1  /*
2   * This file is provided under a dual BSD/GPLv2 license.  When using or
3   * redistributing this file, you may do so under either license.
4   *
5   * GPL LICENSE SUMMARY
6   *
7   * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8   *
9   * This program is free software; you can redistribute it and/or modify
10   * it under the terms of version 2 of the GNU General Public License as
11   * published by the Free Software Foundation.
12   *
13   * This program is distributed in the hope that it will be useful, but
14   * WITHOUT ANY WARRANTY; without even the implied warranty of
15   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16   * General Public License for more details.
17   *
18   * You should have received a copy of the GNU General Public License
19   * along with this program; if not, write to the Free Software
20   * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21   * The full GNU General Public License is included in this distribution
22   * in the file called LICENSE.GPL.
23   *
24   * BSD LICENSE
25   *
26   * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27   * All rights reserved.
28   *
29   * Redistribution and use in source and binary forms, with or without
30   * modification, are permitted provided that the following conditions
31   * are met:
32   *
33   *   * Redistributions of source code must retain the above copyright
34   *     notice, this list of conditions and the following disclaimer.
35   *   * Redistributions in binary form must reproduce the above copyright
36   *     notice, this list of conditions and the following disclaimer in
37   *     the documentation and/or other materials provided with the
38   *     distribution.
39   *   * Neither the name of Intel Corporation nor the names of its
40   *     contributors may be used to endorse or promote products derived
41   *     from this software without specific prior written permission.
42   *
43   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44   * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45   * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46   * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47   * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49   * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50   * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51   * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53   * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54   */
55  #include <linux/circ_buf.h>
56  #include <linux/device.h>
57  #include <scsi/sas.h>
58  #include "host.h"
59  #include "isci.h"
60  #include "port.h"
61  #include "probe_roms.h"
62  #include "remote_device.h"
63  #include "request.h"
64  #include "scu_completion_codes.h"
65  #include "scu_event_codes.h"
66  #include "registers.h"
67  #include "scu_remote_node_context.h"
68  #include "scu_task_context.h"
69  
70  #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
71  
72  #define smu_max_ports(dcc_value) \
73  	(\
74  		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75  		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76  	)
77  
78  #define smu_max_task_contexts(dcc_value)	\
79  	(\
80  		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81  		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82  	)
83  
84  #define smu_max_rncs(dcc_value) \
85  	(\
86  		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87  		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88  	)
89  
90  #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
91  
92  /*
93   * The number of milliseconds to wait while a given phy is consuming power
94   * before allowing another set of phys to consume power. Ultimately, this will
95   * be specified by OEM parameter.
96   */
97  #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
98  
99  /*
100   * NORMALIZE_PUT_POINTER() -
101   *
102   * This macro will normalize the completion queue put pointer so its value can
103   * be used as an array inde
104   */
105  #define NORMALIZE_PUT_POINTER(x) \
106  	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
107  
108  
109  /*
110   * NORMALIZE_EVENT_POINTER() -
111   *
112   * This macro will normalize the completion queue event entry so its value can
113   * be used as an index.
114   */
115  #define NORMALIZE_EVENT_POINTER(x) \
116  	(\
117  		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
118  		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
119  	)
120  
121  /*
122   * NORMALIZE_GET_POINTER() -
123   *
124   * This macro will normalize the completion queue get pointer so its value can
125   * be used as an index into an array
126   */
127  #define NORMALIZE_GET_POINTER(x) \
128  	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
129  
130  /*
131   * NORMALIZE_GET_POINTER_CYCLE_BIT() -
132   *
133   * This macro will normalize the completion queue cycle pointer so it matches
134   * the completion queue cycle bit
135   */
136  #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
137  	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
138  
139  /*
140   * COMPLETION_QUEUE_CYCLE_BIT() -
141   *
142   * This macro will return the cycle bit of the completion queue entry
143   */
144  #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
145  
146  /* Init the state machine and call the state entry function (if any) */
sci_init_sm(struct sci_base_state_machine * sm,const struct sci_base_state * state_table,u32 initial_state)147  void sci_init_sm(struct sci_base_state_machine *sm,
148  		 const struct sci_base_state *state_table, u32 initial_state)
149  {
150  	sci_state_transition_t handler;
151  
152  	sm->initial_state_id    = initial_state;
153  	sm->previous_state_id   = initial_state;
154  	sm->current_state_id    = initial_state;
155  	sm->state_table         = state_table;
156  
157  	handler = sm->state_table[initial_state].enter_state;
158  	if (handler)
159  		handler(sm);
160  }
161  
162  /* Call the state exit fn, update the current state, call the state entry fn */
sci_change_state(struct sci_base_state_machine * sm,u32 next_state)163  void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
164  {
165  	sci_state_transition_t handler;
166  
167  	handler = sm->state_table[sm->current_state_id].exit_state;
168  	if (handler)
169  		handler(sm);
170  
171  	sm->previous_state_id = sm->current_state_id;
172  	sm->current_state_id = next_state;
173  
174  	handler = sm->state_table[sm->current_state_id].enter_state;
175  	if (handler)
176  		handler(sm);
177  }
178  
sci_controller_completion_queue_has_entries(struct isci_host * ihost)179  static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
180  {
181  	u32 get_value = ihost->completion_queue_get;
182  	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
183  
184  	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
185  	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
186  		return true;
187  
188  	return false;
189  }
190  
sci_controller_isr(struct isci_host * ihost)191  static bool sci_controller_isr(struct isci_host *ihost)
192  {
193  	if (sci_controller_completion_queue_has_entries(ihost))
194  		return true;
195  
196  	/* we have a spurious interrupt it could be that we have already
197  	 * emptied the completion queue from a previous interrupt
198  	 * FIXME: really!?
199  	 */
200  	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
201  
202  	/* There is a race in the hardware that could cause us not to be
203  	 * notified of an interrupt completion if we do not take this
204  	 * step.  We will mask then unmask the interrupts so if there is
205  	 * another interrupt pending the clearing of the interrupt
206  	 * source we get the next interrupt message.
207  	 */
208  	spin_lock(&ihost->scic_lock);
209  	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
210  		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
211  		writel(0, &ihost->smu_registers->interrupt_mask);
212  	}
213  	spin_unlock(&ihost->scic_lock);
214  
215  	return false;
216  }
217  
isci_msix_isr(int vec,void * data)218  irqreturn_t isci_msix_isr(int vec, void *data)
219  {
220  	struct isci_host *ihost = data;
221  
222  	if (sci_controller_isr(ihost))
223  		tasklet_schedule(&ihost->completion_tasklet);
224  
225  	return IRQ_HANDLED;
226  }
227  
sci_controller_error_isr(struct isci_host * ihost)228  static bool sci_controller_error_isr(struct isci_host *ihost)
229  {
230  	u32 interrupt_status;
231  
232  	interrupt_status =
233  		readl(&ihost->smu_registers->interrupt_status);
234  	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
235  
236  	if (interrupt_status != 0) {
237  		/*
238  		 * There is an error interrupt pending so let it through and handle
239  		 * in the callback */
240  		return true;
241  	}
242  
243  	/*
244  	 * There is a race in the hardware that could cause us not to be notified
245  	 * of an interrupt completion if we do not take this step.  We will mask
246  	 * then unmask the error interrupts so if there was another interrupt
247  	 * pending we will be notified.
248  	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
249  	writel(0xff, &ihost->smu_registers->interrupt_mask);
250  	writel(0, &ihost->smu_registers->interrupt_mask);
251  
252  	return false;
253  }
254  
sci_controller_task_completion(struct isci_host * ihost,u32 ent)255  static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
256  {
257  	u32 index = SCU_GET_COMPLETION_INDEX(ent);
258  	struct isci_request *ireq = ihost->reqs[index];
259  
260  	/* Make sure that we really want to process this IO request */
261  	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
262  	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
263  	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
264  		/* Yep this is a valid io request pass it along to the
265  		 * io request handler
266  		 */
267  		sci_io_request_tc_completion(ireq, ent);
268  }
269  
sci_controller_sdma_completion(struct isci_host * ihost,u32 ent)270  static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
271  {
272  	u32 index;
273  	struct isci_request *ireq;
274  	struct isci_remote_device *idev;
275  
276  	index = SCU_GET_COMPLETION_INDEX(ent);
277  
278  	switch (scu_get_command_request_type(ent)) {
279  	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
280  	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
281  		ireq = ihost->reqs[index];
282  		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
283  			 __func__, ent, ireq);
284  		/* @todo For a post TC operation we need to fail the IO
285  		 * request
286  		 */
287  		break;
288  	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
289  	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
290  	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
291  		idev = ihost->device_table[index];
292  		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
293  			 __func__, ent, idev);
294  		/* @todo For a port RNC operation we need to fail the
295  		 * device
296  		 */
297  		break;
298  	default:
299  		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
300  			 __func__, ent);
301  		break;
302  	}
303  }
304  
sci_controller_unsolicited_frame(struct isci_host * ihost,u32 ent)305  static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
306  {
307  	u32 index;
308  	u32 frame_index;
309  
310  	struct scu_unsolicited_frame_header *frame_header;
311  	struct isci_phy *iphy;
312  	struct isci_remote_device *idev;
313  
314  	enum sci_status result = SCI_FAILURE;
315  
316  	frame_index = SCU_GET_FRAME_INDEX(ent);
317  
318  	frame_header = ihost->uf_control.buffers.array[frame_index].header;
319  	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
320  
321  	if (SCU_GET_FRAME_ERROR(ent)) {
322  		/*
323  		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
324  		 * /       this cause a problem? We expect the phy initialization will
325  		 * /       fail if there is an error in the frame. */
326  		sci_controller_release_frame(ihost, frame_index);
327  		return;
328  	}
329  
330  	if (frame_header->is_address_frame) {
331  		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
332  		iphy = &ihost->phys[index];
333  		result = sci_phy_frame_handler(iphy, frame_index);
334  	} else {
335  
336  		index = SCU_GET_COMPLETION_INDEX(ent);
337  
338  		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
339  			/*
340  			 * This is a signature fis or a frame from a direct attached SATA
341  			 * device that has not yet been created.  In either case forwared
342  			 * the frame to the PE and let it take care of the frame data. */
343  			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
344  			iphy = &ihost->phys[index];
345  			result = sci_phy_frame_handler(iphy, frame_index);
346  		} else {
347  			if (index < ihost->remote_node_entries)
348  				idev = ihost->device_table[index];
349  			else
350  				idev = NULL;
351  
352  			if (idev != NULL)
353  				result = sci_remote_device_frame_handler(idev, frame_index);
354  			else
355  				sci_controller_release_frame(ihost, frame_index);
356  		}
357  	}
358  
359  	if (result != SCI_SUCCESS) {
360  		/*
361  		 * / @todo Is there any reason to report some additional error message
362  		 * /       when we get this failure notifiction? */
363  	}
364  }
365  
sci_controller_event_completion(struct isci_host * ihost,u32 ent)366  static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
367  {
368  	struct isci_remote_device *idev;
369  	struct isci_request *ireq;
370  	struct isci_phy *iphy;
371  	u32 index;
372  
373  	index = SCU_GET_COMPLETION_INDEX(ent);
374  
375  	switch (scu_get_event_type(ent)) {
376  	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
377  		/* / @todo The driver did something wrong and we need to fix the condtion. */
378  		dev_err(&ihost->pdev->dev,
379  			"%s: SCIC Controller 0x%p received SMU command error "
380  			"0x%x\n",
381  			__func__,
382  			ihost,
383  			ent);
384  		break;
385  
386  	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
387  	case SCU_EVENT_TYPE_SMU_ERROR:
388  	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
389  		/*
390  		 * / @todo This is a hardware failure and its likely that we want to
391  		 * /       reset the controller. */
392  		dev_err(&ihost->pdev->dev,
393  			"%s: SCIC Controller 0x%p received fatal controller "
394  			"event  0x%x\n",
395  			__func__,
396  			ihost,
397  			ent);
398  		break;
399  
400  	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
401  		ireq = ihost->reqs[index];
402  		sci_io_request_event_handler(ireq, ent);
403  		break;
404  
405  	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
406  		switch (scu_get_event_specifier(ent)) {
407  		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
408  		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
409  			ireq = ihost->reqs[index];
410  			if (ireq != NULL)
411  				sci_io_request_event_handler(ireq, ent);
412  			else
413  				dev_warn(&ihost->pdev->dev,
414  					 "%s: SCIC Controller 0x%p received "
415  					 "event 0x%x for io request object "
416  					 "that doesn't exist.\n",
417  					 __func__,
418  					 ihost,
419  					 ent);
420  
421  			break;
422  
423  		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
424  			idev = ihost->device_table[index];
425  			if (idev != NULL)
426  				sci_remote_device_event_handler(idev, ent);
427  			else
428  				dev_warn(&ihost->pdev->dev,
429  					 "%s: SCIC Controller 0x%p received "
430  					 "event 0x%x for remote device object "
431  					 "that doesn't exist.\n",
432  					 __func__,
433  					 ihost,
434  					 ent);
435  
436  			break;
437  		}
438  		break;
439  
440  	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
441  	/*
442  	 * direct the broadcast change event to the phy first and then let
443  	 * the phy redirect the broadcast change to the port object */
444  	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
445  	/*
446  	 * direct error counter event to the phy object since that is where
447  	 * we get the event notification.  This is a type 4 event. */
448  	case SCU_EVENT_TYPE_OSSP_EVENT:
449  		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
450  		iphy = &ihost->phys[index];
451  		sci_phy_event_handler(iphy, ent);
452  		break;
453  
454  	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
455  	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
456  	case SCU_EVENT_TYPE_RNC_OPS_MISC:
457  		if (index < ihost->remote_node_entries) {
458  			idev = ihost->device_table[index];
459  
460  			if (idev != NULL)
461  				sci_remote_device_event_handler(idev, ent);
462  		} else
463  			dev_err(&ihost->pdev->dev,
464  				"%s: SCIC Controller 0x%p received event 0x%x "
465  				"for remote device object 0x%0x that doesn't "
466  				"exist.\n",
467  				__func__,
468  				ihost,
469  				ent,
470  				index);
471  
472  		break;
473  
474  	default:
475  		dev_warn(&ihost->pdev->dev,
476  			 "%s: SCIC Controller received unknown event code %x\n",
477  			 __func__,
478  			 ent);
479  		break;
480  	}
481  }
482  
sci_controller_process_completions(struct isci_host * ihost)483  static void sci_controller_process_completions(struct isci_host *ihost)
484  {
485  	u32 completion_count = 0;
486  	u32 ent;
487  	u32 get_index;
488  	u32 get_cycle;
489  	u32 event_get;
490  	u32 event_cycle;
491  
492  	dev_dbg(&ihost->pdev->dev,
493  		"%s: completion queue beginning get:0x%08x\n",
494  		__func__,
495  		ihost->completion_queue_get);
496  
497  	/* Get the component parts of the completion queue */
498  	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
499  	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
500  
501  	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
502  	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
503  
504  	while (
505  		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
506  		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
507  		) {
508  		completion_count++;
509  
510  		ent = ihost->completion_queue[get_index];
511  
512  		/* increment the get pointer and check for rollover to toggle the cycle bit */
513  		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
514  			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
515  		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
516  
517  		dev_dbg(&ihost->pdev->dev,
518  			"%s: completion queue entry:0x%08x\n",
519  			__func__,
520  			ent);
521  
522  		switch (SCU_GET_COMPLETION_TYPE(ent)) {
523  		case SCU_COMPLETION_TYPE_TASK:
524  			sci_controller_task_completion(ihost, ent);
525  			break;
526  
527  		case SCU_COMPLETION_TYPE_SDMA:
528  			sci_controller_sdma_completion(ihost, ent);
529  			break;
530  
531  		case SCU_COMPLETION_TYPE_UFI:
532  			sci_controller_unsolicited_frame(ihost, ent);
533  			break;
534  
535  		case SCU_COMPLETION_TYPE_EVENT:
536  			sci_controller_event_completion(ihost, ent);
537  			break;
538  
539  		case SCU_COMPLETION_TYPE_NOTIFY: {
540  			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
541  				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
542  			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
543  
544  			sci_controller_event_completion(ihost, ent);
545  			break;
546  		}
547  		default:
548  			dev_warn(&ihost->pdev->dev,
549  				 "%s: SCIC Controller received unknown "
550  				 "completion type %x\n",
551  				 __func__,
552  				 ent);
553  			break;
554  		}
555  	}
556  
557  	/* Update the get register if we completed one or more entries */
558  	if (completion_count > 0) {
559  		ihost->completion_queue_get =
560  			SMU_CQGR_GEN_BIT(ENABLE) |
561  			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
562  			event_cycle |
563  			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
564  			get_cycle |
565  			SMU_CQGR_GEN_VAL(POINTER, get_index);
566  
567  		writel(ihost->completion_queue_get,
568  		       &ihost->smu_registers->completion_queue_get);
569  
570  	}
571  
572  	dev_dbg(&ihost->pdev->dev,
573  		"%s: completion queue ending get:0x%08x\n",
574  		__func__,
575  		ihost->completion_queue_get);
576  
577  }
578  
sci_controller_error_handler(struct isci_host * ihost)579  static void sci_controller_error_handler(struct isci_host *ihost)
580  {
581  	u32 interrupt_status;
582  
583  	interrupt_status =
584  		readl(&ihost->smu_registers->interrupt_status);
585  
586  	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
587  	    sci_controller_completion_queue_has_entries(ihost)) {
588  
589  		sci_controller_process_completions(ihost);
590  		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
591  	} else {
592  		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
593  			interrupt_status);
594  
595  		sci_change_state(&ihost->sm, SCIC_FAILED);
596  
597  		return;
598  	}
599  
600  	/* If we dont process any completions I am not sure that we want to do this.
601  	 * We are in the middle of a hardware fault and should probably be reset.
602  	 */
603  	writel(0, &ihost->smu_registers->interrupt_mask);
604  }
605  
isci_intx_isr(int vec,void * data)606  irqreturn_t isci_intx_isr(int vec, void *data)
607  {
608  	irqreturn_t ret = IRQ_NONE;
609  	struct isci_host *ihost = data;
610  
611  	if (sci_controller_isr(ihost)) {
612  		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
613  		tasklet_schedule(&ihost->completion_tasklet);
614  		ret = IRQ_HANDLED;
615  	} else if (sci_controller_error_isr(ihost)) {
616  		spin_lock(&ihost->scic_lock);
617  		sci_controller_error_handler(ihost);
618  		spin_unlock(&ihost->scic_lock);
619  		ret = IRQ_HANDLED;
620  	}
621  
622  	return ret;
623  }
624  
isci_error_isr(int vec,void * data)625  irqreturn_t isci_error_isr(int vec, void *data)
626  {
627  	struct isci_host *ihost = data;
628  
629  	if (sci_controller_error_isr(ihost))
630  		sci_controller_error_handler(ihost);
631  
632  	return IRQ_HANDLED;
633  }
634  
635  /**
636   * isci_host_start_complete() - This function is called by the core library,
637   *    through the ISCI Module, to indicate controller start status.
638   * @ihost: This parameter specifies the ISCI host object
639   * @completion_status: This parameter specifies the completion status from the
640   *    core library.
641   *
642   */
isci_host_start_complete(struct isci_host * ihost,enum sci_status completion_status)643  static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
644  {
645  	if (completion_status != SCI_SUCCESS)
646  		dev_info(&ihost->pdev->dev,
647  			"controller start timed out, continuing...\n");
648  	clear_bit(IHOST_START_PENDING, &ihost->flags);
649  	wake_up(&ihost->eventq);
650  }
651  
isci_host_scan_finished(struct Scsi_Host * shost,unsigned long time)652  int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
653  {
654  	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
655  	struct isci_host *ihost = ha->lldd_ha;
656  
657  	if (test_bit(IHOST_START_PENDING, &ihost->flags))
658  		return 0;
659  
660  	sas_drain_work(ha);
661  
662  	return 1;
663  }
664  
665  /**
666   * sci_controller_get_suggested_start_timeout() - This method returns the
667   *    suggested sci_controller_start() timeout amount.  The user is free to
668   *    use any timeout value, but this method provides the suggested minimum
669   *    start timeout value.  The returned value is based upon empirical
670   *    information determined as a result of interoperability testing.
671   * @ihost: the handle to the controller object for which to return the
672   *    suggested start timeout.
673   *
674   * This method returns the number of milliseconds for the suggested start
675   * operation timeout.
676   */
sci_controller_get_suggested_start_timeout(struct isci_host * ihost)677  static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
678  {
679  	/* Validate the user supplied parameters. */
680  	if (!ihost)
681  		return 0;
682  
683  	/*
684  	 * The suggested minimum timeout value for a controller start operation:
685  	 *
686  	 *     Signature FIS Timeout
687  	 *   + Phy Start Timeout
688  	 *   + Number of Phy Spin Up Intervals
689  	 *   ---------------------------------
690  	 *   Number of milliseconds for the controller start operation.
691  	 *
692  	 * NOTE: The number of phy spin up intervals will be equivalent
693  	 *       to the number of phys divided by the number phys allowed
694  	 *       per interval - 1 (once OEM parameters are supported).
695  	 *       Currently we assume only 1 phy per interval. */
696  
697  	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
698  		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
699  		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
700  }
701  
sci_controller_enable_interrupts(struct isci_host * ihost)702  static void sci_controller_enable_interrupts(struct isci_host *ihost)
703  {
704  	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
705  	writel(0, &ihost->smu_registers->interrupt_mask);
706  }
707  
sci_controller_disable_interrupts(struct isci_host * ihost)708  void sci_controller_disable_interrupts(struct isci_host *ihost)
709  {
710  	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
711  	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
712  	readl(&ihost->smu_registers->interrupt_mask); /* flush */
713  }
714  
sci_controller_enable_port_task_scheduler(struct isci_host * ihost)715  static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
716  {
717  	u32 port_task_scheduler_value;
718  
719  	port_task_scheduler_value =
720  		readl(&ihost->scu_registers->peg0.ptsg.control);
721  	port_task_scheduler_value |=
722  		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
723  		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
724  	writel(port_task_scheduler_value,
725  	       &ihost->scu_registers->peg0.ptsg.control);
726  }
727  
sci_controller_assign_task_entries(struct isci_host * ihost)728  static void sci_controller_assign_task_entries(struct isci_host *ihost)
729  {
730  	u32 task_assignment;
731  
732  	/*
733  	 * Assign all the TCs to function 0
734  	 * TODO: Do we actually need to read this register to write it back?
735  	 */
736  
737  	task_assignment =
738  		readl(&ihost->smu_registers->task_context_assignment[0]);
739  
740  	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
741  		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
742  		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
743  
744  	writel(task_assignment,
745  		&ihost->smu_registers->task_context_assignment[0]);
746  
747  }
748  
sci_controller_initialize_completion_queue(struct isci_host * ihost)749  static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
750  {
751  	u32 index;
752  	u32 completion_queue_control_value;
753  	u32 completion_queue_get_value;
754  	u32 completion_queue_put_value;
755  
756  	ihost->completion_queue_get = 0;
757  
758  	completion_queue_control_value =
759  		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
760  		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
761  
762  	writel(completion_queue_control_value,
763  	       &ihost->smu_registers->completion_queue_control);
764  
765  
766  	/* Set the completion queue get pointer and enable the queue */
767  	completion_queue_get_value = (
768  		(SMU_CQGR_GEN_VAL(POINTER, 0))
769  		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
770  		| (SMU_CQGR_GEN_BIT(ENABLE))
771  		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
772  		);
773  
774  	writel(completion_queue_get_value,
775  	       &ihost->smu_registers->completion_queue_get);
776  
777  	/* Set the completion queue put pointer */
778  	completion_queue_put_value = (
779  		(SMU_CQPR_GEN_VAL(POINTER, 0))
780  		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
781  		);
782  
783  	writel(completion_queue_put_value,
784  	       &ihost->smu_registers->completion_queue_put);
785  
786  	/* Initialize the cycle bit of the completion queue entries */
787  	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
788  		/*
789  		 * If get.cycle_bit != completion_queue.cycle_bit
790  		 * its not a valid completion queue entry
791  		 * so at system start all entries are invalid */
792  		ihost->completion_queue[index] = 0x80000000;
793  	}
794  }
795  
sci_controller_initialize_unsolicited_frame_queue(struct isci_host * ihost)796  static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
797  {
798  	u32 frame_queue_control_value;
799  	u32 frame_queue_get_value;
800  	u32 frame_queue_put_value;
801  
802  	/* Write the queue size */
803  	frame_queue_control_value =
804  		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
805  
806  	writel(frame_queue_control_value,
807  	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
808  
809  	/* Setup the get pointer for the unsolicited frame queue */
810  	frame_queue_get_value = (
811  		SCU_UFQGP_GEN_VAL(POINTER, 0)
812  		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
813  		);
814  
815  	writel(frame_queue_get_value,
816  	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
817  	/* Setup the put pointer for the unsolicited frame queue */
818  	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
819  	writel(frame_queue_put_value,
820  	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
821  }
822  
sci_controller_transition_to_ready(struct isci_host * ihost,enum sci_status status)823  void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
824  {
825  	if (ihost->sm.current_state_id == SCIC_STARTING) {
826  		/*
827  		 * We move into the ready state, because some of the phys/ports
828  		 * may be up and operational.
829  		 */
830  		sci_change_state(&ihost->sm, SCIC_READY);
831  
832  		isci_host_start_complete(ihost, status);
833  	}
834  }
835  
is_phy_starting(struct isci_phy * iphy)836  static bool is_phy_starting(struct isci_phy *iphy)
837  {
838  	enum sci_phy_states state;
839  
840  	state = iphy->sm.current_state_id;
841  	switch (state) {
842  	case SCI_PHY_STARTING:
843  	case SCI_PHY_SUB_INITIAL:
844  	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
845  	case SCI_PHY_SUB_AWAIT_IAF_UF:
846  	case SCI_PHY_SUB_AWAIT_SAS_POWER:
847  	case SCI_PHY_SUB_AWAIT_SATA_POWER:
848  	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
849  	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
850  	case SCI_PHY_SUB_AWAIT_OSSP_EN:
851  	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
852  	case SCI_PHY_SUB_FINAL:
853  		return true;
854  	default:
855  		return false;
856  	}
857  }
858  
is_controller_start_complete(struct isci_host * ihost)859  bool is_controller_start_complete(struct isci_host *ihost)
860  {
861  	int i;
862  
863  	for (i = 0; i < SCI_MAX_PHYS; i++) {
864  		struct isci_phy *iphy = &ihost->phys[i];
865  		u32 state = iphy->sm.current_state_id;
866  
867  		/* in apc mode we need to check every phy, in
868  		 * mpc mode we only need to check phys that have
869  		 * been configured into a port
870  		 */
871  		if (is_port_config_apc(ihost))
872  			/* pass */;
873  		else if (!phy_get_non_dummy_port(iphy))
874  			continue;
875  
876  		/* The controller start operation is complete iff:
877  		 * - all links have been given an opportunity to start
878  		 * - have no indication of a connected device
879  		 * - have an indication of a connected device and it has
880  		 *   finished the link training process.
881  		 */
882  		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
883  		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
884  		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
885  		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
886  			return false;
887  	}
888  
889  	return true;
890  }
891  
892  /**
893   * sci_controller_start_next_phy - start phy
894   * @ihost: controller
895   *
896   * If all the phys have been started, then attempt to transition the
897   * controller to the READY state and inform the user
898   * (sci_cb_controller_start_complete()).
899   */
sci_controller_start_next_phy(struct isci_host * ihost)900  static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
901  {
902  	struct sci_oem_params *oem = &ihost->oem_parameters;
903  	struct isci_phy *iphy;
904  	enum sci_status status;
905  
906  	status = SCI_SUCCESS;
907  
908  	if (ihost->phy_startup_timer_pending)
909  		return status;
910  
911  	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
912  		if (is_controller_start_complete(ihost)) {
913  			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
914  			sci_del_timer(&ihost->phy_timer);
915  			ihost->phy_startup_timer_pending = false;
916  		}
917  	} else {
918  		iphy = &ihost->phys[ihost->next_phy_to_start];
919  
920  		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
921  			if (phy_get_non_dummy_port(iphy) == NULL) {
922  				ihost->next_phy_to_start++;
923  
924  				/* Caution recursion ahead be forwarned
925  				 *
926  				 * The PHY was never added to a PORT in MPC mode
927  				 * so start the next phy in sequence This phy
928  				 * will never go link up and will not draw power
929  				 * the OEM parameters either configured the phy
930  				 * incorrectly for the PORT or it was never
931  				 * assigned to a PORT
932  				 */
933  				return sci_controller_start_next_phy(ihost);
934  			}
935  		}
936  
937  		status = sci_phy_start(iphy);
938  
939  		if (status == SCI_SUCCESS) {
940  			sci_mod_timer(&ihost->phy_timer,
941  				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
942  			ihost->phy_startup_timer_pending = true;
943  		} else {
944  			dev_warn(&ihost->pdev->dev,
945  				 "%s: Controller stop operation failed "
946  				 "to stop phy %d because of status "
947  				 "%d.\n",
948  				 __func__,
949  				 ihost->phys[ihost->next_phy_to_start].phy_index,
950  				 status);
951  		}
952  
953  		ihost->next_phy_to_start++;
954  	}
955  
956  	return status;
957  }
958  
phy_startup_timeout(struct timer_list * t)959  static void phy_startup_timeout(struct timer_list *t)
960  {
961  	struct sci_timer *tmr = from_timer(tmr, t, timer);
962  	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
963  	unsigned long flags;
964  	enum sci_status status;
965  
966  	spin_lock_irqsave(&ihost->scic_lock, flags);
967  
968  	if (tmr->cancel)
969  		goto done;
970  
971  	ihost->phy_startup_timer_pending = false;
972  
973  	do {
974  		status = sci_controller_start_next_phy(ihost);
975  	} while (status != SCI_SUCCESS);
976  
977  done:
978  	spin_unlock_irqrestore(&ihost->scic_lock, flags);
979  }
980  
isci_tci_active(struct isci_host * ihost)981  static u16 isci_tci_active(struct isci_host *ihost)
982  {
983  	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
984  }
985  
sci_controller_start(struct isci_host * ihost,u32 timeout)986  static enum sci_status sci_controller_start(struct isci_host *ihost,
987  					     u32 timeout)
988  {
989  	enum sci_status result;
990  	u16 index;
991  
992  	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
993  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
994  			 __func__, ihost->sm.current_state_id);
995  		return SCI_FAILURE_INVALID_STATE;
996  	}
997  
998  	/* Build the TCi free pool */
999  	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000  	ihost->tci_head = 0;
1001  	ihost->tci_tail = 0;
1002  	for (index = 0; index < ihost->task_context_entries; index++)
1003  		isci_tci_free(ihost, index);
1004  
1005  	/* Build the RNi free pool */
1006  	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007  					 ihost->remote_node_entries);
1008  
1009  	/*
1010  	 * Before anything else lets make sure we will not be
1011  	 * interrupted by the hardware.
1012  	 */
1013  	sci_controller_disable_interrupts(ihost);
1014  
1015  	/* Enable the port task scheduler */
1016  	sci_controller_enable_port_task_scheduler(ihost);
1017  
1018  	/* Assign all the task entries to ihost physical function */
1019  	sci_controller_assign_task_entries(ihost);
1020  
1021  	/* Now initialize the completion queue */
1022  	sci_controller_initialize_completion_queue(ihost);
1023  
1024  	/* Initialize the unsolicited frame queue for use */
1025  	sci_controller_initialize_unsolicited_frame_queue(ihost);
1026  
1027  	/* Start all of the ports on this controller */
1028  	for (index = 0; index < ihost->logical_port_entries; index++) {
1029  		struct isci_port *iport = &ihost->ports[index];
1030  
1031  		result = sci_port_start(iport);
1032  		if (result)
1033  			return result;
1034  	}
1035  
1036  	sci_controller_start_next_phy(ihost);
1037  
1038  	sci_mod_timer(&ihost->timer, timeout);
1039  
1040  	sci_change_state(&ihost->sm, SCIC_STARTING);
1041  
1042  	return SCI_SUCCESS;
1043  }
1044  
isci_host_start(struct Scsi_Host * shost)1045  void isci_host_start(struct Scsi_Host *shost)
1046  {
1047  	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048  	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049  
1050  	set_bit(IHOST_START_PENDING, &ihost->flags);
1051  
1052  	spin_lock_irq(&ihost->scic_lock);
1053  	sci_controller_start(ihost, tmo);
1054  	sci_controller_enable_interrupts(ihost);
1055  	spin_unlock_irq(&ihost->scic_lock);
1056  }
1057  
isci_host_stop_complete(struct isci_host * ihost)1058  static void isci_host_stop_complete(struct isci_host *ihost)
1059  {
1060  	sci_controller_disable_interrupts(ihost);
1061  	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1062  	wake_up(&ihost->eventq);
1063  }
1064  
sci_controller_completion_handler(struct isci_host * ihost)1065  static void sci_controller_completion_handler(struct isci_host *ihost)
1066  {
1067  	/* Empty out the completion queue */
1068  	if (sci_controller_completion_queue_has_entries(ihost))
1069  		sci_controller_process_completions(ihost);
1070  
1071  	/* Clear the interrupt and enable all interrupts again */
1072  	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1073  	/* Could we write the value of SMU_ISR_COMPLETION? */
1074  	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1075  	writel(0, &ihost->smu_registers->interrupt_mask);
1076  }
1077  
ireq_done(struct isci_host * ihost,struct isci_request * ireq,struct sas_task * task)1078  void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1079  {
1080  	if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1081  	    !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1082  		if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1083  			/* Normal notification (task_done) */
1084  			dev_dbg(&ihost->pdev->dev,
1085  				"%s: Normal - ireq/task = %p/%p\n",
1086  				__func__, ireq, task);
1087  			task->lldd_task = NULL;
1088  			task->task_done(task);
1089  		} else {
1090  			dev_dbg(&ihost->pdev->dev,
1091  				"%s: Error - ireq/task = %p/%p\n",
1092  				__func__, ireq, task);
1093  			if (sas_protocol_ata(task->task_proto))
1094  				task->lldd_task = NULL;
1095  			sas_task_abort(task);
1096  		}
1097  	} else
1098  		task->lldd_task = NULL;
1099  
1100  	if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101  		wake_up_all(&ihost->eventq);
1102  
1103  	if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104  		isci_free_tag(ihost, ireq->io_tag);
1105  }
1106  /**
1107   * isci_host_completion_routine() - This function is the delayed service
1108   *    routine that calls the sci core library's completion handler. It's
1109   *    scheduled as a tasklet from the interrupt service routine when interrupts
1110   *    in use, or set as the timeout function in polled mode.
1111   * @data: This parameter specifies the ISCI host object
1112   *
1113   */
isci_host_completion_routine(unsigned long data)1114  void isci_host_completion_routine(unsigned long data)
1115  {
1116  	struct isci_host *ihost = (struct isci_host *)data;
1117  	u16 active;
1118  
1119  	spin_lock_irq(&ihost->scic_lock);
1120  	sci_controller_completion_handler(ihost);
1121  	spin_unlock_irq(&ihost->scic_lock);
1122  
1123  	/*
1124  	 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125  	 * issued for hardware issue workaround
1126  	 */
1127  	active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1128  
1129  	/*
1130  	 * the coalesence timeout doubles at each encoding step, so
1131  	 * update it based on the ilog2 value of the outstanding requests
1132  	 */
1133  	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1134  	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1135  	       &ihost->smu_registers->interrupt_coalesce_control);
1136  }
1137  
1138  /**
1139   * sci_controller_stop() - This method will stop an individual controller
1140   *    object.This method will invoke the associated user callback upon
1141   *    completion.  The completion callback is called when the following
1142   *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143   *    controller has been quiesced. This method will ensure that all IO
1144   *    requests are quiesced, phys are stopped, and all additional operation by
1145   *    the hardware is halted.
1146   * @ihost: the handle to the controller object to stop.
1147   * @timeout: This parameter specifies the number of milliseconds in which the
1148   *    stop operation should complete.
1149   *
1150   * The controller must be in the STARTED or STOPPED state. Indicate if the
1151   * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152   * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153   * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154   * controller is not either in the STARTED or STOPPED states.
1155   */
sci_controller_stop(struct isci_host * ihost,u32 timeout)1156  static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1157  {
1158  	if (ihost->sm.current_state_id != SCIC_READY) {
1159  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1160  			 __func__, ihost->sm.current_state_id);
1161  		return SCI_FAILURE_INVALID_STATE;
1162  	}
1163  
1164  	sci_mod_timer(&ihost->timer, timeout);
1165  	sci_change_state(&ihost->sm, SCIC_STOPPING);
1166  	return SCI_SUCCESS;
1167  }
1168  
1169  /**
1170   * sci_controller_reset() - This method will reset the supplied core
1171   *    controller regardless of the state of said controller.  This operation is
1172   *    considered destructive.  In other words, all current operations are wiped
1173   *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1174   *    requests are not aborted or completed at the actual remote device.
1175   * @ihost: the handle to the controller object to reset.
1176   *
1177   * Indicate if the controller reset method succeeded or failed in some way.
1178   * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179   * the controller reset operation is unable to complete.
1180   */
sci_controller_reset(struct isci_host * ihost)1181  static enum sci_status sci_controller_reset(struct isci_host *ihost)
1182  {
1183  	switch (ihost->sm.current_state_id) {
1184  	case SCIC_RESET:
1185  	case SCIC_READY:
1186  	case SCIC_STOPPING:
1187  	case SCIC_FAILED:
1188  		/*
1189  		 * The reset operation is not a graceful cleanup, just
1190  		 * perform the state transition.
1191  		 */
1192  		sci_change_state(&ihost->sm, SCIC_RESETTING);
1193  		return SCI_SUCCESS;
1194  	default:
1195  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1196  			 __func__, ihost->sm.current_state_id);
1197  		return SCI_FAILURE_INVALID_STATE;
1198  	}
1199  }
1200  
sci_controller_stop_phys(struct isci_host * ihost)1201  static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1202  {
1203  	u32 index;
1204  	enum sci_status status;
1205  	enum sci_status phy_status;
1206  
1207  	status = SCI_SUCCESS;
1208  
1209  	for (index = 0; index < SCI_MAX_PHYS; index++) {
1210  		phy_status = sci_phy_stop(&ihost->phys[index]);
1211  
1212  		if (phy_status != SCI_SUCCESS &&
1213  		    phy_status != SCI_FAILURE_INVALID_STATE) {
1214  			status = SCI_FAILURE;
1215  
1216  			dev_warn(&ihost->pdev->dev,
1217  				 "%s: Controller stop operation failed to stop "
1218  				 "phy %d because of status %d.\n",
1219  				 __func__,
1220  				 ihost->phys[index].phy_index, phy_status);
1221  		}
1222  	}
1223  
1224  	return status;
1225  }
1226  
1227  
1228  /**
1229   * isci_host_deinit - shutdown frame reception and dma
1230   * @ihost: host to take down
1231   *
1232   * This is called in either the driver shutdown or the suspend path.  In
1233   * the shutdown case libsas went through port teardown and normal device
1234   * removal (i.e. physical links stayed up to service scsi_device removal
1235   * commands).  In the suspend case we disable the hardware without
1236   * notifying libsas of the link down events since we want libsas to
1237   * remember the domain across the suspend/resume cycle
1238   */
isci_host_deinit(struct isci_host * ihost)1239  void isci_host_deinit(struct isci_host *ihost)
1240  {
1241  	int i;
1242  
1243  	/* disable output data selects */
1244  	for (i = 0; i < isci_gpio_count(ihost); i++)
1245  		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1246  
1247  	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1248  
1249  	spin_lock_irq(&ihost->scic_lock);
1250  	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1251  	spin_unlock_irq(&ihost->scic_lock);
1252  
1253  	wait_for_stop(ihost);
1254  
1255  	/* phy stop is after controller stop to allow port and device to
1256  	 * go idle before shutting down the phys, but the expectation is
1257  	 * that i/o has been shut off well before we reach this
1258  	 * function.
1259  	 */
1260  	sci_controller_stop_phys(ihost);
1261  
1262  	/* disable sgpio: where the above wait should give time for the
1263  	 * enclosure to sample the gpios going inactive
1264  	 */
1265  	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1266  
1267  	spin_lock_irq(&ihost->scic_lock);
1268  	sci_controller_reset(ihost);
1269  	spin_unlock_irq(&ihost->scic_lock);
1270  
1271  	/* Cancel any/all outstanding port timers */
1272  	for (i = 0; i < ihost->logical_port_entries; i++) {
1273  		struct isci_port *iport = &ihost->ports[i];
1274  		del_timer_sync(&iport->timer.timer);
1275  	}
1276  
1277  	/* Cancel any/all outstanding phy timers */
1278  	for (i = 0; i < SCI_MAX_PHYS; i++) {
1279  		struct isci_phy *iphy = &ihost->phys[i];
1280  		del_timer_sync(&iphy->sata_timer.timer);
1281  	}
1282  
1283  	del_timer_sync(&ihost->port_agent.timer.timer);
1284  
1285  	del_timer_sync(&ihost->power_control.timer.timer);
1286  
1287  	del_timer_sync(&ihost->timer.timer);
1288  
1289  	del_timer_sync(&ihost->phy_timer.timer);
1290  }
1291  
scu_base(struct isci_host * isci_host)1292  static void __iomem *scu_base(struct isci_host *isci_host)
1293  {
1294  	struct pci_dev *pdev = isci_host->pdev;
1295  	int id = isci_host->id;
1296  
1297  	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1298  }
1299  
smu_base(struct isci_host * isci_host)1300  static void __iomem *smu_base(struct isci_host *isci_host)
1301  {
1302  	struct pci_dev *pdev = isci_host->pdev;
1303  	int id = isci_host->id;
1304  
1305  	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1306  }
1307  
sci_controller_initial_state_enter(struct sci_base_state_machine * sm)1308  static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1309  {
1310  	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1311  
1312  	sci_change_state(&ihost->sm, SCIC_RESET);
1313  }
1314  
sci_controller_starting_state_exit(struct sci_base_state_machine * sm)1315  static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1316  {
1317  	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1318  
1319  	sci_del_timer(&ihost->timer);
1320  }
1321  
1322  #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323  #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324  #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1325  #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1326  #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1327  #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1328  
1329  /**
1330   * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331   *    configure the interrupt coalescence.
1332   * @ihost: This parameter represents the handle to the controller object
1333   *    for which its interrupt coalesce register is overridden.
1334   * @coalesce_number: Used to control the number of entries in the Completion
1335   *    Queue before an interrupt is generated. If the number of entries exceed
1336   *    this number, an interrupt will be generated. The valid range of the input
1337   *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1338   * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339   *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1340   *    interrupt coalescing timeout.
1341   *
1342   * Indicate if the user successfully set the interrupt coalesce parameters.
1343   * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344   * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1345   */
1346  static enum sci_status
sci_controller_set_interrupt_coalescence(struct isci_host * ihost,u32 coalesce_number,u32 coalesce_timeout)1347  sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1348  					 u32 coalesce_number,
1349  					 u32 coalesce_timeout)
1350  {
1351  	u8 timeout_encode = 0;
1352  	u32 min = 0;
1353  	u32 max = 0;
1354  
1355  	/* Check if the input parameters fall in the range. */
1356  	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1357  		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1358  
1359  	/*
1360  	 *  Defined encoding for interrupt coalescing timeout:
1361  	 *              Value   Min      Max     Units
1362  	 *              -----   ---      ---     -----
1363  	 *              0       -        -       Disabled
1364  	 *              1       13.3     20.0    ns
1365  	 *              2       26.7     40.0
1366  	 *              3       53.3     80.0
1367  	 *              4       106.7    160.0
1368  	 *              5       213.3    320.0
1369  	 *              6       426.7    640.0
1370  	 *              7       853.3    1280.0
1371  	 *              8       1.7      2.6     us
1372  	 *              9       3.4      5.1
1373  	 *              10      6.8      10.2
1374  	 *              11      13.7     20.5
1375  	 *              12      27.3     41.0
1376  	 *              13      54.6     81.9
1377  	 *              14      109.2    163.8
1378  	 *              15      218.5    327.7
1379  	 *              16      436.9    655.4
1380  	 *              17      873.8    1310.7
1381  	 *              18      1.7      2.6     ms
1382  	 *              19      3.5      5.2
1383  	 *              20      7.0      10.5
1384  	 *              21      14.0     21.0
1385  	 *              22      28.0     41.9
1386  	 *              23      55.9     83.9
1387  	 *              24      111.8    167.8
1388  	 *              25      223.7    335.5
1389  	 *              26      447.4    671.1
1390  	 *              27      894.8    1342.2
1391  	 *              28      1.8      2.7     s
1392  	 *              Others Undefined */
1393  
1394  	/*
1395  	 * Use the table above to decide the encode of interrupt coalescing timeout
1396  	 * value for register writing. */
1397  	if (coalesce_timeout == 0)
1398  		timeout_encode = 0;
1399  	else{
1400  		/* make the timeout value in unit of (10 ns). */
1401  		coalesce_timeout = coalesce_timeout * 100;
1402  		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1403  		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1404  
1405  		/* get the encode of timeout for register writing. */
1406  		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1407  		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1408  		      timeout_encode++) {
1409  			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1410  				break;
1411  			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1412  				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1413  				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1414  					break;
1415  				else{
1416  					timeout_encode++;
1417  					break;
1418  				}
1419  			} else {
1420  				max = max * 2;
1421  				min = min * 2;
1422  			}
1423  		}
1424  
1425  		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1426  			/* the value is out of range. */
1427  			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1428  	}
1429  
1430  	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1431  	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1432  	       &ihost->smu_registers->interrupt_coalesce_control);
1433  
1434  
1435  	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1436  	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1437  
1438  	return SCI_SUCCESS;
1439  }
1440  
1441  
sci_controller_ready_state_enter(struct sci_base_state_machine * sm)1442  static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1443  {
1444  	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1445  	u32 val;
1446  
1447  	/* enable clock gating for power control of the scu unit */
1448  	val = readl(&ihost->smu_registers->clock_gating_control);
1449  	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1450  		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1451  		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1452  	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1453  	writel(val, &ihost->smu_registers->clock_gating_control);
1454  
1455  	/* set the default interrupt coalescence number and timeout value. */
1456  	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1457  }
1458  
sci_controller_ready_state_exit(struct sci_base_state_machine * sm)1459  static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1460  {
1461  	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1462  
1463  	/* disable interrupt coalescence. */
1464  	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1465  }
1466  
sci_controller_stop_ports(struct isci_host * ihost)1467  static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1468  {
1469  	u32 index;
1470  	enum sci_status port_status;
1471  	enum sci_status status = SCI_SUCCESS;
1472  
1473  	for (index = 0; index < ihost->logical_port_entries; index++) {
1474  		struct isci_port *iport = &ihost->ports[index];
1475  
1476  		port_status = sci_port_stop(iport);
1477  
1478  		if ((port_status != SCI_SUCCESS) &&
1479  		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1480  			status = SCI_FAILURE;
1481  
1482  			dev_warn(&ihost->pdev->dev,
1483  				 "%s: Controller stop operation failed to "
1484  				 "stop port %d because of status %d.\n",
1485  				 __func__,
1486  				 iport->logical_port_index,
1487  				 port_status);
1488  		}
1489  	}
1490  
1491  	return status;
1492  }
1493  
sci_controller_stop_devices(struct isci_host * ihost)1494  static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1495  {
1496  	u32 index;
1497  	enum sci_status status;
1498  	enum sci_status device_status;
1499  
1500  	status = SCI_SUCCESS;
1501  
1502  	for (index = 0; index < ihost->remote_node_entries; index++) {
1503  		if (ihost->device_table[index] != NULL) {
1504  			/* / @todo What timeout value do we want to provide to this request? */
1505  			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1506  
1507  			if ((device_status != SCI_SUCCESS) &&
1508  			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1509  				dev_warn(&ihost->pdev->dev,
1510  					 "%s: Controller stop operation failed "
1511  					 "to stop device 0x%p because of "
1512  					 "status %d.\n",
1513  					 __func__,
1514  					 ihost->device_table[index], device_status);
1515  			}
1516  		}
1517  	}
1518  
1519  	return status;
1520  }
1521  
sci_controller_stopping_state_enter(struct sci_base_state_machine * sm)1522  static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1523  {
1524  	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1525  
1526  	sci_controller_stop_devices(ihost);
1527  	sci_controller_stop_ports(ihost);
1528  
1529  	if (!sci_controller_has_remote_devices_stopping(ihost))
1530  		isci_host_stop_complete(ihost);
1531  }
1532  
sci_controller_stopping_state_exit(struct sci_base_state_machine * sm)1533  static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1534  {
1535  	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1536  
1537  	sci_del_timer(&ihost->timer);
1538  }
1539  
sci_controller_reset_hardware(struct isci_host * ihost)1540  static void sci_controller_reset_hardware(struct isci_host *ihost)
1541  {
1542  	/* Disable interrupts so we dont take any spurious interrupts */
1543  	sci_controller_disable_interrupts(ihost);
1544  
1545  	/* Reset the SCU */
1546  	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1547  
1548  	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1549  	udelay(1000);
1550  
1551  	/* The write to the CQGR clears the CQP */
1552  	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1553  
1554  	/* The write to the UFQGP clears the UFQPR */
1555  	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1556  
1557  	/* clear all interrupts */
1558  	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1559  }
1560  
sci_controller_resetting_state_enter(struct sci_base_state_machine * sm)1561  static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1562  {
1563  	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1564  
1565  	sci_controller_reset_hardware(ihost);
1566  	sci_change_state(&ihost->sm, SCIC_RESET);
1567  }
1568  
1569  static const struct sci_base_state sci_controller_state_table[] = {
1570  	[SCIC_INITIAL] = {
1571  		.enter_state = sci_controller_initial_state_enter,
1572  	},
1573  	[SCIC_RESET] = {},
1574  	[SCIC_INITIALIZING] = {},
1575  	[SCIC_INITIALIZED] = {},
1576  	[SCIC_STARTING] = {
1577  		.exit_state  = sci_controller_starting_state_exit,
1578  	},
1579  	[SCIC_READY] = {
1580  		.enter_state = sci_controller_ready_state_enter,
1581  		.exit_state  = sci_controller_ready_state_exit,
1582  	},
1583  	[SCIC_RESETTING] = {
1584  		.enter_state = sci_controller_resetting_state_enter,
1585  	},
1586  	[SCIC_STOPPING] = {
1587  		.enter_state = sci_controller_stopping_state_enter,
1588  		.exit_state = sci_controller_stopping_state_exit,
1589  	},
1590  	[SCIC_FAILED] = {}
1591  };
1592  
controller_timeout(struct timer_list * t)1593  static void controller_timeout(struct timer_list *t)
1594  {
1595  	struct sci_timer *tmr = from_timer(tmr, t, timer);
1596  	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1597  	struct sci_base_state_machine *sm = &ihost->sm;
1598  	unsigned long flags;
1599  
1600  	spin_lock_irqsave(&ihost->scic_lock, flags);
1601  
1602  	if (tmr->cancel)
1603  		goto done;
1604  
1605  	if (sm->current_state_id == SCIC_STARTING)
1606  		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1607  	else if (sm->current_state_id == SCIC_STOPPING) {
1608  		sci_change_state(sm, SCIC_FAILED);
1609  		isci_host_stop_complete(ihost);
1610  	} else	/* / @todo Now what do we want to do in this case? */
1611  		dev_err(&ihost->pdev->dev,
1612  			"%s: Controller timer fired when controller was not "
1613  			"in a state being timed.\n",
1614  			__func__);
1615  
1616  done:
1617  	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1618  }
1619  
sci_controller_construct(struct isci_host * ihost,void __iomem * scu_base,void __iomem * smu_base)1620  static enum sci_status sci_controller_construct(struct isci_host *ihost,
1621  						void __iomem *scu_base,
1622  						void __iomem *smu_base)
1623  {
1624  	u8 i;
1625  
1626  	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1627  
1628  	ihost->scu_registers = scu_base;
1629  	ihost->smu_registers = smu_base;
1630  
1631  	sci_port_configuration_agent_construct(&ihost->port_agent);
1632  
1633  	/* Construct the ports for this controller */
1634  	for (i = 0; i < SCI_MAX_PORTS; i++)
1635  		sci_port_construct(&ihost->ports[i], i, ihost);
1636  	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1637  
1638  	/* Construct the phys for this controller */
1639  	for (i = 0; i < SCI_MAX_PHYS; i++) {
1640  		/* Add all the PHYs to the dummy port */
1641  		sci_phy_construct(&ihost->phys[i],
1642  				  &ihost->ports[SCI_MAX_PORTS], i);
1643  	}
1644  
1645  	ihost->invalid_phy_mask = 0;
1646  
1647  	sci_init_timer(&ihost->timer, controller_timeout);
1648  
1649  	return sci_controller_reset(ihost);
1650  }
1651  
sci_oem_parameters_validate(struct sci_oem_params * oem,u8 version)1652  int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1653  {
1654  	int i;
1655  
1656  	for (i = 0; i < SCI_MAX_PORTS; i++)
1657  		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1658  			return -EINVAL;
1659  
1660  	for (i = 0; i < SCI_MAX_PHYS; i++)
1661  		if (oem->phys[i].sas_address.high == 0 &&
1662  		    oem->phys[i].sas_address.low == 0)
1663  			return -EINVAL;
1664  
1665  	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1666  		for (i = 0; i < SCI_MAX_PHYS; i++)
1667  			if (oem->ports[i].phy_mask != 0)
1668  				return -EINVAL;
1669  	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1670  		u8 phy_mask = 0;
1671  
1672  		for (i = 0; i < SCI_MAX_PHYS; i++)
1673  			phy_mask |= oem->ports[i].phy_mask;
1674  
1675  		if (phy_mask == 0)
1676  			return -EINVAL;
1677  	} else
1678  		return -EINVAL;
1679  
1680  	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1681  	    oem->controller.max_concurr_spin_up < 1)
1682  		return -EINVAL;
1683  
1684  	if (oem->controller.do_enable_ssc) {
1685  		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1686  			return -EINVAL;
1687  
1688  		if (version >= ISCI_ROM_VER_1_1) {
1689  			u8 test = oem->controller.ssc_sata_tx_spread_level;
1690  
1691  			switch (test) {
1692  			case 0:
1693  			case 2:
1694  			case 3:
1695  			case 6:
1696  			case 7:
1697  				break;
1698  			default:
1699  				return -EINVAL;
1700  			}
1701  
1702  			test = oem->controller.ssc_sas_tx_spread_level;
1703  			if (oem->controller.ssc_sas_tx_type == 0) {
1704  				switch (test) {
1705  				case 0:
1706  				case 2:
1707  				case 3:
1708  					break;
1709  				default:
1710  					return -EINVAL;
1711  				}
1712  			} else if (oem->controller.ssc_sas_tx_type == 1) {
1713  				switch (test) {
1714  				case 0:
1715  				case 3:
1716  				case 6:
1717  					break;
1718  				default:
1719  					return -EINVAL;
1720  				}
1721  			}
1722  		}
1723  	}
1724  
1725  	return 0;
1726  }
1727  
max_spin_up(struct isci_host * ihost)1728  static u8 max_spin_up(struct isci_host *ihost)
1729  {
1730  	if (ihost->user_parameters.max_concurr_spinup)
1731  		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1732  			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1733  	else
1734  		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1735  			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1736  }
1737  
power_control_timeout(struct timer_list * t)1738  static void power_control_timeout(struct timer_list *t)
1739  {
1740  	struct sci_timer *tmr = from_timer(tmr, t, timer);
1741  	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1742  	struct isci_phy *iphy;
1743  	unsigned long flags;
1744  	u8 i;
1745  
1746  	spin_lock_irqsave(&ihost->scic_lock, flags);
1747  
1748  	if (tmr->cancel)
1749  		goto done;
1750  
1751  	ihost->power_control.phys_granted_power = 0;
1752  
1753  	if (ihost->power_control.phys_waiting == 0) {
1754  		ihost->power_control.timer_started = false;
1755  		goto done;
1756  	}
1757  
1758  	for (i = 0; i < SCI_MAX_PHYS; i++) {
1759  
1760  		if (ihost->power_control.phys_waiting == 0)
1761  			break;
1762  
1763  		iphy = ihost->power_control.requesters[i];
1764  		if (iphy == NULL)
1765  			continue;
1766  
1767  		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1768  			break;
1769  
1770  		ihost->power_control.requesters[i] = NULL;
1771  		ihost->power_control.phys_waiting--;
1772  		ihost->power_control.phys_granted_power++;
1773  		sci_phy_consume_power_handler(iphy);
1774  
1775  		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1776  			u8 j;
1777  
1778  			for (j = 0; j < SCI_MAX_PHYS; j++) {
1779  				struct isci_phy *requester = ihost->power_control.requesters[j];
1780  
1781  				/*
1782  				 * Search the power_control queue to see if there are other phys
1783  				 * attached to the same remote device. If found, take all of
1784  				 * them out of await_sas_power state.
1785  				 */
1786  				if (requester != NULL && requester != iphy) {
1787  					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1788  							  iphy->frame_rcvd.iaf.sas_addr,
1789  							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1790  
1791  					if (other == 0) {
1792  						ihost->power_control.requesters[j] = NULL;
1793  						ihost->power_control.phys_waiting--;
1794  						sci_phy_consume_power_handler(requester);
1795  					}
1796  				}
1797  			}
1798  		}
1799  	}
1800  
1801  	/*
1802  	 * It doesn't matter if the power list is empty, we need to start the
1803  	 * timer in case another phy becomes ready.
1804  	 */
1805  	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1806  	ihost->power_control.timer_started = true;
1807  
1808  done:
1809  	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1810  }
1811  
sci_controller_power_control_queue_insert(struct isci_host * ihost,struct isci_phy * iphy)1812  void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1813  					       struct isci_phy *iphy)
1814  {
1815  	BUG_ON(iphy == NULL);
1816  
1817  	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1818  		ihost->power_control.phys_granted_power++;
1819  		sci_phy_consume_power_handler(iphy);
1820  
1821  		/*
1822  		 * stop and start the power_control timer. When the timer fires, the
1823  		 * no_of_phys_granted_power will be set to 0
1824  		 */
1825  		if (ihost->power_control.timer_started)
1826  			sci_del_timer(&ihost->power_control.timer);
1827  
1828  		sci_mod_timer(&ihost->power_control.timer,
1829  				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1830  		ihost->power_control.timer_started = true;
1831  
1832  	} else {
1833  		/*
1834  		 * There are phys, attached to the same sas address as this phy, are
1835  		 * already in READY state, this phy don't need wait.
1836  		 */
1837  		u8 i;
1838  		struct isci_phy *current_phy;
1839  
1840  		for (i = 0; i < SCI_MAX_PHYS; i++) {
1841  			u8 other;
1842  			current_phy = &ihost->phys[i];
1843  
1844  			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1845  				       iphy->frame_rcvd.iaf.sas_addr,
1846  				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1847  
1848  			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1849  			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1850  			    other == 0) {
1851  				sci_phy_consume_power_handler(iphy);
1852  				break;
1853  			}
1854  		}
1855  
1856  		if (i == SCI_MAX_PHYS) {
1857  			/* Add the phy in the waiting list */
1858  			ihost->power_control.requesters[iphy->phy_index] = iphy;
1859  			ihost->power_control.phys_waiting++;
1860  		}
1861  	}
1862  }
1863  
sci_controller_power_control_queue_remove(struct isci_host * ihost,struct isci_phy * iphy)1864  void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1865  					       struct isci_phy *iphy)
1866  {
1867  	BUG_ON(iphy == NULL);
1868  
1869  	if (ihost->power_control.requesters[iphy->phy_index])
1870  		ihost->power_control.phys_waiting--;
1871  
1872  	ihost->power_control.requesters[iphy->phy_index] = NULL;
1873  }
1874  
is_long_cable(int phy,unsigned char selection_byte)1875  static int is_long_cable(int phy, unsigned char selection_byte)
1876  {
1877  	return !!(selection_byte & (1 << phy));
1878  }
1879  
is_medium_cable(int phy,unsigned char selection_byte)1880  static int is_medium_cable(int phy, unsigned char selection_byte)
1881  {
1882  	return !!(selection_byte & (1 << (phy + 4)));
1883  }
1884  
decode_selection_byte(int phy,unsigned char selection_byte)1885  static enum cable_selections decode_selection_byte(
1886  	int phy,
1887  	unsigned char selection_byte)
1888  {
1889  	return ((selection_byte & (1 << phy)) ? 1 : 0)
1890  		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1891  }
1892  
to_cable_select(struct isci_host * ihost)1893  static unsigned char *to_cable_select(struct isci_host *ihost)
1894  {
1895  	if (is_cable_select_overridden())
1896  		return ((unsigned char *)&cable_selection_override)
1897  			+ ihost->id;
1898  	else
1899  		return &ihost->oem_parameters.controller.cable_selection_mask;
1900  }
1901  
decode_cable_selection(struct isci_host * ihost,int phy)1902  enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1903  {
1904  	return decode_selection_byte(phy, *to_cable_select(ihost));
1905  }
1906  
lookup_cable_names(enum cable_selections selection)1907  char *lookup_cable_names(enum cable_selections selection)
1908  {
1909  	static char *cable_names[] = {
1910  		[short_cable]     = "short",
1911  		[long_cable]      = "long",
1912  		[medium_cable]    = "medium",
1913  		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1914  	};
1915  	return (selection <= undefined_cable) ? cable_names[selection]
1916  					      : cable_names[undefined_cable];
1917  }
1918  
1919  #define AFE_REGISTER_WRITE_DELAY 10
1920  
sci_controller_afe_initialization(struct isci_host * ihost)1921  static void sci_controller_afe_initialization(struct isci_host *ihost)
1922  {
1923  	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1924  	const struct sci_oem_params *oem = &ihost->oem_parameters;
1925  	struct pci_dev *pdev = ihost->pdev;
1926  	u32 afe_status;
1927  	u32 phy_id;
1928  	unsigned char cable_selection_mask = *to_cable_select(ihost);
1929  
1930  	/* Clear DFX Status registers */
1931  	writel(0x0081000f, &afe->afe_dfx_master_control0);
1932  	udelay(AFE_REGISTER_WRITE_DELAY);
1933  
1934  	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1935  		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936  		 * Timer, PM Stagger Timer
1937  		 */
1938  		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1939  		udelay(AFE_REGISTER_WRITE_DELAY);
1940  	}
1941  
1942  	/* Configure bias currents to normal */
1943  	if (is_a2(pdev))
1944  		writel(0x00005A00, &afe->afe_bias_control);
1945  	else if (is_b0(pdev) || is_c0(pdev))
1946  		writel(0x00005F00, &afe->afe_bias_control);
1947  	else if (is_c1(pdev))
1948  		writel(0x00005500, &afe->afe_bias_control);
1949  
1950  	udelay(AFE_REGISTER_WRITE_DELAY);
1951  
1952  	/* Enable PLL */
1953  	if (is_a2(pdev))
1954  		writel(0x80040908, &afe->afe_pll_control0);
1955  	else if (is_b0(pdev) || is_c0(pdev))
1956  		writel(0x80040A08, &afe->afe_pll_control0);
1957  	else if (is_c1(pdev)) {
1958  		writel(0x80000B08, &afe->afe_pll_control0);
1959  		udelay(AFE_REGISTER_WRITE_DELAY);
1960  		writel(0x00000B08, &afe->afe_pll_control0);
1961  		udelay(AFE_REGISTER_WRITE_DELAY);
1962  		writel(0x80000B08, &afe->afe_pll_control0);
1963  	}
1964  
1965  	udelay(AFE_REGISTER_WRITE_DELAY);
1966  
1967  	/* Wait for the PLL to lock */
1968  	do {
1969  		afe_status = readl(&afe->afe_common_block_status);
1970  		udelay(AFE_REGISTER_WRITE_DELAY);
1971  	} while ((afe_status & 0x00001000) == 0);
1972  
1973  	if (is_a2(pdev)) {
1974  		/* Shorten SAS SNW lock time (RxLock timer value from 76
1975  		 * us to 50 us)
1976  		 */
1977  		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1978  		udelay(AFE_REGISTER_WRITE_DELAY);
1979  	}
1980  
1981  	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1982  		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1983  		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1984  		int cable_length_long =
1985  			is_long_cable(phy_id, cable_selection_mask);
1986  		int cable_length_medium =
1987  			is_medium_cable(phy_id, cable_selection_mask);
1988  
1989  		if (is_a2(pdev)) {
1990  			/* All defaults, except the Receive Word
1991  			 * Alignament/Comma Detect Enable....(0xe800)
1992  			 */
1993  			writel(0x00004512, &xcvr->afe_xcvr_control0);
1994  			udelay(AFE_REGISTER_WRITE_DELAY);
1995  
1996  			writel(0x0050100F, &xcvr->afe_xcvr_control1);
1997  			udelay(AFE_REGISTER_WRITE_DELAY);
1998  		} else if (is_b0(pdev)) {
1999  			/* Configure transmitter SSC parameters */
2000  			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2001  			udelay(AFE_REGISTER_WRITE_DELAY);
2002  		} else if (is_c0(pdev)) {
2003  			/* Configure transmitter SSC parameters */
2004  			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2005  			udelay(AFE_REGISTER_WRITE_DELAY);
2006  
2007  			/* All defaults, except the Receive Word
2008  			 * Alignament/Comma Detect Enable....(0xe800)
2009  			 */
2010  			writel(0x00014500, &xcvr->afe_xcvr_control0);
2011  			udelay(AFE_REGISTER_WRITE_DELAY);
2012  		} else if (is_c1(pdev)) {
2013  			/* Configure transmitter SSC parameters */
2014  			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2015  			udelay(AFE_REGISTER_WRITE_DELAY);
2016  
2017  			/* All defaults, except the Receive Word
2018  			 * Alignament/Comma Detect Enable....(0xe800)
2019  			 */
2020  			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2021  			udelay(AFE_REGISTER_WRITE_DELAY);
2022  		}
2023  
2024  		/* Power up TX and RX out from power down (PWRDNTX and
2025  		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2026  		 */
2027  		if (is_a2(pdev))
2028  			writel(0x000003F0, &xcvr->afe_channel_control);
2029  		else if (is_b0(pdev)) {
2030  			writel(0x000003D7, &xcvr->afe_channel_control);
2031  			udelay(AFE_REGISTER_WRITE_DELAY);
2032  
2033  			writel(0x000003D4, &xcvr->afe_channel_control);
2034  		} else if (is_c0(pdev)) {
2035  			writel(0x000001E7, &xcvr->afe_channel_control);
2036  			udelay(AFE_REGISTER_WRITE_DELAY);
2037  
2038  			writel(0x000001E4, &xcvr->afe_channel_control);
2039  		} else if (is_c1(pdev)) {
2040  			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2041  			       &xcvr->afe_channel_control);
2042  			udelay(AFE_REGISTER_WRITE_DELAY);
2043  
2044  			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2045  			       &xcvr->afe_channel_control);
2046  		}
2047  		udelay(AFE_REGISTER_WRITE_DELAY);
2048  
2049  		if (is_a2(pdev)) {
2050  			/* Enable TX equalization (0xe824) */
2051  			writel(0x00040000, &xcvr->afe_tx_control);
2052  			udelay(AFE_REGISTER_WRITE_DELAY);
2053  		}
2054  
2055  		if (is_a2(pdev) || is_b0(pdev))
2056  			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057  			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058  			 * Enabled) ....(0xe800)
2059  			 */
2060  			writel(0x00004100, &xcvr->afe_xcvr_control0);
2061  		else if (is_c0(pdev))
2062  			writel(0x00014100, &xcvr->afe_xcvr_control0);
2063  		else if (is_c1(pdev))
2064  			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2065  		udelay(AFE_REGISTER_WRITE_DELAY);
2066  
2067  		/* Leave DFE/FFE on */
2068  		if (is_a2(pdev))
2069  			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2070  		else if (is_b0(pdev)) {
2071  			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072  			udelay(AFE_REGISTER_WRITE_DELAY);
2073  			/* Enable TX equalization (0xe824) */
2074  			writel(0x00040000, &xcvr->afe_tx_control);
2075  		} else if (is_c0(pdev)) {
2076  			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2077  			udelay(AFE_REGISTER_WRITE_DELAY);
2078  
2079  			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2080  			udelay(AFE_REGISTER_WRITE_DELAY);
2081  
2082  			/* Enable TX equalization (0xe824) */
2083  			writel(0x00040000, &xcvr->afe_tx_control);
2084  		} else if (is_c1(pdev)) {
2085  			writel(cable_length_long ? 0x01500C0C :
2086  			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2087  			       &xcvr->afe_xcvr_control1);
2088  			udelay(AFE_REGISTER_WRITE_DELAY);
2089  
2090  			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2091  			udelay(AFE_REGISTER_WRITE_DELAY);
2092  
2093  			writel(cable_length_long ? 0x33091C1F :
2094  			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2095  			       &xcvr->afe_rx_ssc_control0);
2096  			udelay(AFE_REGISTER_WRITE_DELAY);
2097  
2098  			/* Enable TX equalization (0xe824) */
2099  			writel(0x00040000, &xcvr->afe_tx_control);
2100  		}
2101  
2102  		udelay(AFE_REGISTER_WRITE_DELAY);
2103  
2104  		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2105  		udelay(AFE_REGISTER_WRITE_DELAY);
2106  
2107  		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2108  		udelay(AFE_REGISTER_WRITE_DELAY);
2109  
2110  		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2111  		udelay(AFE_REGISTER_WRITE_DELAY);
2112  
2113  		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2114  		udelay(AFE_REGISTER_WRITE_DELAY);
2115  	}
2116  
2117  	/* Transfer control to the PEs */
2118  	writel(0x00010f00, &afe->afe_dfx_master_control0);
2119  	udelay(AFE_REGISTER_WRITE_DELAY);
2120  }
2121  
sci_controller_initialize_power_control(struct isci_host * ihost)2122  static void sci_controller_initialize_power_control(struct isci_host *ihost)
2123  {
2124  	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2125  
2126  	memset(ihost->power_control.requesters, 0,
2127  	       sizeof(ihost->power_control.requesters));
2128  
2129  	ihost->power_control.phys_waiting = 0;
2130  	ihost->power_control.phys_granted_power = 0;
2131  }
2132  
sci_controller_initialize(struct isci_host * ihost)2133  static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2134  {
2135  	struct sci_base_state_machine *sm = &ihost->sm;
2136  	enum sci_status result = SCI_FAILURE;
2137  	unsigned long i, state, val;
2138  
2139  	if (ihost->sm.current_state_id != SCIC_RESET) {
2140  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2141  			 __func__, ihost->sm.current_state_id);
2142  		return SCI_FAILURE_INVALID_STATE;
2143  	}
2144  
2145  	sci_change_state(sm, SCIC_INITIALIZING);
2146  
2147  	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2148  
2149  	ihost->next_phy_to_start = 0;
2150  	ihost->phy_startup_timer_pending = false;
2151  
2152  	sci_controller_initialize_power_control(ihost);
2153  
2154  	/*
2155  	 * There is nothing to do here for B0 since we do not have to
2156  	 * program the AFE registers.
2157  	 * / @todo The AFE settings are supposed to be correct for the B0 but
2158  	 * /       presently they seem to be wrong. */
2159  	sci_controller_afe_initialization(ihost);
2160  
2161  
2162  	/* Take the hardware out of reset */
2163  	writel(0, &ihost->smu_registers->soft_reset_control);
2164  
2165  	/*
2166  	 * / @todo Provide meaningfull error code for hardware failure
2167  	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168  	for (i = 100; i >= 1; i--) {
2169  		u32 status;
2170  
2171  		/* Loop until the hardware reports success */
2172  		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2173  		status = readl(&ihost->smu_registers->control_status);
2174  
2175  		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2176  			break;
2177  	}
2178  	if (i == 0)
2179  		goto out;
2180  
2181  	/*
2182  	 * Determine what are the actaul device capacities that the
2183  	 * hardware will support */
2184  	val = readl(&ihost->smu_registers->device_context_capacity);
2185  
2186  	/* Record the smaller of the two capacity values */
2187  	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2188  	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2189  	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2190  
2191  	/*
2192  	 * Make all PEs that are unassigned match up with the
2193  	 * logical ports
2194  	 */
2195  	for (i = 0; i < ihost->logical_port_entries; i++) {
2196  		struct scu_port_task_scheduler_group_registers __iomem
2197  			*ptsg = &ihost->scu_registers->peg0.ptsg;
2198  
2199  		writel(i, &ptsg->protocol_engine[i]);
2200  	}
2201  
2202  	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2203  	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2204  	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2205  	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2206  
2207  	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2208  	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2209  	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2210  
2211  	/*
2212  	 * Initialize the PHYs before the PORTs because the PHY registers
2213  	 * are accessed during the port initialization.
2214  	 */
2215  	for (i = 0; i < SCI_MAX_PHYS; i++) {
2216  		result = sci_phy_initialize(&ihost->phys[i],
2217  					    &ihost->scu_registers->peg0.pe[i].tl,
2218  					    &ihost->scu_registers->peg0.pe[i].ll);
2219  		if (result != SCI_SUCCESS)
2220  			goto out;
2221  	}
2222  
2223  	for (i = 0; i < ihost->logical_port_entries; i++) {
2224  		struct isci_port *iport = &ihost->ports[i];
2225  
2226  		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2227  		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2228  		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2229  	}
2230  
2231  	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2232  
2233   out:
2234  	/* Advance the controller state machine */
2235  	if (result == SCI_SUCCESS)
2236  		state = SCIC_INITIALIZED;
2237  	else
2238  		state = SCIC_FAILED;
2239  	sci_change_state(sm, state);
2240  
2241  	return result;
2242  }
2243  
sci_controller_dma_alloc(struct isci_host * ihost)2244  static int sci_controller_dma_alloc(struct isci_host *ihost)
2245  {
2246  	struct device *dev = &ihost->pdev->dev;
2247  	size_t size;
2248  	int i;
2249  
2250  	/* detect re-initialization */
2251  	if (ihost->completion_queue)
2252  		return 0;
2253  
2254  	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2255  	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2256  						      GFP_KERNEL);
2257  	if (!ihost->completion_queue)
2258  		return -ENOMEM;
2259  
2260  	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2261  	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2262  							       GFP_KERNEL);
2263  
2264  	if (!ihost->remote_node_context_table)
2265  		return -ENOMEM;
2266  
2267  	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2268  	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2269  							GFP_KERNEL);
2270  	if (!ihost->task_context_table)
2271  		return -ENOMEM;
2272  
2273  	size = SCI_UFI_TOTAL_SIZE;
2274  	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2275  	if (!ihost->ufi_buf)
2276  		return -ENOMEM;
2277  
2278  	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2279  		struct isci_request *ireq;
2280  		dma_addr_t dma;
2281  
2282  		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2283  		if (!ireq)
2284  			return -ENOMEM;
2285  
2286  		ireq->tc = &ihost->task_context_table[i];
2287  		ireq->owning_controller = ihost;
2288  		ireq->request_daddr = dma;
2289  		ireq->isci_host = ihost;
2290  		ihost->reqs[i] = ireq;
2291  	}
2292  
2293  	return 0;
2294  }
2295  
sci_controller_mem_init(struct isci_host * ihost)2296  static int sci_controller_mem_init(struct isci_host *ihost)
2297  {
2298  	int err = sci_controller_dma_alloc(ihost);
2299  
2300  	if (err)
2301  		return err;
2302  
2303  	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2304  	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2305  
2306  	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2307  	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2308  
2309  	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2310  	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2311  
2312  	sci_unsolicited_frame_control_construct(ihost);
2313  
2314  	/*
2315  	 * Inform the silicon as to the location of the UF headers and
2316  	 * address table.
2317  	 */
2318  	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2319  		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2320  	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2321  		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2322  
2323  	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2324  		&ihost->scu_registers->sdma.uf_address_table_lower);
2325  	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2326  		&ihost->scu_registers->sdma.uf_address_table_upper);
2327  
2328  	return 0;
2329  }
2330  
2331  /**
2332   * isci_host_init - (re-)initialize hardware and internal (private) state
2333   * @ihost: host to init
2334   *
2335   * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336   * one-time initialization objects like locks and waitqueues, are
2337   * not touched (they are initialized in isci_host_alloc)
2338   */
isci_host_init(struct isci_host * ihost)2339  int isci_host_init(struct isci_host *ihost)
2340  {
2341  	int i, err;
2342  	enum sci_status status;
2343  
2344  	spin_lock_irq(&ihost->scic_lock);
2345  	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2346  	spin_unlock_irq(&ihost->scic_lock);
2347  	if (status != SCI_SUCCESS) {
2348  		dev_err(&ihost->pdev->dev,
2349  			"%s: sci_controller_construct failed - status = %x\n",
2350  			__func__,
2351  			status);
2352  		return -ENODEV;
2353  	}
2354  
2355  	spin_lock_irq(&ihost->scic_lock);
2356  	status = sci_controller_initialize(ihost);
2357  	spin_unlock_irq(&ihost->scic_lock);
2358  	if (status != SCI_SUCCESS) {
2359  		dev_warn(&ihost->pdev->dev,
2360  			 "%s: sci_controller_initialize failed -"
2361  			 " status = 0x%x\n",
2362  			 __func__, status);
2363  		return -ENODEV;
2364  	}
2365  
2366  	err = sci_controller_mem_init(ihost);
2367  	if (err)
2368  		return err;
2369  
2370  	/* enable sgpio */
2371  	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2372  	for (i = 0; i < isci_gpio_count(ihost); i++)
2373  		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2374  	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2375  
2376  	return 0;
2377  }
2378  
sci_controller_link_up(struct isci_host * ihost,struct isci_port * iport,struct isci_phy * iphy)2379  void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2380  			    struct isci_phy *iphy)
2381  {
2382  	switch (ihost->sm.current_state_id) {
2383  	case SCIC_STARTING:
2384  		sci_del_timer(&ihost->phy_timer);
2385  		ihost->phy_startup_timer_pending = false;
2386  		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2387  						  iport, iphy);
2388  		sci_controller_start_next_phy(ihost);
2389  		break;
2390  	case SCIC_READY:
2391  		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2392  						  iport, iphy);
2393  		break;
2394  	default:
2395  		dev_dbg(&ihost->pdev->dev,
2396  			"%s: SCIC Controller linkup event from phy %d in "
2397  			"unexpected state %d\n", __func__, iphy->phy_index,
2398  			ihost->sm.current_state_id);
2399  	}
2400  }
2401  
sci_controller_link_down(struct isci_host * ihost,struct isci_port * iport,struct isci_phy * iphy)2402  void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2403  			      struct isci_phy *iphy)
2404  {
2405  	switch (ihost->sm.current_state_id) {
2406  	case SCIC_STARTING:
2407  	case SCIC_READY:
2408  		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2409  						   iport, iphy);
2410  		break;
2411  	default:
2412  		dev_dbg(&ihost->pdev->dev,
2413  			"%s: SCIC Controller linkdown event from phy %d in "
2414  			"unexpected state %d\n",
2415  			__func__,
2416  			iphy->phy_index,
2417  			ihost->sm.current_state_id);
2418  	}
2419  }
2420  
sci_controller_has_remote_devices_stopping(struct isci_host * ihost)2421  bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2422  {
2423  	u32 index;
2424  
2425  	for (index = 0; index < ihost->remote_node_entries; index++) {
2426  		if ((ihost->device_table[index] != NULL) &&
2427  		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2428  			return true;
2429  	}
2430  
2431  	return false;
2432  }
2433  
sci_controller_remote_device_stopped(struct isci_host * ihost,struct isci_remote_device * idev)2434  void sci_controller_remote_device_stopped(struct isci_host *ihost,
2435  					  struct isci_remote_device *idev)
2436  {
2437  	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2438  		dev_dbg(&ihost->pdev->dev,
2439  			"SCIC Controller 0x%p remote device stopped event "
2440  			"from device 0x%p in unexpected state %d\n",
2441  			ihost, idev,
2442  			ihost->sm.current_state_id);
2443  		return;
2444  	}
2445  
2446  	if (!sci_controller_has_remote_devices_stopping(ihost))
2447  		isci_host_stop_complete(ihost);
2448  }
2449  
sci_controller_post_request(struct isci_host * ihost,u32 request)2450  void sci_controller_post_request(struct isci_host *ihost, u32 request)
2451  {
2452  	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2453  		__func__, ihost->id, request);
2454  
2455  	writel(request, &ihost->smu_registers->post_context_port);
2456  }
2457  
sci_request_by_tag(struct isci_host * ihost,u16 io_tag)2458  struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2459  {
2460  	u16 task_index;
2461  	u16 task_sequence;
2462  
2463  	task_index = ISCI_TAG_TCI(io_tag);
2464  
2465  	if (task_index < ihost->task_context_entries) {
2466  		struct isci_request *ireq = ihost->reqs[task_index];
2467  
2468  		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2469  			task_sequence = ISCI_TAG_SEQ(io_tag);
2470  
2471  			if (task_sequence == ihost->io_request_sequence[task_index])
2472  				return ireq;
2473  		}
2474  	}
2475  
2476  	return NULL;
2477  }
2478  
2479  /**
2480   * sci_controller_allocate_remote_node_context()
2481   * This method allocates remote node index and the reserves the remote node
2482   *    context space for use. This method can fail if there are no more remote
2483   *    node index available.
2484   * @ihost: This is the controller object which contains the set of
2485   *    free remote node ids
2486   * @idev: This is the device object which is requesting the a remote node
2487   *    id
2488   * @node_id: This is the remote node id that is assinged to the device if one
2489   *    is available
2490   *
2491   * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492   * node index available.
2493   */
sci_controller_allocate_remote_node_context(struct isci_host * ihost,struct isci_remote_device * idev,u16 * node_id)2494  enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2495  							    struct isci_remote_device *idev,
2496  							    u16 *node_id)
2497  {
2498  	u16 node_index;
2499  	u32 remote_node_count = sci_remote_device_node_count(idev);
2500  
2501  	node_index = sci_remote_node_table_allocate_remote_node(
2502  		&ihost->available_remote_nodes, remote_node_count
2503  		);
2504  
2505  	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2506  		ihost->device_table[node_index] = idev;
2507  
2508  		*node_id = node_index;
2509  
2510  		return SCI_SUCCESS;
2511  	}
2512  
2513  	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2514  }
2515  
sci_controller_free_remote_node_context(struct isci_host * ihost,struct isci_remote_device * idev,u16 node_id)2516  void sci_controller_free_remote_node_context(struct isci_host *ihost,
2517  					     struct isci_remote_device *idev,
2518  					     u16 node_id)
2519  {
2520  	u32 remote_node_count = sci_remote_device_node_count(idev);
2521  
2522  	if (ihost->device_table[node_id] == idev) {
2523  		ihost->device_table[node_id] = NULL;
2524  
2525  		sci_remote_node_table_release_remote_node_index(
2526  			&ihost->available_remote_nodes, remote_node_count, node_id
2527  			);
2528  	}
2529  }
2530  
sci_controller_copy_sata_response(void * response_buffer,void * frame_header,void * frame_buffer)2531  void sci_controller_copy_sata_response(void *response_buffer,
2532  				       void *frame_header,
2533  				       void *frame_buffer)
2534  {
2535  	/* XXX type safety? */
2536  	memcpy(response_buffer, frame_header, sizeof(u32));
2537  
2538  	memcpy(response_buffer + sizeof(u32),
2539  	       frame_buffer,
2540  	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2541  }
2542  
sci_controller_release_frame(struct isci_host * ihost,u32 frame_index)2543  void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2544  {
2545  	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2546  		writel(ihost->uf_control.get,
2547  			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2548  }
2549  
isci_tci_free(struct isci_host * ihost,u16 tci)2550  void isci_tci_free(struct isci_host *ihost, u16 tci)
2551  {
2552  	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2553  
2554  	ihost->tci_pool[tail] = tci;
2555  	ihost->tci_tail = tail + 1;
2556  }
2557  
isci_tci_alloc(struct isci_host * ihost)2558  static u16 isci_tci_alloc(struct isci_host *ihost)
2559  {
2560  	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2561  	u16 tci = ihost->tci_pool[head];
2562  
2563  	ihost->tci_head = head + 1;
2564  	return tci;
2565  }
2566  
isci_tci_space(struct isci_host * ihost)2567  static u16 isci_tci_space(struct isci_host *ihost)
2568  {
2569  	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2570  }
2571  
isci_alloc_tag(struct isci_host * ihost)2572  u16 isci_alloc_tag(struct isci_host *ihost)
2573  {
2574  	if (isci_tci_space(ihost)) {
2575  		u16 tci = isci_tci_alloc(ihost);
2576  		u8 seq = ihost->io_request_sequence[tci];
2577  
2578  		return ISCI_TAG(seq, tci);
2579  	}
2580  
2581  	return SCI_CONTROLLER_INVALID_IO_TAG;
2582  }
2583  
isci_free_tag(struct isci_host * ihost,u16 io_tag)2584  enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2585  {
2586  	u16 tci = ISCI_TAG_TCI(io_tag);
2587  	u16 seq = ISCI_TAG_SEQ(io_tag);
2588  
2589  	/* prevent tail from passing head */
2590  	if (isci_tci_active(ihost) == 0)
2591  		return SCI_FAILURE_INVALID_IO_TAG;
2592  
2593  	if (seq == ihost->io_request_sequence[tci]) {
2594  		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2595  
2596  		isci_tci_free(ihost, tci);
2597  
2598  		return SCI_SUCCESS;
2599  	}
2600  	return SCI_FAILURE_INVALID_IO_TAG;
2601  }
2602  
sci_controller_start_io(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2603  enum sci_status sci_controller_start_io(struct isci_host *ihost,
2604  					struct isci_remote_device *idev,
2605  					struct isci_request *ireq)
2606  {
2607  	enum sci_status status;
2608  
2609  	if (ihost->sm.current_state_id != SCIC_READY) {
2610  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2611  			 __func__, ihost->sm.current_state_id);
2612  		return SCI_FAILURE_INVALID_STATE;
2613  	}
2614  
2615  	status = sci_remote_device_start_io(ihost, idev, ireq);
2616  	if (status != SCI_SUCCESS)
2617  		return status;
2618  
2619  	set_bit(IREQ_ACTIVE, &ireq->flags);
2620  	sci_controller_post_request(ihost, ireq->post_context);
2621  	return SCI_SUCCESS;
2622  }
2623  
sci_controller_terminate_request(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2624  enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2625  						 struct isci_remote_device *idev,
2626  						 struct isci_request *ireq)
2627  {
2628  	/* terminate an ongoing (i.e. started) core IO request.  This does not
2629  	 * abort the IO request at the target, but rather removes the IO
2630  	 * request from the host controller.
2631  	 */
2632  	enum sci_status status;
2633  
2634  	if (ihost->sm.current_state_id != SCIC_READY) {
2635  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2636  			 __func__, ihost->sm.current_state_id);
2637  		return SCI_FAILURE_INVALID_STATE;
2638  	}
2639  	status = sci_io_request_terminate(ireq);
2640  
2641  	dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2642  		__func__, status, ireq, ireq->flags);
2643  
2644  	if ((status == SCI_SUCCESS) &&
2645  	    !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2646  	    !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2647  		/* Utilize the original post context command and or in the
2648  		 * POST_TC_ABORT request sub-type.
2649  		 */
2650  		sci_controller_post_request(
2651  			ihost, ireq->post_context |
2652  				SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2653  	}
2654  	return status;
2655  }
2656  
2657  /**
2658   * sci_controller_complete_io() - This method will perform core specific
2659   *    completion operations for an IO request.  After this method is invoked,
2660   *    the user should consider the IO request as invalid until it is properly
2661   *    reused (i.e. re-constructed).
2662   * @ihost: The handle to the controller object for which to complete the
2663   *    IO request.
2664   * @idev: The handle to the remote device object for which to complete
2665   *    the IO request.
2666   * @ireq: the handle to the io request object to complete.
2667   */
sci_controller_complete_io(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2668  enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669  					   struct isci_remote_device *idev,
2670  					   struct isci_request *ireq)
2671  {
2672  	enum sci_status status;
2673  
2674  	switch (ihost->sm.current_state_id) {
2675  	case SCIC_STOPPING:
2676  		/* XXX: Implement this function */
2677  		return SCI_FAILURE;
2678  	case SCIC_READY:
2679  		status = sci_remote_device_complete_io(ihost, idev, ireq);
2680  		if (status != SCI_SUCCESS)
2681  			return status;
2682  
2683  		clear_bit(IREQ_ACTIVE, &ireq->flags);
2684  		return SCI_SUCCESS;
2685  	default:
2686  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2687  			 __func__, ihost->sm.current_state_id);
2688  		return SCI_FAILURE_INVALID_STATE;
2689  	}
2690  
2691  }
2692  
sci_controller_continue_io(struct isci_request * ireq)2693  enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2694  {
2695  	struct isci_host *ihost = ireq->owning_controller;
2696  
2697  	if (ihost->sm.current_state_id != SCIC_READY) {
2698  		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2699  			 __func__, ihost->sm.current_state_id);
2700  		return SCI_FAILURE_INVALID_STATE;
2701  	}
2702  
2703  	set_bit(IREQ_ACTIVE, &ireq->flags);
2704  	sci_controller_post_request(ihost, ireq->post_context);
2705  	return SCI_SUCCESS;
2706  }
2707  
2708  /**
2709   * sci_controller_start_task() - This method is called by the SCIC user to
2710   *    send/start a framework task management request.
2711   * @ihost: the handle to the controller object for which to start the task
2712   *    management request.
2713   * @idev: the handle to the remote device object for which to start
2714   *    the task management request.
2715   * @ireq: the handle to the task request object to start.
2716   */
sci_controller_start_task(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2717  enum sci_status sci_controller_start_task(struct isci_host *ihost,
2718  					  struct isci_remote_device *idev,
2719  					  struct isci_request *ireq)
2720  {
2721  	enum sci_status status;
2722  
2723  	if (ihost->sm.current_state_id != SCIC_READY) {
2724  		dev_warn(&ihost->pdev->dev,
2725  			 "%s: SCIC Controller starting task from invalid "
2726  			 "state\n",
2727  			 __func__);
2728  		return SCI_FAILURE_INVALID_STATE;
2729  	}
2730  
2731  	status = sci_remote_device_start_task(ihost, idev, ireq);
2732  	switch (status) {
2733  	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734  		set_bit(IREQ_ACTIVE, &ireq->flags);
2735  
2736  		/*
2737  		 * We will let framework know this task request started successfully,
2738  		 * although core is still woring on starting the request (to post tc when
2739  		 * RNC is resumed.)
2740  		 */
2741  		return SCI_SUCCESS;
2742  	case SCI_SUCCESS:
2743  		set_bit(IREQ_ACTIVE, &ireq->flags);
2744  		sci_controller_post_request(ihost, ireq->post_context);
2745  		break;
2746  	default:
2747  		break;
2748  	}
2749  
2750  	return status;
2751  }
2752  
sci_write_gpio_tx_gp(struct isci_host * ihost,u8 reg_index,u8 reg_count,u8 * write_data)2753  static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2754  {
2755  	int d;
2756  
2757  	/* no support for TX_GP_CFG */
2758  	if (reg_index == 0)
2759  		return -EINVAL;
2760  
2761  	for (d = 0; d < isci_gpio_count(ihost); d++) {
2762  		u32 val = 0x444; /* all ODx.n clear */
2763  		int i;
2764  
2765  		for (i = 0; i < 3; i++) {
2766  			int bit;
2767  
2768  			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2769  						       write_data, reg_index,
2770  						       reg_count);
2771  			if (bit < 0)
2772  				break;
2773  
2774  			/* if od is set, clear the 'invert' bit */
2775  			val &= ~(bit << ((i << 2) + 2));
2776  		}
2777  
2778  		if (i < 3)
2779  			break;
2780  		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2781  	}
2782  
2783  	/* unless reg_index is > 1, we should always be able to write at
2784  	 * least one register
2785  	 */
2786  	return d > 0;
2787  }
2788  
isci_gpio_write(struct sas_ha_struct * sas_ha,u8 reg_type,u8 reg_index,u8 reg_count,u8 * write_data)2789  int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2790  		    u8 reg_count, u8 *write_data)
2791  {
2792  	struct isci_host *ihost = sas_ha->lldd_ha;
2793  	int written;
2794  
2795  	switch (reg_type) {
2796  	case SAS_GPIO_REG_TX_GP:
2797  		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2798  		break;
2799  	default:
2800  		written = -EINVAL;
2801  	}
2802  
2803  	return written;
2804  }
2805