1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3 *
4 * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5 *
6 ******************************************************************************/
7
8 #include <linux/firmware.h>
9 #include <linux/slab.h>
10 #include <drv_types.h>
11 #include <rtl8723b_hal.h>
12 #include "hal_com_h2c.h"
13
_FWDownloadEnable(struct adapter * padapter,bool enable)14 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
15 {
16 u8 tmp, count = 0;
17
18 if (enable) {
19 /* 8051 enable */
20 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
21 rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
22
23 tmp = rtw_read8(padapter, REG_MCUFWDL);
24 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
25
26 do {
27 tmp = rtw_read8(padapter, REG_MCUFWDL);
28 if (tmp & 0x01)
29 break;
30 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
31 msleep(1);
32 } while (count++ < 100);
33
34 /* 8051 reset */
35 tmp = rtw_read8(padapter, REG_MCUFWDL+2);
36 rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
37 } else {
38 /* MCU firmware download disable. */
39 tmp = rtw_read8(padapter, REG_MCUFWDL);
40 rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
41 }
42 }
43
_BlockWrite(struct adapter * padapter,void * buffer,u32 buffSize)44 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
45 {
46 int ret = _SUCCESS;
47
48 u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */
49 u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
50 u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */
51 u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
52 u32 remainSize_p1 = 0, remainSize_p2 = 0;
53 u8 *bufferPtr = buffer;
54 u32 i = 0, offset = 0;
55
56 /* printk("====>%s %d\n", __func__, __LINE__); */
57
58 /* 3 Phase #1 */
59 blockCount_p1 = buffSize / blockSize_p1;
60 remainSize_p1 = buffSize % blockSize_p1;
61
62 for (i = 0; i < blockCount_p1; i++) {
63 ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
64 if (ret == _FAIL) {
65 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
66 goto exit;
67 }
68 }
69
70 /* 3 Phase #2 */
71 if (remainSize_p1) {
72 offset = blockCount_p1 * blockSize_p1;
73
74 blockCount_p2 = remainSize_p1/blockSize_p2;
75 remainSize_p2 = remainSize_p1%blockSize_p2;
76 }
77
78 /* 3 Phase #3 */
79 if (remainSize_p2) {
80 offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
81
82 blockCount_p3 = remainSize_p2 / blockSize_p3;
83
84 for (i = 0; i < blockCount_p3; i++) {
85 ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
86
87 if (ret == _FAIL) {
88 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
89 goto exit;
90 }
91 }
92 }
93 exit:
94 return ret;
95 }
96
_PageWrite(struct adapter * padapter,u32 page,void * buffer,u32 size)97 static int _PageWrite(
98 struct adapter *padapter,
99 u32 page,
100 void *buffer,
101 u32 size
102 )
103 {
104 u8 value8;
105 u8 u8Page = (u8) (page & 0x07);
106
107 value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
108 rtw_write8(padapter, REG_MCUFWDL+2, value8);
109
110 return _BlockWrite(padapter, buffer, size);
111 }
112
_WriteFW(struct adapter * padapter,void * buffer,u32 size)113 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
114 {
115 /* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
116 /* We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
117 int ret = _SUCCESS;
118 u32 pageNums, remainSize;
119 u32 page, offset;
120 u8 *bufferPtr = buffer;
121
122 pageNums = size / MAX_DLFW_PAGE_SIZE;
123 remainSize = size % MAX_DLFW_PAGE_SIZE;
124
125 for (page = 0; page < pageNums; page++) {
126 offset = page * MAX_DLFW_PAGE_SIZE;
127 ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
128
129 if (ret == _FAIL) {
130 printk("====>%s %d\n", __func__, __LINE__);
131 goto exit;
132 }
133 }
134
135 if (remainSize) {
136 offset = pageNums * MAX_DLFW_PAGE_SIZE;
137 page = pageNums;
138 ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
139
140 if (ret == _FAIL) {
141 printk("====>%s %d\n", __func__, __LINE__);
142 goto exit;
143 }
144 }
145
146 exit:
147 return ret;
148 }
149
_8051Reset8723(struct adapter * padapter)150 void _8051Reset8723(struct adapter *padapter)
151 {
152 u8 cpu_rst;
153 u8 io_rst;
154
155
156 /* Reset 8051(WLMCU) IO wrapper */
157 /* 0x1c[8] = 0 */
158 /* Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
159 io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
160 io_rst &= ~BIT(0);
161 rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
162
163 cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
164 cpu_rst &= ~BIT(2);
165 rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
166
167 /* Enable 8051 IO wrapper */
168 /* 0x1c[8] = 1 */
169 io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
170 io_rst |= BIT(0);
171 rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
172
173 cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
174 cpu_rst |= BIT(2);
175 rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
176 }
177
178 u8 g_fwdl_chksum_fail;
179
polling_fwdl_chksum(struct adapter * adapter,u32 min_cnt,u32 timeout_ms)180 static s32 polling_fwdl_chksum(
181 struct adapter *adapter, u32 min_cnt, u32 timeout_ms
182 )
183 {
184 s32 ret = _FAIL;
185 u32 value32;
186 unsigned long start = jiffies;
187 u32 cnt = 0;
188
189 /* polling CheckSum report */
190 do {
191 cnt++;
192 value32 = rtw_read32(adapter, REG_MCUFWDL);
193 if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
194 break;
195 yield();
196 } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
197
198 if (!(value32 & FWDL_ChkSum_rpt)) {
199 goto exit;
200 }
201
202 if (g_fwdl_chksum_fail) {
203 g_fwdl_chksum_fail--;
204 goto exit;
205 }
206
207 ret = _SUCCESS;
208
209 exit:
210
211 return ret;
212 }
213
214 u8 g_fwdl_wintint_rdy_fail;
215
_FWFreeToGo(struct adapter * adapter,u32 min_cnt,u32 timeout_ms)216 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
217 {
218 s32 ret = _FAIL;
219 u32 value32;
220 unsigned long start = jiffies;
221 u32 cnt = 0;
222
223 value32 = rtw_read32(adapter, REG_MCUFWDL);
224 value32 |= MCUFWDL_RDY;
225 value32 &= ~WINTINI_RDY;
226 rtw_write32(adapter, REG_MCUFWDL, value32);
227
228 _8051Reset8723(adapter);
229
230 /* polling for FW ready */
231 do {
232 cnt++;
233 value32 = rtw_read32(adapter, REG_MCUFWDL);
234 if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
235 break;
236 yield();
237 } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
238
239 if (!(value32 & WINTINI_RDY)) {
240 goto exit;
241 }
242
243 if (g_fwdl_wintint_rdy_fail) {
244 g_fwdl_wintint_rdy_fail--;
245 goto exit;
246 }
247
248 ret = _SUCCESS;
249
250 exit:
251
252 return ret;
253 }
254
255 #define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
256
rtl8723b_FirmwareSelfReset(struct adapter * padapter)257 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
258 {
259 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
260 u8 u1bTmp;
261 u8 Delay = 100;
262
263 if (
264 !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
265 ) { /* after 88C Fw v33.1 */
266 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
267 rtw_write8(padapter, REG_HMETFR+3, 0x20);
268
269 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
270 while (u1bTmp & BIT2) {
271 Delay--;
272 if (Delay == 0)
273 break;
274 udelay(50);
275 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
276 }
277
278 if (Delay == 0) {
279 /* force firmware reset */
280 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
281 rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
282 }
283 }
284 }
285
286 /* */
287 /* Description: */
288 /* Download 8192C firmware code. */
289 /* */
290 /* */
rtl8723b_FirmwareDownload(struct adapter * padapter,bool bUsedWoWLANFw)291 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool bUsedWoWLANFw)
292 {
293 s32 rtStatus = _SUCCESS;
294 u8 write_fw = 0;
295 unsigned long fwdl_start_time;
296 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
297 struct rt_firmware *pFirmware;
298 struct rt_firmware *pBTFirmware;
299 struct rt_firmware_hdr *pFwHdr = NULL;
300 u8 *pFirmwareBuf;
301 u32 FirmwareLen;
302 const struct firmware *fw;
303 struct device *device = dvobj_to_dev(padapter->dvobj);
304 u8 *fwfilepath;
305 struct dvobj_priv *psdpriv = padapter->dvobj;
306 struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
307 u8 tmp_ps;
308
309 pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
310 if (!pFirmware)
311 return _FAIL;
312 pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
313 if (!pBTFirmware) {
314 kfree(pFirmware);
315 return _FAIL;
316 }
317 tmp_ps = rtw_read8(padapter, 0xa3);
318 tmp_ps &= 0xf8;
319 tmp_ps |= 0x02;
320 /* 1. write 0xA3[:2:0] = 3b'010 */
321 rtw_write8(padapter, 0xa3, tmp_ps);
322 /* 2. read power_state = 0xA0[1:0] */
323 tmp_ps = rtw_read8(padapter, 0xa0);
324 tmp_ps &= 0x03;
325 if (tmp_ps != 0x01)
326 pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
327
328 fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
329
330 pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
331
332 rtStatus = request_firmware(&fw, fwfilepath, device);
333 if (rtStatus) {
334 pr_err("Request firmware failed with error 0x%x\n", rtStatus);
335 rtStatus = _FAIL;
336 goto exit;
337 }
338
339 if (!fw) {
340 pr_err("Firmware %s not available\n", fwfilepath);
341 rtStatus = _FAIL;
342 goto exit;
343 }
344
345 if (fw->size > FW_8723B_SIZE) {
346 rtStatus = _FAIL;
347 goto exit;
348 }
349
350 pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
351 if (!pFirmware->fw_buffer_sz) {
352 rtStatus = _FAIL;
353 goto exit;
354 }
355
356 pFirmware->fw_length = fw->size;
357 release_firmware(fw);
358 if (pFirmware->fw_length > FW_8723B_SIZE) {
359 rtStatus = _FAIL;
360 netdev_emerg(padapter->pnetdev,
361 "Firmware size:%u exceed %u\n",
362 pFirmware->fw_length, FW_8723B_SIZE);
363 goto release_fw1;
364 }
365
366 pFirmwareBuf = pFirmware->fw_buffer_sz;
367 FirmwareLen = pFirmware->fw_length;
368
369 /* To Check Fw header. Added by tynli. 2009.12.04. */
370 pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
371
372 pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->version);
373 pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
374 pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
375
376 if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
377 /* Shift 32 bytes for FW header */
378 pFirmwareBuf = pFirmwareBuf + 32;
379 FirmwareLen = FirmwareLen - 32;
380 }
381
382 /* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
383 /* or it will cause download Fw fail. 2010.02.01. by tynli. */
384 if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
385 rtw_write8(padapter, REG_MCUFWDL, 0x00);
386 rtl8723b_FirmwareSelfReset(padapter);
387 }
388
389 _FWDownloadEnable(padapter, true);
390 fwdl_start_time = jiffies;
391 while (
392 !padapter->bDriverStopped &&
393 !padapter->bSurpriseRemoved &&
394 (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
395 ) {
396 /* reset FWDL chksum */
397 rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
398
399 rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
400 if (rtStatus != _SUCCESS)
401 continue;
402
403 rtStatus = polling_fwdl_chksum(padapter, 5, 50);
404 if (rtStatus == _SUCCESS)
405 break;
406 }
407 _FWDownloadEnable(padapter, false);
408 if (_SUCCESS != rtStatus)
409 goto fwdl_stat;
410
411 rtStatus = _FWFreeToGo(padapter, 10, 200);
412 if (_SUCCESS != rtStatus)
413 goto fwdl_stat;
414
415 fwdl_stat:
416
417 exit:
418 kfree(pFirmware->fw_buffer_sz);
419 kfree(pFirmware);
420 release_fw1:
421 kfree(pBTFirmware);
422 return rtStatus;
423 }
424
rtl8723b_InitializeFirmwareVars(struct adapter * padapter)425 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
426 {
427 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
428
429 /* Init Fw LPS related. */
430 adapter_to_pwrctl(padapter)->fw_current_in_ps_mode = false;
431
432 /* Init H2C cmd. */
433 rtw_write8(padapter, REG_HMETFR, 0x0f);
434
435 /* Init H2C counter. by tynli. 2009.12.09. */
436 pHalData->LastHMEBoxNum = 0;
437 /* pHalData->H2CQueueHead = 0; */
438 /* pHalData->H2CQueueTail = 0; */
439 /* pHalData->H2CStopInsertQueue = false; */
440 }
441
rtl8723b_free_hal_data(struct adapter * padapter)442 static void rtl8723b_free_hal_data(struct adapter *padapter)
443 {
444 }
445
446 /* */
447 /* Efuse related code */
448 /* */
hal_EfuseSwitchToBank(struct adapter * padapter,u8 bank,bool bPseudoTest)449 static u8 hal_EfuseSwitchToBank(
450 struct adapter *padapter, u8 bank, bool bPseudoTest
451 )
452 {
453 u8 bRet = false;
454 u32 value32 = 0;
455 #ifdef HAL_EFUSE_MEMORY
456 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
457 struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
458 #endif
459
460
461 if (bPseudoTest) {
462 #ifdef HAL_EFUSE_MEMORY
463 pEfuseHal->fakeEfuseBank = bank;
464 #else
465 fakeEfuseBank = bank;
466 #endif
467 bRet = true;
468 } else {
469 value32 = rtw_read32(padapter, EFUSE_TEST);
470 bRet = true;
471 switch (bank) {
472 case 0:
473 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
474 break;
475 case 1:
476 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
477 break;
478 case 2:
479 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
480 break;
481 case 3:
482 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
483 break;
484 default:
485 value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
486 bRet = false;
487 break;
488 }
489 rtw_write32(padapter, EFUSE_TEST, value32);
490 }
491
492 return bRet;
493 }
494
Hal_GetEfuseDefinition(struct adapter * padapter,u8 efuseType,u8 type,void * pOut,bool bPseudoTest)495 static void Hal_GetEfuseDefinition(
496 struct adapter *padapter,
497 u8 efuseType,
498 u8 type,
499 void *pOut,
500 bool bPseudoTest
501 )
502 {
503 switch (type) {
504 case TYPE_EFUSE_MAX_SECTION:
505 {
506 u8 *pMax_section;
507 pMax_section = pOut;
508
509 if (efuseType == EFUSE_WIFI)
510 *pMax_section = EFUSE_MAX_SECTION_8723B;
511 else
512 *pMax_section = EFUSE_BT_MAX_SECTION;
513 }
514 break;
515
516 case TYPE_EFUSE_REAL_CONTENT_LEN:
517 {
518 u16 *pu2Tmp;
519 pu2Tmp = pOut;
520
521 if (efuseType == EFUSE_WIFI)
522 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
523 else
524 *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
525 }
526 break;
527
528 case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
529 {
530 u16 *pu2Tmp;
531 pu2Tmp = pOut;
532
533 if (efuseType == EFUSE_WIFI)
534 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
535 else
536 *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
537 }
538 break;
539
540 case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
541 {
542 u16 *pu2Tmp;
543 pu2Tmp = pOut;
544
545 if (efuseType == EFUSE_WIFI)
546 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
547 else
548 *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
549 }
550 break;
551
552 case TYPE_EFUSE_MAP_LEN:
553 {
554 u16 *pu2Tmp;
555 pu2Tmp = pOut;
556
557 if (efuseType == EFUSE_WIFI)
558 *pu2Tmp = EFUSE_MAX_MAP_LEN;
559 else
560 *pu2Tmp = EFUSE_BT_MAP_LEN;
561 }
562 break;
563
564 case TYPE_EFUSE_PROTECT_BYTES_BANK:
565 {
566 u8 *pu1Tmp;
567 pu1Tmp = pOut;
568
569 if (efuseType == EFUSE_WIFI)
570 *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
571 else
572 *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
573 }
574 break;
575
576 case TYPE_EFUSE_CONTENT_LEN_BANK:
577 {
578 u16 *pu2Tmp;
579 pu2Tmp = pOut;
580
581 if (efuseType == EFUSE_WIFI)
582 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
583 else
584 *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
585 }
586 break;
587
588 default:
589 {
590 u8 *pu1Tmp;
591 pu1Tmp = pOut;
592 *pu1Tmp = 0;
593 }
594 break;
595 }
596 }
597
598 #define VOLTAGE_V25 0x03
599
600 /* */
601 /* The following is for compile ok */
602 /* That should be merged with the original in the future */
603 /* */
604 #define EFUSE_ACCESS_ON_8723 0x69 /* For RTL8723 only. */
605 #define REG_EFUSE_ACCESS_8723 0x00CF /* Efuse access protection for RTL8723 */
606
607 /* */
Hal_BT_EfusePowerSwitch(struct adapter * padapter,u8 bWrite,u8 PwrState)608 static void Hal_BT_EfusePowerSwitch(
609 struct adapter *padapter, u8 bWrite, u8 PwrState
610 )
611 {
612 u8 tempval;
613 if (PwrState) {
614 /* enable BT power cut */
615 /* 0x6A[14] = 1 */
616 tempval = rtw_read8(padapter, 0x6B);
617 tempval |= BIT(6);
618 rtw_write8(padapter, 0x6B, tempval);
619
620 /* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
621 /* So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
622 msleep(1);
623 /* disable BT output isolation */
624 /* 0x6A[15] = 0 */
625 tempval = rtw_read8(padapter, 0x6B);
626 tempval &= ~BIT(7);
627 rtw_write8(padapter, 0x6B, tempval);
628 } else {
629 /* enable BT output isolation */
630 /* 0x6A[15] = 1 */
631 tempval = rtw_read8(padapter, 0x6B);
632 tempval |= BIT(7);
633 rtw_write8(padapter, 0x6B, tempval);
634
635 /* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
636 /* So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
637
638 /* disable BT power cut */
639 /* 0x6A[14] = 1 */
640 tempval = rtw_read8(padapter, 0x6B);
641 tempval &= ~BIT(6);
642 rtw_write8(padapter, 0x6B, tempval);
643 }
644
645 }
Hal_EfusePowerSwitch(struct adapter * padapter,u8 bWrite,u8 PwrState)646 static void Hal_EfusePowerSwitch(
647 struct adapter *padapter, u8 bWrite, u8 PwrState
648 )
649 {
650 u8 tempval;
651 u16 tmpV16;
652
653
654 if (PwrState) {
655 /* To avoid cannot access efuse registers after disable/enable several times during DTM test. */
656 /* Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
657 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
658 if (tempval & BIT(0)) { /* SDIO local register is suspend */
659 u8 count = 0;
660
661
662 tempval &= ~BIT(0);
663 rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
664
665 /* check 0x86[1:0]= 10'2h, wait power state to leave suspend */
666 do {
667 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
668 tempval &= 0x3;
669 if (tempval == 0x02)
670 break;
671
672 count++;
673 if (count >= 100)
674 break;
675
676 mdelay(10);
677 } while (1);
678 }
679
680 rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
681
682 /* Reset: 0x0000h[28], default valid */
683 tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
684 if (!(tmpV16 & FEN_ELDR)) {
685 tmpV16 |= FEN_ELDR;
686 rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
687 }
688
689 /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
690 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
691 if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
692 tmpV16 |= (LOADER_CLK_EN | ANA8M);
693 rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
694 }
695
696 if (bWrite) {
697 /* Enable LDO 2.5V before read/write action */
698 tempval = rtw_read8(padapter, EFUSE_TEST+3);
699 tempval &= 0x0F;
700 tempval |= (VOLTAGE_V25 << 4);
701 rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
702
703 /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
704 }
705 } else {
706 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
707
708 if (bWrite) {
709 /* Disable LDO 2.5V after read/write action */
710 tempval = rtw_read8(padapter, EFUSE_TEST+3);
711 rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
712 }
713
714 }
715 }
716
hal_ReadEFuse_WiFi(struct adapter * padapter,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)717 static void hal_ReadEFuse_WiFi(
718 struct adapter *padapter,
719 u16 _offset,
720 u16 _size_byte,
721 u8 *pbuf,
722 bool bPseudoTest
723 )
724 {
725 #ifdef HAL_EFUSE_MEMORY
726 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
727 struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
728 #endif
729 u8 *efuseTbl = NULL;
730 u16 eFuse_Addr = 0;
731 u8 offset, wden;
732 u8 efuseHeader, efuseExtHdr, efuseData;
733 u16 i, total, used;
734 u8 efuse_usage = 0;
735
736 /* */
737 /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
738 /* */
739 if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN)
740 return;
741
742 efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
743 if (!efuseTbl)
744 return;
745
746 /* 0xff will be efuse default value instead of 0x00. */
747 memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
748
749 /* switch bank back to bank 0 for later BT and wifi use. */
750 hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
751
752 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
753 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
754 if (efuseHeader == 0xFF)
755 break;
756
757 /* Check PG header for section num. */
758 if (EXT_HEADER(efuseHeader)) { /* extended header */
759 offset = GET_HDR_OFFSET_2_0(efuseHeader);
760
761 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
762 if (ALL_WORDS_DISABLED(efuseExtHdr))
763 continue;
764
765 offset |= ((efuseExtHdr & 0xF0) >> 1);
766 wden = (efuseExtHdr & 0x0F);
767 } else {
768 offset = ((efuseHeader >> 4) & 0x0f);
769 wden = (efuseHeader & 0x0f);
770 }
771
772 if (offset < EFUSE_MAX_SECTION_8723B) {
773 u16 addr;
774 /* Get word enable value from PG header */
775
776 addr = offset * PGPKT_DATA_SIZE;
777 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
778 /* Check word enable condition in the section */
779 if (!(wden & (0x01<<i))) {
780 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
781 efuseTbl[addr] = efuseData;
782
783 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
784 efuseTbl[addr+1] = efuseData;
785 }
786 addr += 2;
787 }
788 } else {
789 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
790 }
791 }
792
793 /* Copy from Efuse map to output pointer memory!!! */
794 for (i = 0; i < _size_byte; i++)
795 pbuf[i] = efuseTbl[_offset+i];
796
797 /* Calculate Efuse utilization */
798 EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
799 used = eFuse_Addr - 1;
800 efuse_usage = (u8)((used*100)/total);
801 if (bPseudoTest) {
802 #ifdef HAL_EFUSE_MEMORY
803 pEfuseHal->fakeEfuseUsedBytes = used;
804 #else
805 fakeEfuseUsedBytes = used;
806 #endif
807 } else {
808 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
809 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
810 }
811
812 kfree(efuseTbl);
813 }
814
hal_ReadEFuse_BT(struct adapter * padapter,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)815 static void hal_ReadEFuse_BT(
816 struct adapter *padapter,
817 u16 _offset,
818 u16 _size_byte,
819 u8 *pbuf,
820 bool bPseudoTest
821 )
822 {
823 #ifdef HAL_EFUSE_MEMORY
824 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
825 struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
826 #endif
827 u8 *efuseTbl;
828 u8 bank;
829 u16 eFuse_Addr;
830 u8 efuseHeader, efuseExtHdr, efuseData;
831 u8 offset, wden;
832 u16 i, total, used;
833 u8 efuse_usage;
834
835
836 /* */
837 /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
838 /* */
839 if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN)
840 return;
841
842 efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
843 if (!efuseTbl)
844 return;
845
846 /* 0xff will be efuse default value instead of 0x00. */
847 memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
848
849 EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
850
851 for (bank = 1; bank < 3; bank++) { /* 8723b Max bake 0~2 */
852 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
853 goto exit;
854
855 eFuse_Addr = 0;
856
857 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
858 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
859 if (efuseHeader == 0xFF)
860 break;
861
862 /* Check PG header for section num. */
863 if (EXT_HEADER(efuseHeader)) { /* extended header */
864 offset = GET_HDR_OFFSET_2_0(efuseHeader);
865
866 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
867 if (ALL_WORDS_DISABLED(efuseExtHdr))
868 continue;
869
870
871 offset |= ((efuseExtHdr & 0xF0) >> 1);
872 wden = (efuseExtHdr & 0x0F);
873 } else {
874 offset = ((efuseHeader >> 4) & 0x0f);
875 wden = (efuseHeader & 0x0f);
876 }
877
878 if (offset < EFUSE_BT_MAX_SECTION) {
879 u16 addr;
880
881 addr = offset * PGPKT_DATA_SIZE;
882 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
883 /* Check word enable condition in the section */
884 if (!(wden & (0x01<<i))) {
885 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
886 efuseTbl[addr] = efuseData;
887
888 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
889 efuseTbl[addr+1] = efuseData;
890 }
891 addr += 2;
892 }
893 } else {
894 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
895 }
896 }
897
898 if ((eFuse_Addr - 1) < total)
899 break;
900
901 }
902
903 /* switch bank back to bank 0 for later BT and wifi use. */
904 hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
905
906 /* Copy from Efuse map to output pointer memory!!! */
907 for (i = 0; i < _size_byte; i++)
908 pbuf[i] = efuseTbl[_offset+i];
909
910 /* */
911 /* Calculate Efuse utilization. */
912 /* */
913 EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
914 used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
915 efuse_usage = (u8)((used*100)/total);
916 if (bPseudoTest) {
917 #ifdef HAL_EFUSE_MEMORY
918 pEfuseHal->fakeBTEfuseUsedBytes = used;
919 #else
920 fakeBTEfuseUsedBytes = used;
921 #endif
922 } else {
923 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
924 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
925 }
926
927 exit:
928 kfree(efuseTbl);
929 }
930
Hal_ReadEFuse(struct adapter * padapter,u8 efuseType,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)931 static void Hal_ReadEFuse(
932 struct adapter *padapter,
933 u8 efuseType,
934 u16 _offset,
935 u16 _size_byte,
936 u8 *pbuf,
937 bool bPseudoTest
938 )
939 {
940 if (efuseType == EFUSE_WIFI)
941 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
942 else
943 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
944 }
945
hal_EfuseGetCurrentSize_WiFi(struct adapter * padapter,bool bPseudoTest)946 static u16 hal_EfuseGetCurrentSize_WiFi(
947 struct adapter *padapter, bool bPseudoTest
948 )
949 {
950 #ifdef HAL_EFUSE_MEMORY
951 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
952 struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
953 #endif
954 u16 efuse_addr = 0;
955 u16 start_addr = 0; /* for debug */
956 u8 hworden = 0;
957 u8 efuse_data, word_cnts = 0;
958 u32 count = 0; /* for debug */
959
960
961 if (bPseudoTest) {
962 #ifdef HAL_EFUSE_MEMORY
963 efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
964 #else
965 efuse_addr = (u16)fakeEfuseUsedBytes;
966 #endif
967 } else
968 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
969
970 start_addr = efuse_addr;
971
972 /* switch bank back to bank 0 for later BT and wifi use. */
973 hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
974
975 count = 0;
976 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
977 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false)
978 goto error;
979
980 if (efuse_data == 0xFF)
981 break;
982
983 if ((start_addr != 0) && (efuse_addr == start_addr)) {
984 count++;
985
986 efuse_data = 0xFF;
987 if (count < 4) {
988 /* try again! */
989
990 if (count > 2) {
991 /* try again form address 0 */
992 efuse_addr = 0;
993 start_addr = 0;
994 }
995
996 continue;
997 }
998
999 goto error;
1000 }
1001
1002 if (EXT_HEADER(efuse_data)) {
1003 efuse_addr++;
1004 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1005 if (ALL_WORDS_DISABLED(efuse_data))
1006 continue;
1007
1008 hworden = efuse_data & 0x0F;
1009 } else {
1010 hworden = efuse_data & 0x0F;
1011 }
1012
1013 word_cnts = Efuse_CalculateWordCnts(hworden);
1014 efuse_addr += (word_cnts*2)+1;
1015 }
1016
1017 if (bPseudoTest) {
1018 #ifdef HAL_EFUSE_MEMORY
1019 pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1020 #else
1021 fakeEfuseUsedBytes = efuse_addr;
1022 #endif
1023 } else
1024 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1025
1026 goto exit;
1027
1028 error:
1029 /* report max size to prevent write efuse */
1030 EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1031
1032 exit:
1033
1034 return efuse_addr;
1035 }
1036
hal_EfuseGetCurrentSize_BT(struct adapter * padapter,u8 bPseudoTest)1037 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1038 {
1039 #ifdef HAL_EFUSE_MEMORY
1040 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1041 struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1042 #endif
1043 u16 btusedbytes;
1044 u16 efuse_addr;
1045 u8 bank, startBank;
1046 u8 hworden = 0;
1047 u8 efuse_data, word_cnts = 0;
1048 u16 retU2 = 0;
1049
1050 if (bPseudoTest) {
1051 #ifdef HAL_EFUSE_MEMORY
1052 btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1053 #else
1054 btusedbytes = fakeBTEfuseUsedBytes;
1055 #endif
1056 } else
1057 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1058
1059 efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1060 startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1061
1062 EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1063
1064 for (bank = startBank; bank < 3; bank++) {
1065 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
1066 /* bank = EFUSE_MAX_BANK; */
1067 break;
1068
1069 /* only when bank is switched we have to reset the efuse_addr. */
1070 if (bank != startBank)
1071 efuse_addr = 0;
1072 #if 1
1073
1074 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1075 if (efuse_OneByteRead(padapter, efuse_addr,
1076 &efuse_data, bPseudoTest) == false)
1077 /* bank = EFUSE_MAX_BANK; */
1078 break;
1079
1080 if (efuse_data == 0xFF)
1081 break;
1082
1083 if (EXT_HEADER(efuse_data)) {
1084 efuse_addr++;
1085 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1086
1087 if (ALL_WORDS_DISABLED(efuse_data)) {
1088 efuse_addr++;
1089 continue;
1090 }
1091
1092 hworden = efuse_data & 0x0F;
1093 } else {
1094 hworden = efuse_data & 0x0F;
1095 }
1096
1097 word_cnts = Efuse_CalculateWordCnts(hworden);
1098 /* read next header */
1099 efuse_addr += (word_cnts*2)+1;
1100 }
1101 #else
1102 while (
1103 bContinual &&
1104 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1105 AVAILABLE_EFUSE_ADDR(efuse_addr)
1106 ) {
1107 if (efuse_data != 0xFF) {
1108 if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1109 efuse_addr++;
1110 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1111 if ((efuse_data & 0x0F) == 0x0F) {
1112 efuse_addr++;
1113 continue;
1114 } else {
1115 hworden = efuse_data & 0x0F;
1116 }
1117 } else {
1118 hworden = efuse_data & 0x0F;
1119 }
1120 word_cnts = Efuse_CalculateWordCnts(hworden);
1121 /* read next header */
1122 efuse_addr = efuse_addr + (word_cnts*2)+1;
1123 } else
1124 bContinual = false;
1125 }
1126 #endif
1127
1128
1129 /* Check if we need to check next bank efuse */
1130 if (efuse_addr < retU2)
1131 break; /* don't need to check next bank. */
1132 }
1133
1134 retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1135 if (bPseudoTest) {
1136 pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1137 } else {
1138 pEfuseHal->BTEfuseUsedBytes = retU2;
1139 }
1140
1141 return retU2;
1142 }
1143
Hal_EfuseGetCurrentSize(struct adapter * padapter,u8 efuseType,bool bPseudoTest)1144 static u16 Hal_EfuseGetCurrentSize(
1145 struct adapter *padapter, u8 efuseType, bool bPseudoTest
1146 )
1147 {
1148 u16 ret = 0;
1149
1150 if (efuseType == EFUSE_WIFI)
1151 ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1152 else
1153 ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1154
1155 return ret;
1156 }
1157
Hal_EfuseWordEnableDataWrite(struct adapter * padapter,u16 efuse_addr,u8 word_en,u8 * data,bool bPseudoTest)1158 static u8 Hal_EfuseWordEnableDataWrite(
1159 struct adapter *padapter,
1160 u16 efuse_addr,
1161 u8 word_en,
1162 u8 *data,
1163 bool bPseudoTest
1164 )
1165 {
1166 u16 tmpaddr = 0;
1167 u16 start_addr = efuse_addr;
1168 u8 badworden = 0x0F;
1169 u8 tmpdata[PGPKT_DATA_SIZE];
1170
1171 memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1172
1173 if (!(word_en & BIT(0))) {
1174 tmpaddr = start_addr;
1175 efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1176 efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1177
1178 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1179 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1180 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1181 badworden &= (~BIT(0));
1182 }
1183 }
1184 if (!(word_en & BIT(1))) {
1185 tmpaddr = start_addr;
1186 efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1187 efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1188
1189 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1190 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1191 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1192 badworden &= (~BIT(1));
1193 }
1194 }
1195
1196 if (!(word_en & BIT(2))) {
1197 tmpaddr = start_addr;
1198 efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1199 efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1200
1201 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1202 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1203 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1204 badworden &= (~BIT(2));
1205 }
1206 }
1207
1208 if (!(word_en & BIT(3))) {
1209 tmpaddr = start_addr;
1210 efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1211 efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1212
1213 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1214 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1215 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1216 badworden &= (~BIT(3));
1217 }
1218 }
1219
1220 return badworden;
1221 }
1222
Hal_EfusePgPacketRead(struct adapter * padapter,u8 offset,u8 * data,bool bPseudoTest)1223 static s32 Hal_EfusePgPacketRead(
1224 struct adapter *padapter,
1225 u8 offset,
1226 u8 *data,
1227 bool bPseudoTest
1228 )
1229 {
1230 u8 efuse_data, word_cnts = 0;
1231 u16 efuse_addr = 0;
1232 u8 hoffset = 0, hworden = 0;
1233 u8 i;
1234 u8 max_section = 0;
1235 s32 ret;
1236
1237
1238 if (!data)
1239 return false;
1240
1241 EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1242 if (offset > max_section)
1243 return false;
1244
1245 memset(data, 0xFF, PGPKT_DATA_SIZE);
1246 ret = true;
1247
1248 /* */
1249 /* <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1250 /* Skip dummy parts to prevent unexpected data read from Efuse. */
1251 /* By pass right now. 2009.02.19. */
1252 /* */
1253 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1254 if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1255 ret = false;
1256 break;
1257 }
1258
1259 if (efuse_data == 0xFF)
1260 break;
1261
1262 if (EXT_HEADER(efuse_data)) {
1263 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1264 efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1265 if (ALL_WORDS_DISABLED(efuse_data))
1266 continue;
1267
1268 hoffset |= ((efuse_data & 0xF0) >> 1);
1269 hworden = efuse_data & 0x0F;
1270 } else {
1271 hoffset = (efuse_data>>4) & 0x0F;
1272 hworden = efuse_data & 0x0F;
1273 }
1274
1275 if (hoffset == offset) {
1276 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1277 /* Check word enable condition in the section */
1278 if (!(hworden & (0x01<<i))) {
1279 efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1280 data[i*2] = efuse_data;
1281
1282 efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1283 data[(i*2)+1] = efuse_data;
1284 }
1285 }
1286 } else {
1287 word_cnts = Efuse_CalculateWordCnts(hworden);
1288 efuse_addr += word_cnts*2;
1289 }
1290 }
1291
1292 return ret;
1293 }
1294
hal_EfusePgCheckAvailableAddr(struct adapter * padapter,u8 efuseType,u8 bPseudoTest)1295 static u8 hal_EfusePgCheckAvailableAddr(
1296 struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1297 )
1298 {
1299 u16 max_available = 0;
1300 u16 current_size;
1301
1302
1303 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1304
1305 current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1306 if (current_size >= max_available)
1307 return false;
1308
1309 return true;
1310 }
1311
hal_EfuseConstructPGPkt(u8 offset,u8 word_en,u8 * pData,struct pgpkt_struct * pTargetPkt)1312 static void hal_EfuseConstructPGPkt(
1313 u8 offset,
1314 u8 word_en,
1315 u8 *pData,
1316 struct pgpkt_struct *pTargetPkt
1317 )
1318 {
1319 memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1320 pTargetPkt->offset = offset;
1321 pTargetPkt->word_en = word_en;
1322 efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1323 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1324 }
1325
hal_EfusePartialWriteCheck(struct adapter * padapter,u8 efuseType,u16 * pAddr,struct pgpkt_struct * pTargetPkt,u8 bPseudoTest)1326 static u8 hal_EfusePartialWriteCheck(
1327 struct adapter *padapter,
1328 u8 efuseType,
1329 u16 *pAddr,
1330 struct pgpkt_struct *pTargetPkt,
1331 u8 bPseudoTest
1332 )
1333 {
1334 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1335 struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1336 u8 bRet = false;
1337 u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1338 u8 efuse_data = 0;
1339
1340 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1341 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1342
1343 if (efuseType == EFUSE_WIFI) {
1344 if (bPseudoTest) {
1345 #ifdef HAL_EFUSE_MEMORY
1346 startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1347 #else
1348 startAddr = (u16)fakeEfuseUsedBytes;
1349 #endif
1350 } else
1351 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1352 } else {
1353 if (bPseudoTest) {
1354 #ifdef HAL_EFUSE_MEMORY
1355 startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1356 #else
1357 startAddr = (u16)fakeBTEfuseUsedBytes;
1358 #endif
1359 } else
1360 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1361 }
1362 startAddr %= efuse_max;
1363
1364 while (1) {
1365 if (startAddr >= efuse_max_available_len) {
1366 bRet = false;
1367 break;
1368 }
1369
1370 if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1371 #if 1
1372 bRet = false;
1373 break;
1374 #else
1375 if (EXT_HEADER(efuse_data)) {
1376 cur_header = efuse_data;
1377 startAddr++;
1378 efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1379 if (ALL_WORDS_DISABLED(efuse_data)) {
1380 bRet = false;
1381 break;
1382 } else {
1383 curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1384 curPkt.word_en = efuse_data & 0x0F;
1385 }
1386 } else {
1387 cur_header = efuse_data;
1388 curPkt.offset = (cur_header>>4) & 0x0F;
1389 curPkt.word_en = cur_header & 0x0F;
1390 }
1391
1392 curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1393 /* if same header is found but no data followed */
1394 /* write some part of data followed by the header. */
1395 if (
1396 (curPkt.offset == pTargetPkt->offset) &&
1397 (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1398 wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1399 ) {
1400 /* Here to write partial data */
1401 badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1402 if (badworden != 0x0F) {
1403 u32 PgWriteSuccess = 0;
1404 /* if write fail on some words, write these bad words again */
1405 if (efuseType == EFUSE_WIFI)
1406 PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1407 else
1408 PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1409
1410 if (!PgWriteSuccess) {
1411 bRet = false; /* write fail, return */
1412 break;
1413 }
1414 }
1415 /* partial write ok, update the target packet for later use */
1416 for (i = 0; i < 4; i++) {
1417 if ((matched_wden & (0x1<<i)) == 0) { /* this word has been written */
1418 pTargetPkt->word_en |= (0x1<<i); /* disable the word */
1419 }
1420 }
1421 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1422 }
1423 /* read from next header */
1424 startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1425 #endif
1426 } else {
1427 /* not used header, 0xff */
1428 *pAddr = startAddr;
1429 bRet = true;
1430 break;
1431 }
1432 }
1433
1434 return bRet;
1435 }
1436
hal_EfusePgPacketWrite1ByteHeader(struct adapter * padapter,u8 efuseType,u16 * pAddr,struct pgpkt_struct * pTargetPkt,u8 bPseudoTest)1437 static u8 hal_EfusePgPacketWrite1ByteHeader(
1438 struct adapter *padapter,
1439 u8 efuseType,
1440 u16 *pAddr,
1441 struct pgpkt_struct *pTargetPkt,
1442 u8 bPseudoTest
1443 )
1444 {
1445 u8 pg_header = 0, tmp_header = 0;
1446 u16 efuse_addr = *pAddr;
1447 u8 repeatcnt = 0;
1448
1449 pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1450
1451 do {
1452 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1453 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1454 if (tmp_header != 0xFF)
1455 break;
1456 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1457 return false;
1458
1459 } while (1);
1460
1461 if (tmp_header != pg_header)
1462 return false;
1463
1464 *pAddr = efuse_addr;
1465
1466 return true;
1467 }
1468
hal_EfusePgPacketWrite2ByteHeader(struct adapter * padapter,u8 efuseType,u16 * pAddr,struct pgpkt_struct * pTargetPkt,u8 bPseudoTest)1469 static u8 hal_EfusePgPacketWrite2ByteHeader(
1470 struct adapter *padapter,
1471 u8 efuseType,
1472 u16 *pAddr,
1473 struct pgpkt_struct *pTargetPkt,
1474 u8 bPseudoTest
1475 )
1476 {
1477 u16 efuse_addr, efuse_max_available_len = 0;
1478 u8 pg_header = 0, tmp_header = 0;
1479 u8 repeatcnt = 0;
1480
1481 EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1482
1483 efuse_addr = *pAddr;
1484 if (efuse_addr >= efuse_max_available_len)
1485 return false;
1486
1487 pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1488
1489 do {
1490 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1491 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1492 if (tmp_header != 0xFF)
1493 break;
1494 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1495 return false;
1496
1497 } while (1);
1498
1499 if (tmp_header != pg_header)
1500 return false;
1501
1502 /* to write ext_header */
1503 efuse_addr++;
1504 pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1505
1506 do {
1507 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1508 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1509 if (tmp_header != 0xFF)
1510 break;
1511 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1512 return false;
1513
1514 } while (1);
1515
1516 if (tmp_header != pg_header) /* offset PG fail */
1517 return false;
1518
1519 *pAddr = efuse_addr;
1520
1521 return true;
1522 }
1523
hal_EfusePgPacketWriteHeader(struct adapter * padapter,u8 efuseType,u16 * pAddr,struct pgpkt_struct * pTargetPkt,u8 bPseudoTest)1524 static u8 hal_EfusePgPacketWriteHeader(
1525 struct adapter *padapter,
1526 u8 efuseType,
1527 u16 *pAddr,
1528 struct pgpkt_struct *pTargetPkt,
1529 u8 bPseudoTest
1530 )
1531 {
1532 u8 bRet = false;
1533
1534 if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1535 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1536 else
1537 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1538
1539 return bRet;
1540 }
1541
hal_EfusePgPacketWriteData(struct adapter * padapter,u8 efuseType,u16 * pAddr,struct pgpkt_struct * pTargetPkt,u8 bPseudoTest)1542 static u8 hal_EfusePgPacketWriteData(
1543 struct adapter *padapter,
1544 u8 efuseType,
1545 u16 *pAddr,
1546 struct pgpkt_struct *pTargetPkt,
1547 u8 bPseudoTest
1548 )
1549 {
1550 u16 efuse_addr;
1551 u8 badworden;
1552
1553
1554 efuse_addr = *pAddr;
1555 badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1556 if (badworden != 0x0F)
1557 return false;
1558
1559 return true;
1560 }
1561
Hal_EfusePgPacketWrite(struct adapter * padapter,u8 offset,u8 word_en,u8 * pData,bool bPseudoTest)1562 static s32 Hal_EfusePgPacketWrite(
1563 struct adapter *padapter,
1564 u8 offset,
1565 u8 word_en,
1566 u8 *pData,
1567 bool bPseudoTest
1568 )
1569 {
1570 struct pgpkt_struct targetPkt;
1571 u16 startAddr = 0;
1572 u8 efuseType = EFUSE_WIFI;
1573
1574 if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1575 return false;
1576
1577 hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1578
1579 if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1580 return false;
1581
1582 if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1583 return false;
1584
1585 if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1586 return false;
1587
1588 return true;
1589 }
1590
Hal_EfusePgPacketWrite_BT(struct adapter * padapter,u8 offset,u8 word_en,u8 * pData,bool bPseudoTest)1591 static bool Hal_EfusePgPacketWrite_BT(
1592 struct adapter *padapter,
1593 u8 offset,
1594 u8 word_en,
1595 u8 *pData,
1596 bool bPseudoTest
1597 )
1598 {
1599 struct pgpkt_struct targetPkt;
1600 u16 startAddr = 0;
1601 u8 efuseType = EFUSE_BT;
1602
1603 if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1604 return false;
1605
1606 hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1607
1608 if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1609 return false;
1610
1611 if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1612 return false;
1613
1614 if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1615 return false;
1616
1617 return true;
1618 }
1619
ReadChipVersion8723B(struct adapter * padapter)1620 static struct hal_version ReadChipVersion8723B(struct adapter *padapter)
1621 {
1622 u32 value32;
1623 struct hal_version ChipVersion;
1624 struct hal_com_data *pHalData;
1625
1626 /* YJ, TODO, move read chip type here */
1627 pHalData = GET_HAL_DATA(padapter);
1628
1629 value32 = rtw_read32(padapter, REG_SYS_CFG);
1630 ChipVersion.ICType = CHIP_8723B;
1631 ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1632 ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1633 ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
1634
1635 /* For regulator mode. by tynli. 2011.01.14 */
1636 pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1637
1638 value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1639 ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20); /* ROM code version. */
1640
1641 /* For multi-function consideration. Added by Roger, 2010.10.06. */
1642 pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1643 value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1644 pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1645 pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1646 pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1647 pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1648 #if 1
1649 dump_chip_info(ChipVersion);
1650 #endif
1651 pHalData->VersionID = ChipVersion;
1652
1653 return ChipVersion;
1654 }
1655
rtl8723b_read_chip_version(struct adapter * padapter)1656 static void rtl8723b_read_chip_version(struct adapter *padapter)
1657 {
1658 ReadChipVersion8723B(padapter);
1659 }
1660
rtl8723b_InitBeaconParameters(struct adapter * padapter)1661 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1662 {
1663 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1664 u16 val16;
1665 u8 val8;
1666
1667
1668 val8 = DIS_TSF_UDT;
1669 val16 = val8 | (val8 << 8); /* port0 and port1 */
1670
1671 /* Enable prot0 beacon function for PSTDMA */
1672 val16 |= EN_BCN_FUNCTION;
1673
1674 rtw_write16(padapter, REG_BCN_CTRL, val16);
1675
1676 /* TODO: Remove these magic number */
1677 rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/* ms */
1678 /* Firmware will control REG_DRVERLYINT when power saving is enable, */
1679 /* so don't set this register on STA mode. */
1680 if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1681 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /* 5ms */
1682 rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /* 2ms */
1683
1684 /* Suggested by designer timchen. Change beacon AIFS to the largest number */
1685 /* because test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1686 rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1687
1688 pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1689 pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1690 pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1691 pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1692 pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1693 }
1694
_InitBurstPktLen_8723BS(struct adapter * Adapter)1695 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1696 {
1697 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1698
1699 rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1700 rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18); /* for VHT packet length 11K */
1701 rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1702 rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1703 rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1704 if (pHalData->AMPDUBurstMode)
1705 rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B, 0x5F);
1706 rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1707
1708 /* ARFB table 9 for 11ac 5G 2SS */
1709 rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1710 if (IS_NORMAL_CHIP(pHalData->VersionID))
1711 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1712 else
1713 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1714
1715 /* ARFB table 10 for 11ac 5G 1SS */
1716 rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1717 rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1718 }
1719
ResumeTxBeacon(struct adapter * padapter)1720 static void ResumeTxBeacon(struct adapter *padapter)
1721 {
1722 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1723
1724 pHalData->RegFwHwTxQCtrl |= BIT(6);
1725 rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1726 rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
1727 pHalData->RegReg542 |= BIT(0);
1728 rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1729 }
1730
StopTxBeacon(struct adapter * padapter)1731 static void StopTxBeacon(struct adapter *padapter)
1732 {
1733 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1734
1735 pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1736 rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1737 rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
1738 pHalData->RegReg542 &= ~BIT(0);
1739 rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1740
1741 CheckFwRsvdPageContent(padapter); /* 2010.06.23. Added by tynli. */
1742 }
1743
_BeaconFunctionEnable(struct adapter * padapter,u8 Enable,u8 Linked)1744 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
1745 {
1746 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
1747 rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
1748 }
1749
rtl8723b_SetBeaconRelatedRegisters(struct adapter * padapter)1750 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
1751 {
1752 u8 val8;
1753 u32 value32;
1754 struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1755 struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1756 u32 bcn_ctrl_reg;
1757
1758 /* reset TSF, enable update TSF, correcting TSF On Beacon */
1759
1760 /* REG_BCN_INTERVAL */
1761 /* REG_BCNDMATIM */
1762 /* REG_ATIMWND */
1763 /* REG_TBTT_PROHIBIT */
1764 /* REG_DRVERLYINT */
1765 /* REG_BCN_MAX_ERR */
1766 /* REG_BCNTCFG (0x510) */
1767 /* REG_DUAL_TSF_RST */
1768 /* REG_BCN_CTRL (0x550) */
1769
1770
1771 bcn_ctrl_reg = REG_BCN_CTRL;
1772
1773 /* */
1774 /* ATIM window */
1775 /* */
1776 rtw_write16(padapter, REG_ATIMWND, 2);
1777
1778 /* */
1779 /* Beacon interval (in unit of TU). */
1780 /* */
1781 rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1782
1783 rtl8723b_InitBeaconParameters(padapter);
1784
1785 rtw_write8(padapter, REG_SLOT, 0x09);
1786
1787 /* */
1788 /* Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1789 /* */
1790 value32 = rtw_read32(padapter, REG_TCR);
1791 value32 &= ~TSFRST;
1792 rtw_write32(padapter, REG_TCR, value32);
1793
1794 value32 |= TSFRST;
1795 rtw_write32(padapter, REG_TCR, value32);
1796
1797 /* NOTE: Fix test chip's bug (about contention windows's randomness) */
1798 if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
1799 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1800 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1801 }
1802
1803 _BeaconFunctionEnable(padapter, true, true);
1804
1805 ResumeTxBeacon(padapter);
1806 val8 = rtw_read8(padapter, bcn_ctrl_reg);
1807 val8 |= DIS_BCNQ_SUB;
1808 rtw_write8(padapter, bcn_ctrl_reg, val8);
1809 }
1810
rtl8723b_GetHalODMVar(struct adapter * Adapter,enum hal_odm_variable eVariable,void * pValue1,void * pValue2)1811 static void rtl8723b_GetHalODMVar(
1812 struct adapter *Adapter,
1813 enum hal_odm_variable eVariable,
1814 void *pValue1,
1815 void *pValue2
1816 )
1817 {
1818 GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
1819 }
1820
rtl8723b_SetHalODMVar(struct adapter * Adapter,enum hal_odm_variable eVariable,void * pValue1,bool bSet)1821 static void rtl8723b_SetHalODMVar(
1822 struct adapter *Adapter,
1823 enum hal_odm_variable eVariable,
1824 void *pValue1,
1825 bool bSet
1826 )
1827 {
1828 SetHalODMVar(Adapter, eVariable, pValue1, bSet);
1829 }
1830
hal_notch_filter_8723b(struct adapter * adapter,bool enable)1831 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
1832 {
1833 if (enable)
1834 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
1835 else
1836 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
1837 }
1838
UpdateHalRAMask8723B(struct adapter * padapter,u32 mac_id,u8 rssi_level)1839 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
1840 {
1841 u32 mask, rate_bitmap;
1842 u8 shortGIrate = false;
1843 struct sta_info *psta;
1844 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1845 struct dm_priv *pdmpriv = &pHalData->dmpriv;
1846 struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1847 struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
1848
1849 if (mac_id >= NUM_STA) /* CAM_SIZE */
1850 return;
1851
1852 psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1853 if (!psta)
1854 return;
1855
1856 shortGIrate = query_ra_short_GI(psta);
1857
1858 mask = psta->ra_mask;
1859
1860 rate_bitmap = 0xffffffff;
1861 rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
1862
1863 mask &= rate_bitmap;
1864
1865 rate_bitmap = hal_btcoex_GetRaMask(padapter);
1866 mask &= ~rate_bitmap;
1867
1868 if (pHalData->fw_ractrl) {
1869 rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
1870 }
1871
1872 /* set correct initial date rate for each mac_id */
1873 pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
1874 }
1875
1876
rtl8723b_set_hal_ops(struct hal_ops * pHalFunc)1877 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
1878 {
1879 pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
1880
1881 pHalFunc->dm_init = &rtl8723b_init_dm_priv;
1882
1883 pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
1884
1885 pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
1886
1887 pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
1888 pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
1889 pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
1890
1891 pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
1892 pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
1893
1894 pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
1895 pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
1896
1897
1898 pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
1899
1900 pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
1901
1902 pHalFunc->run_thread = &rtl8723b_start_thread;
1903 pHalFunc->cancel_thread = &rtl8723b_stop_thread;
1904
1905 pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
1906 pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
1907 pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
1908 pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
1909
1910 /* Efuse related function */
1911 pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
1912 pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
1913 pHalFunc->ReadEFuse = &Hal_ReadEFuse;
1914 pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
1915 pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
1916 pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
1917 pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
1918 pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
1919 pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
1920
1921 pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
1922 pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
1923
1924 pHalFunc->xmit_thread_handler = &hal_xmit_handler;
1925 pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
1926
1927 pHalFunc->c2h_handler = c2h_handler_8723b;
1928 pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
1929
1930 pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
1931 }
1932
rtl8723b_InitAntenna_Selection(struct adapter * padapter)1933 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
1934 {
1935 u8 val;
1936
1937 val = rtw_read8(padapter, REG_LEDCFG2);
1938 /* Let 8051 take control antenna setting */
1939 val |= BIT(7); /* DPDT_SEL_EN, 0x4C[23] */
1940 rtw_write8(padapter, REG_LEDCFG2, val);
1941 }
1942
rtl8723b_init_default_value(struct adapter * padapter)1943 void rtl8723b_init_default_value(struct adapter *padapter)
1944 {
1945 struct hal_com_data *pHalData;
1946 struct dm_priv *pdmpriv;
1947 u8 i;
1948
1949
1950 pHalData = GET_HAL_DATA(padapter);
1951 pdmpriv = &pHalData->dmpriv;
1952
1953 padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
1954
1955 /* init default value */
1956 pHalData->fw_ractrl = false;
1957 pHalData->bIQKInitialized = false;
1958 if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
1959 pHalData->LastHMEBoxNum = 0;
1960
1961 pHalData->bIQKInitialized = false;
1962
1963 /* init dm default value */
1964 pdmpriv->TM_Trigger = 0;/* for IQK */
1965 /* pdmpriv->binitialized = false; */
1966 /* pdmpriv->prv_traffic_idx = 3; */
1967 /* pdmpriv->initialize = 0; */
1968
1969 pdmpriv->ThermalValue_HP_index = 0;
1970 for (i = 0; i < HP_THERMAL_NUM; i++)
1971 pdmpriv->ThermalValue_HP[i] = 0;
1972
1973 /* init Efuse variables */
1974 pHalData->EfuseUsedBytes = 0;
1975 pHalData->EfuseUsedPercentage = 0;
1976 #ifdef HAL_EFUSE_MEMORY
1977 pHalData->EfuseHal.fakeEfuseBank = 0;
1978 pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
1979 memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
1980 memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
1981 memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
1982 pHalData->EfuseHal.BTEfuseUsedBytes = 0;
1983 pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
1984 memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1985 memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1986 memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1987 pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
1988 memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1989 memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1990 memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1991 #endif
1992 }
1993
GetEEPROMSize8723B(struct adapter * padapter)1994 u8 GetEEPROMSize8723B(struct adapter *padapter)
1995 {
1996 u8 size = 0;
1997 u32 cr;
1998
1999 cr = rtw_read16(padapter, REG_9346CR);
2000 /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2001 size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2002
2003 return size;
2004 }
2005
2006 /* */
2007 /* */
2008 /* LLT R/W/Init function */
2009 /* */
2010 /* */
rtl8723b_InitLLTTable(struct adapter * padapter)2011 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2012 {
2013 unsigned long start, passing_time;
2014 u32 val32;
2015 s32 ret;
2016
2017
2018 ret = _FAIL;
2019
2020 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2021 val32 |= BIT_AUTO_INIT_LLT;
2022 rtw_write32(padapter, REG_AUTO_LLT, val32);
2023
2024 start = jiffies;
2025
2026 do {
2027 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2028 if (!(val32 & BIT_AUTO_INIT_LLT)) {
2029 ret = _SUCCESS;
2030 break;
2031 }
2032
2033 passing_time = jiffies_to_msecs(jiffies - start);
2034 if (passing_time > 1000)
2035 break;
2036
2037 msleep(1);
2038 } while (1);
2039
2040 return ret;
2041 }
2042
hal_get_chnl_group_8723b(u8 channel,u8 * group)2043 static void hal_get_chnl_group_8723b(u8 channel, u8 *group)
2044 {
2045 if (1 <= channel && channel <= 2)
2046 *group = 0;
2047 else if (3 <= channel && channel <= 5)
2048 *group = 1;
2049 else if (6 <= channel && channel <= 8)
2050 *group = 2;
2051 else if (9 <= channel && channel <= 11)
2052 *group = 3;
2053 else if (12 <= channel && channel <= 14)
2054 *group = 4;
2055 }
2056
Hal_InitPGData(struct adapter * padapter,u8 * PROMContent)2057 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2058 {
2059 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2060
2061 if (!pEEPROM->bautoload_fail_flag) { /* autoload OK. */
2062 if (!pEEPROM->EepromOrEfuse) {
2063 /* Read EFUSE real map to shadow. */
2064 EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2065 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2066 }
2067 } else {/* autoload fail */
2068 if (!pEEPROM->EepromOrEfuse)
2069 EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2070 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2071 }
2072 }
2073
Hal_EfuseParseIDCode(struct adapter * padapter,u8 * hwinfo)2074 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2075 {
2076 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2077 /* struct hal_com_data *pHalData = GET_HAL_DATA(padapter); */
2078 u16 EEPROMId;
2079
2080
2081 /* Check 0x8129 again for making sure autoload status!! */
2082 EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2083 if (EEPROMId != RTL_EEPROM_ID) {
2084 pEEPROM->bautoload_fail_flag = true;
2085 } else
2086 pEEPROM->bautoload_fail_flag = false;
2087 }
2088
Hal_ReadPowerValueFromPROM_8723B(struct adapter * Adapter,struct TxPowerInfo24G * pwrInfo24G,u8 * PROMContent,bool AutoLoadFail)2089 static void Hal_ReadPowerValueFromPROM_8723B(
2090 struct adapter *Adapter,
2091 struct TxPowerInfo24G *pwrInfo24G,
2092 u8 *PROMContent,
2093 bool AutoLoadFail
2094 )
2095 {
2096 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2097 u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2098
2099 memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2100
2101 if (0xFF == PROMContent[eeAddr+1])
2102 AutoLoadFail = true;
2103
2104 if (AutoLoadFail) {
2105 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2106 /* 2.4G default value */
2107 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2108 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2109 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2110 }
2111
2112 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2113 if (TxCount == 0) {
2114 pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2115 pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2116 } else {
2117 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2118 pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2119 pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2120 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2121 }
2122 }
2123 }
2124
2125 return;
2126 }
2127
2128 pHalData->bTXPowerDataReadFromEEPORM = true; /* YJ, move, 120316 */
2129
2130 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2131 /* 2 2.4G default value */
2132 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2133 pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
2134 if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2135 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2136 }
2137
2138 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2139 pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
2140 if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2141 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2142 }
2143
2144 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2145 if (TxCount == 0) {
2146 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2147 if (PROMContent[eeAddr] == 0xFF)
2148 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
2149 else {
2150 pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2151 if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2152 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2153 }
2154
2155 if (PROMContent[eeAddr] == 0xFF)
2156 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2157 else {
2158 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2159 if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2160 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2161 }
2162 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2163 eeAddr++;
2164 } else {
2165 if (PROMContent[eeAddr] == 0xFF)
2166 pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2167 else {
2168 pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2169 if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2170 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2171 }
2172
2173 if (PROMContent[eeAddr] == 0xFF)
2174 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2175 else {
2176 pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2177 if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2178 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2179 }
2180 eeAddr++;
2181
2182 if (PROMContent[eeAddr] == 0xFF)
2183 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2184 else {
2185 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2186 if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2187 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2188 }
2189
2190 if (PROMContent[eeAddr] == 0xFF)
2191 pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2192 else {
2193 pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2194 if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) /* 4bit sign number to 8 bit sign number */
2195 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2196 }
2197 eeAddr++;
2198 }
2199 }
2200 }
2201 }
2202
2203
Hal_EfuseParseTxPowerInfo_8723B(struct adapter * padapter,u8 * PROMContent,bool AutoLoadFail)2204 void Hal_EfuseParseTxPowerInfo_8723B(
2205 struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2206 )
2207 {
2208 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2209 struct TxPowerInfo24G pwrInfo24G;
2210 u8 rfPath, ch, TxCount = 1;
2211
2212 Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2213 for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2214 for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2215 u8 group = 0;
2216
2217 hal_get_chnl_group_8723b(ch + 1, &group);
2218
2219 if (ch == 14-1) {
2220 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2221 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2222 } else {
2223 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2224 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2225 }
2226 }
2227
2228 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2229 pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2230 pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2231 pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2232 pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2233 }
2234 }
2235
2236 /* 2010/10/19 MH Add Regulator recognize for CU. */
2237 if (!AutoLoadFail) {
2238 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7); /* bit0~2 */
2239 if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2240 pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2241 } else
2242 pHalData->EEPROMRegulatory = 0;
2243 }
2244
Hal_EfuseParseBTCoexistInfo_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2245 void Hal_EfuseParseBTCoexistInfo_8723B(
2246 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2247 )
2248 {
2249 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2250 u8 tempval;
2251 u32 tmpu4;
2252
2253 if (!AutoLoadFail) {
2254 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2255 if (tmpu4 & BT_FUNC_EN)
2256 pHalData->EEPROMBluetoothCoexist = true;
2257 else
2258 pHalData->EEPROMBluetoothCoexist = false;
2259
2260 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2261
2262 tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2263 if (tempval != 0xFF) {
2264 pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2265 /* EFUSE_0xC3[6] == 0, S1(Main)-RF_PATH_A; */
2266 /* EFUSE_0xC3[6] == 1, S0(Aux)-RF_PATH_B */
2267 if (tempval & BIT(6))
2268 pHalData->ant_path = RF_PATH_B;
2269 else
2270 pHalData->ant_path = RF_PATH_A;
2271 } else {
2272 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2273 if (pHalData->PackageType == PACKAGE_QFN68)
2274 pHalData->ant_path = RF_PATH_B;
2275 else
2276 pHalData->ant_path = RF_PATH_A;
2277 }
2278 } else {
2279 pHalData->EEPROMBluetoothCoexist = false;
2280 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2281 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2282 pHalData->ant_path = RF_PATH_A;
2283 }
2284
2285 if (padapter->registrypriv.ant_num > 0) {
2286 switch (padapter->registrypriv.ant_num) {
2287 case 1:
2288 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2289 break;
2290 case 2:
2291 pHalData->EEPROMBluetoothAntNum = Ant_x2;
2292 break;
2293 default:
2294 break;
2295 }
2296 }
2297
2298 hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2299 hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2300 if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2301 hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2302 }
2303
Hal_EfuseParseEEPROMVer_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2304 void Hal_EfuseParseEEPROMVer_8723B(
2305 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2306 )
2307 {
2308 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2309
2310 if (!AutoLoadFail)
2311 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2312 else
2313 pHalData->EEPROMVersion = 1;
2314 }
2315
2316
2317
Hal_EfuseParsePackageType_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2318 void Hal_EfuseParsePackageType_8723B(
2319 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2320 )
2321 {
2322 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2323 u8 package;
2324 u8 efuseContent;
2325
2326 Efuse_PowerSwitch(padapter, false, true);
2327 efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2328 Efuse_PowerSwitch(padapter, false, false);
2329
2330 package = efuseContent & 0x7;
2331 switch (package) {
2332 case 0x4:
2333 pHalData->PackageType = PACKAGE_TFBGA79;
2334 break;
2335 case 0x5:
2336 pHalData->PackageType = PACKAGE_TFBGA90;
2337 break;
2338 case 0x6:
2339 pHalData->PackageType = PACKAGE_QFN68;
2340 break;
2341 case 0x7:
2342 pHalData->PackageType = PACKAGE_TFBGA80;
2343 break;
2344
2345 default:
2346 pHalData->PackageType = PACKAGE_DEFAULT;
2347 break;
2348 }
2349 }
2350
2351
Hal_EfuseParseVoltage_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2352 void Hal_EfuseParseVoltage_8723B(
2353 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2354 )
2355 {
2356 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2357
2358 /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2359 pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2360 }
2361
Hal_EfuseParseChnlPlan_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2362 void Hal_EfuseParseChnlPlan_8723B(
2363 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2364 )
2365 {
2366 padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2367 padapter,
2368 hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2369 padapter->registrypriv.channel_plan,
2370 RT_CHANNEL_DOMAIN_WORLD_NULL,
2371 AutoLoadFail
2372 );
2373
2374 Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2375 }
2376
Hal_EfuseParseCustomerID_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2377 void Hal_EfuseParseCustomerID_8723B(
2378 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2379 )
2380 {
2381 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2382
2383 if (!AutoLoadFail)
2384 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2385 else
2386 pHalData->EEPROMCustomerID = 0;
2387 }
2388
Hal_EfuseParseAntennaDiversity_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2389 void Hal_EfuseParseAntennaDiversity_8723B(
2390 struct adapter *padapter,
2391 u8 *hwinfo,
2392 bool AutoLoadFail
2393 )
2394 {
2395 }
2396
Hal_EfuseParseXtal_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)2397 void Hal_EfuseParseXtal_8723B(
2398 struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2399 )
2400 {
2401 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2402
2403 if (!AutoLoadFail) {
2404 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2405 if (pHalData->CrystalCap == 0xFF)
2406 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B; /* what value should 8812 set? */
2407 } else
2408 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2409 }
2410
2411
Hal_EfuseParseThermalMeter_8723B(struct adapter * padapter,u8 * PROMContent,u8 AutoLoadFail)2412 void Hal_EfuseParseThermalMeter_8723B(
2413 struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2414 )
2415 {
2416 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2417
2418 /* */
2419 /* ThermalMeter from EEPROM */
2420 /* */
2421 if (!AutoLoadFail)
2422 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2423 else
2424 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2425
2426 if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
2427 pHalData->bAPKThermalMeterIgnore = true;
2428 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2429 }
2430 }
2431
2432
Hal_ReadRFGainOffset(struct adapter * Adapter,u8 * PROMContent,bool AutoloadFail)2433 void Hal_ReadRFGainOffset(
2434 struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2435 )
2436 {
2437 /* */
2438 /* BB_RF Gain Offset from EEPROM */
2439 /* */
2440
2441 if (!AutoloadFail) {
2442 Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2443 Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2444 } else {
2445 Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2446 Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2447 }
2448 }
2449
BWMapping_8723B(struct adapter * Adapter,struct pkt_attrib * pattrib)2450 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2451 {
2452 u8 BWSettingOfDesc = 0;
2453 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2454
2455 if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2456 if (pattrib->bwmode == CHANNEL_WIDTH_40)
2457 BWSettingOfDesc = 1;
2458 else
2459 BWSettingOfDesc = 0;
2460 } else
2461 BWSettingOfDesc = 0;
2462
2463 /* if (pTcb->bBTTxPacket) */
2464 /* BWSettingOfDesc = 0; */
2465
2466 return BWSettingOfDesc;
2467 }
2468
SCMapping_8723B(struct adapter * Adapter,struct pkt_attrib * pattrib)2469 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2470 {
2471 u8 SCSettingOfDesc = 0;
2472 struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2473
2474 if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2475 if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2476 SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2477 } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2478 if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2479 SCSettingOfDesc = HT_DATA_SC_20_UPPER_OF_40MHZ;
2480 } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2481 SCSettingOfDesc = HT_DATA_SC_20_LOWER_OF_40MHZ;
2482 } else {
2483 SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2484 }
2485 }
2486 } else {
2487 SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2488 }
2489
2490 return SCSettingOfDesc;
2491 }
2492
rtl8723b_cal_txdesc_chksum(struct tx_desc * ptxdesc)2493 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2494 {
2495 u16 *usPtr = (u16 *)ptxdesc;
2496 u32 count;
2497 u32 index;
2498 u16 checksum = 0;
2499
2500
2501 /* Clear first */
2502 ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2503
2504 /* checksum is always calculated by first 32 bytes, */
2505 /* and it doesn't depend on TX DESC length. */
2506 /* Thomas, Lucas@SD4, 20130515 */
2507 count = 16;
2508
2509 for (index = 0; index < count; index++) {
2510 checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2511 }
2512
2513 ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2514 }
2515
fill_txdesc_sectype(struct pkt_attrib * pattrib)2516 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2517 {
2518 u8 sectype = 0;
2519 if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2520 switch (pattrib->encrypt) {
2521 /* SEC_TYPE */
2522 case _WEP40_:
2523 case _WEP104_:
2524 case _TKIP_:
2525 case _TKIP_WTMIC_:
2526 sectype = 1;
2527 break;
2528
2529 case _AES_:
2530 sectype = 3;
2531 break;
2532
2533 case _NO_PRIVACY_:
2534 default:
2535 break;
2536 }
2537 }
2538 return sectype;
2539 }
2540
fill_txdesc_vcs_8723b(struct adapter * padapter,struct pkt_attrib * pattrib,struct txdesc_8723b * ptxdesc)2541 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2542 {
2543 if (pattrib->vcs_mode) {
2544 switch (pattrib->vcs_mode) {
2545 case RTS_CTS:
2546 ptxdesc->rtsen = 1;
2547 /* ENABLE HW RTS */
2548 ptxdesc->hw_rts_en = 1;
2549 break;
2550
2551 case CTS_TO_SELF:
2552 ptxdesc->cts2self = 1;
2553 break;
2554
2555 case NONE_VCS:
2556 default:
2557 break;
2558 }
2559
2560 ptxdesc->rtsrate = 8; /* RTS Rate =24M */
2561 ptxdesc->rts_ratefb_lmt = 0xF;
2562
2563 if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
2564 ptxdesc->rts_short = 1;
2565
2566 /* Set RTS BW */
2567 if (pattrib->ht_en)
2568 ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
2569 }
2570 }
2571
fill_txdesc_phy_8723b(struct adapter * padapter,struct pkt_attrib * pattrib,struct txdesc_8723b * ptxdesc)2572 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2573 {
2574 if (pattrib->ht_en) {
2575 ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
2576
2577 ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
2578 }
2579 }
2580
rtl8723b_fill_default_txdesc(struct xmit_frame * pxmitframe,u8 * pbuf)2581 static void rtl8723b_fill_default_txdesc(
2582 struct xmit_frame *pxmitframe, u8 *pbuf
2583 )
2584 {
2585 struct adapter *padapter;
2586 struct hal_com_data *pHalData;
2587 struct mlme_ext_priv *pmlmeext;
2588 struct mlme_ext_info *pmlmeinfo;
2589 struct pkt_attrib *pattrib;
2590 struct txdesc_8723b *ptxdesc;
2591 s32 bmcst;
2592
2593 memset(pbuf, 0, TXDESC_SIZE);
2594
2595 padapter = pxmitframe->padapter;
2596 pHalData = GET_HAL_DATA(padapter);
2597 pmlmeext = &padapter->mlmeextpriv;
2598 pmlmeinfo = &(pmlmeext->mlmext_info);
2599
2600 pattrib = &pxmitframe->attrib;
2601 bmcst = is_multicast_ether_addr(pattrib->ra);
2602
2603 ptxdesc = (struct txdesc_8723b *)pbuf;
2604
2605 if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2606 u8 drv_userate = 0;
2607
2608 ptxdesc->macid = pattrib->mac_id; /* CAM_ID(MAC_ID) */
2609 ptxdesc->rate_id = pattrib->raid;
2610 ptxdesc->qsel = pattrib->qsel;
2611 ptxdesc->seq = pattrib->seqnum;
2612
2613 ptxdesc->sectype = fill_txdesc_sectype(pattrib);
2614 fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
2615
2616 if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
2617 drv_userate = 1;
2618
2619 if (
2620 (pattrib->ether_type != 0x888e) &&
2621 (pattrib->ether_type != 0x0806) &&
2622 (pattrib->ether_type != 0x88B4) &&
2623 (pattrib->dhcp_pkt != 1) &&
2624 (drv_userate != 1)
2625 ) {
2626 /* Non EAP & ARP & DHCP type data packet */
2627
2628 if (pattrib->ampdu_en) {
2629 ptxdesc->agg_en = 1; /* AGG EN */
2630 ptxdesc->max_agg_num = 0x1f;
2631 ptxdesc->ampdu_density = pattrib->ampdu_spacing;
2632 } else
2633 ptxdesc->bk = 1; /* AGG BK */
2634
2635 fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
2636
2637 ptxdesc->data_ratefb_lmt = 0x1F;
2638
2639 if (!pHalData->fw_ractrl) {
2640 ptxdesc->userate = 1;
2641
2642 if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
2643 ptxdesc->data_short = 1;
2644
2645 ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
2646 }
2647
2648 if (padapter->fix_rate != 0xFF) { /* modify data rate by iwpriv */
2649 ptxdesc->userate = 1;
2650 if (padapter->fix_rate & BIT(7))
2651 ptxdesc->data_short = 1;
2652
2653 ptxdesc->datarate = (padapter->fix_rate & 0x7F);
2654 ptxdesc->disdatafb = 1;
2655 }
2656
2657 if (pattrib->ldpc)
2658 ptxdesc->data_ldpc = 1;
2659 if (pattrib->stbc)
2660 ptxdesc->data_stbc = 1;
2661 } else {
2662 /* EAP data packet and ARP packet. */
2663 /* Use the 1M data rate to send the EAP/ARP packet. */
2664 /* This will maybe make the handshake smooth. */
2665
2666 ptxdesc->bk = 1; /* AGG BK */
2667 ptxdesc->userate = 1; /* driver uses rate */
2668 if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2669 ptxdesc->data_short = 1;/* DATA_SHORT */
2670 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2671 }
2672
2673 ptxdesc->usb_txagg_num = pxmitframe->agg_num;
2674 } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2675 ptxdesc->macid = pattrib->mac_id; /* CAM_ID(MAC_ID) */
2676 ptxdesc->qsel = pattrib->qsel;
2677 ptxdesc->rate_id = pattrib->raid; /* Rate ID */
2678 ptxdesc->seq = pattrib->seqnum;
2679 ptxdesc->userate = 1; /* driver uses rate, 1M */
2680
2681 ptxdesc->mbssid = pattrib->mbssid & 0xF;
2682
2683 ptxdesc->rty_lmt_en = 1; /* retry limit enable */
2684 if (pattrib->retry_ctrl) {
2685 ptxdesc->data_rt_lmt = 6;
2686 } else {
2687 ptxdesc->data_rt_lmt = 12;
2688 }
2689
2690 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2691
2692 /* CCX-TXRPT ack for xmit mgmt frames. */
2693 if (pxmitframe->ack_report) {
2694 ptxdesc->spe_rpt = 1;
2695 ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
2696 }
2697 } else {
2698 ptxdesc->macid = pattrib->mac_id; /* CAM_ID(MAC_ID) */
2699 ptxdesc->rate_id = pattrib->raid; /* Rate ID */
2700 ptxdesc->qsel = pattrib->qsel;
2701 ptxdesc->seq = pattrib->seqnum;
2702 ptxdesc->userate = 1; /* driver uses rate */
2703 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2704 }
2705
2706 ptxdesc->pktlen = pattrib->last_txcmdsz;
2707 ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2708
2709 if (bmcst)
2710 ptxdesc->bmc = 1;
2711
2712 /* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS.
2713 * (1) The sequence number of each non-Qos frame / broadcast /
2714 * multicast / mgnt frame should be controlled by Hw because Fw
2715 * will also send null data which we cannot control when Fw LPS
2716 * enable.
2717 * --> default enable non-Qos data sequence number. 2010.06.23.
2718 * by tynli.
2719 * (2) Enable HW SEQ control for beacon packet, because we use
2720 * Hw beacon.
2721 * (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos
2722 * packets.
2723 * 2010.06.23. Added by tynli.
2724 */
2725 if (!pattrib->qos_en) /* Hw set sequence number */
2726 ptxdesc->en_hwseq = 1; /* HWSEQ_EN */
2727 }
2728
2729 /* Description:
2730 *
2731 * Parameters:
2732 * pxmitframe xmitframe
2733 * pbuf where to fill tx desc
2734 */
rtl8723b_update_txdesc(struct xmit_frame * pxmitframe,u8 * pbuf)2735 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2736 {
2737 struct tx_desc *pdesc;
2738
2739 rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
2740 pdesc = (struct tx_desc *)pbuf;
2741 rtl8723b_cal_txdesc_chksum(pdesc);
2742 }
2743
2744 /* */
2745 /* Description: In normal chip, we should send some packet to Hw which will be used by Fw */
2746 /* in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
2747 /* Fw can tell Hw to send these packet derectly. */
2748 /* Added by tynli. 2009.10.15. */
2749 /* */
2750 /* type1:pspoll, type2:null */
rtl8723b_fill_fake_txdesc(struct adapter * padapter,u8 * pDesc,u32 BufferLen,u8 IsPsPoll,u8 IsBTQosNull,u8 bDataFrame)2751 void rtl8723b_fill_fake_txdesc(
2752 struct adapter *padapter,
2753 u8 *pDesc,
2754 u32 BufferLen,
2755 u8 IsPsPoll,
2756 u8 IsBTQosNull,
2757 u8 bDataFrame
2758 )
2759 {
2760 /* Clear all status */
2761 memset(pDesc, 0, TXDESC_SIZE);
2762
2763 SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
2764 SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
2765
2766 SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /* Offset = 32 */
2767
2768 SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /* Buffer size + command header */
2769 SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /* Fixed queue of Mgnt queue */
2770
2771 /* Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error value by Hw. */
2772 if (IsPsPoll) {
2773 SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
2774 } else {
2775 SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /* Hw set sequence number */
2776 SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
2777 }
2778
2779 if (IsBTQosNull) {
2780 SET_TX_DESC_BT_INT_8723B(pDesc, 1);
2781 }
2782
2783 SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /* use data rate which is set by Sw */
2784 SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
2785
2786 SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
2787
2788 /* */
2789 /* Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
2790 /* */
2791 if (bDataFrame) {
2792 u32 EncAlg;
2793
2794 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
2795 switch (EncAlg) {
2796 case _NO_PRIVACY_:
2797 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2798 break;
2799 case _WEP40_:
2800 case _WEP104_:
2801 case _TKIP_:
2802 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
2803 break;
2804 case _SMS4_:
2805 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
2806 break;
2807 case _AES_:
2808 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
2809 break;
2810 default:
2811 SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2812 break;
2813 }
2814 }
2815
2816 /* USB interface drop packet if the checksum of descriptor isn't correct. */
2817 /* Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
2818 rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
2819 }
2820
hw_var_set_opmode(struct adapter * padapter,u8 variable,u8 * val)2821 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
2822 {
2823 u8 val8;
2824 u8 mode = *((u8 *)val);
2825
2826 {
2827 /* disable Port0 TSF update */
2828 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2829 val8 |= DIS_TSF_UDT;
2830 rtw_write8(padapter, REG_BCN_CTRL, val8);
2831
2832 /* set net_type */
2833 Set_MSR(padapter, mode);
2834
2835 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2836 {
2837 StopTxBeacon(padapter);
2838 }
2839
2840 /* disable atim wnd */
2841 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
2842 /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
2843 } else if (mode == _HW_STATE_ADHOC_) {
2844 ResumeTxBeacon(padapter);
2845 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
2846 } else if (mode == _HW_STATE_AP_) {
2847
2848 ResumeTxBeacon(padapter);
2849
2850 rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
2851
2852 /* Set RCR */
2853 rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
2854 /* enable to rx data frame */
2855 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2856 /* enable to rx ps-poll */
2857 rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2858
2859 /* Beacon Control related register for first time */
2860 rtw_write8(padapter, REG_BCNDMATIM, 0x02); /* 2ms */
2861
2862 /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
2863 rtw_write8(padapter, REG_ATIMWND, 0x0a); /* 10ms */
2864 rtw_write16(padapter, REG_BCNTCFG, 0x00);
2865 rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2866 rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
2867
2868 /* reset TSF */
2869 rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2870
2871 /* enable BCN0 Function for if1 */
2872 /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
2873 rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
2874
2875 /* SW_BCN_SEL - Port0 */
2876 /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
2877 rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
2878
2879 /* select BCN on port 0 */
2880 rtw_write8(
2881 padapter,
2882 REG_CCK_CHECK_8723B,
2883 (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
2884 );
2885
2886 /* dis BCN1 ATIM WND if if2 is station */
2887 val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
2888 val8 |= DIS_ATIM;
2889 rtw_write8(padapter, REG_BCN_CTRL_1, val8);
2890 }
2891 }
2892 }
2893
hw_var_set_macaddr(struct adapter * padapter,u8 variable,u8 * val)2894 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
2895 {
2896 u8 idx = 0;
2897 u32 reg_macid;
2898
2899 reg_macid = REG_MACID;
2900
2901 for (idx = 0 ; idx < 6; idx++)
2902 rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
2903 }
2904
hw_var_set_bssid(struct adapter * padapter,u8 variable,u8 * val)2905 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
2906 {
2907 u8 idx = 0;
2908 u32 reg_bssid;
2909
2910 reg_bssid = REG_BSSID;
2911
2912 for (idx = 0 ; idx < 6; idx++)
2913 rtw_write8(padapter, (reg_bssid+idx), val[idx]);
2914 }
2915
hw_var_set_bcn_func(struct adapter * padapter,u8 variable,u8 * val)2916 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
2917 {
2918 u32 bcn_ctrl_reg;
2919
2920 bcn_ctrl_reg = REG_BCN_CTRL;
2921
2922 if (*(u8 *)val)
2923 rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
2924 else {
2925 u8 val8;
2926 val8 = rtw_read8(padapter, bcn_ctrl_reg);
2927 val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
2928
2929 /* Always enable port0 beacon function for PSTDMA */
2930 if (REG_BCN_CTRL == bcn_ctrl_reg)
2931 val8 |= EN_BCN_FUNCTION;
2932
2933 rtw_write8(padapter, bcn_ctrl_reg, val8);
2934 }
2935 }
2936
hw_var_set_correct_tsf(struct adapter * padapter,u8 variable,u8 * val)2937 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
2938 {
2939 u8 val8;
2940 u64 tsf;
2941 struct mlme_ext_priv *pmlmeext;
2942 struct mlme_ext_info *pmlmeinfo;
2943
2944
2945 pmlmeext = &padapter->mlmeextpriv;
2946 pmlmeinfo = &pmlmeext->mlmext_info;
2947
2948 tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
2949
2950 if (
2951 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2952 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2953 )
2954 StopTxBeacon(padapter);
2955
2956 {
2957 /* disable related TSF function */
2958 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2959 val8 &= ~EN_BCN_FUNCTION;
2960 rtw_write8(padapter, REG_BCN_CTRL, val8);
2961
2962 rtw_write32(padapter, REG_TSFTR, tsf);
2963 rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
2964
2965 /* enable related TSF function */
2966 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2967 val8 |= EN_BCN_FUNCTION;
2968 rtw_write8(padapter, REG_BCN_CTRL, val8);
2969 }
2970
2971 if (
2972 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2973 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2974 )
2975 ResumeTxBeacon(padapter);
2976 }
2977
hw_var_set_mlme_disconnect(struct adapter * padapter,u8 variable,u8 * val)2978 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
2979 {
2980 u8 val8;
2981
2982 /* Set RCR to not to receive data frame when NO LINK state */
2983 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
2984 /* reject all data frames */
2985 rtw_write16(padapter, REG_RXFLTMAP2, 0);
2986
2987 /* reset TSF */
2988 rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2989
2990 /* disable update TSF */
2991 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2992 val8 |= DIS_TSF_UDT;
2993 rtw_write8(padapter, REG_BCN_CTRL, val8);
2994 }
2995
hw_var_set_mlme_sitesurvey(struct adapter * padapter,u8 variable,u8 * val)2996 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
2997 {
2998 u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
2999 u16 value_rxfltmap2;
3000 u8 val8;
3001 struct hal_com_data *pHalData;
3002 struct mlme_priv *pmlmepriv;
3003
3004
3005 pHalData = GET_HAL_DATA(padapter);
3006 pmlmepriv = &padapter->mlmepriv;
3007
3008 reg_bcn_ctl = REG_BCN_CTRL;
3009
3010 rcr_clear_bit = RCR_CBSSID_BCN;
3011
3012 /* config RCR to receive different BSSID & not to receive data frame */
3013 value_rxfltmap2 = 0;
3014
3015 if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3016 rcr_clear_bit = RCR_CBSSID_BCN;
3017
3018 value_rcr = rtw_read32(padapter, REG_RCR);
3019
3020 if (*((u8 *)val)) {
3021 /* under sitesurvey */
3022 value_rcr &= ~(rcr_clear_bit);
3023 rtw_write32(padapter, REG_RCR, value_rcr);
3024
3025 rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3026
3027 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3028 /* disable update TSF */
3029 val8 = rtw_read8(padapter, reg_bcn_ctl);
3030 val8 |= DIS_TSF_UDT;
3031 rtw_write8(padapter, reg_bcn_ctl, val8);
3032 }
3033
3034 /* Save original RRSR setting. */
3035 pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3036 } else {
3037 /* sitesurvey done */
3038 if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3039 /* enable to rx data frame */
3040 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3041
3042 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3043 /* enable update TSF */
3044 val8 = rtw_read8(padapter, reg_bcn_ctl);
3045 val8 &= ~DIS_TSF_UDT;
3046 rtw_write8(padapter, reg_bcn_ctl, val8);
3047 }
3048
3049 value_rcr |= rcr_clear_bit;
3050 rtw_write32(padapter, REG_RCR, value_rcr);
3051
3052 /* Restore original RRSR setting. */
3053 rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3054 }
3055 }
3056
hw_var_set_mlme_join(struct adapter * padapter,u8 variable,u8 * val)3057 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3058 {
3059 u8 val8;
3060 u16 val16;
3061 u32 val32;
3062 u8 RetryLimit;
3063 u8 type;
3064 struct mlme_priv *pmlmepriv;
3065 struct eeprom_priv *pEEPROM;
3066
3067
3068 RetryLimit = 0x30;
3069 type = *(u8 *)val;
3070 pmlmepriv = &padapter->mlmepriv;
3071 pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3072
3073 if (type == 0) { /* prepare to join */
3074 /* enable to rx data frame.Accept all data frame */
3075 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3076 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3077
3078 val32 = rtw_read32(padapter, REG_RCR);
3079 if (padapter->in_cta_test)
3080 val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/* RCR_ADF */
3081 else
3082 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3083 rtw_write32(padapter, REG_RCR, val32);
3084
3085 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3086 RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3087 else /* Ad-hoc Mode */
3088 RetryLimit = 0x7;
3089 } else if (type == 1) /* joinbss_event call back when join res < 0 */
3090 rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3091 else if (type == 2) { /* sta add event call back */
3092 /* enable update TSF */
3093 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3094 val8 &= ~DIS_TSF_UDT;
3095 rtw_write8(padapter, REG_BCN_CTRL, val8);
3096
3097 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3098 RetryLimit = 0x7;
3099 }
3100
3101 val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3102 rtw_write16(padapter, REG_RL, val16);
3103 }
3104
CCX_FwC2HTxRpt_8723b(struct adapter * padapter,u8 * pdata,u8 len)3105 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3106 {
3107
3108 #define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3109 #define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3110
3111 if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3112 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3113 }
3114 /*
3115 else if (seq_no != padapter->xmitpriv.seq_no) {
3116 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3117 }
3118 */
3119 else
3120 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3121 }
3122
c2h_id_filter_ccx_8723b(u8 * buf)3123 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3124 {
3125 struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3126 s32 ret = false;
3127 if (c2h_evt->id == C2H_CCX_TX_RPT)
3128 ret = true;
3129
3130 return ret;
3131 }
3132
3133
c2h_handler_8723b(struct adapter * padapter,u8 * buf)3134 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3135 {
3136 struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3137 s32 ret = _SUCCESS;
3138
3139 if (!pC2hEvent) {
3140 ret = _FAIL;
3141 goto exit;
3142 }
3143
3144 switch (pC2hEvent->id) {
3145 case C2H_AP_RPT_RSP:
3146 break;
3147 case C2H_DBG:
3148 {
3149 }
3150 break;
3151
3152 case C2H_CCX_TX_RPT:
3153 /* CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3154 break;
3155
3156 case C2H_EXT_RA_RPT:
3157 /* C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3158 break;
3159
3160 case C2H_HW_INFO_EXCH:
3161 break;
3162
3163 case C2H_8723B_BT_INFO:
3164 hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3165 break;
3166
3167 default:
3168 break;
3169 }
3170
3171 /* Clear event to notify FW we have read the command. */
3172 /* Note: */
3173 /* If this field isn't clear, the FW won't update the next command message. */
3174 /* rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3175 exit:
3176 return ret;
3177 }
3178
process_c2h_event(struct adapter * padapter,struct c2h_evt_hdr_t * pC2hEvent,u8 * c2hBuf)3179 static void process_c2h_event(struct adapter *padapter, struct c2h_evt_hdr_t *pC2hEvent, u8 *c2hBuf)
3180 {
3181 if (!c2hBuf)
3182 return;
3183
3184 switch (pC2hEvent->CmdID) {
3185 case C2H_AP_RPT_RSP:
3186 break;
3187 case C2H_DBG:
3188 {
3189 }
3190 break;
3191
3192 case C2H_CCX_TX_RPT:
3193 /* CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3194 break;
3195
3196 case C2H_EXT_RA_RPT:
3197 /* C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3198 break;
3199
3200 case C2H_HW_INFO_EXCH:
3201 break;
3202
3203 case C2H_8723B_BT_INFO:
3204 hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3205 break;
3206
3207 default:
3208 break;
3209 }
3210 }
3211
C2HPacketHandler_8723B(struct adapter * padapter,u8 * pbuffer,u16 length)3212 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3213 {
3214 struct c2h_evt_hdr_t C2hEvent;
3215 u8 *tmpBuf = NULL;
3216 C2hEvent.CmdID = pbuffer[0];
3217 C2hEvent.CmdSeq = pbuffer[1];
3218 C2hEvent.CmdLen = length-2;
3219 tmpBuf = pbuffer+2;
3220
3221 process_c2h_event(padapter, &C2hEvent, tmpBuf);
3222 /* c2h_handler_8723b(padapter,&C2hEvent); */
3223 }
3224
SetHwReg8723B(struct adapter * padapter,u8 variable,u8 * val)3225 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3226 {
3227 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3228 u8 val8;
3229 u32 val32;
3230
3231 switch (variable) {
3232 case HW_VAR_MEDIA_STATUS:
3233 val8 = rtw_read8(padapter, MSR) & 0x0c;
3234 val8 |= *val;
3235 rtw_write8(padapter, MSR, val8);
3236 break;
3237
3238 case HW_VAR_MEDIA_STATUS1:
3239 val8 = rtw_read8(padapter, MSR) & 0x03;
3240 val8 |= *val << 2;
3241 rtw_write8(padapter, MSR, val8);
3242 break;
3243
3244 case HW_VAR_SET_OPMODE:
3245 hw_var_set_opmode(padapter, variable, val);
3246 break;
3247
3248 case HW_VAR_MAC_ADDR:
3249 hw_var_set_macaddr(padapter, variable, val);
3250 break;
3251
3252 case HW_VAR_BSSID:
3253 hw_var_set_bssid(padapter, variable, val);
3254 break;
3255
3256 case HW_VAR_BASIC_RATE:
3257 {
3258 struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3259 u16 BrateCfg = 0;
3260 u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3261 u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3262
3263 HalSetBrateCfg(padapter, val, &BrateCfg);
3264
3265 /* apply force and allow mask */
3266 BrateCfg |= rrsr_2g_force_mask;
3267 BrateCfg &= rrsr_2g_allow_mask;
3268
3269 /* IOT consideration */
3270 if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3271 /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3272 if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3273 BrateCfg |= RRSR_6M;
3274 }
3275
3276 pHalData->BasicRateSet = BrateCfg;
3277
3278 /* Set RRSR rate table. */
3279 rtw_write16(padapter, REG_RRSR, BrateCfg);
3280 rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3281 }
3282 break;
3283
3284 case HW_VAR_TXPAUSE:
3285 rtw_write8(padapter, REG_TXPAUSE, *val);
3286 break;
3287
3288 case HW_VAR_BCN_FUNC:
3289 hw_var_set_bcn_func(padapter, variable, val);
3290 break;
3291
3292 case HW_VAR_CORRECT_TSF:
3293 hw_var_set_correct_tsf(padapter, variable, val);
3294 break;
3295
3296 case HW_VAR_CHECK_BSSID:
3297 {
3298 u32 val32;
3299 val32 = rtw_read32(padapter, REG_RCR);
3300 if (*val)
3301 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3302 else
3303 val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3304 rtw_write32(padapter, REG_RCR, val32);
3305 }
3306 break;
3307
3308 case HW_VAR_MLME_DISCONNECT:
3309 hw_var_set_mlme_disconnect(padapter, variable, val);
3310 break;
3311
3312 case HW_VAR_MLME_SITESURVEY:
3313 hw_var_set_mlme_sitesurvey(padapter, variable, val);
3314
3315 hal_btcoex_ScanNotify(padapter, *val?true:false);
3316 break;
3317
3318 case HW_VAR_MLME_JOIN:
3319 hw_var_set_mlme_join(padapter, variable, val);
3320
3321 switch (*val) {
3322 case 0:
3323 /* prepare to join */
3324 hal_btcoex_ConnectNotify(padapter, true);
3325 break;
3326 case 1:
3327 /* joinbss_event callback when join res < 0 */
3328 hal_btcoex_ConnectNotify(padapter, false);
3329 break;
3330 case 2:
3331 /* sta add event callback */
3332 /* rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3333 break;
3334 }
3335 break;
3336
3337 case HW_VAR_ON_RCR_AM:
3338 val32 = rtw_read32(padapter, REG_RCR);
3339 val32 |= RCR_AM;
3340 rtw_write32(padapter, REG_RCR, val32);
3341 break;
3342
3343 case HW_VAR_OFF_RCR_AM:
3344 val32 = rtw_read32(padapter, REG_RCR);
3345 val32 &= ~RCR_AM;
3346 rtw_write32(padapter, REG_RCR, val32);
3347 break;
3348
3349 case HW_VAR_BEACON_INTERVAL:
3350 rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3351 break;
3352
3353 case HW_VAR_SLOT_TIME:
3354 rtw_write8(padapter, REG_SLOT, *val);
3355 break;
3356
3357 case HW_VAR_RESP_SIFS:
3358 /* SIFS_Timer = 0x0a0a0808; */
3359 /* RESP_SIFS for CCK */
3360 rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /* SIFS_T2T_CCK (0x08) */
3361 rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3362 /* RESP_SIFS for OFDM */
3363 rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3364 rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3365 break;
3366
3367 case HW_VAR_ACK_PREAMBLE:
3368 {
3369 u8 regTmp;
3370 u8 bShortPreamble = *val;
3371
3372 /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3373 /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3374 regTmp = 0;
3375 if (bShortPreamble)
3376 regTmp |= 0x80;
3377 rtw_write8(padapter, REG_RRSR+2, regTmp);
3378 }
3379 break;
3380
3381 case HW_VAR_CAM_EMPTY_ENTRY:
3382 {
3383 u8 ucIndex = *val;
3384 u8 i;
3385 u32 ulCommand = 0;
3386 u32 ulContent = 0;
3387 u32 ulEncAlgo = CAM_AES;
3388
3389 for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3390 /* filled id in CAM config 2 byte */
3391 if (i == 0) {
3392 ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3393 /* ulContent |= CAM_VALID; */
3394 } else
3395 ulContent = 0;
3396
3397 /* polling bit, and No Write enable, and address */
3398 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3399 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3400 /* write content 0 is equal to mark as invalid */
3401 rtw_write32(padapter, WCAMI, ulContent); /* mdelay(40); */
3402 rtw_write32(padapter, RWCAM, ulCommand); /* mdelay(40); */
3403 }
3404 }
3405 break;
3406
3407 case HW_VAR_CAM_INVALID_ALL:
3408 rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3409 break;
3410
3411 case HW_VAR_CAM_WRITE:
3412 {
3413 u32 cmd;
3414 u32 *cam_val = (u32 *)val;
3415
3416 rtw_write32(padapter, WCAMI, cam_val[0]);
3417
3418 cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3419 rtw_write32(padapter, RWCAM, cmd);
3420 }
3421 break;
3422
3423 case HW_VAR_AC_PARAM_VO:
3424 rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
3425 break;
3426
3427 case HW_VAR_AC_PARAM_VI:
3428 rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
3429 break;
3430
3431 case HW_VAR_AC_PARAM_BE:
3432 pHalData->AcParam_BE = ((u32 *)(val))[0];
3433 rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
3434 break;
3435
3436 case HW_VAR_AC_PARAM_BK:
3437 rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
3438 break;
3439
3440 case HW_VAR_ACM_CTRL:
3441 {
3442 u8 ctrl = *((u8 *)val);
3443 u8 hwctrl = 0;
3444
3445 if (ctrl != 0) {
3446 hwctrl |= AcmHw_HwEn;
3447
3448 if (ctrl & BIT(1)) /* BE */
3449 hwctrl |= AcmHw_BeqEn;
3450
3451 if (ctrl & BIT(2)) /* VI */
3452 hwctrl |= AcmHw_ViqEn;
3453
3454 if (ctrl & BIT(3)) /* VO */
3455 hwctrl |= AcmHw_VoqEn;
3456 }
3457
3458 rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
3459 }
3460 break;
3461
3462 case HW_VAR_AMPDU_FACTOR:
3463 {
3464 u32 AMPDULen = (*((u8 *)val));
3465
3466 if (AMPDULen < HT_AGG_SIZE_32K)
3467 AMPDULen = (0x2000 << (*((u8 *)val)))-1;
3468 else
3469 AMPDULen = 0x7fff;
3470
3471 rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
3472 }
3473 break;
3474
3475 case HW_VAR_H2C_FW_PWRMODE:
3476 {
3477 u8 psmode = *val;
3478
3479 /* Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
3480 /* saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
3481 if (psmode != PS_MODE_ACTIVE) {
3482 ODM_RF_Saving(&pHalData->odmpriv, true);
3483 }
3484
3485 /* if (psmode != PS_MODE_ACTIVE) { */
3486 /* rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
3487 /* else { */
3488 /* rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
3489 /* */
3490 rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
3491 }
3492 break;
3493 case HW_VAR_H2C_PS_TUNE_PARAM:
3494 rtl8723b_set_FwPsTuneParam_cmd(padapter);
3495 break;
3496
3497 case HW_VAR_H2C_FW_JOINBSSRPT:
3498 rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
3499 break;
3500
3501 case HW_VAR_INITIAL_GAIN:
3502 {
3503 struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
3504 u32 rx_gain = *(u32 *)val;
3505
3506 if (rx_gain == 0xff) {/* restore rx gain */
3507 ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
3508 } else {
3509 pDigTable->BackupIGValue = pDigTable->CurIGValue;
3510 ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
3511 }
3512 }
3513 break;
3514
3515 case HW_VAR_EFUSE_USAGE:
3516 pHalData->EfuseUsedPercentage = *val;
3517 break;
3518
3519 case HW_VAR_EFUSE_BYTES:
3520 pHalData->EfuseUsedBytes = *((u16 *)val);
3521 break;
3522
3523 case HW_VAR_EFUSE_BT_USAGE:
3524 #ifdef HAL_EFUSE_MEMORY
3525 pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
3526 #endif
3527 break;
3528
3529 case HW_VAR_EFUSE_BT_BYTES:
3530 #ifdef HAL_EFUSE_MEMORY
3531 pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
3532 #else
3533 BTEfuseUsedBytes = *((u16 *)val);
3534 #endif
3535 break;
3536
3537 case HW_VAR_FIFO_CLEARN_UP:
3538 {
3539 #define RW_RELEASE_EN BIT(18)
3540 #define RXDMA_IDLE BIT(17)
3541
3542 struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3543 u8 trycnt = 100;
3544
3545 /* pause tx */
3546 rtw_write8(padapter, REG_TXPAUSE, 0xff);
3547
3548 /* keep sn */
3549 padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
3550
3551 if (!pwrpriv->bkeepfwalive) {
3552 /* RX DMA stop */
3553 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3554 val32 |= RW_RELEASE_EN;
3555 rtw_write32(padapter, REG_RXPKT_NUM, val32);
3556 do {
3557 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3558 val32 &= RXDMA_IDLE;
3559 if (val32)
3560 break;
3561 } while (--trycnt);
3562
3563 /* RQPN Load 0 */
3564 rtw_write16(padapter, REG_RQPN_NPQ, 0);
3565 rtw_write32(padapter, REG_RQPN, 0x80000000);
3566 mdelay(2);
3567 }
3568 }
3569 break;
3570
3571 case HW_VAR_APFM_ON_MAC:
3572 pHalData->bMacPwrCtrlOn = *val;
3573 break;
3574
3575 case HW_VAR_NAV_UPPER:
3576 {
3577 u32 usNavUpper = *((u32 *)val);
3578
3579 if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF)
3580 break;
3581
3582 usNavUpper = DIV_ROUND_UP(usNavUpper,
3583 HAL_NAV_UPPER_UNIT_8723B);
3584 rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
3585 }
3586 break;
3587
3588 case HW_VAR_H2C_MEDIA_STATUS_RPT:
3589 {
3590 u16 mstatus_rpt = (*(u16 *)val);
3591 u8 mstatus, macId;
3592
3593 mstatus = (u8) (mstatus_rpt & 0xFF);
3594 macId = (u8)(mstatus_rpt >> 8);
3595 rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
3596 }
3597 break;
3598 case HW_VAR_BCN_VALID:
3599 {
3600 /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
3601 val8 = rtw_read8(padapter, REG_TDECTRL+2);
3602 val8 |= BIT(0);
3603 rtw_write8(padapter, REG_TDECTRL+2, val8);
3604 }
3605 break;
3606
3607 case HW_VAR_DL_BCN_SEL:
3608 {
3609 /* SW_BCN_SEL - Port0 */
3610 val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
3611 val8 &= ~BIT(4);
3612 rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
3613 }
3614 break;
3615
3616 case HW_VAR_DO_IQK:
3617 pHalData->bNeedIQK = true;
3618 break;
3619
3620 case HW_VAR_DL_RSVD_PAGE:
3621 if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
3622 rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
3623 else
3624 rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
3625 break;
3626
3627 case HW_VAR_MACID_SLEEP:
3628 /* Input is MACID */
3629 val32 = *(u32 *)val;
3630 if (val32 > 31)
3631 break;
3632
3633 val8 = (u8)val32; /* macid is between 0~31 */
3634
3635 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3636 if (val32 & BIT(val8))
3637 break;
3638 val32 |= BIT(val8);
3639 rtw_write32(padapter, REG_MACID_SLEEP, val32);
3640 break;
3641
3642 case HW_VAR_MACID_WAKEUP:
3643 /* Input is MACID */
3644 val32 = *(u32 *)val;
3645 if (val32 > 31)
3646 break;
3647
3648 val8 = (u8)val32; /* macid is between 0~31 */
3649
3650 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3651 if (!(val32 & BIT(val8)))
3652 break;
3653 val32 &= ~BIT(val8);
3654 rtw_write32(padapter, REG_MACID_SLEEP, val32);
3655 break;
3656
3657 default:
3658 SetHwReg(padapter, variable, val);
3659 break;
3660 }
3661 }
3662
GetHwReg8723B(struct adapter * padapter,u8 variable,u8 * val)3663 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3664 {
3665 struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3666 u8 val8;
3667 u16 val16;
3668
3669 switch (variable) {
3670 case HW_VAR_TXPAUSE:
3671 *val = rtw_read8(padapter, REG_TXPAUSE);
3672 break;
3673
3674 case HW_VAR_BCN_VALID:
3675 {
3676 /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3677 val8 = rtw_read8(padapter, REG_TDECTRL+2);
3678 *val = (BIT(0) & val8) ? true : false;
3679 }
3680 break;
3681
3682 case HW_VAR_FWLPS_RF_ON:
3683 {
3684 /* When we halt NIC, we should check if FW LPS is leave. */
3685 u32 valRCR;
3686
3687 if (
3688 padapter->bSurpriseRemoved ||
3689 (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
3690 ) {
3691 /* If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
3692 /* because Fw is unload. */
3693 *val = true;
3694 } else {
3695 valRCR = rtw_read32(padapter, REG_RCR);
3696 valRCR &= 0x00070000;
3697 if (valRCR)
3698 *val = false;
3699 else
3700 *val = true;
3701 }
3702 }
3703 break;
3704
3705 case HW_VAR_EFUSE_USAGE:
3706 *val = pHalData->EfuseUsedPercentage;
3707 break;
3708
3709 case HW_VAR_EFUSE_BYTES:
3710 *((u16 *)val) = pHalData->EfuseUsedBytes;
3711 break;
3712
3713 case HW_VAR_EFUSE_BT_USAGE:
3714 #ifdef HAL_EFUSE_MEMORY
3715 *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
3716 #endif
3717 break;
3718
3719 case HW_VAR_EFUSE_BT_BYTES:
3720 #ifdef HAL_EFUSE_MEMORY
3721 *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
3722 #else
3723 *((u16 *)val) = BTEfuseUsedBytes;
3724 #endif
3725 break;
3726
3727 case HW_VAR_APFM_ON_MAC:
3728 *val = pHalData->bMacPwrCtrlOn;
3729 break;
3730 case HW_VAR_CHK_HI_QUEUE_EMPTY:
3731 val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
3732 *val = (val16 & BIT(10)) ? true:false;
3733 break;
3734 default:
3735 GetHwReg(padapter, variable, val);
3736 break;
3737 }
3738 }
3739
3740 /* Description:
3741 * Change default setting of specified variable.
3742 */
SetHalDefVar8723B(struct adapter * padapter,enum hal_def_variable variable,void * pval)3743 u8 SetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3744 {
3745 u8 bResult;
3746
3747 bResult = _SUCCESS;
3748
3749 switch (variable) {
3750 default:
3751 bResult = SetHalDefVar(padapter, variable, pval);
3752 break;
3753 }
3754
3755 return bResult;
3756 }
3757
3758 /* Description:
3759 * Query setting of specified variable.
3760 */
GetHalDefVar8723B(struct adapter * padapter,enum hal_def_variable variable,void * pval)3761 u8 GetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3762 {
3763 u8 bResult;
3764
3765 bResult = _SUCCESS;
3766
3767 switch (variable) {
3768 case HAL_DEF_MAX_RECVBUF_SZ:
3769 *((u32 *)pval) = MAX_RECVBUF_SZ;
3770 break;
3771
3772 case HAL_DEF_RX_PACKET_OFFSET:
3773 *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
3774 break;
3775
3776 case HW_VAR_MAX_RX_AMPDU_FACTOR:
3777 /* Stanley@BB.SD3 suggests 16K can get stable performance */
3778 /* The experiment was done on SDIO interface */
3779 /* coding by Lucas@20130730 */
3780 *(u32 *)pval = IEEE80211_HT_MAX_AMPDU_16K;
3781 break;
3782 case HAL_DEF_TX_LDPC:
3783 case HAL_DEF_RX_LDPC:
3784 *((u8 *)pval) = false;
3785 break;
3786 case HAL_DEF_TX_STBC:
3787 *((u8 *)pval) = 0;
3788 break;
3789 case HAL_DEF_RX_STBC:
3790 *((u8 *)pval) = 1;
3791 break;
3792 case HAL_DEF_EXPLICIT_BEAMFORMER:
3793 case HAL_DEF_EXPLICIT_BEAMFORMEE:
3794 *((u8 *)pval) = false;
3795 break;
3796
3797 case HW_DEF_RA_INFO_DUMP:
3798 {
3799 u8 mac_id = *(u8 *)pval;
3800 u32 cmd;
3801
3802 cmd = 0x40000100 | mac_id;
3803 rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3804 msleep(10);
3805 rtw_read32(padapter, 0x2F0); // info 1
3806
3807 cmd = 0x40000400 | mac_id;
3808 rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3809 msleep(10);
3810 rtw_read32(padapter, 0x2F0); // info 1
3811 rtw_read32(padapter, 0x2F4); // info 2
3812 rtw_read32(padapter, 0x2F8); // rate mask 1
3813 rtw_read32(padapter, 0x2FC); // rate mask 2
3814 }
3815 break;
3816
3817 case HAL_DEF_TX_PAGE_BOUNDARY:
3818 if (!padapter->registrypriv.wifi_spec) {
3819 *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
3820 } else {
3821 *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
3822 }
3823 break;
3824
3825 case HAL_DEF_MACID_SLEEP:
3826 *(u8 *)pval = true; /* support macid sleep */
3827 break;
3828
3829 default:
3830 bResult = GetHalDefVar(padapter, variable, pval);
3831 break;
3832 }
3833
3834 return bResult;
3835 }
3836
rtl8723b_start_thread(struct adapter * padapter)3837 void rtl8723b_start_thread(struct adapter *padapter)
3838 {
3839 struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3840
3841 xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
3842 }
3843
rtl8723b_stop_thread(struct adapter * padapter)3844 void rtl8723b_stop_thread(struct adapter *padapter)
3845 {
3846 struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3847
3848 /* stop xmit_buf_thread */
3849 if (xmitpriv->SdioXmitThread) {
3850 complete(&xmitpriv->SdioXmitStart);
3851 wait_for_completion(&xmitpriv->SdioXmitTerminate);
3852 xmitpriv->SdioXmitThread = NULL;
3853 }
3854 }
3855