1  // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2  /* Copyright(c) 2018-2019  Realtek Corporation
3   */
4  
5  #include <linux/bcd.h>
6  
7  #include "main.h"
8  #include "reg.h"
9  #include "fw.h"
10  #include "phy.h"
11  #include "debug.h"
12  #include "regd.h"
13  #include "sar.h"
14  
15  struct phy_cfg_pair {
16  	u32 addr;
17  	u32 data;
18  };
19  
20  union phy_table_tile {
21  	struct rtw_phy_cond cond;
22  	struct phy_cfg_pair cfg;
23  };
24  
25  static const u32 db_invert_table[12][8] = {
26  	{10,		13,		16,		20,
27  	 25,		32,		40,		50},
28  	{64,		80,		101,		128,
29  	 160,		201,		256,		318},
30  	{401,		505,		635,		800,
31  	 1007,		1268,		1596,		2010},
32  	{316,		398,		501,		631,
33  	 794,		1000,		1259,		1585},
34  	{1995,		2512,		3162,		3981,
35  	 5012,		6310,		7943,		10000},
36  	{12589,		15849,		19953,		25119,
37  	 31623,		39811,		50119,		63098},
38  	{79433,		100000,		125893,		158489,
39  	 199526,	251189,		316228,		398107},
40  	{501187,	630957,		794328,		1000000,
41  	 1258925,	1584893,	1995262,	2511886},
42  	{3162278,	3981072,	5011872,	6309573,
43  	 7943282,	1000000,	12589254,	15848932},
44  	{19952623,	25118864,	31622777,	39810717,
45  	 50118723,	63095734,	79432823,	100000000},
46  	{125892541,	158489319,	199526232,	251188643,
47  	 316227766,	398107171,	501187234,	630957345},
48  	{794328235,	1000000000,	1258925412,	1584893192,
49  	 1995262315,	2511886432U,	3162277660U,	3981071706U}
50  };
51  
52  u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
53  u8 rtw_ofdm_rates[] = {
54  	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
55  	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
56  	DESC_RATE48M, DESC_RATE54M
57  };
58  u8 rtw_ht_1s_rates[] = {
59  	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
60  	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
61  	DESC_RATEMCS6, DESC_RATEMCS7
62  };
63  u8 rtw_ht_2s_rates[] = {
64  	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
65  	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
66  	DESC_RATEMCS14, DESC_RATEMCS15
67  };
68  u8 rtw_vht_1s_rates[] = {
69  	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
70  	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
71  	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
72  	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
73  	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
74  };
75  u8 rtw_vht_2s_rates[] = {
76  	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
77  	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
78  	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
79  	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
80  	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
81  };
82  u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
83  	rtw_cck_rates, rtw_ofdm_rates,
84  	rtw_ht_1s_rates, rtw_ht_2s_rates,
85  	rtw_vht_1s_rates, rtw_vht_2s_rates
86  };
87  EXPORT_SYMBOL(rtw_rate_section);
88  
89  u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
90  	ARRAY_SIZE(rtw_cck_rates),
91  	ARRAY_SIZE(rtw_ofdm_rates),
92  	ARRAY_SIZE(rtw_ht_1s_rates),
93  	ARRAY_SIZE(rtw_ht_2s_rates),
94  	ARRAY_SIZE(rtw_vht_1s_rates),
95  	ARRAY_SIZE(rtw_vht_2s_rates)
96  };
97  EXPORT_SYMBOL(rtw_rate_size);
98  
99  static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
100  static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
101  static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
102  static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
103  static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
104  static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
105  
106  enum rtw_phy_band_type {
107  	PHY_BAND_2G	= 0,
108  	PHY_BAND_5G	= 1,
109  };
110  
rtw_phy_cck_pd_init(struct rtw_dev * rtwdev)111  static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
112  {
113  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
114  	u8 i, j;
115  
116  	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
117  		for (j = 0; j < RTW_RF_PATH_MAX; j++)
118  			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
119  	}
120  
121  	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
122  }
123  
rtw_phy_set_edcca_th(struct rtw_dev * rtwdev,u8 l2h,u8 h2l)124  void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
125  {
126  	struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
127  
128  	rtw_write32_mask(rtwdev,
129  			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
130  			 edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
131  			 l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
132  	rtw_write32_mask(rtwdev,
133  			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
134  			 edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
135  			 h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
136  }
137  EXPORT_SYMBOL(rtw_phy_set_edcca_th);
138  
rtw_phy_adaptivity_set_mode(struct rtw_dev * rtwdev)139  void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
140  {
141  	const struct rtw_chip_info *chip = rtwdev->chip;
142  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
143  
144  	/* turn off in debugfs for debug usage */
145  	if (!rtw_edcca_enabled) {
146  		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
147  		rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
148  		return;
149  	}
150  
151  	switch (rtwdev->regd.dfs_region) {
152  	case NL80211_DFS_ETSI:
153  		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
154  		dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
155  		break;
156  	case NL80211_DFS_JP:
157  		dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
158  		dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
159  		break;
160  	default:
161  		dm_info->edcca_mode = RTW_EDCCA_NORMAL;
162  		break;
163  	}
164  }
165  
rtw_phy_adaptivity_init(struct rtw_dev * rtwdev)166  static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
167  {
168  	const struct rtw_chip_info *chip = rtwdev->chip;
169  
170  	rtw_phy_adaptivity_set_mode(rtwdev);
171  	if (chip->ops->adaptivity_init)
172  		chip->ops->adaptivity_init(rtwdev);
173  }
174  
rtw_phy_adaptivity(struct rtw_dev * rtwdev)175  static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
176  {
177  	if (rtwdev->chip->ops->adaptivity)
178  		rtwdev->chip->ops->adaptivity(rtwdev);
179  }
180  
rtw_phy_cfo_init(struct rtw_dev * rtwdev)181  static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
182  {
183  	const struct rtw_chip_info *chip = rtwdev->chip;
184  
185  	if (chip->ops->cfo_init)
186  		chip->ops->cfo_init(rtwdev);
187  }
188  
rtw_phy_tx_path_div_init(struct rtw_dev * rtwdev)189  static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
190  {
191  	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
192  
193  	path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
194  	path_div->path_a_cnt = 0;
195  	path_div->path_a_sum = 0;
196  	path_div->path_b_cnt = 0;
197  	path_div->path_b_sum = 0;
198  }
199  
rtw_phy_init(struct rtw_dev * rtwdev)200  void rtw_phy_init(struct rtw_dev *rtwdev)
201  {
202  	const struct rtw_chip_info *chip = rtwdev->chip;
203  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
204  	u32 addr, mask;
205  
206  	dm_info->fa_history[3] = 0;
207  	dm_info->fa_history[2] = 0;
208  	dm_info->fa_history[1] = 0;
209  	dm_info->fa_history[0] = 0;
210  	dm_info->igi_bitmap = 0;
211  	dm_info->igi_history[3] = 0;
212  	dm_info->igi_history[2] = 0;
213  	dm_info->igi_history[1] = 0;
214  
215  	addr = chip->dig[0].addr;
216  	mask = chip->dig[0].mask;
217  	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
218  	rtw_phy_cck_pd_init(rtwdev);
219  
220  	dm_info->iqk.done = false;
221  	rtw_phy_adaptivity_init(rtwdev);
222  	rtw_phy_cfo_init(rtwdev);
223  	rtw_phy_tx_path_div_init(rtwdev);
224  }
225  EXPORT_SYMBOL(rtw_phy_init);
226  
rtw_phy_dig_write(struct rtw_dev * rtwdev,u8 igi)227  void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
228  {
229  	const struct rtw_chip_info *chip = rtwdev->chip;
230  	struct rtw_hal *hal = &rtwdev->hal;
231  	u32 addr, mask;
232  	u8 path;
233  
234  	if (chip->dig_cck) {
235  		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
236  		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
237  	}
238  
239  	for (path = 0; path < hal->rf_path_num; path++) {
240  		addr = chip->dig[path].addr;
241  		mask = chip->dig[path].mask;
242  		rtw_write32_mask(rtwdev, addr, mask, igi);
243  	}
244  }
245  
rtw_phy_stat_false_alarm(struct rtw_dev * rtwdev)246  static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
247  {
248  	const struct rtw_chip_info *chip = rtwdev->chip;
249  
250  	chip->ops->false_alarm_statistics(rtwdev);
251  }
252  
253  #define RA_FLOOR_TABLE_SIZE	7
254  #define RA_FLOOR_UP_GAP		3
255  
rtw_phy_get_rssi_level(u8 old_level,u8 rssi)256  static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
257  {
258  	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
259  	u8 new_level = 0;
260  	int i;
261  
262  	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
263  		if (i >= old_level)
264  			table[i] += RA_FLOOR_UP_GAP;
265  
266  	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
267  		if (rssi < table[i]) {
268  			new_level = i;
269  			break;
270  		}
271  	}
272  
273  	return new_level;
274  }
275  
276  struct rtw_phy_stat_iter_data {
277  	struct rtw_dev *rtwdev;
278  	u8 min_rssi;
279  };
280  
rtw_phy_stat_rssi_iter(void * data,struct ieee80211_sta * sta)281  static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
282  {
283  	struct rtw_phy_stat_iter_data *iter_data = data;
284  	struct rtw_dev *rtwdev = iter_data->rtwdev;
285  	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
286  	u8 rssi;
287  
288  	rssi = ewma_rssi_read(&si->avg_rssi);
289  	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
290  
291  	rtw_fw_send_rssi_info(rtwdev, si);
292  
293  	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
294  }
295  
rtw_phy_stat_rssi(struct rtw_dev * rtwdev)296  static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
297  {
298  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
299  	struct rtw_phy_stat_iter_data data = {};
300  
301  	data.rtwdev = rtwdev;
302  	data.min_rssi = U8_MAX;
303  	rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data);
304  
305  	dm_info->pre_min_rssi = dm_info->min_rssi;
306  	dm_info->min_rssi = data.min_rssi;
307  }
308  
rtw_phy_stat_rate_cnt(struct rtw_dev * rtwdev)309  static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
310  {
311  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
312  
313  	dm_info->last_pkt_count = dm_info->cur_pkt_count;
314  	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
315  }
316  
rtw_phy_statistics(struct rtw_dev * rtwdev)317  static void rtw_phy_statistics(struct rtw_dev *rtwdev)
318  {
319  	rtw_phy_stat_rssi(rtwdev);
320  	rtw_phy_stat_false_alarm(rtwdev);
321  	rtw_phy_stat_rate_cnt(rtwdev);
322  }
323  
324  #define DIG_PERF_FA_TH_LOW			250
325  #define DIG_PERF_FA_TH_HIGH			500
326  #define DIG_PERF_FA_TH_EXTRA_HIGH		750
327  #define DIG_PERF_MAX				0x5a
328  #define DIG_PERF_MID				0x40
329  #define DIG_CVRG_FA_TH_LOW			2000
330  #define DIG_CVRG_FA_TH_HIGH			4000
331  #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
332  #define DIG_CVRG_MAX				0x2a
333  #define DIG_CVRG_MID				0x26
334  #define DIG_CVRG_MIN				0x1c
335  #define DIG_RSSI_GAIN_OFFSET			15
336  
337  static bool
rtw_phy_dig_check_damping(struct rtw_dm_info * dm_info)338  rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
339  {
340  	u16 fa_lo = DIG_PERF_FA_TH_LOW;
341  	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
342  	u16 *fa_history;
343  	u8 *igi_history;
344  	u8 damping_rssi;
345  	u8 min_rssi;
346  	u8 diff;
347  	u8 igi_bitmap;
348  	bool damping = false;
349  
350  	min_rssi = dm_info->min_rssi;
351  	if (dm_info->damping) {
352  		damping_rssi = dm_info->damping_rssi;
353  		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
354  						 damping_rssi - min_rssi;
355  		if (diff > 3 || dm_info->damping_cnt++ > 20) {
356  			dm_info->damping = false;
357  			return false;
358  		}
359  
360  		return true;
361  	}
362  
363  	igi_history = dm_info->igi_history;
364  	fa_history = dm_info->fa_history;
365  	igi_bitmap = dm_info->igi_bitmap & 0xf;
366  	switch (igi_bitmap) {
367  	case 5:
368  		/* down -> up -> down -> up */
369  		if (igi_history[0] > igi_history[1] &&
370  		    igi_history[2] > igi_history[3] &&
371  		    igi_history[0] - igi_history[1] >= 2 &&
372  		    igi_history[2] - igi_history[3] >= 2 &&
373  		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
374  		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
375  			damping = true;
376  		break;
377  	case 9:
378  		/* up -> down -> down -> up */
379  		if (igi_history[0] > igi_history[1] &&
380  		    igi_history[3] > igi_history[2] &&
381  		    igi_history[0] - igi_history[1] >= 4 &&
382  		    igi_history[3] - igi_history[2] >= 2 &&
383  		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
384  		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
385  			damping = true;
386  		break;
387  	default:
388  		return false;
389  	}
390  
391  	if (damping) {
392  		dm_info->damping = true;
393  		dm_info->damping_cnt = 0;
394  		dm_info->damping_rssi = min_rssi;
395  	}
396  
397  	return damping;
398  }
399  
rtw_phy_dig_get_boundary(struct rtw_dev * rtwdev,struct rtw_dm_info * dm_info,u8 * upper,u8 * lower,bool linked)400  static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
401  				     struct rtw_dm_info *dm_info,
402  				     u8 *upper, u8 *lower, bool linked)
403  {
404  	u8 dig_max, dig_min, dig_mid;
405  	u8 min_rssi;
406  
407  	if (linked) {
408  		dig_max = DIG_PERF_MAX;
409  		dig_mid = DIG_PERF_MID;
410  		dig_min = rtwdev->chip->dig_min;
411  		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
412  	} else {
413  		dig_max = DIG_CVRG_MAX;
414  		dig_mid = DIG_CVRG_MID;
415  		dig_min = DIG_CVRG_MIN;
416  		min_rssi = dig_min;
417  	}
418  
419  	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
420  	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
421  
422  	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
423  	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
424  }
425  
rtw_phy_dig_get_threshold(struct rtw_dm_info * dm_info,u16 * fa_th,u8 * step,bool linked)426  static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
427  				      u16 *fa_th, u8 *step, bool linked)
428  {
429  	u8 min_rssi, pre_min_rssi;
430  
431  	min_rssi = dm_info->min_rssi;
432  	pre_min_rssi = dm_info->pre_min_rssi;
433  	step[0] = 4;
434  	step[1] = 3;
435  	step[2] = 2;
436  
437  	if (linked) {
438  		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
439  		fa_th[1] = DIG_PERF_FA_TH_HIGH;
440  		fa_th[2] = DIG_PERF_FA_TH_LOW;
441  		if (pre_min_rssi > min_rssi) {
442  			step[0] = 6;
443  			step[1] = 4;
444  			step[2] = 2;
445  		}
446  	} else {
447  		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
448  		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
449  		fa_th[2] = DIG_CVRG_FA_TH_LOW;
450  	}
451  }
452  
rtw_phy_dig_recorder(struct rtw_dm_info * dm_info,u8 igi,u16 fa)453  static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
454  {
455  	u8 *igi_history;
456  	u16 *fa_history;
457  	u8 igi_bitmap;
458  	bool up;
459  
460  	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
461  	igi_history = dm_info->igi_history;
462  	fa_history = dm_info->fa_history;
463  
464  	up = igi > igi_history[0];
465  	igi_bitmap |= up;
466  
467  	igi_history[3] = igi_history[2];
468  	igi_history[2] = igi_history[1];
469  	igi_history[1] = igi_history[0];
470  	igi_history[0] = igi;
471  
472  	fa_history[3] = fa_history[2];
473  	fa_history[2] = fa_history[1];
474  	fa_history[1] = fa_history[0];
475  	fa_history[0] = fa;
476  
477  	dm_info->igi_bitmap = igi_bitmap;
478  }
479  
rtw_phy_dig(struct rtw_dev * rtwdev)480  static void rtw_phy_dig(struct rtw_dev *rtwdev)
481  {
482  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
483  	u8 upper_bound, lower_bound;
484  	u8 pre_igi, cur_igi;
485  	u16 fa_th[3], fa_cnt;
486  	u8 level;
487  	u8 step[3];
488  	bool linked;
489  
490  	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
491  		return;
492  
493  	if (rtw_phy_dig_check_damping(dm_info))
494  		return;
495  
496  	linked = !!rtwdev->sta_cnt;
497  
498  	fa_cnt = dm_info->total_fa_cnt;
499  	pre_igi = dm_info->igi_history[0];
500  
501  	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
502  
503  	/* test the false alarm count from the highest threshold level first,
504  	 * and increase it by corresponding step size
505  	 *
506  	 * note that the step size is offset by -2, compensate it afterall
507  	 */
508  	cur_igi = pre_igi;
509  	for (level = 0; level < 3; level++) {
510  		if (fa_cnt > fa_th[level]) {
511  			cur_igi += step[level];
512  			break;
513  		}
514  	}
515  	cur_igi -= 2;
516  
517  	/* calculate the upper/lower bound by the minimum rssi we have among
518  	 * the peers connected with us, meanwhile make sure the igi value does
519  	 * not beyond the hardware limitation
520  	 */
521  	rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
522  				 linked);
523  	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
524  
525  	/* record current igi value and false alarm statistics for further
526  	 * damping checks, and record the trend of igi values
527  	 */
528  	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
529  
530  	if (cur_igi != pre_igi)
531  		rtw_phy_dig_write(rtwdev, cur_igi);
532  }
533  
rtw_phy_ra_info_update_iter(void * data,struct ieee80211_sta * sta)534  static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
535  {
536  	struct rtw_dev *rtwdev = data;
537  	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
538  
539  	rtw_update_sta_info(rtwdev, si, false);
540  }
541  
rtw_phy_ra_info_update(struct rtw_dev * rtwdev)542  static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
543  {
544  	if (rtwdev->watch_dog_cnt & 0x3)
545  		return;
546  
547  	rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
548  }
549  
rtw_phy_get_rrsr_mask(struct rtw_dev * rtwdev,u8 rate_idx)550  static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
551  {
552  	u8 rate_order;
553  
554  	rate_order = rate_idx;
555  
556  	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
557  		rate_order -= DESC_RATEVHT4SS_MCS0;
558  	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
559  		rate_order -= DESC_RATEVHT3SS_MCS0;
560  	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
561  		rate_order -= DESC_RATEVHT2SS_MCS0;
562  	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
563  		rate_order -= DESC_RATEVHT1SS_MCS0;
564  	else if (rate_idx >= DESC_RATEMCS24)
565  		rate_order -= DESC_RATEMCS24;
566  	else if (rate_idx >= DESC_RATEMCS16)
567  		rate_order -= DESC_RATEMCS16;
568  	else if (rate_idx >= DESC_RATEMCS8)
569  		rate_order -= DESC_RATEMCS8;
570  	else if (rate_idx >= DESC_RATEMCS0)
571  		rate_order -= DESC_RATEMCS0;
572  	else if (rate_idx >= DESC_RATE6M)
573  		rate_order -= DESC_RATE6M;
574  	else
575  		rate_order -= DESC_RATE1M;
576  
577  	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
578  		rate_order++;
579  
580  	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
581  }
582  
rtw_phy_rrsr_mask_min_iter(void * data,struct ieee80211_sta * sta)583  static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
584  {
585  	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
586  	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
587  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
588  	u32 mask = 0;
589  
590  	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
591  	if (mask < dm_info->rrsr_mask_min)
592  		dm_info->rrsr_mask_min = mask;
593  }
594  
rtw_phy_rrsr_update(struct rtw_dev * rtwdev)595  static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
596  {
597  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
598  
599  	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
600  	rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
601  	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
602  }
603  
rtw_phy_dpk_track(struct rtw_dev * rtwdev)604  static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
605  {
606  	const struct rtw_chip_info *chip = rtwdev->chip;
607  
608  	if (chip->ops->dpk_track)
609  		chip->ops->dpk_track(rtwdev);
610  }
611  
612  struct rtw_rx_addr_match_data {
613  	struct rtw_dev *rtwdev;
614  	struct ieee80211_hdr *hdr;
615  	struct rtw_rx_pkt_stat *pkt_stat;
616  	u8 *bssid;
617  };
618  
rtw_phy_parsing_cfo_iter(void * data,u8 * mac,struct ieee80211_vif * vif)619  static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
620  				     struct ieee80211_vif *vif)
621  {
622  	struct rtw_rx_addr_match_data *iter_data = data;
623  	struct rtw_dev *rtwdev = iter_data->rtwdev;
624  	struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
625  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
626  	struct rtw_cfo_track *cfo = &dm_info->cfo_track;
627  	u8 *bssid = iter_data->bssid;
628  	u8 i;
629  
630  	if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
631  		return;
632  
633  	for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
634  		cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
635  		cfo->cfo_cnt[i]++;
636  	}
637  
638  	cfo->packet_count++;
639  }
640  
rtw_phy_parsing_cfo(struct rtw_dev * rtwdev,struct rtw_rx_pkt_stat * pkt_stat)641  void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
642  			 struct rtw_rx_pkt_stat *pkt_stat)
643  {
644  	struct ieee80211_hdr *hdr = pkt_stat->hdr;
645  	struct rtw_rx_addr_match_data data = {};
646  
647  	if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
648  	    ieee80211_is_ctl(hdr->frame_control))
649  		return;
650  
651  	data.rtwdev = rtwdev;
652  	data.hdr = hdr;
653  	data.pkt_stat = pkt_stat;
654  	data.bssid = get_hdr_bssid(hdr);
655  
656  	rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
657  }
658  EXPORT_SYMBOL(rtw_phy_parsing_cfo);
659  
rtw_phy_cfo_track(struct rtw_dev * rtwdev)660  static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
661  {
662  	const struct rtw_chip_info *chip = rtwdev->chip;
663  
664  	if (chip->ops->cfo_track)
665  		chip->ops->cfo_track(rtwdev);
666  }
667  
668  #define CCK_PD_FA_LV1_MIN	1000
669  #define CCK_PD_FA_LV0_MAX	500
670  
rtw_phy_cck_pd_lv_unlink(struct rtw_dev * rtwdev)671  static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
672  {
673  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
674  	u32 cck_fa_avg = dm_info->cck_fa_avg;
675  
676  	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
677  		return CCK_PD_LV1;
678  
679  	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
680  		return CCK_PD_LV0;
681  
682  	return CCK_PD_LV_MAX;
683  }
684  
685  #define CCK_PD_IGI_LV4_VAL 0x38
686  #define CCK_PD_IGI_LV3_VAL 0x2a
687  #define CCK_PD_IGI_LV2_VAL 0x24
688  #define CCK_PD_RSSI_LV4_VAL 32
689  #define CCK_PD_RSSI_LV3_VAL 32
690  #define CCK_PD_RSSI_LV2_VAL 24
691  
rtw_phy_cck_pd_lv_link(struct rtw_dev * rtwdev)692  static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
693  {
694  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
695  	u8 igi = dm_info->igi_history[0];
696  	u8 rssi = dm_info->min_rssi;
697  	u32 cck_fa_avg = dm_info->cck_fa_avg;
698  
699  	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
700  		return CCK_PD_LV4;
701  	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
702  		return CCK_PD_LV3;
703  	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
704  		return CCK_PD_LV2;
705  	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
706  		return CCK_PD_LV1;
707  	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
708  		return CCK_PD_LV0;
709  
710  	return CCK_PD_LV_MAX;
711  }
712  
rtw_phy_cck_pd_lv(struct rtw_dev * rtwdev)713  static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
714  {
715  	if (!rtw_is_assoc(rtwdev))
716  		return rtw_phy_cck_pd_lv_unlink(rtwdev);
717  	else
718  		return rtw_phy_cck_pd_lv_link(rtwdev);
719  }
720  
rtw_phy_cck_pd(struct rtw_dev * rtwdev)721  static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
722  {
723  	const struct rtw_chip_info *chip = rtwdev->chip;
724  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
725  	u32 cck_fa = dm_info->cck_fa_cnt;
726  	u8 level;
727  
728  	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
729  		return;
730  
731  	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
732  		dm_info->cck_fa_avg = cck_fa;
733  	else
734  		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
735  
736  	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
737  		dm_info->igi_history[0], dm_info->min_rssi,
738  		dm_info->fa_history[0]);
739  	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
740  		dm_info->cck_fa_avg, dm_info->cck_pd_default);
741  
742  	level = rtw_phy_cck_pd_lv(rtwdev);
743  
744  	if (level >= CCK_PD_LV_MAX)
745  		return;
746  
747  	if (chip->ops->cck_pd_set)
748  		chip->ops->cck_pd_set(rtwdev, level);
749  }
750  
rtw_phy_pwr_track(struct rtw_dev * rtwdev)751  static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
752  {
753  	rtwdev->chip->ops->pwr_track(rtwdev);
754  }
755  
rtw_phy_ra_track(struct rtw_dev * rtwdev)756  static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
757  {
758  	rtw_fw_update_wl_phy_info(rtwdev);
759  	rtw_phy_ra_info_update(rtwdev);
760  	rtw_phy_rrsr_update(rtwdev);
761  }
762  
rtw_phy_dynamic_mechanism(struct rtw_dev * rtwdev)763  void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
764  {
765  	/* for further calculation */
766  	rtw_phy_statistics(rtwdev);
767  	rtw_phy_dig(rtwdev);
768  	rtw_phy_cck_pd(rtwdev);
769  	rtw_phy_ra_track(rtwdev);
770  	rtw_phy_tx_path_diversity(rtwdev);
771  	rtw_phy_cfo_track(rtwdev);
772  	rtw_phy_dpk_track(rtwdev);
773  	rtw_phy_pwr_track(rtwdev);
774  
775  	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
776  		rtw_fw_adaptivity(rtwdev);
777  	else
778  		rtw_phy_adaptivity(rtwdev);
779  }
780  
781  #define FRAC_BITS 3
782  
rtw_phy_power_2_db(s8 power)783  static u8 rtw_phy_power_2_db(s8 power)
784  {
785  	if (power <= -100 || power >= 20)
786  		return 0;
787  	else if (power >= 0)
788  		return 100;
789  	else
790  		return 100 + power;
791  }
792  
rtw_phy_db_2_linear(u8 power_db)793  static u64 rtw_phy_db_2_linear(u8 power_db)
794  {
795  	u8 i, j;
796  	u64 linear;
797  
798  	if (power_db > 96)
799  		power_db = 96;
800  	else if (power_db < 1)
801  		return 1;
802  
803  	/* 1dB ~ 96dB */
804  	i = (power_db - 1) >> 3;
805  	j = (power_db - 1) - (i << 3);
806  
807  	linear = db_invert_table[i][j];
808  	linear = i > 2 ? linear << FRAC_BITS : linear;
809  
810  	return linear;
811  }
812  
rtw_phy_linear_2_db(u64 linear)813  static u8 rtw_phy_linear_2_db(u64 linear)
814  {
815  	u8 i;
816  	u8 j;
817  	u32 dB;
818  
819  	for (i = 0; i < 12; i++) {
820  		for (j = 0; j < 8; j++) {
821  			if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
822  				goto cnt;
823  			else if (i > 2 && linear <= db_invert_table[i][j])
824  				goto cnt;
825  		}
826  	}
827  
828  	return 96; /* maximum 96 dB */
829  
830  cnt:
831  	if (j == 0 && i == 0)
832  		goto end;
833  
834  	if (j == 0) {
835  		if (i != 3) {
836  			if (db_invert_table[i][0] - linear >
837  			    linear - db_invert_table[i - 1][7]) {
838  				i = i - 1;
839  				j = 7;
840  			}
841  		} else {
842  			if (db_invert_table[3][0] - linear >
843  			    linear - db_invert_table[2][7]) {
844  				i = 2;
845  				j = 7;
846  			}
847  		}
848  	} else {
849  		if (db_invert_table[i][j] - linear >
850  		    linear - db_invert_table[i][j - 1]) {
851  			j = j - 1;
852  		}
853  	}
854  end:
855  	dB = (i << 3) + j + 1;
856  
857  	return dB;
858  }
859  
rtw_phy_rf_power_2_rssi(s8 * rf_power,u8 path_num)860  u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
861  {
862  	s8 power;
863  	u8 power_db;
864  	u64 linear;
865  	u64 sum = 0;
866  	u8 path;
867  
868  	for (path = 0; path < path_num; path++) {
869  		power = rf_power[path];
870  		power_db = rtw_phy_power_2_db(power);
871  		linear = rtw_phy_db_2_linear(power_db);
872  		sum += linear;
873  	}
874  
875  	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
876  	switch (path_num) {
877  	case 2:
878  		sum >>= 1;
879  		break;
880  	case 3:
881  		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
882  		break;
883  	case 4:
884  		sum >>= 2;
885  		break;
886  	default:
887  		break;
888  	}
889  
890  	return rtw_phy_linear_2_db(sum);
891  }
892  EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
893  
rtw_phy_read_rf(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask)894  u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
895  		    u32 addr, u32 mask)
896  {
897  	struct rtw_hal *hal = &rtwdev->hal;
898  	const struct rtw_chip_info *chip = rtwdev->chip;
899  	const u32 *base_addr = chip->rf_base_addr;
900  	u32 val, direct_addr;
901  
902  	if (rf_path >= hal->rf_phy_num) {
903  		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
904  		return INV_RF_DATA;
905  	}
906  
907  	addr &= 0xff;
908  	direct_addr = base_addr[rf_path] + (addr << 2);
909  	mask &= RFREG_MASK;
910  
911  	val = rtw_read32_mask(rtwdev, direct_addr, mask);
912  
913  	return val;
914  }
915  EXPORT_SYMBOL(rtw_phy_read_rf);
916  
rtw_phy_read_rf_sipi(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask)917  u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
918  			 u32 addr, u32 mask)
919  {
920  	struct rtw_hal *hal = &rtwdev->hal;
921  	const struct rtw_chip_info *chip = rtwdev->chip;
922  	const struct rtw_rf_sipi_addr *rf_sipi_addr;
923  	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
924  	u32 val32;
925  	u32 en_pi;
926  	u32 r_addr;
927  	u32 shift;
928  
929  	if (rf_path >= hal->rf_phy_num) {
930  		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
931  		return INV_RF_DATA;
932  	}
933  
934  	if (!chip->rf_sipi_read_addr) {
935  		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
936  		return INV_RF_DATA;
937  	}
938  
939  	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
940  	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
941  
942  	addr &= 0xff;
943  
944  	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
945  	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
946  	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
947  
948  	/* toggle read edge of path A */
949  	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
950  	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
951  	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
952  
953  	udelay(120);
954  
955  	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
956  	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
957  
958  	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
959  
960  	shift = __ffs(mask);
961  
962  	return (val32 & mask) >> shift;
963  }
964  EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
965  
rtw_phy_write_rf_reg_sipi(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask,u32 data)966  bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
967  			       u32 addr, u32 mask, u32 data)
968  {
969  	struct rtw_hal *hal = &rtwdev->hal;
970  	const struct rtw_chip_info *chip = rtwdev->chip;
971  	const u32 *sipi_addr = chip->rf_sipi_addr;
972  	u32 data_and_addr;
973  	u32 old_data = 0;
974  	u32 shift;
975  
976  	if (rf_path >= hal->rf_phy_num) {
977  		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
978  		return false;
979  	}
980  
981  	addr &= 0xff;
982  	mask &= RFREG_MASK;
983  
984  	if (mask != RFREG_MASK) {
985  		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
986  
987  		if (old_data == INV_RF_DATA) {
988  			rtw_err(rtwdev, "Write fail, rf is disabled\n");
989  			return false;
990  		}
991  
992  		shift = __ffs(mask);
993  		data = ((old_data) & (~mask)) | (data << shift);
994  	}
995  
996  	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
997  
998  	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
999  
1000  	udelay(13);
1001  
1002  	return true;
1003  }
1004  EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1005  
rtw_phy_write_rf_reg(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask,u32 data)1006  bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1007  			  u32 addr, u32 mask, u32 data)
1008  {
1009  	struct rtw_hal *hal = &rtwdev->hal;
1010  	const struct rtw_chip_info *chip = rtwdev->chip;
1011  	const u32 *base_addr = chip->rf_base_addr;
1012  	u32 direct_addr;
1013  
1014  	if (rf_path >= hal->rf_phy_num) {
1015  		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1016  		return false;
1017  	}
1018  
1019  	addr &= 0xff;
1020  	direct_addr = base_addr[rf_path] + (addr << 2);
1021  	mask &= RFREG_MASK;
1022  
1023  	rtw_write32_mask(rtwdev, direct_addr, mask, data);
1024  
1025  	udelay(1);
1026  
1027  	return true;
1028  }
1029  
rtw_phy_write_rf_reg_mix(struct rtw_dev * rtwdev,enum rtw_rf_path rf_path,u32 addr,u32 mask,u32 data)1030  bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1031  			      u32 addr, u32 mask, u32 data)
1032  {
1033  	if (addr != 0x00)
1034  		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1035  
1036  	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1037  }
1038  EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1039  
rtw_phy_setup_phy_cond(struct rtw_dev * rtwdev,u32 pkg)1040  void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1041  {
1042  	struct rtw_hal *hal = &rtwdev->hal;
1043  	struct rtw_efuse *efuse = &rtwdev->efuse;
1044  	struct rtw_phy_cond cond = {0};
1045  
1046  	cond.cut = hal->cut_version ? hal->cut_version : 15;
1047  	cond.pkg = pkg ? pkg : 15;
1048  	cond.plat = 0x04;
1049  	cond.rfe = efuse->rfe_option;
1050  
1051  	switch (rtw_hci_type(rtwdev)) {
1052  	case RTW_HCI_TYPE_USB:
1053  		cond.intf = INTF_USB;
1054  		break;
1055  	case RTW_HCI_TYPE_SDIO:
1056  		cond.intf = INTF_SDIO;
1057  		break;
1058  	case RTW_HCI_TYPE_PCIE:
1059  	default:
1060  		cond.intf = INTF_PCIE;
1061  		break;
1062  	}
1063  
1064  	hal->phy_cond = cond;
1065  
1066  	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
1067  }
1068  
check_positive(struct rtw_dev * rtwdev,struct rtw_phy_cond cond)1069  static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
1070  {
1071  	struct rtw_hal *hal = &rtwdev->hal;
1072  	struct rtw_phy_cond drv_cond = hal->phy_cond;
1073  
1074  	if (cond.cut && cond.cut != drv_cond.cut)
1075  		return false;
1076  
1077  	if (cond.pkg && cond.pkg != drv_cond.pkg)
1078  		return false;
1079  
1080  	if (cond.intf && cond.intf != drv_cond.intf)
1081  		return false;
1082  
1083  	if (cond.rfe != drv_cond.rfe)
1084  		return false;
1085  
1086  	return true;
1087  }
1088  
rtw_parse_tbl_phy_cond(struct rtw_dev * rtwdev,const struct rtw_table * tbl)1089  void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1090  {
1091  	const union phy_table_tile *p = tbl->data;
1092  	const union phy_table_tile *end = p + tbl->size / 2;
1093  	struct rtw_phy_cond pos_cond = {0};
1094  	bool is_matched = true, is_skipped = false;
1095  
1096  	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1097  
1098  	for (; p < end; p++) {
1099  		if (p->cond.pos) {
1100  			switch (p->cond.branch) {
1101  			case BRANCH_ENDIF:
1102  				is_matched = true;
1103  				is_skipped = false;
1104  				break;
1105  			case BRANCH_ELSE:
1106  				is_matched = is_skipped ? false : true;
1107  				break;
1108  			case BRANCH_IF:
1109  			case BRANCH_ELIF:
1110  			default:
1111  				pos_cond = p->cond;
1112  				break;
1113  			}
1114  		} else if (p->cond.neg) {
1115  			if (!is_skipped) {
1116  				if (check_positive(rtwdev, pos_cond)) {
1117  					is_matched = true;
1118  					is_skipped = true;
1119  				} else {
1120  					is_matched = false;
1121  					is_skipped = false;
1122  				}
1123  			} else {
1124  				is_matched = false;
1125  			}
1126  		} else if (is_matched) {
1127  			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1128  		}
1129  	}
1130  }
1131  EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1132  
1133  #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1134  
tbl_to_dec_pwr_by_rate(struct rtw_dev * rtwdev,u32 hex,u8 i)1135  static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1136  {
1137  	if (rtwdev->chip->is_pwr_by_rate_dec)
1138  		return bcd_to_dec_pwr_by_rate(hex, i);
1139  
1140  	return (hex >> (i * 8)) & 0xFF;
1141  }
1142  
1143  static void
rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev * rtwdev,u32 addr,u32 mask,u32 val,u8 * rate,u8 * pwr_by_rate,u8 * rate_num)1144  rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1145  					 u32 addr, u32 mask, u32 val, u8 *rate,
1146  					 u8 *pwr_by_rate, u8 *rate_num)
1147  {
1148  	int i;
1149  
1150  	switch (addr) {
1151  	case 0xE00:
1152  	case 0x830:
1153  		rate[0] = DESC_RATE6M;
1154  		rate[1] = DESC_RATE9M;
1155  		rate[2] = DESC_RATE12M;
1156  		rate[3] = DESC_RATE18M;
1157  		for (i = 0; i < 4; ++i)
1158  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1159  		*rate_num = 4;
1160  		break;
1161  	case 0xE04:
1162  	case 0x834:
1163  		rate[0] = DESC_RATE24M;
1164  		rate[1] = DESC_RATE36M;
1165  		rate[2] = DESC_RATE48M;
1166  		rate[3] = DESC_RATE54M;
1167  		for (i = 0; i < 4; ++i)
1168  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1169  		*rate_num = 4;
1170  		break;
1171  	case 0xE08:
1172  		rate[0] = DESC_RATE1M;
1173  		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1174  		*rate_num = 1;
1175  		break;
1176  	case 0x86C:
1177  		if (mask == 0xffffff00) {
1178  			rate[0] = DESC_RATE2M;
1179  			rate[1] = DESC_RATE5_5M;
1180  			rate[2] = DESC_RATE11M;
1181  			for (i = 1; i < 4; ++i)
1182  				pwr_by_rate[i - 1] =
1183  					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1184  			*rate_num = 3;
1185  		} else if (mask == 0x000000ff) {
1186  			rate[0] = DESC_RATE11M;
1187  			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1188  			*rate_num = 1;
1189  		}
1190  		break;
1191  	case 0xE10:
1192  	case 0x83C:
1193  		rate[0] = DESC_RATEMCS0;
1194  		rate[1] = DESC_RATEMCS1;
1195  		rate[2] = DESC_RATEMCS2;
1196  		rate[3] = DESC_RATEMCS3;
1197  		for (i = 0; i < 4; ++i)
1198  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1199  		*rate_num = 4;
1200  		break;
1201  	case 0xE14:
1202  	case 0x848:
1203  		rate[0] = DESC_RATEMCS4;
1204  		rate[1] = DESC_RATEMCS5;
1205  		rate[2] = DESC_RATEMCS6;
1206  		rate[3] = DESC_RATEMCS7;
1207  		for (i = 0; i < 4; ++i)
1208  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1209  		*rate_num = 4;
1210  		break;
1211  	case 0xE18:
1212  	case 0x84C:
1213  		rate[0] = DESC_RATEMCS8;
1214  		rate[1] = DESC_RATEMCS9;
1215  		rate[2] = DESC_RATEMCS10;
1216  		rate[3] = DESC_RATEMCS11;
1217  		for (i = 0; i < 4; ++i)
1218  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1219  		*rate_num = 4;
1220  		break;
1221  	case 0xE1C:
1222  	case 0x868:
1223  		rate[0] = DESC_RATEMCS12;
1224  		rate[1] = DESC_RATEMCS13;
1225  		rate[2] = DESC_RATEMCS14;
1226  		rate[3] = DESC_RATEMCS15;
1227  		for (i = 0; i < 4; ++i)
1228  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1229  		*rate_num = 4;
1230  		break;
1231  	case 0x838:
1232  		rate[0] = DESC_RATE1M;
1233  		rate[1] = DESC_RATE2M;
1234  		rate[2] = DESC_RATE5_5M;
1235  		for (i = 1; i < 4; ++i)
1236  			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1237  								    val, i);
1238  		*rate_num = 3;
1239  		break;
1240  	case 0xC20:
1241  	case 0xE20:
1242  	case 0x1820:
1243  	case 0x1A20:
1244  		rate[0] = DESC_RATE1M;
1245  		rate[1] = DESC_RATE2M;
1246  		rate[2] = DESC_RATE5_5M;
1247  		rate[3] = DESC_RATE11M;
1248  		for (i = 0; i < 4; ++i)
1249  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1250  		*rate_num = 4;
1251  		break;
1252  	case 0xC24:
1253  	case 0xE24:
1254  	case 0x1824:
1255  	case 0x1A24:
1256  		rate[0] = DESC_RATE6M;
1257  		rate[1] = DESC_RATE9M;
1258  		rate[2] = DESC_RATE12M;
1259  		rate[3] = DESC_RATE18M;
1260  		for (i = 0; i < 4; ++i)
1261  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1262  		*rate_num = 4;
1263  		break;
1264  	case 0xC28:
1265  	case 0xE28:
1266  	case 0x1828:
1267  	case 0x1A28:
1268  		rate[0] = DESC_RATE24M;
1269  		rate[1] = DESC_RATE36M;
1270  		rate[2] = DESC_RATE48M;
1271  		rate[3] = DESC_RATE54M;
1272  		for (i = 0; i < 4; ++i)
1273  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1274  		*rate_num = 4;
1275  		break;
1276  	case 0xC2C:
1277  	case 0xE2C:
1278  	case 0x182C:
1279  	case 0x1A2C:
1280  		rate[0] = DESC_RATEMCS0;
1281  		rate[1] = DESC_RATEMCS1;
1282  		rate[2] = DESC_RATEMCS2;
1283  		rate[3] = DESC_RATEMCS3;
1284  		for (i = 0; i < 4; ++i)
1285  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1286  		*rate_num = 4;
1287  		break;
1288  	case 0xC30:
1289  	case 0xE30:
1290  	case 0x1830:
1291  	case 0x1A30:
1292  		rate[0] = DESC_RATEMCS4;
1293  		rate[1] = DESC_RATEMCS5;
1294  		rate[2] = DESC_RATEMCS6;
1295  		rate[3] = DESC_RATEMCS7;
1296  		for (i = 0; i < 4; ++i)
1297  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1298  		*rate_num = 4;
1299  		break;
1300  	case 0xC34:
1301  	case 0xE34:
1302  	case 0x1834:
1303  	case 0x1A34:
1304  		rate[0] = DESC_RATEMCS8;
1305  		rate[1] = DESC_RATEMCS9;
1306  		rate[2] = DESC_RATEMCS10;
1307  		rate[3] = DESC_RATEMCS11;
1308  		for (i = 0; i < 4; ++i)
1309  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1310  		*rate_num = 4;
1311  		break;
1312  	case 0xC38:
1313  	case 0xE38:
1314  	case 0x1838:
1315  	case 0x1A38:
1316  		rate[0] = DESC_RATEMCS12;
1317  		rate[1] = DESC_RATEMCS13;
1318  		rate[2] = DESC_RATEMCS14;
1319  		rate[3] = DESC_RATEMCS15;
1320  		for (i = 0; i < 4; ++i)
1321  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1322  		*rate_num = 4;
1323  		break;
1324  	case 0xC3C:
1325  	case 0xE3C:
1326  	case 0x183C:
1327  	case 0x1A3C:
1328  		rate[0] = DESC_RATEVHT1SS_MCS0;
1329  		rate[1] = DESC_RATEVHT1SS_MCS1;
1330  		rate[2] = DESC_RATEVHT1SS_MCS2;
1331  		rate[3] = DESC_RATEVHT1SS_MCS3;
1332  		for (i = 0; i < 4; ++i)
1333  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1334  		*rate_num = 4;
1335  		break;
1336  	case 0xC40:
1337  	case 0xE40:
1338  	case 0x1840:
1339  	case 0x1A40:
1340  		rate[0] = DESC_RATEVHT1SS_MCS4;
1341  		rate[1] = DESC_RATEVHT1SS_MCS5;
1342  		rate[2] = DESC_RATEVHT1SS_MCS6;
1343  		rate[3] = DESC_RATEVHT1SS_MCS7;
1344  		for (i = 0; i < 4; ++i)
1345  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1346  		*rate_num = 4;
1347  		break;
1348  	case 0xC44:
1349  	case 0xE44:
1350  	case 0x1844:
1351  	case 0x1A44:
1352  		rate[0] = DESC_RATEVHT1SS_MCS8;
1353  		rate[1] = DESC_RATEVHT1SS_MCS9;
1354  		rate[2] = DESC_RATEVHT2SS_MCS0;
1355  		rate[3] = DESC_RATEVHT2SS_MCS1;
1356  		for (i = 0; i < 4; ++i)
1357  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1358  		*rate_num = 4;
1359  		break;
1360  	case 0xC48:
1361  	case 0xE48:
1362  	case 0x1848:
1363  	case 0x1A48:
1364  		rate[0] = DESC_RATEVHT2SS_MCS2;
1365  		rate[1] = DESC_RATEVHT2SS_MCS3;
1366  		rate[2] = DESC_RATEVHT2SS_MCS4;
1367  		rate[3] = DESC_RATEVHT2SS_MCS5;
1368  		for (i = 0; i < 4; ++i)
1369  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1370  		*rate_num = 4;
1371  		break;
1372  	case 0xC4C:
1373  	case 0xE4C:
1374  	case 0x184C:
1375  	case 0x1A4C:
1376  		rate[0] = DESC_RATEVHT2SS_MCS6;
1377  		rate[1] = DESC_RATEVHT2SS_MCS7;
1378  		rate[2] = DESC_RATEVHT2SS_MCS8;
1379  		rate[3] = DESC_RATEVHT2SS_MCS9;
1380  		for (i = 0; i < 4; ++i)
1381  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1382  		*rate_num = 4;
1383  		break;
1384  	case 0xCD8:
1385  	case 0xED8:
1386  	case 0x18D8:
1387  	case 0x1AD8:
1388  		rate[0] = DESC_RATEMCS16;
1389  		rate[1] = DESC_RATEMCS17;
1390  		rate[2] = DESC_RATEMCS18;
1391  		rate[3] = DESC_RATEMCS19;
1392  		for (i = 0; i < 4; ++i)
1393  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1394  		*rate_num = 4;
1395  		break;
1396  	case 0xCDC:
1397  	case 0xEDC:
1398  	case 0x18DC:
1399  	case 0x1ADC:
1400  		rate[0] = DESC_RATEMCS20;
1401  		rate[1] = DESC_RATEMCS21;
1402  		rate[2] = DESC_RATEMCS22;
1403  		rate[3] = DESC_RATEMCS23;
1404  		for (i = 0; i < 4; ++i)
1405  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1406  		*rate_num = 4;
1407  		break;
1408  	case 0xCE0:
1409  	case 0xEE0:
1410  	case 0x18E0:
1411  	case 0x1AE0:
1412  		rate[0] = DESC_RATEVHT3SS_MCS0;
1413  		rate[1] = DESC_RATEVHT3SS_MCS1;
1414  		rate[2] = DESC_RATEVHT3SS_MCS2;
1415  		rate[3] = DESC_RATEVHT3SS_MCS3;
1416  		for (i = 0; i < 4; ++i)
1417  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1418  		*rate_num = 4;
1419  		break;
1420  	case 0xCE4:
1421  	case 0xEE4:
1422  	case 0x18E4:
1423  	case 0x1AE4:
1424  		rate[0] = DESC_RATEVHT3SS_MCS4;
1425  		rate[1] = DESC_RATEVHT3SS_MCS5;
1426  		rate[2] = DESC_RATEVHT3SS_MCS6;
1427  		rate[3] = DESC_RATEVHT3SS_MCS7;
1428  		for (i = 0; i < 4; ++i)
1429  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1430  		*rate_num = 4;
1431  		break;
1432  	case 0xCE8:
1433  	case 0xEE8:
1434  	case 0x18E8:
1435  	case 0x1AE8:
1436  		rate[0] = DESC_RATEVHT3SS_MCS8;
1437  		rate[1] = DESC_RATEVHT3SS_MCS9;
1438  		for (i = 0; i < 2; ++i)
1439  			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1440  		*rate_num = 2;
1441  		break;
1442  	default:
1443  		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1444  		break;
1445  	}
1446  }
1447  
rtw_phy_store_tx_power_by_rate(struct rtw_dev * rtwdev,u32 band,u32 rfpath,u32 txnum,u32 regaddr,u32 bitmask,u32 data)1448  static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1449  					   u32 band, u32 rfpath, u32 txnum,
1450  					   u32 regaddr, u32 bitmask, u32 data)
1451  {
1452  	struct rtw_hal *hal = &rtwdev->hal;
1453  	u8 rate_num = 0;
1454  	u8 rate;
1455  	u8 rates[RTW_RF_PATH_MAX] = {0};
1456  	s8 offset;
1457  	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1458  	int i;
1459  
1460  	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1461  						 rates, pwr_by_rate, &rate_num);
1462  
1463  	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1464  		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1465  		    rate_num > RTW_RF_PATH_MAX))
1466  		return;
1467  
1468  	for (i = 0; i < rate_num; i++) {
1469  		offset = pwr_by_rate[i];
1470  		rate = rates[i];
1471  		if (band == PHY_BAND_2G)
1472  			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1473  		else if (band == PHY_BAND_5G)
1474  			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1475  		else
1476  			continue;
1477  	}
1478  }
1479  
rtw_parse_tbl_bb_pg(struct rtw_dev * rtwdev,const struct rtw_table * tbl)1480  void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1481  {
1482  	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1483  	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1484  
1485  	for (; p < end; p++) {
1486  		if (p->addr == 0xfe || p->addr == 0xffe) {
1487  			msleep(50);
1488  			continue;
1489  		}
1490  		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1491  					       p->tx_num, p->addr, p->bitmask,
1492  					       p->data);
1493  	}
1494  }
1495  EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1496  
1497  static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1498  	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1499  	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1500  	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1501  	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1502  	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1503  	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1504  	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1505  
rtw_channel_to_idx(u8 band,u8 channel)1506  static int rtw_channel_to_idx(u8 band, u8 channel)
1507  {
1508  	int ch_idx;
1509  	u8 n_channel;
1510  
1511  	if (band == PHY_BAND_2G) {
1512  		ch_idx = channel - 1;
1513  		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1514  	} else if (band == PHY_BAND_5G) {
1515  		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1516  		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1517  			if (rtw_channel_idx_5g[ch_idx] == channel)
1518  				break;
1519  	} else {
1520  		return -1;
1521  	}
1522  
1523  	if (ch_idx >= n_channel)
1524  		return -1;
1525  
1526  	return ch_idx;
1527  }
1528  
rtw_phy_set_tx_power_limit(struct rtw_dev * rtwdev,u8 regd,u8 band,u8 bw,u8 rs,u8 ch,s8 pwr_limit)1529  static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1530  				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1531  {
1532  	struct rtw_hal *hal = &rtwdev->hal;
1533  	u8 max_power_index = rtwdev->chip->max_power_index;
1534  	s8 ww;
1535  	int ch_idx;
1536  
1537  	pwr_limit = clamp_t(s8, pwr_limit,
1538  			    -max_power_index, max_power_index);
1539  	ch_idx = rtw_channel_to_idx(band, ch);
1540  
1541  	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1542  	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1543  		WARN(1,
1544  		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1545  		     regd, band, bw, rs, ch_idx, pwr_limit);
1546  		return;
1547  	}
1548  
1549  	if (band == PHY_BAND_2G) {
1550  		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1551  		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1552  		ww = min_t(s8, ww, pwr_limit);
1553  		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1554  	} else if (band == PHY_BAND_5G) {
1555  		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1556  		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1557  		ww = min_t(s8, ww, pwr_limit);
1558  		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1559  	}
1560  }
1561  
1562  /* cross-reference 5G power limits if values are not assigned */
1563  static void
rtw_xref_5g_txpwr_lmt(struct rtw_dev * rtwdev,u8 regd,u8 bw,u8 ch_idx,u8 rs_ht,u8 rs_vht)1564  rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1565  		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1566  {
1567  	struct rtw_hal *hal = &rtwdev->hal;
1568  	u8 max_power_index = rtwdev->chip->max_power_index;
1569  	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1570  	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1571  
1572  	if (lmt_ht == lmt_vht)
1573  		return;
1574  
1575  	if (lmt_ht == max_power_index)
1576  		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1577  
1578  	else if (lmt_vht == max_power_index)
1579  		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1580  }
1581  
1582  /* cross-reference power limits for ht and vht */
1583  static void
rtw_xref_txpwr_lmt_by_rs(struct rtw_dev * rtwdev,u8 regd,u8 bw,u8 ch_idx)1584  rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1585  {
1586  	u8 rs_idx, rs_ht, rs_vht;
1587  	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1588  			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1589  
1590  	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1591  		rs_ht = rs_cmp[rs_idx][0];
1592  		rs_vht = rs_cmp[rs_idx][1];
1593  
1594  		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1595  	}
1596  }
1597  
1598  /* cross-reference power limits for 5G channels */
1599  static void
rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev * rtwdev,u8 regd,u8 bw)1600  rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1601  {
1602  	u8 ch_idx;
1603  
1604  	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1605  		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1606  }
1607  
1608  /* cross-reference power limits for 20/40M bandwidth */
1609  static void
rtw_xref_txpwr_lmt_by_bw(struct rtw_dev * rtwdev,u8 regd)1610  rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1611  {
1612  	u8 bw;
1613  
1614  	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1615  		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1616  }
1617  
1618  /* cross-reference power limits */
rtw_xref_txpwr_lmt(struct rtw_dev * rtwdev)1619  static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1620  {
1621  	u8 regd;
1622  
1623  	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1624  		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1625  }
1626  
1627  static void
__cfg_txpwr_lmt_by_alt(struct rtw_hal * hal,u8 regd,u8 regd_alt,u8 bw,u8 rs)1628  __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1629  {
1630  	u8 ch;
1631  
1632  	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1633  		hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1634  			hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1635  
1636  	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1637  		hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1638  			hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1639  }
1640  
1641  static void
rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev * rtwdev,u8 regd,u8 regd_alt)1642  rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1643  {
1644  	u8 bw, rs;
1645  
1646  	for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1647  		for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1648  			__cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
1649  					       bw, rs);
1650  }
1651  
rtw_parse_tbl_txpwr_lmt(struct rtw_dev * rtwdev,const struct rtw_table * tbl)1652  void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1653  			     const struct rtw_table *tbl)
1654  {
1655  	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1656  	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1657  	u32 regd_cfg_flag = 0;
1658  	u8 regd_alt;
1659  	u8 i;
1660  
1661  	for (; p < end; p++) {
1662  		regd_cfg_flag |= BIT(p->regd);
1663  		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1664  					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1665  	}
1666  
1667  	for (i = 0; i < RTW_REGD_MAX; i++) {
1668  		if (i == RTW_REGD_WW)
1669  			continue;
1670  
1671  		if (regd_cfg_flag & BIT(i))
1672  			continue;
1673  
1674  		rtw_dbg(rtwdev, RTW_DBG_REGD,
1675  			"txpwr regd %d does not be configured\n", i);
1676  
1677  		if (rtw_regd_has_alt(i, &regd_alt) &&
1678  		    regd_cfg_flag & BIT(regd_alt)) {
1679  			rtw_dbg(rtwdev, RTW_DBG_REGD,
1680  				"cfg txpwr regd %d by regd %d as alternative\n",
1681  				i, regd_alt);
1682  
1683  			rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
1684  			continue;
1685  		}
1686  
1687  		rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
1688  		rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
1689  	}
1690  
1691  	rtw_xref_txpwr_lmt(rtwdev);
1692  }
1693  EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1694  
rtw_phy_cfg_mac(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1695  void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1696  		     u32 addr, u32 data)
1697  {
1698  	rtw_write8(rtwdev, addr, data);
1699  }
1700  EXPORT_SYMBOL(rtw_phy_cfg_mac);
1701  
rtw_phy_cfg_agc(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1702  void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1703  		     u32 addr, u32 data)
1704  {
1705  	rtw_write32(rtwdev, addr, data);
1706  }
1707  EXPORT_SYMBOL(rtw_phy_cfg_agc);
1708  
rtw_phy_cfg_bb(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1709  void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1710  		    u32 addr, u32 data)
1711  {
1712  	if (addr == 0xfe)
1713  		msleep(50);
1714  	else if (addr == 0xfd)
1715  		mdelay(5);
1716  	else if (addr == 0xfc)
1717  		mdelay(1);
1718  	else if (addr == 0xfb)
1719  		usleep_range(50, 60);
1720  	else if (addr == 0xfa)
1721  		udelay(5);
1722  	else if (addr == 0xf9)
1723  		udelay(1);
1724  	else
1725  		rtw_write32(rtwdev, addr, data);
1726  }
1727  EXPORT_SYMBOL(rtw_phy_cfg_bb);
1728  
rtw_phy_cfg_rf(struct rtw_dev * rtwdev,const struct rtw_table * tbl,u32 addr,u32 data)1729  void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1730  		    u32 addr, u32 data)
1731  {
1732  	if (addr == 0xffe) {
1733  		msleep(50);
1734  	} else if (addr == 0xfe) {
1735  		usleep_range(100, 110);
1736  	} else {
1737  		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1738  		udelay(1);
1739  	}
1740  }
1741  EXPORT_SYMBOL(rtw_phy_cfg_rf);
1742  
rtw_load_rfk_table(struct rtw_dev * rtwdev)1743  static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1744  {
1745  	const struct rtw_chip_info *chip = rtwdev->chip;
1746  	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1747  
1748  	if (!chip->rfk_init_tbl)
1749  		return;
1750  
1751  	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1752  	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1753  	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1754  	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1755  	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1756  
1757  	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1758  
1759  	dpk_info->is_dpk_pwr_on = true;
1760  }
1761  
rtw_phy_load_tables(struct rtw_dev * rtwdev)1762  void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1763  {
1764  	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1765  	const struct rtw_chip_info *chip = rtwdev->chip;
1766  	u8 rf_path;
1767  
1768  	rtw_load_table(rtwdev, chip->mac_tbl);
1769  	rtw_load_table(rtwdev, chip->bb_tbl);
1770  	rtw_load_table(rtwdev, chip->agc_tbl);
1771  	if (rfe_def->agc_btg_tbl)
1772  		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1773  	rtw_load_rfk_table(rtwdev);
1774  
1775  	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1776  		const struct rtw_table *tbl;
1777  
1778  		tbl = chip->rf_tbl[rf_path];
1779  		rtw_load_table(rtwdev, tbl);
1780  	}
1781  }
1782  EXPORT_SYMBOL(rtw_phy_load_tables);
1783  
rtw_get_channel_group(u8 channel,u8 rate)1784  static u8 rtw_get_channel_group(u8 channel, u8 rate)
1785  {
1786  	switch (channel) {
1787  	default:
1788  		WARN_ON(1);
1789  		fallthrough;
1790  	case 1:
1791  	case 2:
1792  	case 36:
1793  	case 38:
1794  	case 40:
1795  	case 42:
1796  		return 0;
1797  	case 3:
1798  	case 4:
1799  	case 5:
1800  	case 44:
1801  	case 46:
1802  	case 48:
1803  	case 50:
1804  		return 1;
1805  	case 6:
1806  	case 7:
1807  	case 8:
1808  	case 52:
1809  	case 54:
1810  	case 56:
1811  	case 58:
1812  		return 2;
1813  	case 9:
1814  	case 10:
1815  	case 11:
1816  	case 60:
1817  	case 62:
1818  	case 64:
1819  		return 3;
1820  	case 12:
1821  	case 13:
1822  	case 100:
1823  	case 102:
1824  	case 104:
1825  	case 106:
1826  		return 4;
1827  	case 14:
1828  		return rate <= DESC_RATE11M ? 5 : 4;
1829  	case 108:
1830  	case 110:
1831  	case 112:
1832  	case 114:
1833  		return 5;
1834  	case 116:
1835  	case 118:
1836  	case 120:
1837  	case 122:
1838  		return 6;
1839  	case 124:
1840  	case 126:
1841  	case 128:
1842  	case 130:
1843  		return 7;
1844  	case 132:
1845  	case 134:
1846  	case 136:
1847  	case 138:
1848  		return 8;
1849  	case 140:
1850  	case 142:
1851  	case 144:
1852  		return 9;
1853  	case 149:
1854  	case 151:
1855  	case 153:
1856  	case 155:
1857  		return 10;
1858  	case 157:
1859  	case 159:
1860  	case 161:
1861  		return 11;
1862  	case 165:
1863  	case 167:
1864  	case 169:
1865  	case 171:
1866  		return 12;
1867  	case 173:
1868  	case 175:
1869  	case 177:
1870  		return 13;
1871  	}
1872  }
1873  
rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev * rtwdev,u16 rate)1874  static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1875  {
1876  	const struct rtw_chip_info *chip = rtwdev->chip;
1877  	s8 dpd_diff = 0;
1878  
1879  	if (!chip->en_dis_dpd)
1880  		return 0;
1881  
1882  #define RTW_DPD_RATE_CHECK(_rate)					\
1883  	case DESC_RATE ## _rate:					\
1884  	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1885  		dpd_diff = -6 * chip->txgi_factor;			\
1886  	break
1887  
1888  	switch (rate) {
1889  	RTW_DPD_RATE_CHECK(6M);
1890  	RTW_DPD_RATE_CHECK(9M);
1891  	RTW_DPD_RATE_CHECK(MCS0);
1892  	RTW_DPD_RATE_CHECK(MCS1);
1893  	RTW_DPD_RATE_CHECK(MCS8);
1894  	RTW_DPD_RATE_CHECK(MCS9);
1895  	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1896  	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1897  	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1898  	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1899  	}
1900  #undef RTW_DPD_RATE_CHECK
1901  
1902  	return dpd_diff;
1903  }
1904  
rtw_phy_get_2g_tx_power_index(struct rtw_dev * rtwdev,struct rtw_2g_txpwr_idx * pwr_idx_2g,enum rtw_bandwidth bandwidth,u8 rate,u8 group)1905  static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1906  					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1907  					enum rtw_bandwidth bandwidth,
1908  					u8 rate, u8 group)
1909  {
1910  	const struct rtw_chip_info *chip = rtwdev->chip;
1911  	u8 tx_power;
1912  	bool mcs_rate;
1913  	bool above_2ss;
1914  	u8 factor = chip->txgi_factor;
1915  
1916  	if (rate <= DESC_RATE11M)
1917  		tx_power = pwr_idx_2g->cck_base[group];
1918  	else
1919  		tx_power = pwr_idx_2g->bw40_base[group];
1920  
1921  	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1922  		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1923  
1924  	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1925  		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1926  		    rate <= DESC_RATEVHT2SS_MCS9);
1927  	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1928  		    (rate >= DESC_RATEVHT2SS_MCS0);
1929  
1930  	if (!mcs_rate)
1931  		return tx_power;
1932  
1933  	switch (bandwidth) {
1934  	default:
1935  		WARN_ON(1);
1936  		fallthrough;
1937  	case RTW_CHANNEL_WIDTH_20:
1938  		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1939  		if (above_2ss)
1940  			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1941  		break;
1942  	case RTW_CHANNEL_WIDTH_40:
1943  		/* bw40 is the base power */
1944  		if (above_2ss)
1945  			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1946  		break;
1947  	}
1948  
1949  	return tx_power;
1950  }
1951  
rtw_phy_get_5g_tx_power_index(struct rtw_dev * rtwdev,struct rtw_5g_txpwr_idx * pwr_idx_5g,enum rtw_bandwidth bandwidth,u8 rate,u8 group)1952  static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1953  					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1954  					enum rtw_bandwidth bandwidth,
1955  					u8 rate, u8 group)
1956  {
1957  	const struct rtw_chip_info *chip = rtwdev->chip;
1958  	u8 tx_power;
1959  	u8 upper, lower;
1960  	bool mcs_rate;
1961  	bool above_2ss;
1962  	u8 factor = chip->txgi_factor;
1963  
1964  	tx_power = pwr_idx_5g->bw40_base[group];
1965  
1966  	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1967  		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1968  		    rate <= DESC_RATEVHT2SS_MCS9);
1969  	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1970  		    (rate >= DESC_RATEVHT2SS_MCS0);
1971  
1972  	if (!mcs_rate) {
1973  		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1974  		return tx_power;
1975  	}
1976  
1977  	switch (bandwidth) {
1978  	default:
1979  		WARN_ON(1);
1980  		fallthrough;
1981  	case RTW_CHANNEL_WIDTH_20:
1982  		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1983  		if (above_2ss)
1984  			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1985  		break;
1986  	case RTW_CHANNEL_WIDTH_40:
1987  		/* bw40 is the base power */
1988  		if (above_2ss)
1989  			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1990  		break;
1991  	case RTW_CHANNEL_WIDTH_80:
1992  		/* the base idx of bw80 is the average of bw40+/bw40- */
1993  		lower = pwr_idx_5g->bw40_base[group];
1994  		upper = pwr_idx_5g->bw40_base[group + 1];
1995  
1996  		tx_power = (lower + upper) / 2;
1997  		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1998  		if (above_2ss)
1999  			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2000  		break;
2001  	}
2002  
2003  	return tx_power;
2004  }
2005  
2006  /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
rtw_phy_rate_to_rate_section(u8 rate)2007  static u8 rtw_phy_rate_to_rate_section(u8 rate)
2008  {
2009  	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2010  		return RTW_RATE_SECTION_CCK;
2011  	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2012  		return RTW_RATE_SECTION_OFDM;
2013  	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2014  		return RTW_RATE_SECTION_HT_1S;
2015  	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2016  		return RTW_RATE_SECTION_HT_2S;
2017  	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2018  		return RTW_RATE_SECTION_VHT_1S;
2019  	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2020  		return RTW_RATE_SECTION_VHT_2S;
2021  	else
2022  		return RTW_RATE_SECTION_MAX;
2023  }
2024  
rtw_phy_get_tx_power_limit(struct rtw_dev * rtwdev,u8 band,enum rtw_bandwidth bw,u8 rf_path,u8 rate,u8 channel,u8 regd)2025  static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2026  				     enum rtw_bandwidth bw, u8 rf_path,
2027  				     u8 rate, u8 channel, u8 regd)
2028  {
2029  	struct rtw_hal *hal = &rtwdev->hal;
2030  	u8 *cch_by_bw = hal->cch_by_bw;
2031  	s8 power_limit = (s8)rtwdev->chip->max_power_index;
2032  	u8 rs = rtw_phy_rate_to_rate_section(rate);
2033  	int ch_idx;
2034  	u8 cur_bw, cur_ch;
2035  	s8 cur_lmt;
2036  
2037  	if (regd > RTW_REGD_WW)
2038  		return power_limit;
2039  
2040  	if (rs == RTW_RATE_SECTION_MAX)
2041  		goto err;
2042  
2043  	/* only 20M BW with cck and ofdm */
2044  	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2045  		bw = RTW_CHANNEL_WIDTH_20;
2046  
2047  	/* only 20/40M BW with ht */
2048  	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
2049  		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2050  
2051  	/* select min power limit among [20M BW ~ current BW] */
2052  	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2053  		cur_ch = cch_by_bw[cur_bw];
2054  
2055  		ch_idx = rtw_channel_to_idx(band, cur_ch);
2056  		if (ch_idx < 0)
2057  			goto err;
2058  
2059  		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2060  			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2061  			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2062  
2063  		power_limit = min_t(s8, cur_lmt, power_limit);
2064  	}
2065  
2066  	return power_limit;
2067  
2068  err:
2069  	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2070  	     band, bw, rf_path, rate, channel);
2071  	return (s8)rtwdev->chip->max_power_index;
2072  }
2073  
rtw_phy_get_tx_power_sar(struct rtw_dev * rtwdev,u8 sar_band,u8 rf_path,u8 rate)2074  static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2075  				   u8 rf_path, u8 rate)
2076  {
2077  	u8 rs = rtw_phy_rate_to_rate_section(rate);
2078  	struct rtw_sar_arg arg = {
2079  		.sar_band = sar_band,
2080  		.path = rf_path,
2081  		.rs = rs,
2082  	};
2083  
2084  	if (rs == RTW_RATE_SECTION_MAX)
2085  		goto err;
2086  
2087  	return rtw_query_sar(rtwdev, &arg);
2088  
2089  err:
2090  	WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2091  	     sar_band, rf_path, rate);
2092  	return (s8)rtwdev->chip->max_power_index;
2093  }
2094  
rtw_get_tx_power_params(struct rtw_dev * rtwdev,u8 path,u8 rate,u8 bw,u8 ch,u8 regd,struct rtw_power_params * pwr_param)2095  void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2096  			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2097  {
2098  	struct rtw_hal *hal = &rtwdev->hal;
2099  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2100  	struct rtw_txpwr_idx *pwr_idx;
2101  	u8 group, band;
2102  	u8 *base = &pwr_param->pwr_base;
2103  	s8 *offset = &pwr_param->pwr_offset;
2104  	s8 *limit = &pwr_param->pwr_limit;
2105  	s8 *remnant = &pwr_param->pwr_remnant;
2106  	s8 *sar = &pwr_param->pwr_sar;
2107  
2108  	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2109  	group = rtw_get_channel_group(ch, rate);
2110  
2111  	/* base power index for 2.4G/5G */
2112  	if (IS_CH_2G_BAND(ch)) {
2113  		band = PHY_BAND_2G;
2114  		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
2115  						      &pwr_idx->pwr_idx_2g,
2116  						      bw, rate, group);
2117  		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2118  	} else {
2119  		band = PHY_BAND_5G;
2120  		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
2121  						      &pwr_idx->pwr_idx_5g,
2122  						      bw, rate, group);
2123  		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2124  	}
2125  
2126  	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
2127  					    rate, ch, regd);
2128  	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2129  		    dm_info->txagc_remnant_ofdm);
2130  	*sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
2131  }
2132  
2133  u8
rtw_phy_get_tx_power_index(struct rtw_dev * rtwdev,u8 rf_path,u8 rate,enum rtw_bandwidth bandwidth,u8 channel,u8 regd)2134  rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2135  			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2136  {
2137  	struct rtw_power_params pwr_param = {0};
2138  	u8 tx_power;
2139  	s8 offset;
2140  
2141  	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
2142  				channel, regd, &pwr_param);
2143  
2144  	tx_power = pwr_param.pwr_base;
2145  	offset = min3(pwr_param.pwr_offset,
2146  		      pwr_param.pwr_limit,
2147  		      pwr_param.pwr_sar);
2148  
2149  	if (rtwdev->chip->en_dis_dpd)
2150  		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2151  
2152  	tx_power += offset + pwr_param.pwr_remnant;
2153  
2154  	if (tx_power > rtwdev->chip->max_power_index)
2155  		tx_power = rtwdev->chip->max_power_index;
2156  
2157  	return tx_power;
2158  }
2159  EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2160  
rtw_phy_set_tx_power_index_by_rs(struct rtw_dev * rtwdev,u8 ch,u8 path,u8 rs)2161  static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2162  					     u8 ch, u8 path, u8 rs)
2163  {
2164  	struct rtw_hal *hal = &rtwdev->hal;
2165  	u8 regd = rtw_regd_get(rtwdev);
2166  	u8 *rates;
2167  	u8 size;
2168  	u8 rate;
2169  	u8 pwr_idx;
2170  	u8 bw;
2171  	int i;
2172  
2173  	if (rs >= RTW_RATE_SECTION_MAX)
2174  		return;
2175  
2176  	rates = rtw_rate_section[rs];
2177  	size = rtw_rate_size[rs];
2178  	bw = hal->current_band_width;
2179  	for (i = 0; i < size; i++) {
2180  		rate = rates[i];
2181  		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2182  						     bw, ch, regd);
2183  		hal->tx_pwr_tbl[path][rate] = pwr_idx;
2184  	}
2185  }
2186  
2187  /* set tx power level by path for each rates, note that the order of the rates
2188   * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2189   * power index into a four-byte power index register, and calls set_tx_agc to
2190   * write these values into hardware
2191   */
rtw_phy_set_tx_power_level_by_path(struct rtw_dev * rtwdev,u8 ch,u8 path)2192  static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2193  					       u8 ch, u8 path)
2194  {
2195  	struct rtw_hal *hal = &rtwdev->hal;
2196  	u8 rs;
2197  
2198  	/* do not need cck rates if we are not in 2.4G */
2199  	if (hal->current_band_type == RTW_BAND_2G)
2200  		rs = RTW_RATE_SECTION_CCK;
2201  	else
2202  		rs = RTW_RATE_SECTION_OFDM;
2203  
2204  	for (; rs < RTW_RATE_SECTION_MAX; rs++)
2205  		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2206  }
2207  
rtw_phy_set_tx_power_level(struct rtw_dev * rtwdev,u8 channel)2208  void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2209  {
2210  	const struct rtw_chip_info *chip = rtwdev->chip;
2211  	struct rtw_hal *hal = &rtwdev->hal;
2212  	u8 path;
2213  
2214  	mutex_lock(&hal->tx_power_mutex);
2215  
2216  	for (path = 0; path < hal->rf_path_num; path++)
2217  		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2218  
2219  	chip->ops->set_tx_power_index(rtwdev);
2220  	mutex_unlock(&hal->tx_power_mutex);
2221  }
2222  EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2223  
2224  static void
rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal * hal,u8 path,u8 rs,u8 size,u8 * rates)2225  rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2226  					u8 rs, u8 size, u8 *rates)
2227  {
2228  	u8 rate;
2229  	u8 base_idx, rate_idx;
2230  	s8 base_2g, base_5g;
2231  
2232  	if (rs >= RTW_RATE_SECTION_VHT_1S)
2233  		base_idx = rates[size - 3];
2234  	else
2235  		base_idx = rates[size - 1];
2236  	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2237  	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2238  	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2239  	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2240  	for (rate = 0; rate < size; rate++) {
2241  		rate_idx = rates[rate];
2242  		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2243  		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2244  	}
2245  }
2246  
rtw_phy_tx_power_by_rate_config(struct rtw_hal * hal)2247  void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2248  {
2249  	u8 path;
2250  
2251  	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2252  		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2253  				RTW_RATE_SECTION_CCK,
2254  				rtw_cck_size, rtw_cck_rates);
2255  		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2256  				RTW_RATE_SECTION_OFDM,
2257  				rtw_ofdm_size, rtw_ofdm_rates);
2258  		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2259  				RTW_RATE_SECTION_HT_1S,
2260  				rtw_ht_1s_size, rtw_ht_1s_rates);
2261  		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2262  				RTW_RATE_SECTION_HT_2S,
2263  				rtw_ht_2s_size, rtw_ht_2s_rates);
2264  		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2265  				RTW_RATE_SECTION_VHT_1S,
2266  				rtw_vht_1s_size, rtw_vht_1s_rates);
2267  		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2268  				RTW_RATE_SECTION_VHT_2S,
2269  				rtw_vht_2s_size, rtw_vht_2s_rates);
2270  	}
2271  }
2272  
2273  static void
__rtw_phy_tx_power_limit_config(struct rtw_hal * hal,u8 regd,u8 bw,u8 rs)2274  __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2275  {
2276  	s8 base;
2277  	u8 ch;
2278  
2279  	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2280  		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2281  		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2282  	}
2283  
2284  	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2285  		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2286  		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2287  	}
2288  }
2289  
rtw_phy_tx_power_limit_config(struct rtw_hal * hal)2290  void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2291  {
2292  	u8 regd, bw, rs;
2293  
2294  	/* default at channel 1 */
2295  	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2296  
2297  	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2298  		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2299  			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2300  				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2301  }
2302  
rtw_phy_init_tx_power_limit(struct rtw_dev * rtwdev,u8 regd,u8 bw,u8 rs)2303  static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2304  					u8 regd, u8 bw, u8 rs)
2305  {
2306  	struct rtw_hal *hal = &rtwdev->hal;
2307  	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2308  	u8 ch;
2309  
2310  	/* 2.4G channels */
2311  	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2312  		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2313  
2314  	/* 5G channels */
2315  	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2316  		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2317  }
2318  
rtw_phy_init_tx_power(struct rtw_dev * rtwdev)2319  void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2320  {
2321  	struct rtw_hal *hal = &rtwdev->hal;
2322  	u8 regd, path, rate, rs, bw;
2323  
2324  	/* init tx power by rate offset */
2325  	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2326  		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2327  			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2328  			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2329  		}
2330  	}
2331  
2332  	/* init tx power limit */
2333  	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2334  		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2335  			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2336  				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2337  							    rs);
2338  }
2339  
rtw_phy_config_swing_table(struct rtw_dev * rtwdev,struct rtw_swing_table * swing_table)2340  void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2341  				struct rtw_swing_table *swing_table)
2342  {
2343  	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2344  	u8 channel = rtwdev->hal.current_channel;
2345  
2346  	if (IS_CH_2G_BAND(channel)) {
2347  		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2348  			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2349  			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2350  			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2351  			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2352  		} else {
2353  			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2354  			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2355  			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2356  			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2357  		}
2358  	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2359  		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2360  		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2361  		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2362  		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2363  	} else if (IS_CH_5G_BAND_3(channel)) {
2364  		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2365  		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2366  		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2367  		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2368  	} else if (IS_CH_5G_BAND_4(channel)) {
2369  		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2370  		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2371  		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2372  		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2373  	} else {
2374  		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2375  		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2376  		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2377  		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2378  	}
2379  }
2380  EXPORT_SYMBOL(rtw_phy_config_swing_table);
2381  
rtw_phy_pwrtrack_avg(struct rtw_dev * rtwdev,u8 thermal,u8 path)2382  void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2383  {
2384  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2385  
2386  	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2387  	dm_info->thermal_avg[path] =
2388  		ewma_thermal_read(&dm_info->avg_thermal[path]);
2389  }
2390  EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2391  
rtw_phy_pwrtrack_thermal_changed(struct rtw_dev * rtwdev,u8 thermal,u8 path)2392  bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2393  				      u8 path)
2394  {
2395  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2396  	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2397  
2398  	if (avg == thermal)
2399  		return false;
2400  
2401  	return true;
2402  }
2403  EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2404  
rtw_phy_pwrtrack_get_delta(struct rtw_dev * rtwdev,u8 path)2405  u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2406  {
2407  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2408  	u8 therm_avg, therm_efuse, therm_delta;
2409  
2410  	therm_avg = dm_info->thermal_avg[path];
2411  	therm_efuse = rtwdev->efuse.thermal_meter[path];
2412  	therm_delta = abs(therm_avg - therm_efuse);
2413  
2414  	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2415  }
2416  EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2417  
rtw_phy_pwrtrack_get_pwridx(struct rtw_dev * rtwdev,struct rtw_swing_table * swing_table,u8 tbl_path,u8 therm_path,u8 delta)2418  s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2419  			       struct rtw_swing_table *swing_table,
2420  			       u8 tbl_path, u8 therm_path, u8 delta)
2421  {
2422  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2423  	const u8 *delta_swing_table_idx_pos;
2424  	const u8 *delta_swing_table_idx_neg;
2425  
2426  	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2427  		rtw_warn(rtwdev, "power track table overflow\n");
2428  		return 0;
2429  	}
2430  
2431  	if (!swing_table) {
2432  		rtw_warn(rtwdev, "swing table not configured\n");
2433  		return 0;
2434  	}
2435  
2436  	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2437  	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2438  
2439  	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2440  		rtw_warn(rtwdev, "invalid swing table index\n");
2441  		return 0;
2442  	}
2443  
2444  	if (dm_info->thermal_avg[therm_path] >
2445  	    rtwdev->efuse.thermal_meter[therm_path])
2446  		return delta_swing_table_idx_pos[delta];
2447  	else
2448  		return -delta_swing_table_idx_neg[delta];
2449  }
2450  EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2451  
rtw_phy_pwrtrack_need_lck(struct rtw_dev * rtwdev)2452  bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2453  {
2454  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2455  	u8 delta_lck;
2456  
2457  	delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2458  	if (delta_lck >= rtwdev->chip->lck_threshold) {
2459  		dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2460  		return true;
2461  	}
2462  	return false;
2463  }
2464  EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2465  
rtw_phy_pwrtrack_need_iqk(struct rtw_dev * rtwdev)2466  bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2467  {
2468  	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2469  	u8 delta_iqk;
2470  
2471  	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2472  	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2473  		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2474  		return true;
2475  	}
2476  	return false;
2477  }
2478  EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2479  
rtw_phy_set_tx_path_by_reg(struct rtw_dev * rtwdev,enum rtw_bb_path tx_path_sel_1ss)2480  static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2481  				       enum rtw_bb_path tx_path_sel_1ss)
2482  {
2483  	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2484  	enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2485  	const struct rtw_chip_info *chip = rtwdev->chip;
2486  
2487  	if (tx_path_sel_1ss == path_div->current_tx_path)
2488  		return;
2489  
2490  	path_div->current_tx_path = tx_path_sel_1ss;
2491  	rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2492  		tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2493  	chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2494  				  tx_path_sel_1ss, tx_path_sel_cck, false);
2495  }
2496  
rtw_phy_tx_path_div_select(struct rtw_dev * rtwdev)2497  static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2498  {
2499  	struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2500  	enum rtw_bb_path path = path_div->current_tx_path;
2501  	s32 rssi_a = 0, rssi_b = 0;
2502  
2503  	if (path_div->path_a_cnt)
2504  		rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2505  	else
2506  		rssi_a = 0;
2507  	if (path_div->path_b_cnt)
2508  		rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2509  	else
2510  		rssi_b = 0;
2511  
2512  	if (rssi_a != rssi_b)
2513  		path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2514  
2515  	path_div->path_a_cnt = 0;
2516  	path_div->path_a_sum = 0;
2517  	path_div->path_b_cnt = 0;
2518  	path_div->path_b_sum = 0;
2519  	rtw_phy_set_tx_path_by_reg(rtwdev, path);
2520  }
2521  
rtw_phy_tx_path_diversity_2ss(struct rtw_dev * rtwdev)2522  static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2523  {
2524  	if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2525  		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2526  			"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2527  			rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2528  		return;
2529  	}
2530  	if (rtwdev->sta_cnt == 0) {
2531  		rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2532  		return;
2533  	}
2534  
2535  	rtw_phy_tx_path_div_select(rtwdev);
2536  }
2537  
rtw_phy_tx_path_diversity(struct rtw_dev * rtwdev)2538  void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2539  {
2540  	const struct rtw_chip_info *chip = rtwdev->chip;
2541  
2542  	if (!chip->path_div_supported)
2543  		return;
2544  
2545  	rtw_phy_tx_path_diversity_2ss(rtwdev);
2546  }
2547