774  }
1775  
scsi_mq_set_rq_budget_token(struct request * req,int token)1776  static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1777  {
1778  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1779  
1780  	cmd->budget_token = token;
1781  }
1782  
scsi_mq_get_rq_budget_token(struct request * req)1783  static int scsi_mq_get_rq_budget_token(struct request *req)
1784  {
1785  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1786  
1787  	return cmd->budget_token;
1788  }
1789  
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1790  static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1791  			 const struct blk_mq_queue_data *bd)
1792  {
1793  	struct request *req = bd->rq;
1794  	struct request_queue *q = req->q;
1795  	struct scsi_device *sdev = q->queuedata;
1796  	struct Scsi_Host *shost = sdev->host;
1797  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1798  	blk_status_t ret;
1799  	int reason;
1800  
1801  	WARN_ON_ONCE(cmd->budget_token < 0);
1802  
1803  	/*
1804  	 * If the device is not in running state we will reject some or all
1805  	 * commands.
1806  	 */
1807  	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1808  		ret = scsi_device_state_check(sdev, req);
1809  		if (ret != BLK_STS_OK)
1810  			goto out_put_budget;
1811  	}
1812  
1813  	ret = BLK_STS_RESOURCE;
1814  	if (!scsi_target_queue_ready(shost, sdev))
1815  		goto out_put_budget;
1816  	if (unlikely(scsi_host_in_recovery(shost))) {
1817  		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1818  			ret = BLK_STS_OFFLINE;
1819  		goto out_dec_target_busy;
1820  	}
1821  	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1822  		goto out_dec_target_busy;
1823  
1824  	if (!(req->rq_flags & RQF_DONTPREP)) {
1825  		ret = scsi_prepare_cmd(req);
1826  		if (ret != BLK_STS_OK)
1827  			goto out_dec_host_busy;
1828  		req->rq_flags |= RQF_DONTPREP;
1829  	} else {
1830  		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1831  	}
1832  
1833  	cmd->flags &= SCMD_PRESERVED_FLAGS;
1834  	if (sdev->simple_tags)
1835  		cmd->flags |= SCMD_TAGGED;
1836  	if (bd->last)
1837  		cmd->flags |= SCMD_LAST;
1838  
1839  	scsi_set_resid(cmd, 0);
1840  	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1841  	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1842  
1843  	blk_mq_start_request(req);
1844  	reason = scsi_dispatch_cmd(cmd);
1845  	if (reason) {
1846  		scsi_set_blocked(cmd, reason);
1847  		ret = BLK_STS_RESOURCE;
1848  		goto out_dec_host_busy;
1849  	}
1850  
1851  	return BLK_STS_OK;
1852  
1853  out_dec_host_busy:
1854  	scsi_dec_host_busy(shost, cmd);
1855  out_dec_target_busy:
1856  	if (scsi_target(sdev)->can_queue > 0)
1857  		atomic_dec(&scsi_target(sdev)->target_busy);
1858  out_put_budget:
1859  	scsi_mq_put_budget(q, cmd->budget_token);
1860  	cmd->budget_token = -1;
1861  	switch (ret) {
1862  	case BLK_STS_OK:
1863  		break;
1864  	case BLK_STS_RESOURCE:
1865  		if (scsi_device_blocked(sdev))
1866  			ret = BLK_STS_DEV_RESOURCE;
1867  		break;
1868  	case BLK_STS_AGAIN:
1869  		cmd->result = DID_BUS_BUSY << 16;
1870  		if (req->rq_flags & RQF_DONTPREP)
1871  			scsi_mq_uninit_cmd(cmd);
1872  		break;
1873  	default:
1874  		if (unlikely(!scsi_device_online(sdev)))
1875  			cmd->result = DID_NO_CONNECT << 16;
1876  		else
1877  			cmd->result = DID_ERROR << 16;
1878  		/*
1879  		 * Make sure to release all allocated resources when
1880  		 * we hit an error, as we will never see this command
1881  		 * again.
1882  		 */
1883  		if (req->rq_flags & RQF_DONTPREP)
1884  			scsi_mq_uninit_cmd(cmd);
1885  		scsi_run_queue_async(sdev);
1886  		break;
1887  	}
1888  	return ret;
1889  }
1890  
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1891  static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1892  				unsigned int hctx_idx, unsigned int numa_node)
1893  {
1894  	struct Scsi_Host *shost = set->driver_data;
1895  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1896  	struct scatterlist *sg;
1897  	int ret = 0;
1898  
1899  	cmd->sense_buffer =
1900  		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1901  	if (!cmd->sense_buffer)
1902  		return -ENOMEM;
1903  
1904  	if (scsi_host_get_prot(shost)) {
1905  		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1906  			shost->hostt->cmd_size;
1907  		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1908  	}
1909  
1910  	if (shost->hostt->init_cmd_priv) {
1911  		ret = shost->hostt->init_cmd_priv(shost, cmd);
1912  		if (ret < 0)
1913  			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1914  	}
1915  
1916  	return ret;
1917  }
1918  
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1919  static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1920  				 unsigned int hctx_idx)
1921  {
1922  	struct Scsi_Host *shost = set->driver_data;
1923  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1924  
1925  	if (shost->hostt->exit_cmd_priv)
1926  		shost->hostt->exit_cmd_priv(shost, cmd);
1927  	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1928  }
1929  
1930  
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1931  static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1932  {
1933  	struct Scsi_Host *shost = hctx->driver_data;
1934  
1935  	if (shost->hostt->mq_poll)
1936  		return shost->hostt->mq_poll(shost, hctx->queue_num);
1937  
1938  	return 0;
1939  }
1940  
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1941  static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1942  			  unsigned int hctx_idx)
1943  {
1944  	struct Scsi_Host *shost = data;
1945  
1946  	hctx->driver_data = shost;
1947  	return 0;
1948  }
1949  
scsi_map_queues(struct blk_mq_tag_set * set)1950  static void scsi_map_queues(struct blk_mq_tag_set *set)
1951  {
1952  	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1953  
1954  	if (shost->hostt->map_queues)
1955  		return shost->hostt->map_queues(shost);
1956  	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1957  }
1958  
scsi_init_limits(struct Scsi_Host * shost,struct queue_limits * lim)1959  void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1960  {
1961  	struct device *dev = shost->dma_dev;
1962  
1963  	memset(lim, 0, sizeof(*lim));
1964  	lim->max_segments =
1965  		min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
1966  
1967  	if (scsi_host_prot_dma(shost)) {
1968  		shost->sg_prot_tablesize =
1969  			min_not_zero(shost->sg_prot_tablesize,
1970  				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1971  		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1972  		lim->max_integrity_segments = shost->sg_prot_tablesize;
1973  	}
1974  
1975  	lim->max_hw_sectors = shost->max_sectors;
1976  	lim->seg_boundary_mask = shost->dma_boundary;
1977  	lim->max_segment_size = shost->max_segment_size;
1978  	lim->virt_boundary_mask = shost->virt_boundary_mask;
1979  	lim->dma_alignment = max_t(unsigned int,
1980  		shost->dma_alignment, dma_get_cache_alignment() - 1);
1981  
1982  	if (shost->no_highmem)
1983  		lim->features |= BLK_FEAT_BOUNCE_HIGH;
1984  
1985  	/*
1986  	 * Propagate the DMA formation properties to the dma-mapping layer as
1987  	 * a courtesy service to the LLDDs.  This needs to check that the buses
1988  	 * actually support the DMA API first, though.
1989  	 */
1990  	if (dev->dma_parms) {
1991  		dma_set_seg_boundary(dev, shost->dma_boundary);
1992  		dma_set_max_seg_size(dev, shost->max_segment_size);
1993  	}
1994  }
1995  EXPORT_SYMBOL_GPL(scsi_init_limits);
1996  
1997  static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1998  	.get_budget	= scsi_mq_get_budget,
1999  	.put_budget	= scsi_mq_put_budget,
2000  	.queue_rq	= scsi_queue_rq,
2001  	.complete	= scsi_complete,
2002  	.timeout	= scsi_timeout,
2003  #ifdef CONFIG_BLK_DEBUG_FS
2004  	.show_rq	= scsi_show_rq,
2005  #endif
2006  	.init_request	= scsi_mq_init_request,
2007  	.exit_request	= scsi_mq_exit_request,
2008  	.cleanup_rq	= scsi_cleanup_rq,
2009  	.busy		= scsi_mq_lld_busy,
2010  	.map_queues	= scsi_map_queues,
2011  	.init_hctx	= scsi_init_hctx,
2012  	.poll		= scsi_mq_poll,
2013  	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2014  	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2015  };
2016  
2017  
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)2018  static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2019  {
2020  	struct Scsi_Host *shost = hctx->driver_data;
2021  
2022  	shost->hostt->commit_rqs(shost, hctx->queue_num);
2023  }
2024  
2025  static const struct blk_mq_ops scsi_mq_ops = {
2026  	.get_budget	= scsi_mq_get_budget,
2027  	.put_budget	= scsi_mq_put_budget,
2028  	.queue_rq	= scsi_queue_rq,
2029  	.commit_rqs	= scsi_commit_rqs,
2030  	.complete	= scsi_complete,
2031  	.timeout	= scsi_timeout,
2032  #ifdef CONFIG_BLK_DEBUG_FS
2033  	.show_rq	= scsi_show_rq,
2034  #endif
2035  	.init_request	= scsi_mq_init_request,
2036  	.exit_request	= scsi_mq_exit_request,
2037  	.cleanup_rq	= scsi_cleanup_rq,
2038  	.busy		= scsi_mq_lld_busy,
2039  	.map_queues	= scsi_map_queues,
2040  	.init_hctx	= scsi_init_hctx,
2041  	.poll		= scsi_mq_poll,
2042  	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2043  	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2044  };
2045  
scsi_mq_setup_tags(struct Scsi_Host * shost)2046  int scsi_mq_setup_tags(struct Scsi_Host *shost)
2047  {
2048  	unsigned int cmd_size, sgl_size;
2049  	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2050  
2051  	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2052  				scsi_mq_inline_sgl_size(shost));
2053  	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2054  	if (scsi_host_get_prot(shost))
2055  		cmd_size += sizeof(struct scsi_data_buffer) +
2056  			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2057  
2058  	memset(tag_set, 0, sizeof(*tag_set));
2059  	if (shost->hostt->commit_rqs)
2060  		tag_set->ops = &scsi_mq_ops;
2061  	else
2062  		tag_set->ops = &scsi_mq_ops_no_commit;
2063  	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2064  	tag_set->nr_maps = shost->nr_maps ? : 1;
2065  	tag_set->queue_depth = shost->can_queue;
2066  	tag_set->cmd_size = cmd_size;
2067  	tag_set->numa_node = dev_to_node(shost->dma_dev);
2068  	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2069  	tag_set->flags |=
2070  		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2071  	if (shost->queuecommand_may_block)
2072  		tag_set->flags |= BLK_MQ_F_BLOCKING;
2073  	tag_set->driver_data = shost;
2074  	if (shost->host_tagset)
2075  		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2076  
2077  	return blk_mq_alloc_tag_set(tag_set);
2078  }
2079  
scsi_mq_free_tags(struct kref * kref)2080  void scsi_mq_free_tags(struct kref *kref)
2081  {
2082  	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2083  					       tagset_refcnt);
2084  
2085  	blk_mq_free_tag_set(&shost->tag_set);
2086  	complete(&shost->tagset_freed);
2087  }
2088  
2089  /**
2090   * scsi_device_from_queue - return sdev associated with a request_queue
2091   * @q: The request queue to return the sdev from
2092   *
2093   * Return the sdev associated with a request queue or NULL if the
2094   * request_queue does not reference a SCSI device.
2095   */
scsi_device_from_queue(struct request_queue * q)2096  struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2097  {
2098  	struct scsi_device *sdev = NULL;
2099  
2100  	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2101  	    q->mq_ops == &scsi_mq_ops)
2102  		sdev = q->queuedata;
2103  	if (!sdev || !get_device(&sdev->sdev_gendev))
2104  		sdev = NULL;
2105  
2106  	return sdev;
2107  }
2108  /*
2109   * pktcdvd should have been integrated into the SCSI layers, but for historical
2110   * reasons like the old IDE driver it isn't.  This export allows it to safely
2111   * probe if a given device is a SCSI one and only attach to that.
2112   */
2113  #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2114  EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2115  #endif
2116  
2117  /**
2118   * scsi_block_requests - Utility function used by low-level drivers to prevent
2119   * further commands from being queued to the device.
2120   * @shost:  host in question
2121   *
2122   * There is no timer nor any other means by which the requests get unblocked
2123   * other than the low-level driver calling scsi_unblock_requests().
2124   */
scsi_block_requests(struct Scsi_Host * shost)2125  void scsi_block_requests(struct Scsi_Host *shost)
2126  {
2127  	shost->host_self_blocked = 1;
2128  }
2129  EXPORT_SYMBOL(scsi_block_requests);
2130  
2131  /**
2132   * scsi_unblock_requests - Utility function used by low-level drivers to allow
2133   * further commands to be queued to the device.
2134   * @shost:  host in question
2135   *
2136   * There is no timer nor any other means by which the requests get unblocked
2137   * other than the low-level driver calling scsi_unblock_requests(). This is done
2138   * as an API function so that changes to the internals of the scsi mid-layer
2139   * won't require wholesale changes to drivers that use this feature.
2140   */
scsi_unblock_requests(struct Scsi_Host * shost)2141  void scsi_unblock_requests(struct Scsi_Host *shost)
2142  {
2143  	shost->host_self_blocked = 0;
2144  	scsi_run_host_queues(shost);
2145  }
2146  EXPORT_SYMBOL(scsi_unblock_requests);
2147  
scsi_exit_queue(void)2148  void scsi_exit_queue(void)
2149  {
2150  	kmem_cache_destroy(scsi_sense_cache);
2151  }
2152  
2153  /**
2154   *	scsi_mode_select - issue a mode select
2155   *	@sdev:	SCSI device to be queried
2156   *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2157   *	@sp:	Save page bit (0 == don't save, 1 == save)
2158   *	@buffer: request buffer (may not be smaller than eight bytes)
2159   *	@len:	length of request buffer.
2160   *	@timeout: command timeout
2161   *	@retries: number of retries before failing
2162   *	@data: returns a structure abstracting the mode header data
2163   *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2164   *		must be SCSI_SENSE_BUFFERSIZE big.
2165   *
2166   *	Returns zero if successful; negative error number or scsi
2167   *	status on error
2168   *
2169   */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2170  int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2171  		     unsigned char *buffer, int len, int timeout, int retries,
2172  		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2173  {
2174  	unsigned char cmd[10];
2175  	unsigned char *real_buffer;
2176  	const struct scsi_exec_args exec_args = {
2177  		.sshdr = sshdr,
2178  	};
2179  	int ret;
2180  
2181  	memset(cmd, 0, sizeof(cmd));
2182  	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2183  
2184  	/*
2185  	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2186  	 * and the mode select header cannot fit within the maximumm 255 bytes
2187  	 * of the MODE SELECT(6) command.
2188  	 */
2189  	if (sdev->use_10_for_ms ||
2190  	    len + 4 > 255 ||
2191  	    data->block_descriptor_length > 255) {
2192  		if (len > 65535 - 8)
2193  			return -EINVAL;
2194  		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2195  		if (!real_buffer)
2196  			return -ENOMEM;
2197  		memcpy(real_buffer + 8, buffer, len);
2198  		len += 8;
2199  		real_buffer[0] = 0;
2200  		real_buffer[1] = 0;
2201  		real_buffer[2] = data->medium_type;
2202  		real_buffer[3] = data->device_specific;
2203  		real_buffer[4] = data->longlba ? 0x01 : 0;
2204  		real_buffer[5] = 0;
2205  		put_unaligned_be16(data->block_descriptor_length,
2206  				   &real_buffer[6]);
2207  
2208  		cmd[0] = MODE_SELECT_10;
2209  		put_unaligned_be16(len, &cmd[7]);
2210  	} else {
2211  		if (data->longlba)
2212  			return -EINVAL;
2213  
2214  		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2215  		if (!real_buffer)
2216  			return -ENOMEM;
2217  		memcpy(real_buffer + 4, buffer, len);
2218  		len += 4;
2219  		real_buffer[0] = 0;
2220  		real_buffer[1] = data->medium_type;
2221  		real_buffer[2] = data->device_specific;
2222  		real_buffer[3] = data->block_descriptor_length;
2223  
2224  		cmd[0] = MODE_SELECT;
2225  		cmd[4] = len;
2226  	}
2227  
2228  	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2229  			       timeout, retries, &exec_args);
2230  	kfree(real_buffer);
2231  	return ret;
2232  }
2233  EXPORT_SYMBOL_GPL(scsi_mode_select);
2234  
2235  /**
2236   *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2237   *	@sdev:	SCSI device to be queried
2238   *	@dbd:	set to prevent mode sense from returning block descriptors
2239   *	@modepage: mode page being requested
2240   *	@subpage: sub-page of the mode page being requested
2241   *	@buffer: request buffer (may not be smaller than eight bytes)
2242   *	@len:	length of request buffer.
2243   *	@timeout: command timeout
2244   *	@retries: number of retries before failing
2245   *	@data: returns a structure abstracting the mode header data
2246   *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2247   *		must be SCSI_SENSE_BUFFERSIZE big.
2248   *
2249   *	Returns zero if successful, or a negative error number on failure
2250   */
2251  int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2252  scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2253  		  unsigned char *buffer, int len, int timeout, int retries,
2254  		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2255  {
2256  	unsigned char cmd[12];
2257  	int use_10_for_ms;
2258  	int header_length;
2259  	int result;
2260  	struct scsi_sense_hdr my_sshdr;
2261  	struct scsi_failure failure_defs[] = {
2262  		{
2263  			.sense = UNIT_ATTENTION,
2264  			.asc = SCMD_FAILURE_ASC_ANY,
2265  			.ascq = SCMD_FAILURE_ASCQ_ANY,
2266  			.allowed = retries,
2267  			.result = SAM_STAT_CHECK_CONDITION,
2268  		},
2269  		{}
2270  	};
2271  	struct scsi_failures failures = {
2272  		.failure_definitions = failure_defs,
2273  	};
2274  	const struct scsi_exec_args exec_args = {
2275  		/* caller might not be interested in sense, but we need it */
2276  		.sshdr = sshdr ? : &my_sshdr,
2277  		.failures = &failures,
2278  	};
2279  
2280  	memset(data, 0, sizeof(*data));
2281  	memset(&cmd[0], 0, 12);
2282  
2283  	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2284  	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2285  	cmd[2] = modepage;
2286  	cmd[3] = subpage;
2287  
2288  	sshdr = exec_args.sshdr;
2289  
2290   retry:
2291  	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2292  
2293  	if (use_10_for_ms) {
2294  		if (len < 8 || len > 65535)
2295  			return -EINVAL;
2296  
2297  		cmd[0] = MODE_SENSE_10;
2298  		put_unaligned_be16(len, &cmd[7]);
2299  		header_length = 8;
2300  	} else {
2301  		if (len < 4)
2302  			return -EINVAL;
2303  
2304  		cmd[0] = MODE_SENSE;
2305  		cmd[4] = len;
2306  		header_length = 4;
2307  	}
2308  
2309  	memset(buffer, 0, len);
2310  
2311  	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2312  				  timeout, retries, &exec_args);
2313  	if (result < 0)
2314  		return result;
2315  
2316  	/* This code looks awful: what it's doing is making sure an
2317  	 * ILLEGAL REQUEST sense return identifies the actual command
2318  	 * byte as the problem.  MODE_SENSE commands can return
2319  	 * ILLEGAL REQUEST if the code page isn't supported */
2320  
2321  	if (!scsi_status_is_good(result)) {
2322  		if (scsi_sense_valid(sshdr)) {
2323  			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2324  			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2325  				/*
2326  				 * Invalid command operation code: retry using
2327  				 * MODE SENSE(6) if this was a MODE SENSE(10)
2328  				 * request, except if the request mode page is
2329  				 * too large for MODE SENSE single byte
2330  				 * allocation length field.
2331  				 */
2332  				if (use_10_for_ms) {
2333  					if (len > 255)
2334  						return -EIO;
2335  					sdev->use_10_for_ms = 0;
2336  					goto retry;
2337  				}
2338  			}
2339  		}
2340  		return -EIO;
2341  	}
2342  	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2343  		     (modepage == 6 || modepage == 8))) {
2344  		/* Initio breakage? */
2345  		header_length = 0;
2346  		data->length = 13;
2347  		data->medium_type = 0;
2348  		data->device_specific = 0;
2349  		data->longlba = 0;
2350  		data->block_descriptor_length = 0;
2351  	} else if (use_10_for_ms) {
2352  		data->length = get_unaligned_be16(&buffer[0]) + 2;
2353  		data->medium_type = buffer[2];
2354  		data->device_specific = buffer[3];
2355  		data->longlba = buffer[4] & 0x01;
2356  		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2357  	} else {
2358  		data->length = buffer[0] + 1;
2359  		data->medium_type = buffer[1];
2360  		data->device_specific = buffer[2];
2361  		data->block_descriptor_length = buffer[3];
2362  	}
2363  	data->header_length = header_length;
2364  
2365  	return 0;
2366  }
2367  EXPORT_SYMBOL(scsi_mode_sense);
2368  
2369  /**
2370   *	scsi_test_unit_ready - test if unit is ready
2371   *	@sdev:	scsi device to change the state of.
2372   *	@timeout: command timeout
2373   *	@retries: number of retries before failing
2374   *	@sshdr: outpout pointer for decoded sense information.
2375   *
2376   *	Returns zero if unsuccessful or an error if TUR failed.  For
2377   *	removable media, UNIT_ATTENTION sets ->changed flag.
2378   **/
2379  int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2380  scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2381  		     struct scsi_sense_hdr *sshdr)
2382  {
2383  	char cmd[] = {
2384  		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2385  	};
2386  	const struct scsi_exec_args exec_args = {
2387  		.sshdr = sshdr,
2388  	};
2389  	int result;
2390  
2391  	/* try to eat the UNIT_ATTENTION if there are enough retries */
2392  	do {
2393  		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2394  					  timeout, 1, &exec_args);
2395  		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2396  		    sshdr->sense_key == UNIT_ATTENTION)
2397  			sdev->changed = 1;
2398  	} while (result > 0 && scsi_sense_valid(sshdr) &&
2399  		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2400  
2401  	return result;
2402  }
2403  EXPORT_SYMBOL(scsi_test_unit_ready);
2404  
2405  /**
2406   *	scsi_device_set_state - Take the given device through the device state model.
2407   *	@sdev:	scsi device to change the state of.
2408   *	@state:	state to change to.
2409   *
2410   *	Returns zero if successful or an error if the requested
2411   *	transition is illegal.
2412   */
2413  int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2414  scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2415  {
2416  	enum scsi_device_state oldstate = sdev->sdev_state;
2417  
2418  	if (state == oldstate)
2419  		return 0;
2420  
2421  	switch (state) {
2422  	case SDEV_CREATED:
2423  		switch (oldstate) {
2424  		case SDEV_CREATED_BLOCK:
2425  			break;
2426  		default:
2427  			goto illegal;
2428  		}
2429  		break;
2430  
2431  	case SDEV_RUNNING:
2432  		switch (oldstate) {
2433  		case SDEV_CREATED:
2434  		case SDEV_OFFLINE:
2435  		case SDEV_TRANSPORT_OFFLINE:
2436  		case SDEV_QUIESCE:
2437  		case SDEV_BLOCK:
2438  			break;
2439  		default:
2440  			goto illegal;
2441  		}
2442  		break;
2443  
2444  	case SDEV_QUIESCE:
2445  		switch (oldstate) {
2446  		case SDEV_RUNNING:
2447  		case SDEV_OFFLINE:
2448  		case SDEV_TRANSPORT_OFFLINE:
2449  			break;
2450  		default:
2451  			goto illegal;
2452  		}
2453  		break;
2454  
2455  	case SDEV_OFFLINE:
2456  	case SDEV_TRANSPORT_OFFLINE:
2457  		switch (oldstate) {
2458  		case SDEV_CREATED:
2459  		case SDEV_RUNNING:
2460  		case SDEV_QUIESCE:
2461  		case SDEV_BLOCK:
2462  			break;
2463  		default:
2464  			goto illegal;
2465  		}
2466  		break;
2467  
2468  	case SDEV_BLOCK:
2469  		switch (oldstate) {
2470  		case SDEV_RUNNING:
2471  		case SDEV_CREATED_BLOCK:
2472  		case SDEV_QUIESCE:
2473  		case SDEV_OFFLINE:
2474  			break;
2475  		default:
2476  			goto illegal;
2477  		}
2478  		break;
2479  
2480  	case SDEV_CREATED_BLOCK:
2481  		switch (oldstate) {
2482  		case SDEV_CREATED:
2483  			break;
2484  		default:
2485  			goto illegal;
2486  		}
2487  		break;
2488  
2489  	case SDEV_CANCEL:
2490  		switch (oldstate) {
2491  		case SDEV_CREATED:
2492  		case SDEV_RUNNING:
2493  		case SDEV_QUIESCE:
2494  		case SDEV_OFFLINE:
2495  		case SDEV_TRANSPORT_OFFLINE:
2496  			break;
2497  		default:
2498  			goto illegal;
2499  		}
2500  		break;
2501  
2502  	case SDEV_DEL:
2503  		switch (oldstate) {
2504  		case SDEV_CREATED:
2505  		case SDEV_RUNNING:
2506  		case SDEV_OFFLINE:
2507  		case SDEV_TRANSPORT_OFFLINE:
2508  		case SDEV_CANCEL:
2509  		case SDEV_BLOCK:
2510  		case SDEV_CREATED_BLOCK:
2511  			break;
2512  		default:
2513  			goto illegal;
2514  		}
2515  		break;
2516  
2517  	}
2518  	sdev->offline_already = false;
2519  	sdev->sdev_state = state;
2520  	return 0;
2521  
2522   illegal:
2523  	SCSI_LOG_ERROR_RECOVERY(1,
2524  				sdev_printk(KERN_ERR, sdev,
2525  					    "Illegal state transition %s->%s",
2526  					    scsi_device_state_name(oldstate),
2527  					    scsi_device_state_name(state))
2528  				);
2529  	return -EINVAL;
2530  }
2531  EXPORT_SYMBOL(scsi_device_set_state);
2532  
2533  /**
2534   *	scsi_evt_emit - emit a single SCSI device uevent
2535   *	@sdev: associated SCSI device
2536   *	@evt: event to emit
2537   *
2538   *	Send a single uevent (scsi_event) to the associated scsi_device.
2539   */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2540  static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2541  {
2542  	int idx = 0;
2543  	char *envp[3];
2544  
2545  	switch (evt->evt_type) {
2546  	case SDEV_EVT_MEDIA_CHANGE:
2547  		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2548  		break;
2549  	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2550  		scsi_rescan_device(sdev);
2551  		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2552  		break;
2553  	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2554  		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2555  		break;
2556  	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2557  	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2558  		break;
2559  	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2560  		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2561  		break;
2562  	case SDEV_EVT_LUN_CHANGE_REPORTED:
2563  		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2564  		break;
2565  	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2566  		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2567  		break;
2568  	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2569  		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2570  		break;
2571  	default:
2572  		/* do nothing */
2573  		break;
2574  	}
2575  
2576  	envp[idx++] = NULL;
2577  
2578  	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2579  }
2580  
2581  /**
2582   *	scsi_evt_thread - send a uevent for each scsi event
2583   *	@work: work struct for scsi_device
2584   *
2585   *	Dispatch queued events to their associated scsi_device kobjects
2586   *	as uevents.
2587   */
scsi_evt_thread(struct work_struct * work)2588  void scsi_evt_thread(struct work_struct *work)
2589  {
2590  	struct scsi_device *sdev;
2591  	enum scsi_device_event evt_type;
2592  	LIST_HEAD(event_list);
2593  
2594  	sdev = container_of(work, struct scsi_device, event_work);
2595  
2596  	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2597  		if (test_and_clear_bit(evt_type, sdev->pending_events))
2598  			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2599  
2600  	while (1) {
2601  		struct scsi_event *evt;
2602  		struct list_head *this, *tmp;
2603  		unsigned long flags;
2604  
2605  		spin_lock_irqsave(&sdev->list_lock, flags);
2606  		list_splice_init(&sdev->event_list, &event_list);
2607  		spin_unlock_irqrestore(&sdev->list_lock, flags);
2608  
2609  		if (list_empty(&event_list))
2610  			break;
2611  
2612  		list_for_each_safe(this, tmp, &event_list) {
2613  			evt = list_entry(this, struct scsi_event, node);
2614  			list_del(&evt->node);
2615  			scsi_evt_emit(sdev, evt);
2616  			kfree(evt);
2617  		}
2618  	}
2619  }
2620  
2621  /**
2622   * 	sdev_evt_send - send asserted event to uevent thread
2623   *	@sdev: scsi_device event occurred on
2624   *	@evt: event to send
2625   *
2626   *	Assert scsi device event asynchronously.
2627   */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2628  void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2629  {
2630  	unsigned long flags;
2631  
2632  #if 0
2633  	/* FIXME: currently this check eliminates all media change events
2634  	 * for polled devices.  Need to update to discriminate between AN
2635  	 * and polled events */
2636  	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2637  		kfree(evt);
2638  		return;
2639  	}
2640  #endif
2641  
2642  	spin_lock_irqsave(&sdev->list_lock, flags);
2643  	list_add_tail(&evt->node, &sdev->event_list);
2644  	schedule_work(&sdev->event_work);
2645  	spin_unlock_irqrestore(&sdev->list_lock, flags);
2646  }
2647  EXPORT_SYMBOL_GPL(sdev_evt_send);
2648  
2649  /**
2650   * 	sdev_evt_alloc - allocate a new scsi event
2651   *	@evt_type: type of event to allocate
2652   *	@gfpflags: GFP flags for allocation
2653   *
2654   *	Allocates and returns a new scsi_event.
2655   */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2656  struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2657  				  gfp_t gfpflags)
2658  {
2659  	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2660  	if (!evt)
2661  		return NULL;
2662  
2663  	evt->evt_type = evt_type;
2664  	INIT_LIST_HEAD(&evt->node);
2665  
2666  	/* evt_type-specific initialization, if any */
2667  	switch (evt_type) {
2668  	case SDEV_EVT_MEDIA_CHANGE:
2669  	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2670  	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2671  	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2672  	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2673  	case SDEV_EVT_LUN_CHANGE_REPORTED:
2674  	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2675  	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2676  	default:
2677  		/* do nothing */
2678  		break;
2679  	}
2680  
2681  	return evt;
2682  }
2683  EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2684  
2685  /**
2686   * 	sdev_evt_send_simple - send asserted event to uevent thread
2687   *	@sdev: scsi_device event occurred on
2688   *	@evt_type: type of event to send
2689   *	@gfpflags: GFP flags for allocation
2690   *
2691   *	Assert scsi device event asynchronously, given an event type.
2692   */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2693  void sdev_evt_send_simple(struct scsi_device *sdev,
2694  			  enum scsi_device_event evt_type, gfp_t gfpflags)
2695  {
2696  	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2697  	if (!evt) {
2698  		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2699  			    evt_type);
2700  		return;
2701  	}
2702  
2703  	sdev_evt_send(sdev, evt);
2704  }
2705  EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2706  
2707  /**
2708   *	scsi_device_quiesce - Block all commands except power management.
2709   *	@sdev:	scsi device to quiesce.
2710   *
2711   *	This works by trying to transition to the SDEV_QUIESCE state
2712   *	(which must be a legal transition).  When the device is in this
2713   *	state, only power management requests will be accepted, all others will
2714   *	be deferred.
2715   *
2716   *	Must be called with user context, may sleep.
2717   *
2718   *	Returns zero if unsuccessful or an error if not.
2719   */
2720  int
scsi_device_quiesce(struct scsi_device * sdev)2721  scsi_device_quiesce(struct scsi_device *sdev)
2722  {
2723  	struct request_queue *q = sdev->request_queue;
2724  	int err;
2725  
2726  	/*
2727  	 * It is allowed to call scsi_device_quiesce() multiple times from
2728  	 * the same context but concurrent scsi_device_quiesce() calls are
2729  	 * not allowed.
2730  	 */
2731  	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2732  
2733  	if (sdev->quiesced_by == current)
2734  		return 0;
2735  
2736  	blk_set_pm_only(q);
2737  
2738  	blk_mq_freeze_queue(q);
2739  	/*
2740  	 * Ensure that the effect of blk_set_pm_only() will be visible
2741  	 * for percpu_ref_tryget() callers that occur after the queue
2742  	 * unfreeze even if the queue was already frozen before this function
2743  	 * was called. See also https://lwn.net/Articles/573497/.
2744  	 */
2745  	synchronize_rcu();
2746  	blk_mq_unfreeze_queue(q);
2747  
2748  	mutex_lock(&sdev->state_mutex);
2749  	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2750  	if (err == 0)
2751  		sdev->quiesced_by = current;
2752  	else
2753  		blk_clear_pm_only(q);
2754  	mutex_unlock(&sdev->state_mutex);
2755  
2756  	return err;
2757  }
2758  EXPORT_SYMBOL(scsi_device_quiesce);
2759  
2760  /**
2761   *	scsi_device_resume - Restart user issued commands to a quiesced device.
2762   *	@sdev:	scsi device to resume.
2763   *
2764   *	Moves the device from quiesced back to running and restarts the
2765   *	queues.
2766   *
2767   *	Must be called with user context, may sleep.
2768   */
scsi_device_resume(struct scsi_device * sdev)2769  void scsi_device_resume(struct scsi_device *sdev)
2770  {
2771  	/* check if the device state was mutated prior to resume, and if
2772  	 * so assume the state is being managed elsewhere (for example
2773  	 * device deleted during suspend)
2774  	 */
2775  	mutex_lock(&sdev->state_mutex);
2776  	if (sdev->sdev_state == SDEV_QUIESCE)
2777  		scsi_device_set_state(sdev, SDEV_RUNNING);
2778  	if (sdev->quiesced_by) {
2779  		sdev->quiesced_by = NULL;
2780  		blk_clear_pm_only(sdev->request_queue);
2781  	}
2782  	mutex_unlock(&sdev->state_mutex);
2783  }
2784  EXPORT_SYMBOL(scsi_device_resume);
2785  
2786  static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2787  device_quiesce_fn(struct scsi_device *sdev, void *data)
2788  {
2789  	scsi_device_quiesce(sdev);
2790  }
2791  
2792  void
scsi_target_quiesce(struct scsi_target * starget)2793  scsi_target_quiesce(struct scsi_target *starget)
2794  {
2795  	starget_for_each_device(starget, NULL, device_quiesce_fn);
2796  }
2797  EXPORT_SYMBOL(scsi_target_quiesce);
2798  
2799  static void
device_resume_fn(struct scsi_device * sdev,void * data)2800  device_resume_fn(struct scsi_device *sdev, void *data)
2801  {
2802  	scsi_device_resume(sdev);
2803  }
2804  
2805  void
scsi_target_resume(struct scsi_target * starget)2806  scsi_target_resume(struct scsi_target *starget)
2807  {
2808  	starget_for_each_device(starget, NULL, device_resume_fn);
2809  }
2810  EXPORT_SYMBOL(scsi_target_resume);
2811  
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2812  static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2813  {
2814  	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2815  		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2816  
2817  	return 0;
2818  }
2819  
scsi_start_queue(struct scsi_device * sdev)2820  void scsi_start_queue(struct scsi_device *sdev)
2821  {
2822  	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2823  		blk_mq_unquiesce_queue(sdev->request_queue);
2824  }
2825  
scsi_stop_queue(struct scsi_device * sdev)2826  static void scsi_stop_queue(struct scsi_device *sdev)
2827  {
2828  	/*
2829  	 * The atomic variable of ->queue_stopped covers that
2830  	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2831  	 *
2832  	 * The caller needs to wait until quiesce is done.
2833  	 */
2834  	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2835  		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2836  }
2837  
2838  /**
2839   * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2840   * @sdev: device to block
2841   *
2842   * Pause SCSI command processing on the specified device. Does not sleep.
2843   *
2844   * Returns zero if successful or a negative error code upon failure.
2845   *
2846   * Notes:
2847   * This routine transitions the device to the SDEV_BLOCK state (which must be
2848   * a legal transition). When the device is in this state, command processing
2849   * is paused until the device leaves the SDEV_BLOCK state. See also
2850   * scsi_internal_device_unblock_nowait().
2851   */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2852  int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2853  {
2854  	int ret = __scsi_internal_device_block_nowait(sdev);
2855  
2856  	/*
2857  	 * The device has transitioned to SDEV_BLOCK.  Stop the
2858  	 * block layer from calling the midlayer with this device's
2859  	 * request queue.
2860  	 */
2861  	if (!ret)
2862  		scsi_stop_queue(sdev);
2863  	return ret;
2864  }
2865  EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2866  
2867  /**
2868   * scsi_device_block - try to transition to the SDEV_BLOCK state
2869   * @sdev: device to block
2870   * @data: dummy argument, ignored
2871   *
2872   * Pause SCSI command processing on the specified device. Callers must wait
2873   * until all ongoing scsi_queue_rq() calls have finished after this function
2874   * returns.
2875   *
2876   * Note:
2877   * This routine transitions the device to the SDEV_BLOCK state (which must be
2878   * a legal transition). When the device is in this state, command processing
2879   * is paused until the device leaves the SDEV_BLOCK state. See also
2880   * scsi_internal_device_unblock().
2881   */
scsi_device_block(struct scsi_device * sdev,void * data)2882  static void scsi_device_block(struct scsi_device *sdev, void *data)
2883  {
2884  	int err;
2885  	enum scsi_device_state state;
2886  
2887  	mutex_lock(&sdev->state_mutex);
2888  	err = __scsi_internal_device_block_nowait(sdev);
2889  	state = sdev->sdev_state;
2890  	if (err == 0)
2891  		/*
2892  		 * scsi_stop_queue() must be called with the state_mutex
2893  		 * held. Otherwise a simultaneous scsi_start_queue() call
2894  		 * might unquiesce the queue before we quiesce it.
2895  		 */
2896  		scsi_stop_queue(sdev);
2897  
2898  	mutex_unlock(&sdev->state_mutex);
2899  
2900  	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2901  		  __func__, dev_name(&sdev->sdev_gendev), state);
2902  }
2903  
2904  /**
2905   * scsi_internal_device_unblock_nowait - resume a device after a block request
2906   * @sdev:	device to resume
2907   * @new_state:	state to set the device to after unblocking
2908   *
2909   * Restart the device queue for a previously suspended SCSI device. Does not
2910   * sleep.
2911   *
2912   * Returns zero if successful or a negative error code upon failure.
2913   *
2914   * Notes:
2915   * This routine transitions the device to the SDEV_RUNNING state or to one of
2916   * the offline states (which must be a legal transition) allowing the midlayer
2917   * to goose the queue for this device.
2918   */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2919  int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2920  					enum scsi_device_state new_state)
2921  {
2922  	switch (new_state) {
2923  	case SDEV_RUNNING:
2924  	case SDEV_TRANSPORT_OFFLINE:
2925  		break;
2926  	default:
2927  		return -EINVAL;
2928  	}
2929  
2930  	/*
2931  	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2932  	 * offlined states and goose the device queue if successful.
2933  	 */
2934  	switch (sdev->sdev_state) {
2935  	case SDEV_BLOCK:
2936  	case SDEV_TRANSPORT_OFFLINE:
2937  		sdev->sdev_state = new_state;
2938  		break;
2939  	case SDEV_CREATED_BLOCK:
2940  		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2941  		    new_state == SDEV_OFFLINE)
2942  			sdev->sdev_state = new_state;
2943  		else
2944  			sdev->sdev_state = SDEV_CREATED;
2945  		break;
2946  	case SDEV_CANCEL:
2947  	case SDEV_OFFLINE:
2948  		break;
2949  	default:
2950  		return -EINVAL;
2951  	}
2952  	scsi_start_queue(sdev);
2953  
2954  	return 0;
2955  }
2956  EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2957  
2958  /**
2959   * scsi_internal_device_unblock - resume a device after a block request
2960   * @sdev:	device to resume
2961   * @new_state:	state to set the device to after unblocking
2962   *
2963   * Restart the device queue for a previously suspended SCSI device. May sleep.
2964   *
2965   * Returns zero if successful or a negative error code upon failure.
2966   *
2967   * Notes:
2968   * This routine transitions the device to the SDEV_RUNNING state or to one of
2969   * the offline states (which must be a legal transition) allowing the midlayer
2970   * to goose the queue for this device.
2971   */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2972  static int scsi_internal_device_unblock(struct scsi_device *sdev,
2973  					enum scsi_device_state new_state)
2974  {
2975  	int ret;
2976  
2977  	mutex_lock(&sdev->state_mutex);
2978  	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2979  	mutex_unlock(&sdev->state_mutex);
2980  
2981  	return ret;
2982  }
2983  
2984  static int
target_block(struct device * dev,void * data)2985  target_block(struct device *dev, void *data)
2986  {
2987  	if (scsi_is_target_device(dev))
2988  		starget_for_each_device(to_scsi_target(dev), NULL,
2989  					scsi_device_block);
2990  	return 0;
2991  }
2992  
2993  /**
2994   * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2995   * @dev: a parent device of one or more scsi_target devices
2996   * @shost: the Scsi_Host to which this device belongs
2997   *
2998   * Iterate over all children of @dev, which should be scsi_target devices,
2999   * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3000   * ongoing scsi_queue_rq() calls to finish. May sleep.
3001   *
3002   * Note:
3003   * @dev must not itself be a scsi_target device.
3004   */
3005  void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)3006  scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3007  {
3008  	WARN_ON_ONCE(scsi_is_target_device(dev));
3009  	device_for_each_child(dev, NULL, target_block);
3010  	blk_mq_wait_quiesce_done(&shost->tag_set);
3011  }
3012  EXPORT_SYMBOL_GPL(scsi_block_targets);
3013  
3014  static void
device_unblock(struct scsi_device * sdev,void * data)3015  device_unblock(struct scsi_device *sdev, void *data)
3016  {
3017  	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3018  }
3019  
3020  static int
target_unblock(struct device * dev,void * data)3021  target_unblock(struct device *dev, void *data)
3022  {
3023  	if (scsi_is_target_device(dev))
3024  		starget_for_each_device(to_scsi_target(dev), data,
3025  					device_unblock);
3026  	return 0;
3027  }
3028  
3029  void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3030  scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3031  {
3032  	if (scsi_is_target_device(dev))
3033  		starget_for_each_device(to_scsi_target(dev), &new_state,
3034  					device_unblock);
3035  	else
3036  		device_for_each_child(dev, &new_state, target_unblock);
3037  }
3038  EXPORT_SYMBOL_GPL(scsi_target_unblock);
3039  
3040  /**
3041   * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3042   * @shost: device to block
3043   *
3044   * Pause SCSI command processing for all logical units associated with the SCSI
3045   * host and wait until pending scsi_queue_rq() calls have finished.
3046   *
3047   * Returns zero if successful or a negative error code upon failure.
3048   */
3049  int
scsi_host_block(struct Scsi_Host * shost)3050  scsi_host_block(struct Scsi_Host *shost)
3051  {
3052  	struct scsi_device *sdev;
3053  	int ret;
3054  
3055  	/*
3056  	 * Call scsi_internal_device_block_nowait so we can avoid
3057  	 * calling synchronize_rcu() for each LUN.
3058  	 */
3059  	shost_for_each_device(sdev, shost) {
3060  		mutex_lock(&sdev->state_mutex);
3061  		ret = scsi_internal_device_block_nowait(sdev);
3062  		mutex_unlock(&sdev->state_mutex);
3063  		if (ret) {
3064  			scsi_device_put(sdev);
3065  			return ret;
3066  		}
3067  	}
3068  
3069  	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3070  	blk_mq_wait_quiesce_done(&shost->tag_set);
3071  
3072  	return 0;
3073  }
3074  EXPORT_SYMBOL_GPL(scsi_host_block);
3075  
3076  int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)3077  scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3078  {
3079  	struct scsi_device *sdev;
3080  	int ret = 0;
3081  
3082  	shost_for_each_device(sdev, shost) {
3083  		ret = scsi_internal_device_unblock(sdev, new_state);
3084  		if (ret) {
3085  			scsi_device_put(sdev);
3086  			break;
3087  		}
3088  	}
3089  	return ret;
3090  }
3091  EXPORT_SYMBOL_GPL(scsi_host_unblock);
3092  
3093  /**
3094   * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3095   * @sgl:	scatter-gather list
3096   * @sg_count:	number of segments in sg
3097   * @offset:	offset in bytes into sg, on return offset into the mapped area
3098   * @len:	bytes to map, on return number of bytes mapped
3099   *
3100   * Returns virtual address of the start of the mapped page
3101   */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3102  void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3103  			  size_t *offset, size_t *len)
3104  {
3105  	int i;
3106  	size_t sg_len = 0, len_complete = 0;
3107  	struct scatterlist *sg;
3108  	struct page *page;
3109  
3110  	WARN_ON(!irqs_disabled());
3111  
3112  	for_each_sg(sgl, sg, sg_count, i) {
3113  		len_complete = sg_len; /* Complete sg-entries */
3114  		sg_len += sg->length;
3115  		if (sg_len > *offset)
3116  			break;
3117  	}
3118  
3119  	if (unlikely(i == sg_count)) {
3120  		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3121  			"elements %d\n",
3122  		       __func__, sg_len, *offset, sg_count);
3123  		WARN_ON(1);
3124  		return NULL;
3125  	}
3126  
3127  	/* Offset starting from the beginning of first page in this sg-entry */
3128  	*offset = *offset - len_complete + sg->offset;
3129  
3130  	/* Assumption: contiguous pages can be accessed as "page + i" */
3131  	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3132  	*offset &= ~PAGE_MASK;
3133  
3134  	/* Bytes in this sg-entry from *offset to the end of the page */
3135  	sg_len = PAGE_SIZE - *offset;
3136  	if (*len > sg_len)
3137  		*len = sg_len;
3138  
3139  	return kmap_atomic(page);
3140  }
3141  EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3142  
3143  /**
3144   * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3145   * @virt:	virtual address to be unmapped
3146   */
scsi_kunmap_atomic_sg(void * virt)3147  void scsi_kunmap_atomic_sg(void *virt)
3148  {
3149  	kunmap_atomic(virt);
3150  }
3151  EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3152  
sdev_disable_disk_events(struct scsi_device * sdev)3153  void sdev_disable_disk_events(struct scsi_device *sdev)
3154  {
3155  	atomic_inc(&sdev->disk_events_disable_depth);
3156  }
3157  EXPORT_SYMBOL(sdev_disable_disk_events);
3158  
sdev_enable_disk_events(struct scsi_device * sdev)3159  void sdev_enable_disk_events(struct scsi_device *sdev)
3160  {
3161  	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3162  		return;
3163  	atomic_dec(&sdev->disk_events_disable_depth);
3164  }
3165  EXPORT_SYMBOL(sdev_enable_disk_events);
3166  
designator_prio(const unsigned char * d)3167  static unsigned char designator_prio(const unsigned char *d)
3168  {
3169  	if (d[1] & 0x30)
3170  		/* not associated with LUN */
3171  		return 0;
3172  
3173  	if (d[3] == 0)
3174  		/* invalid length */
3175  		return 0;
3176  
3177  	/*
3178  	 * Order of preference for lun descriptor:
3179  	 * - SCSI name string
3180  	 * - NAA IEEE Registered Extended
3181  	 * - EUI-64 based 16-byte
3182  	 * - EUI-64 based 12-byte
3183  	 * - NAA IEEE Registered
3184  	 * - NAA IEEE Extended
3185  	 * - EUI-64 based 8-byte
3186  	 * - SCSI name string (truncated)
3187  	 * - T10 Vendor ID
3188  	 * as longer descriptors reduce the likelyhood
3189  	 * of identification clashes.
3190  	 */
3191  
3192  	switch (d[1] & 0xf) {
3193  	case 8:
3194  		/* SCSI name string, variable-length UTF-8 */
3195  		return 9;
3196  	case 3:
3197  		switch (d[4] >> 4) {
3198  		case 6:
3199  			/* NAA registered extended */
3200  			return 8;
3201  		case 5:
3202  			/* NAA registered */
3203  			return 5;
3204  		case 4:
3205  			/* NAA extended */
3206  			return 4;
3207  		case 3:
3208  			/* NAA locally assigned */
3209  			return 1;
3210  		default:
3211  			break;
3212  		}
3213  		break;
3214  	case 2:
3215  		switch (d[3]) {
3216  		case 16:
3217  			/* EUI64-based, 16 byte */
3218  			return 7;
3219  		case 12:
3220  			/* EUI64-based, 12 byte */
3221  			return 6;
3222  		case 8:
3223  			/* EUI64-based, 8 byte */
3224  			return 3;
3225  		default:
3226  			break;
3227  		}
3228  		break;
3229  	case 1:
3230  		/* T10 vendor ID */
3231  		return 1;
3232  	default:
3233  		break;
3234  	}
3235  
3236  	return 0;
3237  }
3238  
3239  /**
3240   * scsi_vpd_lun_id - return a unique device identification
3241   * @sdev: SCSI device
3242   * @id:   buffer for the identification
3243   * @id_len:  length of the buffer
3244   *
3245   * Copies a unique device identification into @id based
3246   * on the information in the VPD page 0x83 of the device.
3247   * The string will be formatted as a SCSI name string.
3248   *
3249   * Returns the length of the identification or error on failure.
3250   * If the identifier is longer than the supplied buffer the actual
3251   * identifier length is returned and the buffer is not zero-padded.
3252   */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3253  int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3254  {
3255  	u8 cur_id_prio = 0;
3256  	u8 cur_id_size = 0;
3257  	const unsigned char *d, *cur_id_str;
3258  	const struct scsi_vpd *vpd_pg83;
3259  	int id_size = -EINVAL;
3260  
3261  	rcu_read_lock();
3262  	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3263  	if (!vpd_pg83) {
3264  		rcu_read_unlock();
3265  		return -ENXIO;
3266  	}
3267  
3268  	/* The id string must be at least 20 bytes + terminating NULL byte */
3269  	if (id_len < 21) {
3270  		rcu_read_unlock();
3271  		return -EINVAL;
3272  	}
3273  
3274  	memset(id, 0, id_len);
3275  	for (d = vpd_pg83->data + 4;
3276  	     d < vpd_pg83->data + vpd_pg83->len;
3277  	     d += d[3] + 4) {
3278  		u8 prio = designator_prio(d);
3279  
3280  		if (prio == 0 || cur_id_prio > prio)
3281  			continue;
3282  
3283  		switch (d[1] & 0xf) {
3284  		case 0x1:
3285  			/* T10 Vendor ID */
3286  			if (cur_id_size > d[3])
3287  				break;
3288  			cur_id_prio = prio;
3289  			cur_id_size = d[3];
3290  			if (cur_id_size + 4 > id_len)
3291  				cur_id_size = id_len - 4;
3292  			cur_id_str = d + 4;
3293  			id_size = snprintf(id, id_len, "t10.%*pE",
3294  					   cur_id_size, cur_id_str);
3295  			break;
3296  		case 0x2:
3297  			/* EUI-64 */
3298  			cur_id_prio = prio;
3299  			cur_id_size = d[3];
3300  			cur_id_str = d + 4;
3301  			switch (cur_id_size) {
3302  			case 8:
3303  				id_size = snprintf(id, id_len,
3304  						   "eui.%8phN",
3305  						   cur_id_str);
3306  				break;
3307  			case 12:
3308  				id_size = snprintf(id, id_len,
3309  						   "eui.%12phN",
3310  						   cur_id_str);
3311  				break;
3312  			case 16:
3313  				id_size = snprintf(id, id_len,
3314  						   "eui.%16phN",
3315  						   cur_id_str);
3316  				break;
3317  			default:
3318  				break;
3319  			}
3320  			break;
3321  		case 0x3:
3322  			/* NAA */
3323  			cur_id_prio = prio;
3324  			cur_id_size = d[3];
3325  			cur_id_str = d + 4;
3326  			switch (cur_id_size) {
3327  			case 8:
3328  				id_size = snprintf(id, id_len,
3329  						   "naa.%8phN",
3330  						   cur_id_str);
3331  				break;
3332  			case 16:
3333  				id_size = snprintf(id, id_len,
3334  						   "naa.%16phN",
3335  						   cur_id_str);
3336  				break;
3337  			default:
3338  				break;
3339  			}
3340  			break;
3341  		case 0x8:
3342  			/* SCSI name string */
3343  			if (cur_id_size > d[3])
3344  				break;
3345  			/* Prefer others for truncated descriptor */
3346  			if (d[3] > id_len) {
3347  				prio = 2;
3348  				if (cur_id_prio > prio)
3349  					break;
3350  			}
3351  			cur_id_prio = prio;
3352  			cur_id_size = id_size = d[3];
3353  			cur_id_str = d + 4;
3354  			if (cur_id_size >= id_len)
3355  				cur_id_size = id_len - 1;
3356  			memcpy(id, cur_id_str, cur_id_size);
3357  			break;
3358  		default:
3359  			break;
3360  		}
3361  	}
3362  	rcu_read_unlock();
3363  
3364  	return id_size;
3365  }
3366  EXPORT_SYMBOL(scsi_vpd_lun_id);
3367  
3368  /*
3369   * scsi_vpd_tpg_id - return a target port group identifier
3370   * @sdev: SCSI device
3371   *
3372   * Returns the Target Port Group identifier from the information
3373   * froom VPD page 0x83 of the device.
3374   *
3375   * Returns the identifier or error on failure.
3376   */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3377  int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3378  {
3379  	const unsigned char *d;
3380  	const struct scsi_vpd *vpd_pg83;
3381  	int group_id = -EAGAIN, rel_port = -1;
3382  
3383  	rcu_read_lock();
3384  	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3385  	if (!vpd_pg83) {
3386  		rcu_read_unlock();
3387  		return -ENXIO;
3388  	}
3389  
3390  	d = vpd_pg83->data + 4;
3391  	while (d < vpd_pg83->data + vpd_pg83->len) {
3392  		switch (d[1] & 0xf) {
3393  		case 0x4:
3394  			/* Relative target port */
3395  			rel_port = get_unaligned_be16(&d[6]);
3396  			break;
3397  		case 0x5:
3398  			/* Target port group */
3399  			group_id = get_unaligned_be16(&d[6]);
3400  			break;
3401  		default:
3402  			break;
3403  		}
3404  		d += d[3] + 4;
3405  	}
3406  	rcu_read_unlock();
3407  
3408  	if (group_id >= 0 && rel_id && rel_port != -1)
3409  		*rel_id = rel_port;
3410  
3411  	return group_id;
3412  }
3413  EXPORT_SYMBOL(scsi_vpd_tpg_id);
3414  
3415  /**
3416   * scsi_build_sense - build sense data for a command
3417   * @scmd:	scsi command for which the sense should be formatted
3418   * @desc:	Sense format (non-zero == descriptor format,
3419   *              0 == fixed format)
3420   * @key:	Sense key
3421   * @asc:	Additional sense code
3422   * @ascq:	Additional sense code qualifier
3423   *
3424   **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3425  void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3426  {
3427  	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3428  	scmd->result = SAM_STAT_CHECK_CONDITION;
3429  }
3430  EXPORT_SYMBOL_GPL(scsi_build_sense);
3431  
3432  #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3433  #include "scsi_lib_test.c"
3434  #endif
3435