1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4  	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5  	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6  	<http://rt2x00.serialmonkey.com>
7  
8   */
9  
10  /*
11  	Module: rt2x00lib
12  	Abstract: rt2x00 queue specific routines.
13   */
14  
15  #include <linux/slab.h>
16  #include <linux/kernel.h>
17  #include <linux/module.h>
18  #include <linux/dma-mapping.h>
19  
20  #include "rt2x00.h"
21  #include "rt2x00lib.h"
22  
rt2x00queue_alloc_rxskb(struct queue_entry * entry,gfp_t gfp)23  struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
24  {
25  	struct data_queue *queue = entry->queue;
26  	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
27  	struct sk_buff *skb;
28  	struct skb_frame_desc *skbdesc;
29  	unsigned int frame_size;
30  	unsigned int head_size = 0;
31  	unsigned int tail_size = 0;
32  
33  	/*
34  	 * The frame size includes descriptor size, because the
35  	 * hardware directly receive the frame into the skbuffer.
36  	 */
37  	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
38  
39  	/*
40  	 * The payload should be aligned to a 4-byte boundary,
41  	 * this means we need at least 3 bytes for moving the frame
42  	 * into the correct offset.
43  	 */
44  	head_size = 4;
45  
46  	/*
47  	 * For IV/EIV/ICV assembly we must make sure there is
48  	 * at least 8 bytes bytes available in headroom for IV/EIV
49  	 * and 8 bytes for ICV data as tailroon.
50  	 */
51  	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
52  		head_size += 8;
53  		tail_size += 8;
54  	}
55  
56  	/*
57  	 * Allocate skbuffer.
58  	 */
59  	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
60  	if (!skb)
61  		return NULL;
62  
63  	/*
64  	 * Make sure we not have a frame with the requested bytes
65  	 * available in the head and tail.
66  	 */
67  	skb_reserve(skb, head_size);
68  	skb_put(skb, frame_size);
69  
70  	/*
71  	 * Populate skbdesc.
72  	 */
73  	skbdesc = get_skb_frame_desc(skb);
74  	memset(skbdesc, 0, sizeof(*skbdesc));
75  
76  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
77  		dma_addr_t skb_dma;
78  
79  		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
80  					 DMA_FROM_DEVICE);
81  		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
82  			dev_kfree_skb_any(skb);
83  			return NULL;
84  		}
85  
86  		skbdesc->skb_dma = skb_dma;
87  		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
88  	}
89  
90  	return skb;
91  }
92  
rt2x00queue_map_txskb(struct queue_entry * entry)93  int rt2x00queue_map_txskb(struct queue_entry *entry)
94  {
95  	struct device *dev = entry->queue->rt2x00dev->dev;
96  	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
97  
98  	skbdesc->skb_dma =
99  	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
100  
101  	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
102  		return -ENOMEM;
103  
104  	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
105  	rt2x00lib_dmadone(entry);
106  	return 0;
107  }
108  EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
109  
rt2x00queue_unmap_skb(struct queue_entry * entry)110  void rt2x00queue_unmap_skb(struct queue_entry *entry)
111  {
112  	struct device *dev = entry->queue->rt2x00dev->dev;
113  	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
114  
115  	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
116  		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
117  				 DMA_FROM_DEVICE);
118  		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
119  	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120  		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
121  				 DMA_TO_DEVICE);
122  		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
123  	}
124  }
125  EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
126  
rt2x00queue_free_skb(struct queue_entry * entry)127  void rt2x00queue_free_skb(struct queue_entry *entry)
128  {
129  	if (!entry->skb)
130  		return;
131  
132  	rt2x00queue_unmap_skb(entry);
133  	dev_kfree_skb_any(entry->skb);
134  	entry->skb = NULL;
135  }
136  
rt2x00queue_align_frame(struct sk_buff * skb)137  void rt2x00queue_align_frame(struct sk_buff *skb)
138  {
139  	unsigned int frame_length = skb->len;
140  	unsigned int align = ALIGN_SIZE(skb, 0);
141  
142  	if (!align)
143  		return;
144  
145  	skb_push(skb, align);
146  	memmove(skb->data, skb->data + align, frame_length);
147  	skb_trim(skb, frame_length);
148  }
149  
150  /*
151   * H/W needs L2 padding between the header and the paylod if header size
152   * is not 4 bytes aligned.
153   */
rt2x00queue_insert_l2pad(struct sk_buff * skb,unsigned int hdr_len)154  void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
155  {
156  	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
157  
158  	if (!l2pad)
159  		return;
160  
161  	skb_push(skb, l2pad);
162  	memmove(skb->data, skb->data + l2pad, hdr_len);
163  }
164  
rt2x00queue_remove_l2pad(struct sk_buff * skb,unsigned int hdr_len)165  void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166  {
167  	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168  
169  	if (!l2pad)
170  		return;
171  
172  	memmove(skb->data + l2pad, skb->data, hdr_len);
173  	skb_pull(skb, l2pad);
174  }
175  
rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)176  static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
177  						 struct sk_buff *skb,
178  						 struct txentry_desc *txdesc)
179  {
180  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
181  	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
182  	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
183  	u16 seqno;
184  
185  	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
186  		return;
187  
188  	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
189  
190  	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
191  		/*
192  		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
193  		 * seqno on retransmitted data (non-QOS) and management frames.
194  		 * To workaround the problem let's generate seqno in software.
195  		 * Except for beacons which are transmitted periodically by H/W
196  		 * hence hardware has to assign seqno for them.
197  		 */
198  	    	if (ieee80211_is_beacon(hdr->frame_control)) {
199  			__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200  			/* H/W will generate sequence number */
201  			return;
202  		}
203  
204  		__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
205  	}
206  
207  	/*
208  	 * The hardware is not able to insert a sequence number. Assign a
209  	 * software generated one here.
210  	 *
211  	 * This is wrong because beacons are not getting sequence
212  	 * numbers assigned properly.
213  	 *
214  	 * A secondary problem exists for drivers that cannot toggle
215  	 * sequence counting per-frame, since those will override the
216  	 * sequence counter given by mac80211.
217  	 */
218  	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
219  		seqno = atomic_add_return(0x10, &intf->seqno);
220  	else
221  		seqno = atomic_read(&intf->seqno);
222  
223  	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
224  	hdr->seq_ctrl |= cpu_to_le16(seqno);
225  }
226  
rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)227  static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
228  						  struct sk_buff *skb,
229  						  struct txentry_desc *txdesc,
230  						  const struct rt2x00_rate *hwrate)
231  {
232  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
233  	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
234  	unsigned int data_length;
235  	unsigned int duration;
236  	unsigned int residual;
237  
238  	/*
239  	 * Determine with what IFS priority this frame should be send.
240  	 * Set ifs to IFS_SIFS when the this is not the first fragment,
241  	 * or this fragment came after RTS/CTS.
242  	 */
243  	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
244  		txdesc->u.plcp.ifs = IFS_BACKOFF;
245  	else
246  		txdesc->u.plcp.ifs = IFS_SIFS;
247  
248  	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
249  	data_length = skb->len + 4;
250  	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
251  
252  	/*
253  	 * PLCP setup
254  	 * Length calculation depends on OFDM/CCK rate.
255  	 */
256  	txdesc->u.plcp.signal = hwrate->plcp;
257  	txdesc->u.plcp.service = 0x04;
258  
259  	if (hwrate->flags & DEV_RATE_OFDM) {
260  		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
261  		txdesc->u.plcp.length_low = data_length & 0x3f;
262  	} else {
263  		/*
264  		 * Convert length to microseconds.
265  		 */
266  		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
267  		duration = GET_DURATION(data_length, hwrate->bitrate);
268  
269  		if (residual != 0) {
270  			duration++;
271  
272  			/*
273  			 * Check if we need to set the Length Extension
274  			 */
275  			if (hwrate->bitrate == 110 && residual <= 30)
276  				txdesc->u.plcp.service |= 0x80;
277  		}
278  
279  		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
280  		txdesc->u.plcp.length_low = duration & 0xff;
281  
282  		/*
283  		 * When preamble is enabled we should set the
284  		 * preamble bit for the signal.
285  		 */
286  		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
287  			txdesc->u.plcp.signal |= 0x08;
288  	}
289  }
290  
rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta,const struct rt2x00_rate * hwrate)291  static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
292  						struct sk_buff *skb,
293  						struct txentry_desc *txdesc,
294  						struct ieee80211_sta *sta,
295  						const struct rt2x00_rate *hwrate)
296  {
297  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
298  	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
299  	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
300  	struct rt2x00_sta *sta_priv = NULL;
301  	u8 density = 0;
302  
303  	if (sta) {
304  		sta_priv = sta_to_rt2x00_sta(sta);
305  		txdesc->u.ht.wcid = sta_priv->wcid;
306  		density = sta->deflink.ht_cap.ampdu_density;
307  	}
308  
309  	/*
310  	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
311  	 * mcs rate to be used
312  	 */
313  	if (txrate->flags & IEEE80211_TX_RC_MCS) {
314  		txdesc->u.ht.mcs = txrate->idx;
315  
316  		/*
317  		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
318  		 * when using more then one tx stream (>MCS7).
319  		 */
320  		if (sta && txdesc->u.ht.mcs > 7 &&
321  		    sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC)
322  			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
323  	} else {
324  		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
325  		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
326  			txdesc->u.ht.mcs |= 0x08;
327  	}
328  
329  	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
330  		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
331  			txdesc->u.ht.txop = TXOP_SIFS;
332  		else
333  			txdesc->u.ht.txop = TXOP_BACKOFF;
334  
335  		/* Left zero on all other settings. */
336  		return;
337  	}
338  
339  	/*
340  	 * Only one STBC stream is supported for now.
341  	 */
342  	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
343  		txdesc->u.ht.stbc = 1;
344  
345  	/*
346  	 * This frame is eligible for an AMPDU, however, don't aggregate
347  	 * frames that are intended to probe a specific tx rate.
348  	 */
349  	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
350  	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
351  		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
352  		txdesc->u.ht.mpdu_density = density;
353  		txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
354  	}
355  
356  	/*
357  	 * Set 40Mhz mode if necessary (for legacy rates this will
358  	 * duplicate the frame to both channels).
359  	 */
360  	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
361  	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
362  		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
363  	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
364  		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
365  
366  	/*
367  	 * Determine IFS values
368  	 * - Use TXOP_BACKOFF for management frames except beacons
369  	 * - Use TXOP_SIFS for fragment bursts
370  	 * - Use TXOP_HTTXOP for everything else
371  	 *
372  	 * Note: rt2800 devices won't use CTS protection (if used)
373  	 * for frames not transmitted with TXOP_HTTXOP
374  	 */
375  	if (ieee80211_is_mgmt(hdr->frame_control) &&
376  	    !ieee80211_is_beacon(hdr->frame_control))
377  		txdesc->u.ht.txop = TXOP_BACKOFF;
378  	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
379  		txdesc->u.ht.txop = TXOP_SIFS;
380  	else
381  		txdesc->u.ht.txop = TXOP_HTTXOP;
382  }
383  
rt2x00queue_create_tx_descriptor(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta)384  static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
385  					     struct sk_buff *skb,
386  					     struct txentry_desc *txdesc,
387  					     struct ieee80211_sta *sta)
388  {
389  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
390  	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
391  	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
392  	struct ieee80211_rate *rate;
393  	const struct rt2x00_rate *hwrate = NULL;
394  
395  	memset(txdesc, 0, sizeof(*txdesc));
396  
397  	/*
398  	 * Header and frame information.
399  	 */
400  	txdesc->length = skb->len;
401  	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
402  
403  	/*
404  	 * Check whether this frame is to be acked.
405  	 */
406  	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
407  		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
408  
409  	/*
410  	 * Check if this is a RTS/CTS frame
411  	 */
412  	if (ieee80211_is_rts(hdr->frame_control) ||
413  	    ieee80211_is_cts(hdr->frame_control)) {
414  		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
415  		if (ieee80211_is_rts(hdr->frame_control))
416  			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
417  		else
418  			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
419  	}
420  
421  	/*
422  	 * Determine retry information.
423  	 */
424  	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
425  	if (txdesc->retry_limit >= rt2x00dev->long_retry)
426  		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
427  
428  	/*
429  	 * Check if more fragments are pending
430  	 */
431  	if (ieee80211_has_morefrags(hdr->frame_control)) {
432  		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
433  		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
434  	}
435  
436  	/*
437  	 * Check if more frames (!= fragments) are pending
438  	 */
439  	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
440  		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
441  
442  	/*
443  	 * Beacons and probe responses require the tsf timestamp
444  	 * to be inserted into the frame.
445  	 */
446  	if ((ieee80211_is_beacon(hdr->frame_control) ||
447  	     ieee80211_is_probe_resp(hdr->frame_control)) &&
448  	    !(tx_info->flags & IEEE80211_TX_CTL_INJECTED))
449  		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
450  
451  	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
452  	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
453  		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
454  
455  	/*
456  	 * Determine rate modulation.
457  	 */
458  	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
459  		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
460  	else if (txrate->flags & IEEE80211_TX_RC_MCS)
461  		txdesc->rate_mode = RATE_MODE_HT_MIX;
462  	else {
463  		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
464  		hwrate = rt2x00_get_rate(rate->hw_value);
465  		if (hwrate->flags & DEV_RATE_OFDM)
466  			txdesc->rate_mode = RATE_MODE_OFDM;
467  		else
468  			txdesc->rate_mode = RATE_MODE_CCK;
469  	}
470  
471  	/*
472  	 * Apply TX descriptor handling by components
473  	 */
474  	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
475  	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
476  
477  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
478  		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
479  						   sta, hwrate);
480  	else
481  		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
482  						      hwrate);
483  }
484  
rt2x00queue_write_tx_data(struct queue_entry * entry,struct txentry_desc * txdesc)485  static int rt2x00queue_write_tx_data(struct queue_entry *entry,
486  				     struct txentry_desc *txdesc)
487  {
488  	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
489  
490  	/*
491  	 * This should not happen, we already checked the entry
492  	 * was ours. When the hardware disagrees there has been
493  	 * a queue corruption!
494  	 */
495  	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
496  		     rt2x00dev->ops->lib->get_entry_state(entry))) {
497  		rt2x00_err(rt2x00dev,
498  			   "Corrupt queue %d, accessing entry which is not ours\n"
499  			   "Please file bug report to %s\n",
500  			   entry->queue->qid, DRV_PROJECT);
501  		return -EINVAL;
502  	}
503  
504  	/*
505  	 * Add the requested extra tx headroom in front of the skb.
506  	 */
507  	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
508  	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
509  
510  	/*
511  	 * Call the driver's write_tx_data function, if it exists.
512  	 */
513  	if (rt2x00dev->ops->lib->write_tx_data)
514  		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
515  
516  	/*
517  	 * Map the skb to DMA.
518  	 */
519  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
520  	    rt2x00queue_map_txskb(entry))
521  		return -ENOMEM;
522  
523  	return 0;
524  }
525  
rt2x00queue_write_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)526  static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
527  					    struct txentry_desc *txdesc)
528  {
529  	struct data_queue *queue = entry->queue;
530  
531  	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
532  
533  	/*
534  	 * All processing on the frame has been completed, this means
535  	 * it is now ready to be dumped to userspace through debugfs.
536  	 */
537  	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
538  }
539  
rt2x00queue_kick_tx_queue(struct data_queue * queue,struct txentry_desc * txdesc)540  static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
541  				      struct txentry_desc *txdesc)
542  {
543  	/*
544  	 * Check if we need to kick the queue, there are however a few rules
545  	 *	1) Don't kick unless this is the last in frame in a burst.
546  	 *	   When the burst flag is set, this frame is always followed
547  	 *	   by another frame which in some way are related to eachother.
548  	 *	   This is true for fragments, RTS or CTS-to-self frames.
549  	 *	2) Rule 1 can be broken when the available entries
550  	 *	   in the queue are less then a certain threshold.
551  	 */
552  	if (rt2x00queue_threshold(queue) ||
553  	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
554  		queue->rt2x00dev->ops->lib->kick_queue(queue);
555  }
556  
rt2x00queue_bar_check(struct queue_entry * entry)557  static void rt2x00queue_bar_check(struct queue_entry *entry)
558  {
559  	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
560  	struct ieee80211_bar *bar = (void *) (entry->skb->data +
561  				    rt2x00dev->extra_tx_headroom);
562  	struct rt2x00_bar_list_entry *bar_entry;
563  
564  	if (likely(!ieee80211_is_back_req(bar->frame_control)))
565  		return;
566  
567  	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
568  
569  	/*
570  	 * If the alloc fails we still send the BAR out but just don't track
571  	 * it in our bar list. And as a result we will report it to mac80211
572  	 * back as failed.
573  	 */
574  	if (!bar_entry)
575  		return;
576  
577  	bar_entry->entry = entry;
578  	bar_entry->block_acked = 0;
579  
580  	/*
581  	 * Copy the relevant parts of the 802.11 BAR into out check list
582  	 * such that we can use RCU for less-overhead in the RX path since
583  	 * sending BARs and processing the according BlockAck should be
584  	 * the exception.
585  	 */
586  	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
587  	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
588  	bar_entry->control = bar->control;
589  	bar_entry->start_seq_num = bar->start_seq_num;
590  
591  	/*
592  	 * Insert BAR into our BAR check list.
593  	 */
594  	spin_lock_bh(&rt2x00dev->bar_list_lock);
595  	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
596  	spin_unlock_bh(&rt2x00dev->bar_list_lock);
597  }
598  
rt2x00queue_write_tx_frame(struct data_queue * queue,struct sk_buff * skb,struct ieee80211_sta * sta,bool local)599  int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
600  			       struct ieee80211_sta *sta, bool local)
601  {
602  	struct ieee80211_tx_info *tx_info;
603  	struct queue_entry *entry;
604  	struct txentry_desc txdesc;
605  	struct skb_frame_desc *skbdesc;
606  	u8 rate_idx, rate_flags;
607  	int ret = 0;
608  
609  	/*
610  	 * Copy all TX descriptor information into txdesc,
611  	 * after that we are free to use the skb->cb array
612  	 * for our information.
613  	 */
614  	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
615  
616  	/*
617  	 * All information is retrieved from the skb->cb array,
618  	 * now we should claim ownership of the driver part of that
619  	 * array, preserving the bitrate index and flags.
620  	 */
621  	tx_info = IEEE80211_SKB_CB(skb);
622  	rate_idx = tx_info->control.rates[0].idx;
623  	rate_flags = tx_info->control.rates[0].flags;
624  	skbdesc = get_skb_frame_desc(skb);
625  	memset(skbdesc, 0, sizeof(*skbdesc));
626  	skbdesc->tx_rate_idx = rate_idx;
627  	skbdesc->tx_rate_flags = rate_flags;
628  
629  	if (local)
630  		skbdesc->flags |= SKBDESC_NOT_MAC80211;
631  
632  	/*
633  	 * When hardware encryption is supported, and this frame
634  	 * is to be encrypted, we should strip the IV/EIV data from
635  	 * the frame so we can provide it to the driver separately.
636  	 */
637  	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
638  	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
639  		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
640  			rt2x00crypto_tx_copy_iv(skb, &txdesc);
641  		else
642  			rt2x00crypto_tx_remove_iv(skb, &txdesc);
643  	}
644  
645  	/*
646  	 * When DMA allocation is required we should guarantee to the
647  	 * driver that the DMA is aligned to a 4-byte boundary.
648  	 * However some drivers require L2 padding to pad the payload
649  	 * rather then the header. This could be a requirement for
650  	 * PCI and USB devices, while header alignment only is valid
651  	 * for PCI devices.
652  	 */
653  	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
654  		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
655  	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
656  		rt2x00queue_align_frame(skb);
657  
658  	/*
659  	 * That function must be called with bh disabled.
660  	 */
661  	spin_lock(&queue->tx_lock);
662  
663  	if (unlikely(rt2x00queue_full(queue))) {
664  		rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
665  			   queue->qid);
666  		ret = -ENOBUFS;
667  		goto out;
668  	}
669  
670  	entry = rt2x00queue_get_entry(queue, Q_INDEX);
671  
672  	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
673  				      &entry->flags))) {
674  		rt2x00_err(queue->rt2x00dev,
675  			   "Arrived at non-free entry in the non-full queue %d\n"
676  			   "Please file bug report to %s\n",
677  			   queue->qid, DRV_PROJECT);
678  		ret = -EINVAL;
679  		goto out;
680  	}
681  
682  	entry->skb = skb;
683  
684  	/*
685  	 * It could be possible that the queue was corrupted and this
686  	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
687  	 * this frame will simply be dropped.
688  	 */
689  	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
690  		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
691  		entry->skb = NULL;
692  		ret = -EIO;
693  		goto out;
694  	}
695  
696  	/*
697  	 * Put BlockAckReqs into our check list for driver BA processing.
698  	 */
699  	rt2x00queue_bar_check(entry);
700  
701  	set_bit(ENTRY_DATA_PENDING, &entry->flags);
702  
703  	rt2x00queue_index_inc(entry, Q_INDEX);
704  	rt2x00queue_write_tx_descriptor(entry, &txdesc);
705  	rt2x00queue_kick_tx_queue(queue, &txdesc);
706  
707  out:
708  	/*
709  	 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
710  	 * do this under queue->tx_lock. Bottom halve was already disabled
711  	 * before ieee80211_xmit() call.
712  	 */
713  	if (rt2x00queue_threshold(queue))
714  		rt2x00queue_pause_queue(queue);
715  
716  	spin_unlock(&queue->tx_lock);
717  	return ret;
718  }
719  
rt2x00queue_clear_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)720  int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
721  			     struct ieee80211_vif *vif)
722  {
723  	struct rt2x00_intf *intf = vif_to_intf(vif);
724  
725  	if (unlikely(!intf->beacon))
726  		return -ENOBUFS;
727  
728  	/*
729  	 * Clean up the beacon skb.
730  	 */
731  	rt2x00queue_free_skb(intf->beacon);
732  
733  	/*
734  	 * Clear beacon (single bssid devices don't need to clear the beacon
735  	 * since the beacon queue will get stopped anyway).
736  	 */
737  	if (rt2x00dev->ops->lib->clear_beacon)
738  		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
739  
740  	return 0;
741  }
742  
rt2x00queue_update_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)743  int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
744  			      struct ieee80211_vif *vif)
745  {
746  	struct rt2x00_intf *intf = vif_to_intf(vif);
747  	struct skb_frame_desc *skbdesc;
748  	struct txentry_desc txdesc;
749  
750  	if (unlikely(!intf->beacon))
751  		return -ENOBUFS;
752  
753  	/*
754  	 * Clean up the beacon skb.
755  	 */
756  	rt2x00queue_free_skb(intf->beacon);
757  
758  	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif, 0);
759  	if (!intf->beacon->skb)
760  		return -ENOMEM;
761  
762  	/*
763  	 * Copy all TX descriptor information into txdesc,
764  	 * after that we are free to use the skb->cb array
765  	 * for our information.
766  	 */
767  	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
768  
769  	/*
770  	 * Fill in skb descriptor
771  	 */
772  	skbdesc = get_skb_frame_desc(intf->beacon->skb);
773  	memset(skbdesc, 0, sizeof(*skbdesc));
774  
775  	/*
776  	 * Send beacon to hardware.
777  	 */
778  	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
779  
780  	return 0;
781  
782  }
783  
rt2x00queue_for_each_entry(struct data_queue * queue,enum queue_index start,enum queue_index end,void * data,bool (* fn)(struct queue_entry * entry,void * data))784  bool rt2x00queue_for_each_entry(struct data_queue *queue,
785  				enum queue_index start,
786  				enum queue_index end,
787  				void *data,
788  				bool (*fn)(struct queue_entry *entry,
789  					   void *data))
790  {
791  	unsigned long irqflags;
792  	unsigned int index_start;
793  	unsigned int index_end;
794  	unsigned int i;
795  
796  	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
797  		rt2x00_err(queue->rt2x00dev,
798  			   "Entry requested from invalid index range (%d - %d)\n",
799  			   start, end);
800  		return true;
801  	}
802  
803  	/*
804  	 * Only protect the range we are going to loop over,
805  	 * if during our loop a extra entry is set to pending
806  	 * it should not be kicked during this run, since it
807  	 * is part of another TX operation.
808  	 */
809  	spin_lock_irqsave(&queue->index_lock, irqflags);
810  	index_start = queue->index[start];
811  	index_end = queue->index[end];
812  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
813  
814  	/*
815  	 * Start from the TX done pointer, this guarantees that we will
816  	 * send out all frames in the correct order.
817  	 */
818  	if (index_start < index_end) {
819  		for (i = index_start; i < index_end; i++) {
820  			if (fn(&queue->entries[i], data))
821  				return true;
822  		}
823  	} else {
824  		for (i = index_start; i < queue->limit; i++) {
825  			if (fn(&queue->entries[i], data))
826  				return true;
827  		}
828  
829  		for (i = 0; i < index_end; i++) {
830  			if (fn(&queue->entries[i], data))
831  				return true;
832  		}
833  	}
834  
835  	return false;
836  }
837  EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
838  
rt2x00queue_get_entry(struct data_queue * queue,enum queue_index index)839  struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
840  					  enum queue_index index)
841  {
842  	struct queue_entry *entry;
843  	unsigned long irqflags;
844  
845  	if (unlikely(index >= Q_INDEX_MAX)) {
846  		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
847  			   index);
848  		return NULL;
849  	}
850  
851  	spin_lock_irqsave(&queue->index_lock, irqflags);
852  
853  	entry = &queue->entries[queue->index[index]];
854  
855  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
856  
857  	return entry;
858  }
859  EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
860  
rt2x00queue_index_inc(struct queue_entry * entry,enum queue_index index)861  void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
862  {
863  	struct data_queue *queue = entry->queue;
864  	unsigned long irqflags;
865  
866  	if (unlikely(index >= Q_INDEX_MAX)) {
867  		rt2x00_err(queue->rt2x00dev,
868  			   "Index change on invalid index type (%d)\n", index);
869  		return;
870  	}
871  
872  	spin_lock_irqsave(&queue->index_lock, irqflags);
873  
874  	queue->index[index]++;
875  	if (queue->index[index] >= queue->limit)
876  		queue->index[index] = 0;
877  
878  	entry->last_action = jiffies;
879  
880  	if (index == Q_INDEX) {
881  		queue->length++;
882  	} else if (index == Q_INDEX_DONE) {
883  		queue->length--;
884  		queue->count++;
885  	}
886  
887  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
888  }
889  
rt2x00queue_pause_queue_nocheck(struct data_queue * queue)890  static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
891  {
892  	switch (queue->qid) {
893  	case QID_AC_VO:
894  	case QID_AC_VI:
895  	case QID_AC_BE:
896  	case QID_AC_BK:
897  		/*
898  		 * For TX queues, we have to disable the queue
899  		 * inside mac80211.
900  		 */
901  		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
902  		break;
903  	default:
904  		break;
905  	}
906  }
rt2x00queue_pause_queue(struct data_queue * queue)907  void rt2x00queue_pause_queue(struct data_queue *queue)
908  {
909  	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
910  	    !test_bit(QUEUE_STARTED, &queue->flags) ||
911  	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
912  		return;
913  
914  	rt2x00queue_pause_queue_nocheck(queue);
915  }
916  EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
917  
rt2x00queue_unpause_queue(struct data_queue * queue)918  void rt2x00queue_unpause_queue(struct data_queue *queue)
919  {
920  	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
921  	    !test_bit(QUEUE_STARTED, &queue->flags) ||
922  	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
923  		return;
924  
925  	switch (queue->qid) {
926  	case QID_AC_VO:
927  	case QID_AC_VI:
928  	case QID_AC_BE:
929  	case QID_AC_BK:
930  		/*
931  		 * For TX queues, we have to enable the queue
932  		 * inside mac80211.
933  		 */
934  		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
935  		break;
936  	case QID_RX:
937  		/*
938  		 * For RX we need to kick the queue now in order to
939  		 * receive frames.
940  		 */
941  		queue->rt2x00dev->ops->lib->kick_queue(queue);
942  		break;
943  	default:
944  		break;
945  	}
946  }
947  EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
948  
rt2x00queue_start_queue(struct data_queue * queue)949  void rt2x00queue_start_queue(struct data_queue *queue)
950  {
951  	mutex_lock(&queue->status_lock);
952  
953  	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
954  	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
955  		mutex_unlock(&queue->status_lock);
956  		return;
957  	}
958  
959  	set_bit(QUEUE_PAUSED, &queue->flags);
960  
961  	queue->rt2x00dev->ops->lib->start_queue(queue);
962  
963  	rt2x00queue_unpause_queue(queue);
964  
965  	mutex_unlock(&queue->status_lock);
966  }
967  EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
968  
rt2x00queue_stop_queue(struct data_queue * queue)969  void rt2x00queue_stop_queue(struct data_queue *queue)
970  {
971  	mutex_lock(&queue->status_lock);
972  
973  	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
974  		mutex_unlock(&queue->status_lock);
975  		return;
976  	}
977  
978  	rt2x00queue_pause_queue_nocheck(queue);
979  
980  	queue->rt2x00dev->ops->lib->stop_queue(queue);
981  
982  	mutex_unlock(&queue->status_lock);
983  }
984  EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
985  
rt2x00queue_flush_queue(struct data_queue * queue,bool drop)986  void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
987  {
988  	bool tx_queue =
989  		(queue->qid == QID_AC_VO) ||
990  		(queue->qid == QID_AC_VI) ||
991  		(queue->qid == QID_AC_BE) ||
992  		(queue->qid == QID_AC_BK);
993  
994  	if (rt2x00queue_empty(queue))
995  		return;
996  
997  	/*
998  	 * If we are not supposed to drop any pending
999  	 * frames, this means we must force a start (=kick)
1000  	 * to the queue to make sure the hardware will
1001  	 * start transmitting.
1002  	 */
1003  	if (!drop && tx_queue)
1004  		queue->rt2x00dev->ops->lib->kick_queue(queue);
1005  
1006  	/*
1007  	 * Check if driver supports flushing, if that is the case we can
1008  	 * defer the flushing to the driver. Otherwise we must use the
1009  	 * alternative which just waits for the queue to become empty.
1010  	 */
1011  	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1012  		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1013  
1014  	/*
1015  	 * The queue flush has failed...
1016  	 */
1017  	if (unlikely(!rt2x00queue_empty(queue)))
1018  		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1019  			    queue->qid);
1020  }
1021  EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1022  
rt2x00queue_start_queues(struct rt2x00_dev * rt2x00dev)1023  void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1024  {
1025  	struct data_queue *queue;
1026  
1027  	/*
1028  	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1029  	 * for each queue after is has been properly initialized.
1030  	 */
1031  	tx_queue_for_each(rt2x00dev, queue)
1032  		rt2x00queue_start_queue(queue);
1033  
1034  	rt2x00queue_start_queue(rt2x00dev->rx);
1035  }
1036  EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1037  
rt2x00queue_stop_queues(struct rt2x00_dev * rt2x00dev)1038  void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1039  {
1040  	struct data_queue *queue;
1041  
1042  	/*
1043  	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1044  	 * as well, but we are completely shutting doing everything
1045  	 * now, so it is much safer to stop all TX queues at once,
1046  	 * and use rt2x00queue_stop_queue for cleaning up.
1047  	 */
1048  	ieee80211_stop_queues(rt2x00dev->hw);
1049  
1050  	tx_queue_for_each(rt2x00dev, queue)
1051  		rt2x00queue_stop_queue(queue);
1052  
1053  	rt2x00queue_stop_queue(rt2x00dev->rx);
1054  }
1055  EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1056  
rt2x00queue_flush_queues(struct rt2x00_dev * rt2x00dev,bool drop)1057  void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1058  {
1059  	struct data_queue *queue;
1060  
1061  	tx_queue_for_each(rt2x00dev, queue)
1062  		rt2x00queue_flush_queue(queue, drop);
1063  
1064  	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1065  }
1066  EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1067  
rt2x00queue_reset(struct data_queue * queue)1068  static void rt2x00queue_reset(struct data_queue *queue)
1069  {
1070  	unsigned long irqflags;
1071  	unsigned int i;
1072  
1073  	spin_lock_irqsave(&queue->index_lock, irqflags);
1074  
1075  	queue->count = 0;
1076  	queue->length = 0;
1077  
1078  	for (i = 0; i < Q_INDEX_MAX; i++)
1079  		queue->index[i] = 0;
1080  
1081  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1082  }
1083  
rt2x00queue_init_queues(struct rt2x00_dev * rt2x00dev)1084  void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1085  {
1086  	struct data_queue *queue;
1087  	unsigned int i;
1088  
1089  	queue_for_each(rt2x00dev, queue) {
1090  		rt2x00queue_reset(queue);
1091  
1092  		for (i = 0; i < queue->limit; i++)
1093  			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1094  	}
1095  }
1096  
rt2x00queue_alloc_entries(struct data_queue * queue)1097  static int rt2x00queue_alloc_entries(struct data_queue *queue)
1098  {
1099  	struct queue_entry *entries;
1100  	unsigned int entry_size;
1101  	unsigned int i;
1102  
1103  	rt2x00queue_reset(queue);
1104  
1105  	/*
1106  	 * Allocate all queue entries.
1107  	 */
1108  	entry_size = sizeof(*entries) + queue->priv_size;
1109  	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1110  	if (!entries)
1111  		return -ENOMEM;
1112  
1113  #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1114  	(((char *)(__base)) + ((__limit) * (__esize)) + \
1115  	    ((__index) * (__psize)))
1116  
1117  	for (i = 0; i < queue->limit; i++) {
1118  		entries[i].flags = 0;
1119  		entries[i].queue = queue;
1120  		entries[i].skb = NULL;
1121  		entries[i].entry_idx = i;
1122  		entries[i].priv_data =
1123  		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1124  					    sizeof(*entries), queue->priv_size);
1125  	}
1126  
1127  #undef QUEUE_ENTRY_PRIV_OFFSET
1128  
1129  	queue->entries = entries;
1130  
1131  	return 0;
1132  }
1133  
rt2x00queue_free_skbs(struct data_queue * queue)1134  static void rt2x00queue_free_skbs(struct data_queue *queue)
1135  {
1136  	unsigned int i;
1137  
1138  	if (!queue->entries)
1139  		return;
1140  
1141  	for (i = 0; i < queue->limit; i++) {
1142  		rt2x00queue_free_skb(&queue->entries[i]);
1143  	}
1144  }
1145  
rt2x00queue_alloc_rxskbs(struct data_queue * queue)1146  static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1147  {
1148  	unsigned int i;
1149  	struct sk_buff *skb;
1150  
1151  	for (i = 0; i < queue->limit; i++) {
1152  		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1153  		if (!skb)
1154  			return -ENOMEM;
1155  		queue->entries[i].skb = skb;
1156  	}
1157  
1158  	return 0;
1159  }
1160  
rt2x00queue_initialize(struct rt2x00_dev * rt2x00dev)1161  int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1162  {
1163  	struct data_queue *queue;
1164  	int status;
1165  
1166  	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1167  	if (status)
1168  		goto exit;
1169  
1170  	tx_queue_for_each(rt2x00dev, queue) {
1171  		status = rt2x00queue_alloc_entries(queue);
1172  		if (status)
1173  			goto exit;
1174  	}
1175  
1176  	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1177  	if (status)
1178  		goto exit;
1179  
1180  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1181  		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1182  		if (status)
1183  			goto exit;
1184  	}
1185  
1186  	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1187  	if (status)
1188  		goto exit;
1189  
1190  	return 0;
1191  
1192  exit:
1193  	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1194  
1195  	rt2x00queue_uninitialize(rt2x00dev);
1196  
1197  	return status;
1198  }
1199  
rt2x00queue_uninitialize(struct rt2x00_dev * rt2x00dev)1200  void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1201  {
1202  	struct data_queue *queue;
1203  
1204  	rt2x00queue_free_skbs(rt2x00dev->rx);
1205  
1206  	queue_for_each(rt2x00dev, queue) {
1207  		kfree(queue->entries);
1208  		queue->entries = NULL;
1209  	}
1210  }
1211  
rt2x00queue_init(struct rt2x00_dev * rt2x00dev,struct data_queue * queue,enum data_queue_qid qid)1212  static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1213  			     struct data_queue *queue, enum data_queue_qid qid)
1214  {
1215  	mutex_init(&queue->status_lock);
1216  	spin_lock_init(&queue->tx_lock);
1217  	spin_lock_init(&queue->index_lock);
1218  
1219  	queue->rt2x00dev = rt2x00dev;
1220  	queue->qid = qid;
1221  	queue->txop = 0;
1222  	queue->aifs = 2;
1223  	queue->cw_min = 5;
1224  	queue->cw_max = 10;
1225  
1226  	rt2x00dev->ops->queue_init(queue);
1227  
1228  	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1229  }
1230  
rt2x00queue_allocate(struct rt2x00_dev * rt2x00dev)1231  int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1232  {
1233  	struct data_queue *queue;
1234  	enum data_queue_qid qid;
1235  	unsigned int req_atim =
1236  	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1237  
1238  	/*
1239  	 * We need the following queues:
1240  	 * RX: 1
1241  	 * TX: ops->tx_queues
1242  	 * Beacon: 1
1243  	 * Atim: 1 (if required)
1244  	 */
1245  	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1246  
1247  	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1248  	if (!queue)
1249  		return -ENOMEM;
1250  
1251  	/*
1252  	 * Initialize pointers
1253  	 */
1254  	rt2x00dev->rx = queue;
1255  	rt2x00dev->tx = &queue[1];
1256  	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1257  	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1258  
1259  	/*
1260  	 * Initialize queue parameters.
1261  	 * RX: qid = QID_RX
1262  	 * TX: qid = QID_AC_VO + index
1263  	 * TX: cw_min: 2^5 = 32.
1264  	 * TX: cw_max: 2^10 = 1024.
1265  	 * BCN: qid = QID_BEACON
1266  	 * ATIM: qid = QID_ATIM
1267  	 */
1268  	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1269  
1270  	qid = QID_AC_VO;
1271  	tx_queue_for_each(rt2x00dev, queue)
1272  		rt2x00queue_init(rt2x00dev, queue, qid++);
1273  
1274  	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1275  	if (req_atim)
1276  		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1277  
1278  	return 0;
1279  }
1280  
rt2x00queue_free(struct rt2x00_dev * rt2x00dev)1281  void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1282  {
1283  	kfree(rt2x00dev->rx);
1284  	rt2x00dev->rx = NULL;
1285  	rt2x00dev->tx = NULL;
1286  	rt2x00dev->bcn = NULL;
1287  }
1288