1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4   *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5   *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6   *
7   *  High-resolution kernel timers
8   *
9   *  In contrast to the low-resolution timeout API, aka timer wheel,
10   *  hrtimers provide finer resolution and accuracy depending on system
11   *  configuration and capabilities.
12   *
13   *  Started by: Thomas Gleixner and Ingo Molnar
14   *
15   *  Credits:
16   *	Based on the original timer wheel code
17   *
18   *	Help, testing, suggestions, bugfixes, improvements were
19   *	provided by:
20   *
21   *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22   *	et. al.
23   */
24  
25  #include <linux/cpu.h>
26  #include <linux/export.h>
27  #include <linux/percpu.h>
28  #include <linux/hrtimer.h>
29  #include <linux/notifier.h>
30  #include <linux/syscalls.h>
31  #include <linux/interrupt.h>
32  #include <linux/tick.h>
33  #include <linux/err.h>
34  #include <linux/debugobjects.h>
35  #include <linux/sched/signal.h>
36  #include <linux/sched/sysctl.h>
37  #include <linux/sched/rt.h>
38  #include <linux/sched/deadline.h>
39  #include <linux/sched/nohz.h>
40  #include <linux/sched/debug.h>
41  #include <linux/sched/isolation.h>
42  #include <linux/timer.h>
43  #include <linux/freezer.h>
44  #include <linux/compat.h>
45  
46  #include <linux/uaccess.h>
47  
48  #include <trace/events/timer.h>
49  
50  #include "tick-internal.h"
51  
52  /*
53   * Masks for selecting the soft and hard context timers from
54   * cpu_base->active
55   */
56  #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
57  #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
58  #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59  #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60  
61  /*
62   * The timer bases:
63   *
64   * There are more clockids than hrtimer bases. Thus, we index
65   * into the timer bases by the hrtimer_base_type enum. When trying
66   * to reach a base using a clockid, hrtimer_clockid_to_base()
67   * is used to convert from clockid to the proper hrtimer_base_type.
68   */
69  DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70  {
71  	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72  	.clock_base =
73  	{
74  		{
75  			.index = HRTIMER_BASE_MONOTONIC,
76  			.clockid = CLOCK_MONOTONIC,
77  			.get_time = &ktime_get,
78  		},
79  		{
80  			.index = HRTIMER_BASE_REALTIME,
81  			.clockid = CLOCK_REALTIME,
82  			.get_time = &ktime_get_real,
83  		},
84  		{
85  			.index = HRTIMER_BASE_BOOTTIME,
86  			.clockid = CLOCK_BOOTTIME,
87  			.get_time = &ktime_get_boottime,
88  		},
89  		{
90  			.index = HRTIMER_BASE_TAI,
91  			.clockid = CLOCK_TAI,
92  			.get_time = &ktime_get_clocktai,
93  		},
94  		{
95  			.index = HRTIMER_BASE_MONOTONIC_SOFT,
96  			.clockid = CLOCK_MONOTONIC,
97  			.get_time = &ktime_get,
98  		},
99  		{
100  			.index = HRTIMER_BASE_REALTIME_SOFT,
101  			.clockid = CLOCK_REALTIME,
102  			.get_time = &ktime_get_real,
103  		},
104  		{
105  			.index = HRTIMER_BASE_BOOTTIME_SOFT,
106  			.clockid = CLOCK_BOOTTIME,
107  			.get_time = &ktime_get_boottime,
108  		},
109  		{
110  			.index = HRTIMER_BASE_TAI_SOFT,
111  			.clockid = CLOCK_TAI,
112  			.get_time = &ktime_get_clocktai,
113  		},
114  	}
115  };
116  
117  static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
118  	/* Make sure we catch unsupported clockids */
119  	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
120  
121  	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
122  	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
123  	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
124  	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
125  };
126  
127  /*
128   * Functions and macros which are different for UP/SMP systems are kept in a
129   * single place
130   */
131  #ifdef CONFIG_SMP
132  
133  /*
134   * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135   * such that hrtimer_callback_running() can unconditionally dereference
136   * timer->base->cpu_base
137   */
138  static struct hrtimer_cpu_base migration_cpu_base = {
139  	.clock_base = { {
140  		.cpu_base = &migration_cpu_base,
141  		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
142  						     &migration_cpu_base.lock),
143  	}, },
144  };
145  
146  #define migration_base	migration_cpu_base.clock_base[0]
147  
is_migration_base(struct hrtimer_clock_base * base)148  static inline bool is_migration_base(struct hrtimer_clock_base *base)
149  {
150  	return base == &migration_base;
151  }
152  
153  /*
154   * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155   * means that all timers which are tied to this base via timer->base are
156   * locked, and the base itself is locked too.
157   *
158   * So __run_timers/migrate_timers can safely modify all timers which could
159   * be found on the lists/queues.
160   *
161   * When the timer's base is locked, and the timer removed from list, it is
162   * possible to set timer->base = &migration_base and drop the lock: the timer
163   * remains locked.
164   */
165  static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)166  struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167  					     unsigned long *flags)
168  	__acquires(&timer->base->lock)
169  {
170  	struct hrtimer_clock_base *base;
171  
172  	for (;;) {
173  		base = READ_ONCE(timer->base);
174  		if (likely(base != &migration_base)) {
175  			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176  			if (likely(base == timer->base))
177  				return base;
178  			/* The timer has migrated to another CPU: */
179  			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180  		}
181  		cpu_relax();
182  	}
183  }
184  
185  /*
186   * We do not migrate the timer when it is expiring before the next
187   * event on the target cpu. When high resolution is enabled, we cannot
188   * reprogram the target cpu hardware and we would cause it to fire
189   * late. To keep it simple, we handle the high resolution enabled and
190   * disabled case similar.
191   *
192   * Called with cpu_base->lock of target cpu held.
193   */
194  static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)195  hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
196  {
197  	ktime_t expires;
198  
199  	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200  	return expires < new_base->cpu_base->expires_next;
201  }
202  
203  static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)204  struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
205  					 int pinned)
206  {
207  #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
208  	if (static_branch_likely(&timers_migration_enabled) && !pinned)
209  		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
210  #endif
211  	return base;
212  }
213  
214  /*
215   * We switch the timer base to a power-optimized selected CPU target,
216   * if:
217   *	- NO_HZ_COMMON is enabled
218   *	- timer migration is enabled
219   *	- the timer callback is not running
220   *	- the timer is not the first expiring timer on the new target
221   *
222   * If one of the above requirements is not fulfilled we move the timer
223   * to the current CPU or leave it on the previously assigned CPU if
224   * the timer callback is currently running.
225   */
226  static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)227  switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
228  		    int pinned)
229  {
230  	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
231  	struct hrtimer_clock_base *new_base;
232  	int basenum = base->index;
233  
234  	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
235  	new_cpu_base = get_target_base(this_cpu_base, pinned);
236  again:
237  	new_base = &new_cpu_base->clock_base[basenum];
238  
239  	if (base != new_base) {
240  		/*
241  		 * We are trying to move timer to new_base.
242  		 * However we can't change timer's base while it is running,
243  		 * so we keep it on the same CPU. No hassle vs. reprogramming
244  		 * the event source in the high resolution case. The softirq
245  		 * code will take care of this when the timer function has
246  		 * completed. There is no conflict as we hold the lock until
247  		 * the timer is enqueued.
248  		 */
249  		if (unlikely(hrtimer_callback_running(timer)))
250  			return base;
251  
252  		/* See the comment in lock_hrtimer_base() */
253  		WRITE_ONCE(timer->base, &migration_base);
254  		raw_spin_unlock(&base->cpu_base->lock);
255  		raw_spin_lock(&new_base->cpu_base->lock);
256  
257  		if (new_cpu_base != this_cpu_base &&
258  		    hrtimer_check_target(timer, new_base)) {
259  			raw_spin_unlock(&new_base->cpu_base->lock);
260  			raw_spin_lock(&base->cpu_base->lock);
261  			new_cpu_base = this_cpu_base;
262  			WRITE_ONCE(timer->base, base);
263  			goto again;
264  		}
265  		WRITE_ONCE(timer->base, new_base);
266  	} else {
267  		if (new_cpu_base != this_cpu_base &&
268  		    hrtimer_check_target(timer, new_base)) {
269  			new_cpu_base = this_cpu_base;
270  			goto again;
271  		}
272  	}
273  	return new_base;
274  }
275  
276  #else /* CONFIG_SMP */
277  
is_migration_base(struct hrtimer_clock_base * base)278  static inline bool is_migration_base(struct hrtimer_clock_base *base)
279  {
280  	return false;
281  }
282  
283  static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)284  lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
285  	__acquires(&timer->base->cpu_base->lock)
286  {
287  	struct hrtimer_clock_base *base = timer->base;
288  
289  	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
290  
291  	return base;
292  }
293  
294  # define switch_hrtimer_base(t, b, p)	(b)
295  
296  #endif	/* !CONFIG_SMP */
297  
298  /*
299   * Functions for the union type storage format of ktime_t which are
300   * too large for inlining:
301   */
302  #if BITS_PER_LONG < 64
303  /*
304   * Divide a ktime value by a nanosecond value
305   */
__ktime_divns(const ktime_t kt,s64 div)306  s64 __ktime_divns(const ktime_t kt, s64 div)
307  {
308  	int sft = 0;
309  	s64 dclc;
310  	u64 tmp;
311  
312  	dclc = ktime_to_ns(kt);
313  	tmp = dclc < 0 ? -dclc : dclc;
314  
315  	/* Make sure the divisor is less than 2^32: */
316  	while (div >> 32) {
317  		sft++;
318  		div >>= 1;
319  	}
320  	tmp >>= sft;
321  	do_div(tmp, (u32) div);
322  	return dclc < 0 ? -tmp : tmp;
323  }
324  EXPORT_SYMBOL_GPL(__ktime_divns);
325  #endif /* BITS_PER_LONG >= 64 */
326  
327  /*
328   * Add two ktime values and do a safety check for overflow:
329   */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)330  ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
331  {
332  	ktime_t res = ktime_add_unsafe(lhs, rhs);
333  
334  	/*
335  	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
336  	 * return to user space in a timespec:
337  	 */
338  	if (res < 0 || res < lhs || res < rhs)
339  		res = ktime_set(KTIME_SEC_MAX, 0);
340  
341  	return res;
342  }
343  
344  EXPORT_SYMBOL_GPL(ktime_add_safe);
345  
346  #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
347  
348  static const struct debug_obj_descr hrtimer_debug_descr;
349  
hrtimer_debug_hint(void * addr)350  static void *hrtimer_debug_hint(void *addr)
351  {
352  	return ((struct hrtimer *) addr)->function;
353  }
354  
355  /*
356   * fixup_init is called when:
357   * - an active object is initialized
358   */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)359  static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
360  {
361  	struct hrtimer *timer = addr;
362  
363  	switch (state) {
364  	case ODEBUG_STATE_ACTIVE:
365  		hrtimer_cancel(timer);
366  		debug_object_init(timer, &hrtimer_debug_descr);
367  		return true;
368  	default:
369  		return false;
370  	}
371  }
372  
373  /*
374   * fixup_activate is called when:
375   * - an active object is activated
376   * - an unknown non-static object is activated
377   */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)378  static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
379  {
380  	switch (state) {
381  	case ODEBUG_STATE_ACTIVE:
382  		WARN_ON(1);
383  		fallthrough;
384  	default:
385  		return false;
386  	}
387  }
388  
389  /*
390   * fixup_free is called when:
391   * - an active object is freed
392   */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)393  static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
394  {
395  	struct hrtimer *timer = addr;
396  
397  	switch (state) {
398  	case ODEBUG_STATE_ACTIVE:
399  		hrtimer_cancel(timer);
400  		debug_object_free(timer, &hrtimer_debug_descr);
401  		return true;
402  	default:
403  		return false;
404  	}
405  }
406  
407  static const struct debug_obj_descr hrtimer_debug_descr = {
408  	.name		= "hrtimer",
409  	.debug_hint	= hrtimer_debug_hint,
410  	.fixup_init	= hrtimer_fixup_init,
411  	.fixup_activate	= hrtimer_fixup_activate,
412  	.fixup_free	= hrtimer_fixup_free,
413  };
414  
debug_hrtimer_init(struct hrtimer * timer)415  static inline void debug_hrtimer_init(struct hrtimer *timer)
416  {
417  	debug_object_init(timer, &hrtimer_debug_descr);
418  }
419  
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)420  static inline void debug_hrtimer_activate(struct hrtimer *timer,
421  					  enum hrtimer_mode mode)
422  {
423  	debug_object_activate(timer, &hrtimer_debug_descr);
424  }
425  
debug_hrtimer_deactivate(struct hrtimer * timer)426  static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
427  {
428  	debug_object_deactivate(timer, &hrtimer_debug_descr);
429  }
430  
431  static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
432  			   enum hrtimer_mode mode);
433  
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)434  void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
435  			   enum hrtimer_mode mode)
436  {
437  	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
438  	__hrtimer_init(timer, clock_id, mode);
439  }
440  EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
441  
442  static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
443  				   clockid_t clock_id, enum hrtimer_mode mode);
444  
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)445  void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
446  				   clockid_t clock_id, enum hrtimer_mode mode)
447  {
448  	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
449  	__hrtimer_init_sleeper(sl, clock_id, mode);
450  }
451  EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
452  
destroy_hrtimer_on_stack(struct hrtimer * timer)453  void destroy_hrtimer_on_stack(struct hrtimer *timer)
454  {
455  	debug_object_free(timer, &hrtimer_debug_descr);
456  }
457  EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458  
459  #else
460  
debug_hrtimer_init(struct hrtimer * timer)461  static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)462  static inline void debug_hrtimer_activate(struct hrtimer *timer,
463  					  enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)464  static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
465  #endif
466  
467  static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)468  debug_init(struct hrtimer *timer, clockid_t clockid,
469  	   enum hrtimer_mode mode)
470  {
471  	debug_hrtimer_init(timer);
472  	trace_hrtimer_init(timer, clockid, mode);
473  }
474  
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)475  static inline void debug_activate(struct hrtimer *timer,
476  				  enum hrtimer_mode mode)
477  {
478  	debug_hrtimer_activate(timer, mode);
479  	trace_hrtimer_start(timer, mode);
480  }
481  
debug_deactivate(struct hrtimer * timer)482  static inline void debug_deactivate(struct hrtimer *timer)
483  {
484  	debug_hrtimer_deactivate(timer);
485  	trace_hrtimer_cancel(timer);
486  }
487  
488  static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)489  __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
490  {
491  	unsigned int idx;
492  
493  	if (!*active)
494  		return NULL;
495  
496  	idx = __ffs(*active);
497  	*active &= ~(1U << idx);
498  
499  	return &cpu_base->clock_base[idx];
500  }
501  
502  #define for_each_active_base(base, cpu_base, active)	\
503  	while ((base = __next_base((cpu_base), &(active))))
504  
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)505  static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
506  					 const struct hrtimer *exclude,
507  					 unsigned int active,
508  					 ktime_t expires_next)
509  {
510  	struct hrtimer_clock_base *base;
511  	ktime_t expires;
512  
513  	for_each_active_base(base, cpu_base, active) {
514  		struct timerqueue_node *next;
515  		struct hrtimer *timer;
516  
517  		next = timerqueue_getnext(&base->active);
518  		timer = container_of(next, struct hrtimer, node);
519  		if (timer == exclude) {
520  			/* Get to the next timer in the queue. */
521  			next = timerqueue_iterate_next(next);
522  			if (!next)
523  				continue;
524  
525  			timer = container_of(next, struct hrtimer, node);
526  		}
527  		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528  		if (expires < expires_next) {
529  			expires_next = expires;
530  
531  			/* Skip cpu_base update if a timer is being excluded. */
532  			if (exclude)
533  				continue;
534  
535  			if (timer->is_soft)
536  				cpu_base->softirq_next_timer = timer;
537  			else
538  				cpu_base->next_timer = timer;
539  		}
540  	}
541  	/*
542  	 * clock_was_set() might have changed base->offset of any of
543  	 * the clock bases so the result might be negative. Fix it up
544  	 * to prevent a false positive in clockevents_program_event().
545  	 */
546  	if (expires_next < 0)
547  		expires_next = 0;
548  	return expires_next;
549  }
550  
551  /*
552   * Recomputes cpu_base::*next_timer and returns the earliest expires_next
553   * but does not set cpu_base::*expires_next, that is done by
554   * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
555   * cpu_base::*expires_next right away, reprogramming logic would no longer
556   * work.
557   *
558   * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
559   * those timers will get run whenever the softirq gets handled, at the end of
560   * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
561   *
562   * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
563   * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
564   * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
565   *
566   * @active_mask must be one of:
567   *  - HRTIMER_ACTIVE_ALL,
568   *  - HRTIMER_ACTIVE_SOFT, or
569   *  - HRTIMER_ACTIVE_HARD.
570   */
571  static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)572  __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
573  {
574  	unsigned int active;
575  	struct hrtimer *next_timer = NULL;
576  	ktime_t expires_next = KTIME_MAX;
577  
578  	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
579  		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
580  		cpu_base->softirq_next_timer = NULL;
581  		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
582  							 active, KTIME_MAX);
583  
584  		next_timer = cpu_base->softirq_next_timer;
585  	}
586  
587  	if (active_mask & HRTIMER_ACTIVE_HARD) {
588  		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
589  		cpu_base->next_timer = next_timer;
590  		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
591  							 expires_next);
592  	}
593  
594  	return expires_next;
595  }
596  
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)597  static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
598  {
599  	ktime_t expires_next, soft = KTIME_MAX;
600  
601  	/*
602  	 * If the soft interrupt has already been activated, ignore the
603  	 * soft bases. They will be handled in the already raised soft
604  	 * interrupt.
605  	 */
606  	if (!cpu_base->softirq_activated) {
607  		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
608  		/*
609  		 * Update the soft expiry time. clock_settime() might have
610  		 * affected it.
611  		 */
612  		cpu_base->softirq_expires_next = soft;
613  	}
614  
615  	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
616  	/*
617  	 * If a softirq timer is expiring first, update cpu_base->next_timer
618  	 * and program the hardware with the soft expiry time.
619  	 */
620  	if (expires_next > soft) {
621  		cpu_base->next_timer = cpu_base->softirq_next_timer;
622  		expires_next = soft;
623  	}
624  
625  	return expires_next;
626  }
627  
hrtimer_update_base(struct hrtimer_cpu_base * base)628  static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
629  {
630  	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
631  	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
632  	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
633  
634  	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
635  					    offs_real, offs_boot, offs_tai);
636  
637  	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
638  	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
639  	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
640  
641  	return now;
642  }
643  
644  /*
645   * Is the high resolution mode active ?
646   */
hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)647  static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
648  {
649  	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
650  		cpu_base->hres_active : 0;
651  }
652  
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)653  static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
654  				struct hrtimer *next_timer,
655  				ktime_t expires_next)
656  {
657  	cpu_base->expires_next = expires_next;
658  
659  	/*
660  	 * If hres is not active, hardware does not have to be
661  	 * reprogrammed yet.
662  	 *
663  	 * If a hang was detected in the last timer interrupt then we
664  	 * leave the hang delay active in the hardware. We want the
665  	 * system to make progress. That also prevents the following
666  	 * scenario:
667  	 * T1 expires 50ms from now
668  	 * T2 expires 5s from now
669  	 *
670  	 * T1 is removed, so this code is called and would reprogram
671  	 * the hardware to 5s from now. Any hrtimer_start after that
672  	 * will not reprogram the hardware due to hang_detected being
673  	 * set. So we'd effectively block all timers until the T2 event
674  	 * fires.
675  	 */
676  	if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
677  		return;
678  
679  	tick_program_event(expires_next, 1);
680  }
681  
682  /*
683   * Reprogram the event source with checking both queues for the
684   * next event
685   * Called with interrupts disabled and base->lock held
686   */
687  static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)688  hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
689  {
690  	ktime_t expires_next;
691  
692  	expires_next = hrtimer_update_next_event(cpu_base);
693  
694  	if (skip_equal && expires_next == cpu_base->expires_next)
695  		return;
696  
697  	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
698  }
699  
700  /* High resolution timer related functions */
701  #ifdef CONFIG_HIGH_RES_TIMERS
702  
703  /*
704   * High resolution timer enabled ?
705   */
706  static bool hrtimer_hres_enabled __read_mostly  = true;
707  unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
708  EXPORT_SYMBOL_GPL(hrtimer_resolution);
709  
710  /*
711   * Enable / Disable high resolution mode
712   */
setup_hrtimer_hres(char * str)713  static int __init setup_hrtimer_hres(char *str)
714  {
715  	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
716  }
717  
718  __setup("highres=", setup_hrtimer_hres);
719  
720  /*
721   * hrtimer_high_res_enabled - query, if the highres mode is enabled
722   */
hrtimer_is_hres_enabled(void)723  static inline int hrtimer_is_hres_enabled(void)
724  {
725  	return hrtimer_hres_enabled;
726  }
727  
728  static void retrigger_next_event(void *arg);
729  
730  /*
731   * Switch to high resolution mode
732   */
hrtimer_switch_to_hres(void)733  static void hrtimer_switch_to_hres(void)
734  {
735  	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
736  
737  	if (tick_init_highres()) {
738  		pr_warn("Could not switch to high resolution mode on CPU %u\n",
739  			base->cpu);
740  		return;
741  	}
742  	base->hres_active = 1;
743  	hrtimer_resolution = HIGH_RES_NSEC;
744  
745  	tick_setup_sched_timer(true);
746  	/* "Retrigger" the interrupt to get things going */
747  	retrigger_next_event(NULL);
748  }
749  
750  #else
751  
hrtimer_is_hres_enabled(void)752  static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)753  static inline void hrtimer_switch_to_hres(void) { }
754  
755  #endif /* CONFIG_HIGH_RES_TIMERS */
756  /*
757   * Retrigger next event is called after clock was set with interrupts
758   * disabled through an SMP function call or directly from low level
759   * resume code.
760   *
761   * This is only invoked when:
762   *	- CONFIG_HIGH_RES_TIMERS is enabled.
763   *	- CONFIG_NOHZ_COMMON is enabled
764   *
765   * For the other cases this function is empty and because the call sites
766   * are optimized out it vanishes as well, i.e. no need for lots of
767   * #ifdeffery.
768   */
retrigger_next_event(void * arg)769  static void retrigger_next_event(void *arg)
770  {
771  	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
772  
773  	/*
774  	 * When high resolution mode or nohz is active, then the offsets of
775  	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
776  	 * next tick will take care of that.
777  	 *
778  	 * If high resolution mode is active then the next expiring timer
779  	 * must be reevaluated and the clock event device reprogrammed if
780  	 * necessary.
781  	 *
782  	 * In the NOHZ case the update of the offset and the reevaluation
783  	 * of the next expiring timer is enough. The return from the SMP
784  	 * function call will take care of the reprogramming in case the
785  	 * CPU was in a NOHZ idle sleep.
786  	 */
787  	if (!hrtimer_hres_active(base) && !tick_nohz_active)
788  		return;
789  
790  	raw_spin_lock(&base->lock);
791  	hrtimer_update_base(base);
792  	if (hrtimer_hres_active(base))
793  		hrtimer_force_reprogram(base, 0);
794  	else
795  		hrtimer_update_next_event(base);
796  	raw_spin_unlock(&base->lock);
797  }
798  
799  /*
800   * When a timer is enqueued and expires earlier than the already enqueued
801   * timers, we have to check, whether it expires earlier than the timer for
802   * which the clock event device was armed.
803   *
804   * Called with interrupts disabled and base->cpu_base.lock held
805   */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)806  static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
807  {
808  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
809  	struct hrtimer_clock_base *base = timer->base;
810  	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
811  
812  	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
813  
814  	/*
815  	 * CLOCK_REALTIME timer might be requested with an absolute
816  	 * expiry time which is less than base->offset. Set it to 0.
817  	 */
818  	if (expires < 0)
819  		expires = 0;
820  
821  	if (timer->is_soft) {
822  		/*
823  		 * soft hrtimer could be started on a remote CPU. In this
824  		 * case softirq_expires_next needs to be updated on the
825  		 * remote CPU. The soft hrtimer will not expire before the
826  		 * first hard hrtimer on the remote CPU -
827  		 * hrtimer_check_target() prevents this case.
828  		 */
829  		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
830  
831  		if (timer_cpu_base->softirq_activated)
832  			return;
833  
834  		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
835  			return;
836  
837  		timer_cpu_base->softirq_next_timer = timer;
838  		timer_cpu_base->softirq_expires_next = expires;
839  
840  		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
841  		    !reprogram)
842  			return;
843  	}
844  
845  	/*
846  	 * If the timer is not on the current cpu, we cannot reprogram
847  	 * the other cpus clock event device.
848  	 */
849  	if (base->cpu_base != cpu_base)
850  		return;
851  
852  	if (expires >= cpu_base->expires_next)
853  		return;
854  
855  	/*
856  	 * If the hrtimer interrupt is running, then it will reevaluate the
857  	 * clock bases and reprogram the clock event device.
858  	 */
859  	if (cpu_base->in_hrtirq)
860  		return;
861  
862  	cpu_base->next_timer = timer;
863  
864  	__hrtimer_reprogram(cpu_base, timer, expires);
865  }
866  
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)867  static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
868  			     unsigned int active)
869  {
870  	struct hrtimer_clock_base *base;
871  	unsigned int seq;
872  	ktime_t expires;
873  
874  	/*
875  	 * Update the base offsets unconditionally so the following
876  	 * checks whether the SMP function call is required works.
877  	 *
878  	 * The update is safe even when the remote CPU is in the hrtimer
879  	 * interrupt or the hrtimer soft interrupt and expiring affected
880  	 * bases. Either it will see the update before handling a base or
881  	 * it will see it when it finishes the processing and reevaluates
882  	 * the next expiring timer.
883  	 */
884  	seq = cpu_base->clock_was_set_seq;
885  	hrtimer_update_base(cpu_base);
886  
887  	/*
888  	 * If the sequence did not change over the update then the
889  	 * remote CPU already handled it.
890  	 */
891  	if (seq == cpu_base->clock_was_set_seq)
892  		return false;
893  
894  	/*
895  	 * If the remote CPU is currently handling an hrtimer interrupt, it
896  	 * will reevaluate the first expiring timer of all clock bases
897  	 * before reprogramming. Nothing to do here.
898  	 */
899  	if (cpu_base->in_hrtirq)
900  		return false;
901  
902  	/*
903  	 * Walk the affected clock bases and check whether the first expiring
904  	 * timer in a clock base is moving ahead of the first expiring timer of
905  	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
906  	 * event devices cannot be remotely reprogrammed.
907  	 */
908  	active &= cpu_base->active_bases;
909  
910  	for_each_active_base(base, cpu_base, active) {
911  		struct timerqueue_node *next;
912  
913  		next = timerqueue_getnext(&base->active);
914  		expires = ktime_sub(next->expires, base->offset);
915  		if (expires < cpu_base->expires_next)
916  			return true;
917  
918  		/* Extra check for softirq clock bases */
919  		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
920  			continue;
921  		if (cpu_base->softirq_activated)
922  			continue;
923  		if (expires < cpu_base->softirq_expires_next)
924  			return true;
925  	}
926  	return false;
927  }
928  
929  /*
930   * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
931   * CLOCK_BOOTTIME (for late sleep time injection).
932   *
933   * This requires to update the offsets for these clocks
934   * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
935   * also requires to eventually reprogram the per CPU clock event devices
936   * when the change moves an affected timer ahead of the first expiring
937   * timer on that CPU. Obviously remote per CPU clock event devices cannot
938   * be reprogrammed. The other reason why an IPI has to be sent is when the
939   * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
940   * in the tick, which obviously might be stopped, so this has to bring out
941   * the remote CPU which might sleep in idle to get this sorted.
942   */
clock_was_set(unsigned int bases)943  void clock_was_set(unsigned int bases)
944  {
945  	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
946  	cpumask_var_t mask;
947  	int cpu;
948  
949  	if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
950  		goto out_timerfd;
951  
952  	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
953  		on_each_cpu(retrigger_next_event, NULL, 1);
954  		goto out_timerfd;
955  	}
956  
957  	/* Avoid interrupting CPUs if possible */
958  	cpus_read_lock();
959  	for_each_online_cpu(cpu) {
960  		unsigned long flags;
961  
962  		cpu_base = &per_cpu(hrtimer_bases, cpu);
963  		raw_spin_lock_irqsave(&cpu_base->lock, flags);
964  
965  		if (update_needs_ipi(cpu_base, bases))
966  			cpumask_set_cpu(cpu, mask);
967  
968  		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
969  	}
970  
971  	preempt_disable();
972  	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
973  	preempt_enable();
974  	cpus_read_unlock();
975  	free_cpumask_var(mask);
976  
977  out_timerfd:
978  	timerfd_clock_was_set();
979  }
980  
clock_was_set_work(struct work_struct * work)981  static void clock_was_set_work(struct work_struct *work)
982  {
983  	clock_was_set(CLOCK_SET_WALL);
984  }
985  
986  static DECLARE_WORK(hrtimer_work, clock_was_set_work);
987  
988  /*
989   * Called from timekeeping code to reprogram the hrtimer interrupt device
990   * on all cpus and to notify timerfd.
991   */
clock_was_set_delayed(void)992  void clock_was_set_delayed(void)
993  {
994  	schedule_work(&hrtimer_work);
995  }
996  
997  /*
998   * Called during resume either directly from via timekeeping_resume()
999   * or in the case of s2idle from tick_unfreeze() to ensure that the
1000   * hrtimers are up to date.
1001   */
hrtimers_resume_local(void)1002  void hrtimers_resume_local(void)
1003  {
1004  	lockdep_assert_irqs_disabled();
1005  	/* Retrigger on the local CPU */
1006  	retrigger_next_event(NULL);
1007  }
1008  
1009  /*
1010   * Counterpart to lock_hrtimer_base above:
1011   */
1012  static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1013  void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1014  	__releases(&timer->base->cpu_base->lock)
1015  {
1016  	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1017  }
1018  
1019  /**
1020   * hrtimer_forward() - forward the timer expiry
1021   * @timer:	hrtimer to forward
1022   * @now:	forward past this time
1023   * @interval:	the interval to forward
1024   *
1025   * Forward the timer expiry so it will expire in the future.
1026   *
1027   * .. note::
1028   *  This only updates the timer expiry value and does not requeue the timer.
1029   *
1030   * There is also a variant of the function hrtimer_forward_now().
1031   *
1032   * Context: Can be safely called from the callback function of @timer. If called
1033   *          from other contexts @timer must neither be enqueued nor running the
1034   *          callback and the caller needs to take care of serialization.
1035   *
1036   * Return: The number of overruns are returned.
1037   */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1038  u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1039  {
1040  	u64 orun = 1;
1041  	ktime_t delta;
1042  
1043  	delta = ktime_sub(now, hrtimer_get_expires(timer));
1044  
1045  	if (delta < 0)
1046  		return 0;
1047  
1048  	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1049  		return 0;
1050  
1051  	if (interval < hrtimer_resolution)
1052  		interval = hrtimer_resolution;
1053  
1054  	if (unlikely(delta >= interval)) {
1055  		s64 incr = ktime_to_ns(interval);
1056  
1057  		orun = ktime_divns(delta, incr);
1058  		hrtimer_add_expires_ns(timer, incr * orun);
1059  		if (hrtimer_get_expires_tv64(timer) > now)
1060  			return orun;
1061  		/*
1062  		 * This (and the ktime_add() below) is the
1063  		 * correction for exact:
1064  		 */
1065  		orun++;
1066  	}
1067  	hrtimer_add_expires(timer, interval);
1068  
1069  	return orun;
1070  }
1071  EXPORT_SYMBOL_GPL(hrtimer_forward);
1072  
1073  /*
1074   * enqueue_hrtimer - internal function to (re)start a timer
1075   *
1076   * The timer is inserted in expiry order. Insertion into the
1077   * red black tree is O(log(n)). Must hold the base lock.
1078   *
1079   * Returns 1 when the new timer is the leftmost timer in the tree.
1080   */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1081  static int enqueue_hrtimer(struct hrtimer *timer,
1082  			   struct hrtimer_clock_base *base,
1083  			   enum hrtimer_mode mode)
1084  {
1085  	debug_activate(timer, mode);
1086  	WARN_ON_ONCE(!base->cpu_base->online);
1087  
1088  	base->cpu_base->active_bases |= 1 << base->index;
1089  
1090  	/* Pairs with the lockless read in hrtimer_is_queued() */
1091  	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1092  
1093  	return timerqueue_add(&base->active, &timer->node);
1094  }
1095  
1096  /*
1097   * __remove_hrtimer - internal function to remove a timer
1098   *
1099   * Caller must hold the base lock.
1100   *
1101   * High resolution timer mode reprograms the clock event device when the
1102   * timer is the one which expires next. The caller can disable this by setting
1103   * reprogram to zero. This is useful, when the context does a reprogramming
1104   * anyway (e.g. timer interrupt)
1105   */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1106  static void __remove_hrtimer(struct hrtimer *timer,
1107  			     struct hrtimer_clock_base *base,
1108  			     u8 newstate, int reprogram)
1109  {
1110  	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1111  	u8 state = timer->state;
1112  
1113  	/* Pairs with the lockless read in hrtimer_is_queued() */
1114  	WRITE_ONCE(timer->state, newstate);
1115  	if (!(state & HRTIMER_STATE_ENQUEUED))
1116  		return;
1117  
1118  	if (!timerqueue_del(&base->active, &timer->node))
1119  		cpu_base->active_bases &= ~(1 << base->index);
1120  
1121  	/*
1122  	 * Note: If reprogram is false we do not update
1123  	 * cpu_base->next_timer. This happens when we remove the first
1124  	 * timer on a remote cpu. No harm as we never dereference
1125  	 * cpu_base->next_timer. So the worst thing what can happen is
1126  	 * an superfluous call to hrtimer_force_reprogram() on the
1127  	 * remote cpu later on if the same timer gets enqueued again.
1128  	 */
1129  	if (reprogram && timer == cpu_base->next_timer)
1130  		hrtimer_force_reprogram(cpu_base, 1);
1131  }
1132  
1133  /*
1134   * remove hrtimer, called with base lock held
1135   */
1136  static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1137  remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1138  	       bool restart, bool keep_local)
1139  {
1140  	u8 state = timer->state;
1141  
1142  	if (state & HRTIMER_STATE_ENQUEUED) {
1143  		bool reprogram;
1144  
1145  		/*
1146  		 * Remove the timer and force reprogramming when high
1147  		 * resolution mode is active and the timer is on the current
1148  		 * CPU. If we remove a timer on another CPU, reprogramming is
1149  		 * skipped. The interrupt event on this CPU is fired and
1150  		 * reprogramming happens in the interrupt handler. This is a
1151  		 * rare case and less expensive than a smp call.
1152  		 */
1153  		debug_deactivate(timer);
1154  		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1155  
1156  		/*
1157  		 * If the timer is not restarted then reprogramming is
1158  		 * required if the timer is local. If it is local and about
1159  		 * to be restarted, avoid programming it twice (on removal
1160  		 * and a moment later when it's requeued).
1161  		 */
1162  		if (!restart)
1163  			state = HRTIMER_STATE_INACTIVE;
1164  		else
1165  			reprogram &= !keep_local;
1166  
1167  		__remove_hrtimer(timer, base, state, reprogram);
1168  		return 1;
1169  	}
1170  	return 0;
1171  }
1172  
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1173  static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1174  					    const enum hrtimer_mode mode)
1175  {
1176  #ifdef CONFIG_TIME_LOW_RES
1177  	/*
1178  	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1179  	 * granular time values. For relative timers we add hrtimer_resolution
1180  	 * (i.e. one jiffy) to prevent short timeouts.
1181  	 */
1182  	timer->is_rel = mode & HRTIMER_MODE_REL;
1183  	if (timer->is_rel)
1184  		tim = ktime_add_safe(tim, hrtimer_resolution);
1185  #endif
1186  	return tim;
1187  }
1188  
1189  static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1190  hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1191  {
1192  	ktime_t expires;
1193  
1194  	/*
1195  	 * Find the next SOFT expiration.
1196  	 */
1197  	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1198  
1199  	/*
1200  	 * reprogramming needs to be triggered, even if the next soft
1201  	 * hrtimer expires at the same time than the next hard
1202  	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1203  	 */
1204  	if (expires == KTIME_MAX)
1205  		return;
1206  
1207  	/*
1208  	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1209  	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1210  	 */
1211  	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1212  }
1213  
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1214  static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1215  				    u64 delta_ns, const enum hrtimer_mode mode,
1216  				    struct hrtimer_clock_base *base)
1217  {
1218  	struct hrtimer_clock_base *new_base;
1219  	bool force_local, first;
1220  
1221  	/*
1222  	 * If the timer is on the local cpu base and is the first expiring
1223  	 * timer then this might end up reprogramming the hardware twice
1224  	 * (on removal and on enqueue). To avoid that by prevent the
1225  	 * reprogram on removal, keep the timer local to the current CPU
1226  	 * and enforce reprogramming after it is queued no matter whether
1227  	 * it is the new first expiring timer again or not.
1228  	 */
1229  	force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1230  	force_local &= base->cpu_base->next_timer == timer;
1231  
1232  	/*
1233  	 * Remove an active timer from the queue. In case it is not queued
1234  	 * on the current CPU, make sure that remove_hrtimer() updates the
1235  	 * remote data correctly.
1236  	 *
1237  	 * If it's on the current CPU and the first expiring timer, then
1238  	 * skip reprogramming, keep the timer local and enforce
1239  	 * reprogramming later if it was the first expiring timer.  This
1240  	 * avoids programming the underlying clock event twice (once at
1241  	 * removal and once after enqueue).
1242  	 */
1243  	remove_hrtimer(timer, base, true, force_local);
1244  
1245  	if (mode & HRTIMER_MODE_REL)
1246  		tim = ktime_add_safe(tim, base->get_time());
1247  
1248  	tim = hrtimer_update_lowres(timer, tim, mode);
1249  
1250  	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1251  
1252  	/* Switch the timer base, if necessary: */
1253  	if (!force_local) {
1254  		new_base = switch_hrtimer_base(timer, base,
1255  					       mode & HRTIMER_MODE_PINNED);
1256  	} else {
1257  		new_base = base;
1258  	}
1259  
1260  	first = enqueue_hrtimer(timer, new_base, mode);
1261  	if (!force_local)
1262  		return first;
1263  
1264  	/*
1265  	 * Timer was forced to stay on the current CPU to avoid
1266  	 * reprogramming on removal and enqueue. Force reprogram the
1267  	 * hardware by evaluating the new first expiring timer.
1268  	 */
1269  	hrtimer_force_reprogram(new_base->cpu_base, 1);
1270  	return 0;
1271  }
1272  
1273  /**
1274   * hrtimer_start_range_ns - (re)start an hrtimer
1275   * @timer:	the timer to be added
1276   * @tim:	expiry time
1277   * @delta_ns:	"slack" range for the timer
1278   * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1279   *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1280   *		softirq based mode is considered for debug purpose only!
1281   */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1282  void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1283  			    u64 delta_ns, const enum hrtimer_mode mode)
1284  {
1285  	struct hrtimer_clock_base *base;
1286  	unsigned long flags;
1287  
1288  	if (WARN_ON_ONCE(!timer->function))
1289  		return;
1290  	/*
1291  	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1292  	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1293  	 * expiry mode because unmarked timers are moved to softirq expiry.
1294  	 */
1295  	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1296  		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1297  	else
1298  		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1299  
1300  	base = lock_hrtimer_base(timer, &flags);
1301  
1302  	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1303  		hrtimer_reprogram(timer, true);
1304  
1305  	unlock_hrtimer_base(timer, &flags);
1306  }
1307  EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1308  
1309  /**
1310   * hrtimer_try_to_cancel - try to deactivate a timer
1311   * @timer:	hrtimer to stop
1312   *
1313   * Returns:
1314   *
1315   *  *  0 when the timer was not active
1316   *  *  1 when the timer was active
1317   *  * -1 when the timer is currently executing the callback function and
1318   *    cannot be stopped
1319   */
hrtimer_try_to_cancel(struct hrtimer * timer)1320  int hrtimer_try_to_cancel(struct hrtimer *timer)
1321  {
1322  	struct hrtimer_clock_base *base;
1323  	unsigned long flags;
1324  	int ret = -1;
1325  
1326  	/*
1327  	 * Check lockless first. If the timer is not active (neither
1328  	 * enqueued nor running the callback, nothing to do here.  The
1329  	 * base lock does not serialize against a concurrent enqueue,
1330  	 * so we can avoid taking it.
1331  	 */
1332  	if (!hrtimer_active(timer))
1333  		return 0;
1334  
1335  	base = lock_hrtimer_base(timer, &flags);
1336  
1337  	if (!hrtimer_callback_running(timer))
1338  		ret = remove_hrtimer(timer, base, false, false);
1339  
1340  	unlock_hrtimer_base(timer, &flags);
1341  
1342  	return ret;
1343  
1344  }
1345  EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1346  
1347  #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1348  static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1349  {
1350  	spin_lock_init(&base->softirq_expiry_lock);
1351  }
1352  
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1353  static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1354  	__acquires(&base->softirq_expiry_lock)
1355  {
1356  	spin_lock(&base->softirq_expiry_lock);
1357  }
1358  
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1359  static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1360  	__releases(&base->softirq_expiry_lock)
1361  {
1362  	spin_unlock(&base->softirq_expiry_lock);
1363  }
1364  
1365  /*
1366   * The counterpart to hrtimer_cancel_wait_running().
1367   *
1368   * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1369   * the timer callback to finish. Drop expiry_lock and reacquire it. That
1370   * allows the waiter to acquire the lock and make progress.
1371   */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1372  static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1373  				      unsigned long flags)
1374  {
1375  	if (atomic_read(&cpu_base->timer_waiters)) {
1376  		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1377  		spin_unlock(&cpu_base->softirq_expiry_lock);
1378  		spin_lock(&cpu_base->softirq_expiry_lock);
1379  		raw_spin_lock_irq(&cpu_base->lock);
1380  	}
1381  }
1382  
1383  /*
1384   * This function is called on PREEMPT_RT kernels when the fast path
1385   * deletion of a timer failed because the timer callback function was
1386   * running.
1387   *
1388   * This prevents priority inversion: if the soft irq thread is preempted
1389   * in the middle of a timer callback, then calling del_timer_sync() can
1390   * lead to two issues:
1391   *
1392   *  - If the caller is on a remote CPU then it has to spin wait for the timer
1393   *    handler to complete. This can result in unbound priority inversion.
1394   *
1395   *  - If the caller originates from the task which preempted the timer
1396   *    handler on the same CPU, then spin waiting for the timer handler to
1397   *    complete is never going to end.
1398   */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1399  void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1400  {
1401  	/* Lockless read. Prevent the compiler from reloading it below */
1402  	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1403  
1404  	/*
1405  	 * Just relax if the timer expires in hard interrupt context or if
1406  	 * it is currently on the migration base.
1407  	 */
1408  	if (!timer->is_soft || is_migration_base(base)) {
1409  		cpu_relax();
1410  		return;
1411  	}
1412  
1413  	/*
1414  	 * Mark the base as contended and grab the expiry lock, which is
1415  	 * held by the softirq across the timer callback. Drop the lock
1416  	 * immediately so the softirq can expire the next timer. In theory
1417  	 * the timer could already be running again, but that's more than
1418  	 * unlikely and just causes another wait loop.
1419  	 */
1420  	atomic_inc(&base->cpu_base->timer_waiters);
1421  	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1422  	atomic_dec(&base->cpu_base->timer_waiters);
1423  	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1424  }
1425  #else
1426  static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1427  hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1428  static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1429  hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1430  static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1431  hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1432  static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1433  					     unsigned long flags) { }
1434  #endif
1435  
1436  /**
1437   * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1438   * @timer:	the timer to be cancelled
1439   *
1440   * Returns:
1441   *  0 when the timer was not active
1442   *  1 when the timer was active
1443   */
hrtimer_cancel(struct hrtimer * timer)1444  int hrtimer_cancel(struct hrtimer *timer)
1445  {
1446  	int ret;
1447  
1448  	do {
1449  		ret = hrtimer_try_to_cancel(timer);
1450  
1451  		if (ret < 0)
1452  			hrtimer_cancel_wait_running(timer);
1453  	} while (ret < 0);
1454  	return ret;
1455  }
1456  EXPORT_SYMBOL_GPL(hrtimer_cancel);
1457  
1458  /**
1459   * __hrtimer_get_remaining - get remaining time for the timer
1460   * @timer:	the timer to read
1461   * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1462   */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1463  ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1464  {
1465  	unsigned long flags;
1466  	ktime_t rem;
1467  
1468  	lock_hrtimer_base(timer, &flags);
1469  	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1470  		rem = hrtimer_expires_remaining_adjusted(timer);
1471  	else
1472  		rem = hrtimer_expires_remaining(timer);
1473  	unlock_hrtimer_base(timer, &flags);
1474  
1475  	return rem;
1476  }
1477  EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1478  
1479  #ifdef CONFIG_NO_HZ_COMMON
1480  /**
1481   * hrtimer_get_next_event - get the time until next expiry event
1482   *
1483   * Returns the next expiry time or KTIME_MAX if no timer is pending.
1484   */
hrtimer_get_next_event(void)1485  u64 hrtimer_get_next_event(void)
1486  {
1487  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1488  	u64 expires = KTIME_MAX;
1489  	unsigned long flags;
1490  
1491  	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1492  
1493  	if (!hrtimer_hres_active(cpu_base))
1494  		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1495  
1496  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1497  
1498  	return expires;
1499  }
1500  
1501  /**
1502   * hrtimer_next_event_without - time until next expiry event w/o one timer
1503   * @exclude:	timer to exclude
1504   *
1505   * Returns the next expiry time over all timers except for the @exclude one or
1506   * KTIME_MAX if none of them is pending.
1507   */
hrtimer_next_event_without(const struct hrtimer * exclude)1508  u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1509  {
1510  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1511  	u64 expires = KTIME_MAX;
1512  	unsigned long flags;
1513  
1514  	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1515  
1516  	if (hrtimer_hres_active(cpu_base)) {
1517  		unsigned int active;
1518  
1519  		if (!cpu_base->softirq_activated) {
1520  			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1521  			expires = __hrtimer_next_event_base(cpu_base, exclude,
1522  							    active, KTIME_MAX);
1523  		}
1524  		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1525  		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1526  						    expires);
1527  	}
1528  
1529  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1530  
1531  	return expires;
1532  }
1533  #endif
1534  
hrtimer_clockid_to_base(clockid_t clock_id)1535  static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1536  {
1537  	if (likely(clock_id < MAX_CLOCKS)) {
1538  		int base = hrtimer_clock_to_base_table[clock_id];
1539  
1540  		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1541  			return base;
1542  	}
1543  	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1544  	return HRTIMER_BASE_MONOTONIC;
1545  }
1546  
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1547  static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1548  			   enum hrtimer_mode mode)
1549  {
1550  	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1551  	struct hrtimer_cpu_base *cpu_base;
1552  	int base;
1553  
1554  	/*
1555  	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1556  	 * marked for hard interrupt expiry mode are moved into soft
1557  	 * interrupt context for latency reasons and because the callbacks
1558  	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1559  	 */
1560  	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1561  		softtimer = true;
1562  
1563  	memset(timer, 0, sizeof(struct hrtimer));
1564  
1565  	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1566  
1567  	/*
1568  	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1569  	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1570  	 * ensure POSIX compliance.
1571  	 */
1572  	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1573  		clock_id = CLOCK_MONOTONIC;
1574  
1575  	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1576  	base += hrtimer_clockid_to_base(clock_id);
1577  	timer->is_soft = softtimer;
1578  	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1579  	timer->base = &cpu_base->clock_base[base];
1580  	timerqueue_init(&timer->node);
1581  }
1582  
1583  /**
1584   * hrtimer_init - initialize a timer to the given clock
1585   * @timer:	the timer to be initialized
1586   * @clock_id:	the clock to be used
1587   * @mode:       The modes which are relevant for initialization:
1588   *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1589   *              HRTIMER_MODE_REL_SOFT
1590   *
1591   *              The PINNED variants of the above can be handed in,
1592   *              but the PINNED bit is ignored as pinning happens
1593   *              when the hrtimer is started
1594   */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1595  void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1596  		  enum hrtimer_mode mode)
1597  {
1598  	debug_init(timer, clock_id, mode);
1599  	__hrtimer_init(timer, clock_id, mode);
1600  }
1601  EXPORT_SYMBOL_GPL(hrtimer_init);
1602  
1603  /*
1604   * A timer is active, when it is enqueued into the rbtree or the
1605   * callback function is running or it's in the state of being migrated
1606   * to another cpu.
1607   *
1608   * It is important for this function to not return a false negative.
1609   */
hrtimer_active(const struct hrtimer * timer)1610  bool hrtimer_active(const struct hrtimer *timer)
1611  {
1612  	struct hrtimer_clock_base *base;
1613  	unsigned int seq;
1614  
1615  	do {
1616  		base = READ_ONCE(timer->base);
1617  		seq = raw_read_seqcount_begin(&base->seq);
1618  
1619  		if (timer->state != HRTIMER_STATE_INACTIVE ||
1620  		    base->running == timer)
1621  			return true;
1622  
1623  	} while (read_seqcount_retry(&base->seq, seq) ||
1624  		 base != READ_ONCE(timer->base));
1625  
1626  	return false;
1627  }
1628  EXPORT_SYMBOL_GPL(hrtimer_active);
1629  
1630  /*
1631   * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1632   * distinct sections:
1633   *
1634   *  - queued:	the timer is queued
1635   *  - callback:	the timer is being ran
1636   *  - post:	the timer is inactive or (re)queued
1637   *
1638   * On the read side we ensure we observe timer->state and cpu_base->running
1639   * from the same section, if anything changed while we looked at it, we retry.
1640   * This includes timer->base changing because sequence numbers alone are
1641   * insufficient for that.
1642   *
1643   * The sequence numbers are required because otherwise we could still observe
1644   * a false negative if the read side got smeared over multiple consecutive
1645   * __run_hrtimer() invocations.
1646   */
1647  
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1648  static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1649  			  struct hrtimer_clock_base *base,
1650  			  struct hrtimer *timer, ktime_t *now,
1651  			  unsigned long flags) __must_hold(&cpu_base->lock)
1652  {
1653  	enum hrtimer_restart (*fn)(struct hrtimer *);
1654  	bool expires_in_hardirq;
1655  	int restart;
1656  
1657  	lockdep_assert_held(&cpu_base->lock);
1658  
1659  	debug_deactivate(timer);
1660  	base->running = timer;
1661  
1662  	/*
1663  	 * Separate the ->running assignment from the ->state assignment.
1664  	 *
1665  	 * As with a regular write barrier, this ensures the read side in
1666  	 * hrtimer_active() cannot observe base->running == NULL &&
1667  	 * timer->state == INACTIVE.
1668  	 */
1669  	raw_write_seqcount_barrier(&base->seq);
1670  
1671  	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1672  	fn = timer->function;
1673  
1674  	/*
1675  	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1676  	 * timer is restarted with a period then it becomes an absolute
1677  	 * timer. If its not restarted it does not matter.
1678  	 */
1679  	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1680  		timer->is_rel = false;
1681  
1682  	/*
1683  	 * The timer is marked as running in the CPU base, so it is
1684  	 * protected against migration to a different CPU even if the lock
1685  	 * is dropped.
1686  	 */
1687  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1688  	trace_hrtimer_expire_entry(timer, now);
1689  	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1690  
1691  	restart = fn(timer);
1692  
1693  	lockdep_hrtimer_exit(expires_in_hardirq);
1694  	trace_hrtimer_expire_exit(timer);
1695  	raw_spin_lock_irq(&cpu_base->lock);
1696  
1697  	/*
1698  	 * Note: We clear the running state after enqueue_hrtimer and
1699  	 * we do not reprogram the event hardware. Happens either in
1700  	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1701  	 *
1702  	 * Note: Because we dropped the cpu_base->lock above,
1703  	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1704  	 * for us already.
1705  	 */
1706  	if (restart != HRTIMER_NORESTART &&
1707  	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1708  		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1709  
1710  	/*
1711  	 * Separate the ->running assignment from the ->state assignment.
1712  	 *
1713  	 * As with a regular write barrier, this ensures the read side in
1714  	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1715  	 * timer->state == INACTIVE.
1716  	 */
1717  	raw_write_seqcount_barrier(&base->seq);
1718  
1719  	WARN_ON_ONCE(base->running != timer);
1720  	base->running = NULL;
1721  }
1722  
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1723  static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1724  				 unsigned long flags, unsigned int active_mask)
1725  {
1726  	struct hrtimer_clock_base *base;
1727  	unsigned int active = cpu_base->active_bases & active_mask;
1728  
1729  	for_each_active_base(base, cpu_base, active) {
1730  		struct timerqueue_node *node;
1731  		ktime_t basenow;
1732  
1733  		basenow = ktime_add(now, base->offset);
1734  
1735  		while ((node = timerqueue_getnext(&base->active))) {
1736  			struct hrtimer *timer;
1737  
1738  			timer = container_of(node, struct hrtimer, node);
1739  
1740  			/*
1741  			 * The immediate goal for using the softexpires is
1742  			 * minimizing wakeups, not running timers at the
1743  			 * earliest interrupt after their soft expiration.
1744  			 * This allows us to avoid using a Priority Search
1745  			 * Tree, which can answer a stabbing query for
1746  			 * overlapping intervals and instead use the simple
1747  			 * BST we already have.
1748  			 * We don't add extra wakeups by delaying timers that
1749  			 * are right-of a not yet expired timer, because that
1750  			 * timer will have to trigger a wakeup anyway.
1751  			 */
1752  			if (basenow < hrtimer_get_softexpires_tv64(timer))
1753  				break;
1754  
1755  			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1756  			if (active_mask == HRTIMER_ACTIVE_SOFT)
1757  				hrtimer_sync_wait_running(cpu_base, flags);
1758  		}
1759  	}
1760  }
1761  
hrtimer_run_softirq(void)1762  static __latent_entropy void hrtimer_run_softirq(void)
1763  {
1764  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1765  	unsigned long flags;
1766  	ktime_t now;
1767  
1768  	hrtimer_cpu_base_lock_expiry(cpu_base);
1769  	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1770  
1771  	now = hrtimer_update_base(cpu_base);
1772  	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1773  
1774  	cpu_base->softirq_activated = 0;
1775  	hrtimer_update_softirq_timer(cpu_base, true);
1776  
1777  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1778  	hrtimer_cpu_base_unlock_expiry(cpu_base);
1779  }
1780  
1781  #ifdef CONFIG_HIGH_RES_TIMERS
1782  
1783  /*
1784   * High resolution timer interrupt
1785   * Called with interrupts disabled
1786   */
hrtimer_interrupt(struct clock_event_device * dev)1787  void hrtimer_interrupt(struct clock_event_device *dev)
1788  {
1789  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1790  	ktime_t expires_next, now, entry_time, delta;
1791  	unsigned long flags;
1792  	int retries = 0;
1793  
1794  	BUG_ON(!cpu_base->hres_active);
1795  	cpu_base->nr_events++;
1796  	dev->next_event = KTIME_MAX;
1797  
1798  	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1799  	entry_time = now = hrtimer_update_base(cpu_base);
1800  retry:
1801  	cpu_base->in_hrtirq = 1;
1802  	/*
1803  	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1804  	 * held to prevent that a timer is enqueued in our queue via
1805  	 * the migration code. This does not affect enqueueing of
1806  	 * timers which run their callback and need to be requeued on
1807  	 * this CPU.
1808  	 */
1809  	cpu_base->expires_next = KTIME_MAX;
1810  
1811  	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1812  		cpu_base->softirq_expires_next = KTIME_MAX;
1813  		cpu_base->softirq_activated = 1;
1814  		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1815  	}
1816  
1817  	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1818  
1819  	/* Reevaluate the clock bases for the [soft] next expiry */
1820  	expires_next = hrtimer_update_next_event(cpu_base);
1821  	/*
1822  	 * Store the new expiry value so the migration code can verify
1823  	 * against it.
1824  	 */
1825  	cpu_base->expires_next = expires_next;
1826  	cpu_base->in_hrtirq = 0;
1827  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1828  
1829  	/* Reprogramming necessary ? */
1830  	if (!tick_program_event(expires_next, 0)) {
1831  		cpu_base->hang_detected = 0;
1832  		return;
1833  	}
1834  
1835  	/*
1836  	 * The next timer was already expired due to:
1837  	 * - tracing
1838  	 * - long lasting callbacks
1839  	 * - being scheduled away when running in a VM
1840  	 *
1841  	 * We need to prevent that we loop forever in the hrtimer
1842  	 * interrupt routine. We give it 3 attempts to avoid
1843  	 * overreacting on some spurious event.
1844  	 *
1845  	 * Acquire base lock for updating the offsets and retrieving
1846  	 * the current time.
1847  	 */
1848  	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1849  	now = hrtimer_update_base(cpu_base);
1850  	cpu_base->nr_retries++;
1851  	if (++retries < 3)
1852  		goto retry;
1853  	/*
1854  	 * Give the system a chance to do something else than looping
1855  	 * here. We stored the entry time, so we know exactly how long
1856  	 * we spent here. We schedule the next event this amount of
1857  	 * time away.
1858  	 */
1859  	cpu_base->nr_hangs++;
1860  	cpu_base->hang_detected = 1;
1861  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1862  
1863  	delta = ktime_sub(now, entry_time);
1864  	if ((unsigned int)delta > cpu_base->max_hang_time)
1865  		cpu_base->max_hang_time = (unsigned int) delta;
1866  	/*
1867  	 * Limit it to a sensible value as we enforce a longer
1868  	 * delay. Give the CPU at least 100ms to catch up.
1869  	 */
1870  	if (delta > 100 * NSEC_PER_MSEC)
1871  		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1872  	else
1873  		expires_next = ktime_add(now, delta);
1874  	tick_program_event(expires_next, 1);
1875  	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1876  }
1877  #endif /* !CONFIG_HIGH_RES_TIMERS */
1878  
1879  /*
1880   * Called from run_local_timers in hardirq context every jiffy
1881   */
hrtimer_run_queues(void)1882  void hrtimer_run_queues(void)
1883  {
1884  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1885  	unsigned long flags;
1886  	ktime_t now;
1887  
1888  	if (hrtimer_hres_active(cpu_base))
1889  		return;
1890  
1891  	/*
1892  	 * This _is_ ugly: We have to check periodically, whether we
1893  	 * can switch to highres and / or nohz mode. The clocksource
1894  	 * switch happens with xtime_lock held. Notification from
1895  	 * there only sets the check bit in the tick_oneshot code,
1896  	 * otherwise we might deadlock vs. xtime_lock.
1897  	 */
1898  	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1899  		hrtimer_switch_to_hres();
1900  		return;
1901  	}
1902  
1903  	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1904  	now = hrtimer_update_base(cpu_base);
1905  
1906  	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1907  		cpu_base->softirq_expires_next = KTIME_MAX;
1908  		cpu_base->softirq_activated = 1;
1909  		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1910  	}
1911  
1912  	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1913  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1914  }
1915  
1916  /*
1917   * Sleep related functions:
1918   */
hrtimer_wakeup(struct hrtimer * timer)1919  static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1920  {
1921  	struct hrtimer_sleeper *t =
1922  		container_of(timer, struct hrtimer_sleeper, timer);
1923  	struct task_struct *task = t->task;
1924  
1925  	t->task = NULL;
1926  	if (task)
1927  		wake_up_process(task);
1928  
1929  	return HRTIMER_NORESTART;
1930  }
1931  
1932  /**
1933   * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1934   * @sl:		sleeper to be started
1935   * @mode:	timer mode abs/rel
1936   *
1937   * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1938   * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1939   */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1940  void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1941  				   enum hrtimer_mode mode)
1942  {
1943  	/*
1944  	 * Make the enqueue delivery mode check work on RT. If the sleeper
1945  	 * was initialized for hard interrupt delivery, force the mode bit.
1946  	 * This is a special case for hrtimer_sleepers because
1947  	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1948  	 * fiddling with this decision is avoided at the call sites.
1949  	 */
1950  	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1951  		mode |= HRTIMER_MODE_HARD;
1952  
1953  	hrtimer_start_expires(&sl->timer, mode);
1954  }
1955  EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1956  
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1957  static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1958  				   clockid_t clock_id, enum hrtimer_mode mode)
1959  {
1960  	/*
1961  	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1962  	 * marked for hard interrupt expiry mode are moved into soft
1963  	 * interrupt context either for latency reasons or because the
1964  	 * hrtimer callback takes regular spinlocks or invokes other
1965  	 * functions which are not suitable for hard interrupt context on
1966  	 * PREEMPT_RT.
1967  	 *
1968  	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1969  	 * context, but there is a latency concern: Untrusted userspace can
1970  	 * spawn many threads which arm timers for the same expiry time on
1971  	 * the same CPU. That causes a latency spike due to the wakeup of
1972  	 * a gazillion threads.
1973  	 *
1974  	 * OTOH, privileged real-time user space applications rely on the
1975  	 * low latency of hard interrupt wakeups. If the current task is in
1976  	 * a real-time scheduling class, mark the mode for hard interrupt
1977  	 * expiry.
1978  	 */
1979  	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1980  		if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
1981  			mode |= HRTIMER_MODE_HARD;
1982  	}
1983  
1984  	__hrtimer_init(&sl->timer, clock_id, mode);
1985  	sl->timer.function = hrtimer_wakeup;
1986  	sl->task = current;
1987  }
1988  
1989  /**
1990   * hrtimer_init_sleeper - initialize sleeper to the given clock
1991   * @sl:		sleeper to be initialized
1992   * @clock_id:	the clock to be used
1993   * @mode:	timer mode abs/rel
1994   */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1995  void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1996  			  enum hrtimer_mode mode)
1997  {
1998  	debug_init(&sl->timer, clock_id, mode);
1999  	__hrtimer_init_sleeper(sl, clock_id, mode);
2000  
2001  }
2002  EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2003  
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2004  int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2005  {
2006  	switch(restart->nanosleep.type) {
2007  #ifdef CONFIG_COMPAT_32BIT_TIME
2008  	case TT_COMPAT:
2009  		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2010  			return -EFAULT;
2011  		break;
2012  #endif
2013  	case TT_NATIVE:
2014  		if (put_timespec64(ts, restart->nanosleep.rmtp))
2015  			return -EFAULT;
2016  		break;
2017  	default:
2018  		BUG();
2019  	}
2020  	return -ERESTART_RESTARTBLOCK;
2021  }
2022  
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2023  static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2024  {
2025  	struct restart_block *restart;
2026  
2027  	do {
2028  		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2029  		hrtimer_sleeper_start_expires(t, mode);
2030  
2031  		if (likely(t->task))
2032  			schedule();
2033  
2034  		hrtimer_cancel(&t->timer);
2035  		mode = HRTIMER_MODE_ABS;
2036  
2037  	} while (t->task && !signal_pending(current));
2038  
2039  	__set_current_state(TASK_RUNNING);
2040  
2041  	if (!t->task)
2042  		return 0;
2043  
2044  	restart = &current->restart_block;
2045  	if (restart->nanosleep.type != TT_NONE) {
2046  		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2047  		struct timespec64 rmt;
2048  
2049  		if (rem <= 0)
2050  			return 0;
2051  		rmt = ktime_to_timespec64(rem);
2052  
2053  		return nanosleep_copyout(restart, &rmt);
2054  	}
2055  	return -ERESTART_RESTARTBLOCK;
2056  }
2057  
hrtimer_nanosleep_restart(struct restart_block * restart)2058  static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2059  {
2060  	struct hrtimer_sleeper t;
2061  	int ret;
2062  
2063  	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2064  				      HRTIMER_MODE_ABS);
2065  	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2066  	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2067  	destroy_hrtimer_on_stack(&t.timer);
2068  	return ret;
2069  }
2070  
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2071  long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2072  		       const clockid_t clockid)
2073  {
2074  	struct restart_block *restart;
2075  	struct hrtimer_sleeper t;
2076  	int ret = 0;
2077  
2078  	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2079  	hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2080  	ret = do_nanosleep(&t, mode);
2081  	if (ret != -ERESTART_RESTARTBLOCK)
2082  		goto out;
2083  
2084  	/* Absolute timers do not update the rmtp value and restart: */
2085  	if (mode == HRTIMER_MODE_ABS) {
2086  		ret = -ERESTARTNOHAND;
2087  		goto out;
2088  	}
2089  
2090  	restart = &current->restart_block;
2091  	restart->nanosleep.clockid = t.timer.base->clockid;
2092  	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2093  	set_restart_fn(restart, hrtimer_nanosleep_restart);
2094  out:
2095  	destroy_hrtimer_on_stack(&t.timer);
2096  	return ret;
2097  }
2098  
2099  #ifdef CONFIG_64BIT
2100  
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2101  SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2102  		struct __kernel_timespec __user *, rmtp)
2103  {
2104  	struct timespec64 tu;
2105  
2106  	if (get_timespec64(&tu, rqtp))
2107  		return -EFAULT;
2108  
2109  	if (!timespec64_valid(&tu))
2110  		return -EINVAL;
2111  
2112  	current->restart_block.fn = do_no_restart_syscall;
2113  	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2114  	current->restart_block.nanosleep.rmtp = rmtp;
2115  	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2116  				 CLOCK_MONOTONIC);
2117  }
2118  
2119  #endif
2120  
2121  #ifdef CONFIG_COMPAT_32BIT_TIME
2122  
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2123  SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2124  		       struct old_timespec32 __user *, rmtp)
2125  {
2126  	struct timespec64 tu;
2127  
2128  	if (get_old_timespec32(&tu, rqtp))
2129  		return -EFAULT;
2130  
2131  	if (!timespec64_valid(&tu))
2132  		return -EINVAL;
2133  
2134  	current->restart_block.fn = do_no_restart_syscall;
2135  	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2136  	current->restart_block.nanosleep.compat_rmtp = rmtp;
2137  	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2138  				 CLOCK_MONOTONIC);
2139  }
2140  #endif
2141  
2142  /*
2143   * Functions related to boot-time initialization:
2144   */
hrtimers_prepare_cpu(unsigned int cpu)2145  int hrtimers_prepare_cpu(unsigned int cpu)
2146  {
2147  	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2148  	int i;
2149  
2150  	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2151  		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2152  
2153  		clock_b->cpu_base = cpu_base;
2154  		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2155  		timerqueue_init_head(&clock_b->active);
2156  	}
2157  
2158  	cpu_base->cpu = cpu;
2159  	cpu_base->active_bases = 0;
2160  	cpu_base->hres_active = 0;
2161  	cpu_base->hang_detected = 0;
2162  	cpu_base->next_timer = NULL;
2163  	cpu_base->softirq_next_timer = NULL;
2164  	cpu_base->expires_next = KTIME_MAX;
2165  	cpu_base->softirq_expires_next = KTIME_MAX;
2166  	cpu_base->online = 1;
2167  	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2168  	return 0;
2169  }
2170  
2171  #ifdef CONFIG_HOTPLUG_CPU
2172  
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2173  static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2174  				struct hrtimer_clock_base *new_base)
2175  {
2176  	struct hrtimer *timer;
2177  	struct timerqueue_node *node;
2178  
2179  	while ((node = timerqueue_getnext(&old_base->active))) {
2180  		timer = container_of(node, struct hrtimer, node);
2181  		BUG_ON(hrtimer_callback_running(timer));
2182  		debug_deactivate(timer);
2183  
2184  		/*
2185  		 * Mark it as ENQUEUED not INACTIVE otherwise the
2186  		 * timer could be seen as !active and just vanish away
2187  		 * under us on another CPU
2188  		 */
2189  		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2190  		timer->base = new_base;
2191  		/*
2192  		 * Enqueue the timers on the new cpu. This does not
2193  		 * reprogram the event device in case the timer
2194  		 * expires before the earliest on this CPU, but we run
2195  		 * hrtimer_interrupt after we migrated everything to
2196  		 * sort out already expired timers and reprogram the
2197  		 * event device.
2198  		 */
2199  		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2200  	}
2201  }
2202  
hrtimers_cpu_dying(unsigned int dying_cpu)2203  int hrtimers_cpu_dying(unsigned int dying_cpu)
2204  {
2205  	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2206  	struct hrtimer_cpu_base *old_base, *new_base;
2207  
2208  	old_base = this_cpu_ptr(&hrtimer_bases);
2209  	new_base = &per_cpu(hrtimer_bases, ncpu);
2210  
2211  	/*
2212  	 * The caller is globally serialized and nobody else
2213  	 * takes two locks at once, deadlock is not possible.
2214  	 */
2215  	raw_spin_lock(&old_base->lock);
2216  	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2217  
2218  	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2219  		migrate_hrtimer_list(&old_base->clock_base[i],
2220  				     &new_base->clock_base[i]);
2221  	}
2222  
2223  	/*
2224  	 * The migration might have changed the first expiring softirq
2225  	 * timer on this CPU. Update it.
2226  	 */
2227  	__hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2228  	/* Tell the other CPU to retrigger the next event */
2229  	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2230  
2231  	raw_spin_unlock(&new_base->lock);
2232  	old_base->online = 0;
2233  	raw_spin_unlock(&old_base->lock);
2234  
2235  	return 0;
2236  }
2237  
2238  #endif /* CONFIG_HOTPLUG_CPU */
2239  
hrtimers_init(void)2240  void __init hrtimers_init(void)
2241  {
2242  	hrtimers_prepare_cpu(smp_processor_id());
2243  	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2244  }
2245  
2246  /**
2247   * schedule_hrtimeout_range_clock - sleep until timeout
2248   * @expires:	timeout value (ktime_t)
2249   * @delta:	slack in expires timeout (ktime_t)
2250   * @mode:	timer mode
2251   * @clock_id:	timer clock to be used
2252   */
2253  int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2254  schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2255  			       const enum hrtimer_mode mode, clockid_t clock_id)
2256  {
2257  	struct hrtimer_sleeper t;
2258  
2259  	/*
2260  	 * Optimize when a zero timeout value is given. It does not
2261  	 * matter whether this is an absolute or a relative time.
2262  	 */
2263  	if (expires && *expires == 0) {
2264  		__set_current_state(TASK_RUNNING);
2265  		return 0;
2266  	}
2267  
2268  	/*
2269  	 * A NULL parameter means "infinite"
2270  	 */
2271  	if (!expires) {
2272  		schedule();
2273  		return -EINTR;
2274  	}
2275  
2276  	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2277  	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2278  	hrtimer_sleeper_start_expires(&t, mode);
2279  
2280  	if (likely(t.task))
2281  		schedule();
2282  
2283  	hrtimer_cancel(&t.timer);
2284  	destroy_hrtimer_on_stack(&t.timer);
2285  
2286  	__set_current_state(TASK_RUNNING);
2287  
2288  	return !t.task ? 0 : -EINTR;
2289  }
2290  EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2291  
2292  /**
2293   * schedule_hrtimeout_range - sleep until timeout
2294   * @expires:	timeout value (ktime_t)
2295   * @delta:	slack in expires timeout (ktime_t)
2296   * @mode:	timer mode
2297   *
2298   * Make the current task sleep until the given expiry time has
2299   * elapsed. The routine will return immediately unless
2300   * the current task state has been set (see set_current_state()).
2301   *
2302   * The @delta argument gives the kernel the freedom to schedule the
2303   * actual wakeup to a time that is both power and performance friendly
2304   * for regular (non RT/DL) tasks.
2305   * The kernel give the normal best effort behavior for "@expires+@delta",
2306   * but may decide to fire the timer earlier, but no earlier than @expires.
2307   *
2308   * You can set the task state as follows -
2309   *
2310   * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2311   * pass before the routine returns unless the current task is explicitly
2312   * woken up, (e.g. by wake_up_process()).
2313   *
2314   * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2315   * delivered to the current task or the current task is explicitly woken
2316   * up.
2317   *
2318   * The current task state is guaranteed to be TASK_RUNNING when this
2319   * routine returns.
2320   *
2321   * Returns 0 when the timer has expired. If the task was woken before the
2322   * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2323   * by an explicit wakeup, it returns -EINTR.
2324   */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2325  int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2326  				     const enum hrtimer_mode mode)
2327  {
2328  	return schedule_hrtimeout_range_clock(expires, delta, mode,
2329  					      CLOCK_MONOTONIC);
2330  }
2331  EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2332  
2333  /**
2334   * schedule_hrtimeout - sleep until timeout
2335   * @expires:	timeout value (ktime_t)
2336   * @mode:	timer mode
2337   *
2338   * Make the current task sleep until the given expiry time has
2339   * elapsed. The routine will return immediately unless
2340   * the current task state has been set (see set_current_state()).
2341   *
2342   * You can set the task state as follows -
2343   *
2344   * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2345   * pass before the routine returns unless the current task is explicitly
2346   * woken up, (e.g. by wake_up_process()).
2347   *
2348   * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2349   * delivered to the current task or the current task is explicitly woken
2350   * up.
2351   *
2352   * The current task state is guaranteed to be TASK_RUNNING when this
2353   * routine returns.
2354   *
2355   * Returns 0 when the timer has expired. If the task was woken before the
2356   * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2357   * by an explicit wakeup, it returns -EINTR.
2358   */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2359  int __sched schedule_hrtimeout(ktime_t *expires,
2360  			       const enum hrtimer_mode mode)
2361  {
2362  	return schedule_hrtimeout_range(expires, 0, mode);
2363  }
2364  EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2365