1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020 Invensense, Inc.
4  */
5 
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/module.h>
10 
11 #include <linux/iio/common/inv_sensors_timestamp.h>
12 
13 /* compute jitter, min and max following jitter in per mille */
14 #define INV_SENSORS_TIMESTAMP_JITTER(_val, _jitter)		\
15 	(div_s64((_val) * (_jitter), 1000))
16 #define INV_SENSORS_TIMESTAMP_MIN(_val, _jitter)		\
17 	(((_val) * (1000 - (_jitter))) / 1000)
18 #define INV_SENSORS_TIMESTAMP_MAX(_val, _jitter)		\
19 	(((_val) * (1000 + (_jitter))) / 1000)
20 
21 /* Add a new value inside an accumulator and update the estimate value */
inv_update_acc(struct inv_sensors_timestamp_acc * acc,uint32_t val)22 static void inv_update_acc(struct inv_sensors_timestamp_acc *acc, uint32_t val)
23 {
24 	uint64_t sum = 0;
25 	size_t i;
26 
27 	acc->values[acc->idx++] = val;
28 	if (acc->idx >= ARRAY_SIZE(acc->values))
29 		acc->idx = 0;
30 
31 	/* compute the mean of all stored values, use 0 as empty slot */
32 	for (i = 0; i < ARRAY_SIZE(acc->values); ++i) {
33 		if (acc->values[i] == 0)
34 			break;
35 		sum += acc->values[i];
36 	}
37 
38 	acc->val = div_u64(sum, i);
39 }
40 
inv_sensors_timestamp_init(struct inv_sensors_timestamp * ts,const struct inv_sensors_timestamp_chip * chip)41 void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts,
42 				const struct inv_sensors_timestamp_chip *chip)
43 {
44 	memset(ts, 0, sizeof(*ts));
45 
46 	/* save chip parameters and compute min and max clock period */
47 	ts->chip = *chip;
48 	ts->min_period = INV_SENSORS_TIMESTAMP_MIN(chip->clock_period, chip->jitter);
49 	ts->max_period = INV_SENSORS_TIMESTAMP_MAX(chip->clock_period, chip->jitter);
50 
51 	/* current multiplier and period values after reset */
52 	ts->mult = chip->init_period / chip->clock_period;
53 	ts->period = chip->init_period;
54 
55 	/* use theoretical value for chip period */
56 	inv_update_acc(&ts->chip_period, chip->clock_period);
57 }
58 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_init, IIO_INV_SENSORS_TIMESTAMP);
59 
inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp * ts,uint32_t period,bool fifo)60 int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts,
61 				     uint32_t period, bool fifo)
62 {
63 	uint32_t mult;
64 
65 	/* when FIFO is on, prevent odr change if one is already pending */
66 	if (fifo && ts->new_mult != 0)
67 		return -EAGAIN;
68 
69 	mult = period / ts->chip.clock_period;
70 	if (mult != ts->mult)
71 		ts->new_mult = mult;
72 
73 	return 0;
74 }
75 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_update_odr, IIO_INV_SENSORS_TIMESTAMP);
76 
inv_validate_period(struct inv_sensors_timestamp * ts,uint32_t period)77 static bool inv_validate_period(struct inv_sensors_timestamp *ts, uint32_t period)
78 {
79 	uint32_t period_min, period_max;
80 
81 	/* check that period is acceptable */
82 	period_min = ts->min_period * ts->mult;
83 	period_max = ts->max_period * ts->mult;
84 	if (period > period_min && period < period_max)
85 		return true;
86 	else
87 		return false;
88 }
89 
inv_update_chip_period(struct inv_sensors_timestamp * ts,uint32_t period)90 static bool inv_update_chip_period(struct inv_sensors_timestamp *ts,
91 				   uint32_t period)
92 {
93 	uint32_t new_chip_period;
94 
95 	if (!inv_validate_period(ts, period))
96 		return false;
97 
98 	/* update chip internal period estimation */
99 	new_chip_period = period / ts->mult;
100 	inv_update_acc(&ts->chip_period, new_chip_period);
101 	ts->period = ts->mult * ts->chip_period.val;
102 
103 	return true;
104 }
105 
inv_align_timestamp_it(struct inv_sensors_timestamp * ts)106 static void inv_align_timestamp_it(struct inv_sensors_timestamp *ts)
107 {
108 	const int64_t period_min = ts->min_period * ts->mult;
109 	const int64_t period_max = ts->max_period * ts->mult;
110 	int64_t add_max, sub_max;
111 	int64_t delta, jitter;
112 	int64_t adjust;
113 
114 	/* delta time between last sample and last interrupt */
115 	delta = ts->it.lo - ts->timestamp;
116 
117 	/* adjust timestamp while respecting jitter */
118 	add_max = period_max - (int64_t)ts->period;
119 	sub_max = period_min - (int64_t)ts->period;
120 	jitter = INV_SENSORS_TIMESTAMP_JITTER((int64_t)ts->period, ts->chip.jitter);
121 	if (delta > jitter)
122 		adjust = add_max;
123 	else if (delta < -jitter)
124 		adjust = sub_max;
125 	else
126 		adjust = 0;
127 
128 	ts->timestamp += adjust;
129 }
130 
inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp * ts,size_t sample_nb,int64_t timestamp)131 void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts,
132 				     size_t sample_nb, int64_t timestamp)
133 {
134 	struct inv_sensors_timestamp_interval *it;
135 	int64_t delta, interval;
136 	uint32_t period;
137 	bool valid = false;
138 
139 	if (sample_nb == 0)
140 		return;
141 
142 	/* update interrupt timestamp and compute chip and sensor periods */
143 	it = &ts->it;
144 	it->lo = it->up;
145 	it->up = timestamp;
146 	delta = it->up - it->lo;
147 	if (it->lo != 0) {
148 		/* compute period: delta time divided by number of samples */
149 		period = div_s64(delta, sample_nb);
150 		valid = inv_update_chip_period(ts, period);
151 	}
152 
153 	/* no previous data, compute theoritical value from interrupt */
154 	if (ts->timestamp == 0) {
155 		/* elapsed time: sensor period * sensor samples number */
156 		interval = (int64_t)ts->period * (int64_t)sample_nb;
157 		ts->timestamp = it->up - interval;
158 		return;
159 	}
160 
161 	/* if interrupt interval is valid, sync with interrupt timestamp */
162 	if (valid)
163 		inv_align_timestamp_it(ts);
164 }
165 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_interrupt, IIO_INV_SENSORS_TIMESTAMP);
166 
inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp * ts,uint32_t fifo_period,size_t fifo_nb,unsigned int fifo_no)167 void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts,
168 				     uint32_t fifo_period, size_t fifo_nb,
169 				     unsigned int fifo_no)
170 {
171 	int64_t interval;
172 	uint32_t fifo_mult;
173 
174 	if (ts->new_mult == 0)
175 		return;
176 
177 	/* update to new multiplier and update period */
178 	ts->mult = ts->new_mult;
179 	ts->new_mult = 0;
180 	ts->period = ts->mult * ts->chip_period.val;
181 
182 	/*
183 	 * After ODR change the time interval with the previous sample is
184 	 * undertermined (depends when the change occures). So we compute the
185 	 * timestamp from the current interrupt using the new FIFO period, the
186 	 * total number of samples and the current sample numero.
187 	 */
188 	if (ts->timestamp != 0) {
189 		/* compute measured fifo period */
190 		fifo_mult = fifo_period / ts->chip.clock_period;
191 		fifo_period = fifo_mult * ts->chip_period.val;
192 		/* computes time interval between interrupt and this sample */
193 		interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period;
194 		ts->timestamp = ts->it.up - interval;
195 	}
196 }
197 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_apply_odr, IIO_INV_SENSORS_TIMESTAMP);
198 
199 MODULE_AUTHOR("InvenSense, Inc.");
200 MODULE_DESCRIPTION("InvenSense sensors timestamp module");
201 MODULE_LICENSE("GPL");
202