1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 kdump implementation
4 *
5 * Copyright IBM Corp. 2011
6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
7 */
8
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/memblock.h>
17 #include <linux/elf.h>
18 #include <linux/uio.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/os_info.h>
21 #include <asm/elf.h>
22 #include <asm/ipl.h>
23 #include <asm/sclp.h>
24 #include <asm/maccess.h>
25 #include <asm/fpu.h>
26
27 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
28 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
29 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
30
31 static struct memblock_region oldmem_region;
32
33 static struct memblock_type oldmem_type = {
34 .cnt = 1,
35 .max = 1,
36 .total_size = 0,
37 .regions = &oldmem_region,
38 .name = "oldmem",
39 };
40
41 struct save_area {
42 struct list_head list;
43 u64 psw[2];
44 u64 ctrs[16];
45 u64 gprs[16];
46 u32 acrs[16];
47 u64 fprs[16];
48 u32 fpc;
49 u32 prefix;
50 u32 todpreg;
51 u64 timer;
52 u64 todcmp;
53 u64 vxrs_low[16];
54 __vector128 vxrs_high[16];
55 };
56
57 static LIST_HEAD(dump_save_areas);
58
59 /*
60 * Allocate a save area
61 */
save_area_alloc(bool is_boot_cpu)62 struct save_area * __init save_area_alloc(bool is_boot_cpu)
63 {
64 struct save_area *sa;
65
66 sa = memblock_alloc(sizeof(*sa), 8);
67 if (!sa)
68 return NULL;
69
70 if (is_boot_cpu)
71 list_add(&sa->list, &dump_save_areas);
72 else
73 list_add_tail(&sa->list, &dump_save_areas);
74 return sa;
75 }
76
77 /*
78 * Return the address of the save area for the boot CPU
79 */
save_area_boot_cpu(void)80 struct save_area * __init save_area_boot_cpu(void)
81 {
82 return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
83 }
84
85 /*
86 * Copy CPU registers into the save area
87 */
save_area_add_regs(struct save_area * sa,void * regs)88 void __init save_area_add_regs(struct save_area *sa, void *regs)
89 {
90 struct lowcore *lc;
91
92 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
93 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
94 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
95 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
96 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
97 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
98 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
99 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
100 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
101 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
102 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
103 }
104
105 /*
106 * Copy vector registers into the save area
107 */
save_area_add_vxrs(struct save_area * sa,__vector128 * vxrs)108 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
109 {
110 int i;
111
112 /* Copy lower halves of vector registers 0-15 */
113 for (i = 0; i < 16; i++)
114 sa->vxrs_low[i] = vxrs[i].low;
115 /* Copy vector registers 16-31 */
116 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
117 }
118
copy_oldmem_iter(struct iov_iter * iter,unsigned long src,size_t count)119 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
120 {
121 size_t len, copied, res = 0;
122
123 while (count) {
124 if (!oldmem_data.start && src < sclp.hsa_size) {
125 /* Copy from zfcp/nvme dump HSA area */
126 len = min(count, sclp.hsa_size - src);
127 copied = memcpy_hsa_iter(iter, src, len);
128 } else {
129 /* Check for swapped kdump oldmem areas */
130 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
131 src -= oldmem_data.start;
132 len = min(count, oldmem_data.size - src);
133 } else if (oldmem_data.start && src < oldmem_data.size) {
134 len = min(count, oldmem_data.size - src);
135 src += oldmem_data.start;
136 } else {
137 len = count;
138 }
139 copied = memcpy_real_iter(iter, src, len);
140 }
141 count -= copied;
142 src += copied;
143 res += copied;
144 if (copied < len)
145 break;
146 }
147 return res;
148 }
149
copy_oldmem_kernel(void * dst,unsigned long src,size_t count)150 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
151 {
152 struct iov_iter iter;
153 struct kvec kvec;
154
155 kvec.iov_base = dst;
156 kvec.iov_len = count;
157 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
158 if (copy_oldmem_iter(&iter, src, count) < count)
159 return -EFAULT;
160 return 0;
161 }
162
163 /*
164 * Copy one page from "oldmem"
165 */
copy_oldmem_page(struct iov_iter * iter,unsigned long pfn,size_t csize,unsigned long offset)166 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
167 unsigned long offset)
168 {
169 unsigned long src;
170
171 src = pfn_to_phys(pfn) + offset;
172 return copy_oldmem_iter(iter, src, csize);
173 }
174
175 /*
176 * Remap "oldmem" for kdump
177 *
178 * For the kdump reserved memory this functions performs a swap operation:
179 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
180 */
remap_oldmem_pfn_range_kdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)181 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
182 unsigned long from, unsigned long pfn,
183 unsigned long size, pgprot_t prot)
184 {
185 unsigned long size_old;
186 int rc;
187
188 if (pfn < oldmem_data.size >> PAGE_SHIFT) {
189 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
190 rc = remap_pfn_range(vma, from,
191 pfn + (oldmem_data.start >> PAGE_SHIFT),
192 size_old, prot);
193 if (rc || size == size_old)
194 return rc;
195 size -= size_old;
196 from += size_old;
197 pfn += size_old >> PAGE_SHIFT;
198 }
199 return remap_pfn_range(vma, from, pfn, size, prot);
200 }
201
202 /*
203 * Remap "oldmem" for zfcp/nvme dump
204 *
205 * We only map available memory above HSA size. Memory below HSA size
206 * is read on demand using the copy_oldmem_page() function.
207 */
remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)208 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
209 unsigned long from,
210 unsigned long pfn,
211 unsigned long size, pgprot_t prot)
212 {
213 unsigned long hsa_end = sclp.hsa_size;
214 unsigned long size_hsa;
215
216 if (pfn < hsa_end >> PAGE_SHIFT) {
217 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
218 if (size == size_hsa)
219 return 0;
220 size -= size_hsa;
221 from += size_hsa;
222 pfn += size_hsa >> PAGE_SHIFT;
223 }
224 return remap_pfn_range(vma, from, pfn, size, prot);
225 }
226
227 /*
228 * Remap "oldmem" for kdump or zfcp/nvme dump
229 */
remap_oldmem_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)230 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
231 unsigned long pfn, unsigned long size, pgprot_t prot)
232 {
233 if (oldmem_data.start)
234 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
235 else
236 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
237 prot);
238 }
239
nt_name(Elf64_Word type)240 static const char *nt_name(Elf64_Word type)
241 {
242 const char *name = "LINUX";
243
244 if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
245 name = KEXEC_CORE_NOTE_NAME;
246 return name;
247 }
248
249 /*
250 * Initialize ELF note
251 */
nt_init_name(void * buf,Elf64_Word type,void * desc,int d_len,const char * name)252 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
253 const char *name)
254 {
255 Elf64_Nhdr *note;
256 u64 len;
257
258 note = (Elf64_Nhdr *)buf;
259 note->n_namesz = strlen(name) + 1;
260 note->n_descsz = d_len;
261 note->n_type = type;
262 len = sizeof(Elf64_Nhdr);
263
264 memcpy(buf + len, name, note->n_namesz);
265 len = roundup(len + note->n_namesz, 4);
266
267 memcpy(buf + len, desc, note->n_descsz);
268 len = roundup(len + note->n_descsz, 4);
269
270 return PTR_ADD(buf, len);
271 }
272
nt_init(void * buf,Elf64_Word type,void * desc,int d_len)273 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
274 {
275 return nt_init_name(buf, type, desc, d_len, nt_name(type));
276 }
277
278 /*
279 * Calculate the size of ELF note
280 */
nt_size_name(int d_len,const char * name)281 static size_t nt_size_name(int d_len, const char *name)
282 {
283 size_t size;
284
285 size = sizeof(Elf64_Nhdr);
286 size += roundup(strlen(name) + 1, 4);
287 size += roundup(d_len, 4);
288
289 return size;
290 }
291
nt_size(Elf64_Word type,int d_len)292 static inline size_t nt_size(Elf64_Word type, int d_len)
293 {
294 return nt_size_name(d_len, nt_name(type));
295 }
296
297 /*
298 * Fill ELF notes for one CPU with save area registers
299 */
fill_cpu_elf_notes(void * ptr,int cpu,struct save_area * sa)300 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
301 {
302 struct elf_prstatus nt_prstatus;
303 elf_fpregset_t nt_fpregset;
304
305 /* Prepare prstatus note */
306 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
307 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
308 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
309 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
310 nt_prstatus.common.pr_pid = cpu;
311 /* Prepare fpregset (floating point) note */
312 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
313 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
314 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
315 /* Create ELF notes for the CPU */
316 ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
317 ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
318 ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
319 ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
320 ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
321 ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
322 ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
323 if (cpu_has_vx()) {
324 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
325 &sa->vxrs_high, sizeof(sa->vxrs_high));
326 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
327 &sa->vxrs_low, sizeof(sa->vxrs_low));
328 }
329 return ptr;
330 }
331
332 /*
333 * Calculate size of ELF notes per cpu
334 */
get_cpu_elf_notes_size(void)335 static size_t get_cpu_elf_notes_size(void)
336 {
337 struct save_area *sa = NULL;
338 size_t size;
339
340 size = nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
341 size += nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
342 size += nt_size(NT_S390_TIMER, sizeof(sa->timer));
343 size += nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
344 size += nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
345 size += nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
346 size += nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
347 if (cpu_has_vx()) {
348 size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
349 size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
350 }
351
352 return size;
353 }
354
355 /*
356 * Initialize prpsinfo note (new kernel)
357 */
nt_prpsinfo(void * ptr)358 static void *nt_prpsinfo(void *ptr)
359 {
360 struct elf_prpsinfo prpsinfo;
361
362 memset(&prpsinfo, 0, sizeof(prpsinfo));
363 prpsinfo.pr_sname = 'R';
364 strcpy(prpsinfo.pr_fname, "vmlinux");
365 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
366 }
367
368 /*
369 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
370 */
get_vmcoreinfo_old(unsigned long * size)371 static void *get_vmcoreinfo_old(unsigned long *size)
372 {
373 char nt_name[11], *vmcoreinfo;
374 unsigned long addr;
375 Elf64_Nhdr note;
376
377 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
378 return NULL;
379 memset(nt_name, 0, sizeof(nt_name));
380 if (copy_oldmem_kernel(¬e, addr, sizeof(note)))
381 return NULL;
382 if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
383 sizeof(nt_name) - 1))
384 return NULL;
385 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
386 return NULL;
387 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
388 if (!vmcoreinfo)
389 return NULL;
390 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
391 kfree(vmcoreinfo);
392 return NULL;
393 }
394 *size = note.n_descsz;
395 return vmcoreinfo;
396 }
397
398 /*
399 * Initialize vmcoreinfo note (new kernel)
400 */
nt_vmcoreinfo(void * ptr)401 static void *nt_vmcoreinfo(void *ptr)
402 {
403 const char *name = VMCOREINFO_NOTE_NAME;
404 unsigned long size;
405 void *vmcoreinfo;
406
407 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
408 if (vmcoreinfo)
409 return nt_init_name(ptr, 0, vmcoreinfo, size, name);
410
411 vmcoreinfo = get_vmcoreinfo_old(&size);
412 if (!vmcoreinfo)
413 return ptr;
414 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
415 kfree(vmcoreinfo);
416 return ptr;
417 }
418
nt_vmcoreinfo_size(void)419 static size_t nt_vmcoreinfo_size(void)
420 {
421 const char *name = VMCOREINFO_NOTE_NAME;
422 unsigned long size;
423 void *vmcoreinfo;
424
425 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
426 if (vmcoreinfo)
427 return nt_size_name(size, name);
428
429 vmcoreinfo = get_vmcoreinfo_old(&size);
430 if (!vmcoreinfo)
431 return 0;
432
433 kfree(vmcoreinfo);
434 return nt_size_name(size, name);
435 }
436
437 /*
438 * Initialize final note (needed for /proc/vmcore code)
439 */
nt_final(void * ptr)440 static void *nt_final(void *ptr)
441 {
442 Elf64_Nhdr *note;
443
444 note = (Elf64_Nhdr *) ptr;
445 note->n_namesz = 0;
446 note->n_descsz = 0;
447 note->n_type = 0;
448 return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
449 }
450
451 /*
452 * Initialize ELF header (new kernel)
453 */
ehdr_init(Elf64_Ehdr * ehdr,int phdr_count)454 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count)
455 {
456 memset(ehdr, 0, sizeof(*ehdr));
457 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
458 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
459 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
460 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
461 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
462 ehdr->e_type = ET_CORE;
463 ehdr->e_machine = EM_S390;
464 ehdr->e_version = EV_CURRENT;
465 ehdr->e_phoff = sizeof(Elf64_Ehdr);
466 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
467 ehdr->e_phentsize = sizeof(Elf64_Phdr);
468 /* Number of PT_LOAD program headers plus PT_NOTE program header */
469 ehdr->e_phnum = phdr_count + 1;
470 return ehdr + 1;
471 }
472
473 /*
474 * Return CPU count for ELF header (new kernel)
475 */
get_cpu_cnt(void)476 static int get_cpu_cnt(void)
477 {
478 struct save_area *sa;
479 int cpus = 0;
480
481 list_for_each_entry(sa, &dump_save_areas, list)
482 if (sa->prefix != 0)
483 cpus++;
484 return cpus;
485 }
486
487 /*
488 * Return memory chunk count for ELF header (new kernel)
489 */
get_mem_chunk_cnt(void)490 static int get_mem_chunk_cnt(void)
491 {
492 int cnt = 0;
493 u64 idx;
494
495 for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
496 cnt++;
497 return cnt;
498 }
499
500 /*
501 * Initialize ELF loads (new kernel)
502 */
loads_init(Elf64_Phdr * phdr,bool os_info_has_vm)503 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm)
504 {
505 unsigned long old_identity_base = 0;
506 phys_addr_t start, end;
507 u64 idx;
508
509 if (os_info_has_vm)
510 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
511 for_each_physmem_range(idx, &oldmem_type, &start, &end) {
512 phdr->p_type = PT_LOAD;
513 phdr->p_vaddr = old_identity_base + start;
514 phdr->p_offset = start;
515 phdr->p_paddr = start;
516 phdr->p_filesz = end - start;
517 phdr->p_memsz = end - start;
518 phdr->p_flags = PF_R | PF_W | PF_X;
519 phdr->p_align = PAGE_SIZE;
520 phdr++;
521 }
522 }
523
os_info_has_vm(void)524 static bool os_info_has_vm(void)
525 {
526 return os_info_old_value(OS_INFO_KASLR_OFFSET);
527 }
528
529 /*
530 * Prepare PT_LOAD type program header for kernel image region
531 */
text_init(Elf64_Phdr * phdr)532 static void text_init(Elf64_Phdr *phdr)
533 {
534 unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS);
535 unsigned long start = os_info_old_value(OS_INFO_IMAGE_START);
536 unsigned long end = os_info_old_value(OS_INFO_IMAGE_END);
537
538 phdr->p_type = PT_LOAD;
539 phdr->p_vaddr = start;
540 phdr->p_filesz = end - start;
541 phdr->p_memsz = end - start;
542 phdr->p_offset = start_phys;
543 phdr->p_paddr = start_phys;
544 phdr->p_flags = PF_R | PF_W | PF_X;
545 phdr->p_align = PAGE_SIZE;
546 }
547
548 /*
549 * Initialize notes (new kernel)
550 */
notes_init(Elf64_Phdr * phdr,void * ptr,u64 notes_offset)551 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
552 {
553 struct save_area *sa;
554 void *ptr_start = ptr;
555 int cpu;
556
557 ptr = nt_prpsinfo(ptr);
558
559 cpu = 1;
560 list_for_each_entry(sa, &dump_save_areas, list)
561 if (sa->prefix != 0)
562 ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
563 ptr = nt_vmcoreinfo(ptr);
564 ptr = nt_final(ptr);
565 memset(phdr, 0, sizeof(*phdr));
566 phdr->p_type = PT_NOTE;
567 phdr->p_offset = notes_offset;
568 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
569 phdr->p_memsz = phdr->p_filesz;
570 return ptr;
571 }
572
get_elfcorehdr_size(int phdr_count)573 static size_t get_elfcorehdr_size(int phdr_count)
574 {
575 size_t size;
576
577 size = sizeof(Elf64_Ehdr);
578 /* PT_NOTES */
579 size += sizeof(Elf64_Phdr);
580 /* nt_prpsinfo */
581 size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
582 /* regsets */
583 size += get_cpu_cnt() * get_cpu_elf_notes_size();
584 /* nt_vmcoreinfo */
585 size += nt_vmcoreinfo_size();
586 /* nt_final */
587 size += sizeof(Elf64_Nhdr);
588 /* PT_LOADS */
589 size += phdr_count * sizeof(Elf64_Phdr);
590
591 return size;
592 }
593
594 /*
595 * Create ELF core header (new kernel)
596 */
elfcorehdr_alloc(unsigned long long * addr,unsigned long long * size)597 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
598 {
599 Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text;
600 int mem_chunk_cnt, phdr_text_cnt;
601 size_t alloc_size;
602 void *ptr, *hdr;
603 u64 hdr_off;
604
605 /* If we are not in kdump or zfcp/nvme dump mode return */
606 if (!oldmem_data.start && !is_ipl_type_dump())
607 return 0;
608 /* If we cannot get HSA size for zfcp/nvme dump return error */
609 if (is_ipl_type_dump() && !sclp.hsa_size)
610 return -ENODEV;
611
612 /* For kdump, exclude previous crashkernel memory */
613 if (oldmem_data.start) {
614 oldmem_region.base = oldmem_data.start;
615 oldmem_region.size = oldmem_data.size;
616 oldmem_type.total_size = oldmem_data.size;
617 }
618
619 mem_chunk_cnt = get_mem_chunk_cnt();
620 phdr_text_cnt = os_info_has_vm() ? 1 : 0;
621
622 alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt);
623
624 hdr = kzalloc(alloc_size, GFP_KERNEL);
625
626 /*
627 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating
628 * a dump with this crash kernel will fail. Panic now to allow other
629 * dump mechanisms to take over.
630 */
631 if (!hdr)
632 panic("s390 kdump allocating elfcorehdr failed");
633
634 /* Init elf header */
635 phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt);
636 /* Init program headers */
637 if (phdr_text_cnt) {
638 phdr_text = phdr_notes + 1;
639 phdr_loads = phdr_text + 1;
640 } else {
641 phdr_loads = phdr_notes + 1;
642 }
643 ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt);
644 /* Init notes */
645 hdr_off = PTR_DIFF(ptr, hdr);
646 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
647 /* Init kernel text program header */
648 if (phdr_text_cnt)
649 text_init(phdr_text);
650 /* Init loads */
651 loads_init(phdr_loads, phdr_text_cnt);
652 /* Finalize program headers */
653 hdr_off = PTR_DIFF(ptr, hdr);
654 *addr = (unsigned long long) hdr;
655 *size = (unsigned long long) hdr_off;
656 BUG_ON(elfcorehdr_size > alloc_size);
657 return 0;
658 }
659
660 /*
661 * Free ELF core header (new kernel)
662 */
elfcorehdr_free(unsigned long long addr)663 void elfcorehdr_free(unsigned long long addr)
664 {
665 kfree((void *)(unsigned long)addr);
666 }
667
668 /*
669 * Read from ELF header
670 */
elfcorehdr_read(char * buf,size_t count,u64 * ppos)671 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
672 {
673 void *src = (void *)(unsigned long)*ppos;
674
675 memcpy(buf, src, count);
676 *ppos += count;
677 return count;
678 }
679
680 /*
681 * Read from ELF notes data
682 */
elfcorehdr_read_notes(char * buf,size_t count,u64 * ppos)683 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
684 {
685 void *src = (void *)(unsigned long)*ppos;
686
687 memcpy(buf, src, count);
688 *ppos += count;
689 return count;
690 }
691