1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Remote Processor Framework
4   *
5   * Copyright (C) 2011 Texas Instruments, Inc.
6   * Copyright (C) 2011 Google, Inc.
7   *
8   * Ohad Ben-Cohen <ohad@wizery.com>
9   * Brian Swetland <swetland@google.com>
10   * Mark Grosen <mgrosen@ti.com>
11   * Fernando Guzman Lugo <fernando.lugo@ti.com>
12   * Suman Anna <s-anna@ti.com>
13   * Robert Tivy <rtivy@ti.com>
14   * Armando Uribe De Leon <x0095078@ti.com>
15   */
16  
17  #define pr_fmt(fmt)    "%s: " fmt, __func__
18  
19  #include <linux/delay.h>
20  #include <linux/kernel.h>
21  #include <linux/module.h>
22  #include <linux/device.h>
23  #include <linux/panic_notifier.h>
24  #include <linux/slab.h>
25  #include <linux/mutex.h>
26  #include <linux/dma-mapping.h>
27  #include <linux/firmware.h>
28  #include <linux/string.h>
29  #include <linux/debugfs.h>
30  #include <linux/rculist.h>
31  #include <linux/remoteproc.h>
32  #include <linux/iommu.h>
33  #include <linux/idr.h>
34  #include <linux/elf.h>
35  #include <linux/crc32.h>
36  #include <linux/of_platform.h>
37  #include <linux/of_reserved_mem.h>
38  #include <linux/virtio_ids.h>
39  #include <linux/virtio_ring.h>
40  #include <asm/byteorder.h>
41  #include <linux/platform_device.h>
42  
43  #include "remoteproc_internal.h"
44  
45  #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46  
47  static DEFINE_MUTEX(rproc_list_mutex);
48  static LIST_HEAD(rproc_list);
49  static struct notifier_block rproc_panic_nb;
50  
51  typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52  				 void *, int offset, int avail);
53  
54  static int rproc_alloc_carveout(struct rproc *rproc,
55  				struct rproc_mem_entry *mem);
56  static int rproc_release_carveout(struct rproc *rproc,
57  				  struct rproc_mem_entry *mem);
58  
59  /* Unique indices for remoteproc devices */
60  static DEFINE_IDA(rproc_dev_index);
61  static struct workqueue_struct *rproc_recovery_wq;
62  
63  static const char * const rproc_crash_names[] = {
64  	[RPROC_MMUFAULT]	= "mmufault",
65  	[RPROC_WATCHDOG]	= "watchdog",
66  	[RPROC_FATAL_ERROR]	= "fatal error",
67  };
68  
69  /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)70  static const char *rproc_crash_to_string(enum rproc_crash_type type)
71  {
72  	if (type < ARRAY_SIZE(rproc_crash_names))
73  		return rproc_crash_names[type];
74  	return "unknown";
75  }
76  
77  /*
78   * This is the IOMMU fault handler we register with the IOMMU API
79   * (when relevant; not all remote processors access memory through
80   * an IOMMU).
81   *
82   * IOMMU core will invoke this handler whenever the remote processor
83   * will try to access an unmapped device address.
84   */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)85  static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86  			     unsigned long iova, int flags, void *token)
87  {
88  	struct rproc *rproc = token;
89  
90  	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91  
92  	rproc_report_crash(rproc, RPROC_MMUFAULT);
93  
94  	/*
95  	 * Let the iommu core know we're not really handling this fault;
96  	 * we just used it as a recovery trigger.
97  	 */
98  	return -ENOSYS;
99  }
100  
rproc_enable_iommu(struct rproc * rproc)101  static int rproc_enable_iommu(struct rproc *rproc)
102  {
103  	struct iommu_domain *domain;
104  	struct device *dev = rproc->dev.parent;
105  	int ret;
106  
107  	if (!rproc->has_iommu) {
108  		dev_dbg(dev, "iommu not present\n");
109  		return 0;
110  	}
111  
112  	domain = iommu_domain_alloc(dev->bus);
113  	if (!domain) {
114  		dev_err(dev, "can't alloc iommu domain\n");
115  		return -ENOMEM;
116  	}
117  
118  	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119  
120  	ret = iommu_attach_device(domain, dev);
121  	if (ret) {
122  		dev_err(dev, "can't attach iommu device: %d\n", ret);
123  		goto free_domain;
124  	}
125  
126  	rproc->domain = domain;
127  
128  	return 0;
129  
130  free_domain:
131  	iommu_domain_free(domain);
132  	return ret;
133  }
134  
rproc_disable_iommu(struct rproc * rproc)135  static void rproc_disable_iommu(struct rproc *rproc)
136  {
137  	struct iommu_domain *domain = rproc->domain;
138  	struct device *dev = rproc->dev.parent;
139  
140  	if (!domain)
141  		return;
142  
143  	iommu_detach_device(domain, dev);
144  	iommu_domain_free(domain);
145  }
146  
rproc_va_to_pa(void * cpu_addr)147  phys_addr_t rproc_va_to_pa(void *cpu_addr)
148  {
149  	/*
150  	 * Return physical address according to virtual address location
151  	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152  	 * - in kernel: if region allocated in generic dma memory pool
153  	 */
154  	if (is_vmalloc_addr(cpu_addr)) {
155  		return page_to_phys(vmalloc_to_page(cpu_addr)) +
156  				    offset_in_page(cpu_addr);
157  	}
158  
159  	WARN_ON(!virt_addr_valid(cpu_addr));
160  	return virt_to_phys(cpu_addr);
161  }
162  EXPORT_SYMBOL(rproc_va_to_pa);
163  
164  /**
165   * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166   * @rproc: handle of a remote processor
167   * @da: remoteproc device address to translate
168   * @len: length of the memory region @da is pointing to
169   * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170   *
171   * Some remote processors will ask us to allocate them physically contiguous
172   * memory regions (which we call "carveouts"), and map them to specific
173   * device addresses (which are hardcoded in the firmware). They may also have
174   * dedicated memory regions internal to the processors, and use them either
175   * exclusively or alongside carveouts.
176   *
177   * They may then ask us to copy objects into specific device addresses (e.g.
178   * code/data sections) or expose us certain symbols in other device address
179   * (e.g. their trace buffer).
180   *
181   * This function is a helper function with which we can go over the allocated
182   * carveouts and translate specific device addresses to kernel virtual addresses
183   * so we can access the referenced memory. This function also allows to perform
184   * translations on the internal remoteproc memory regions through a platform
185   * implementation specific da_to_va ops, if present.
186   *
187   * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188   * but only on kernel direct mapped RAM memory. Instead, we're just using
189   * here the output of the DMA API for the carveouts, which should be more
190   * correct.
191   *
192   * Return: a valid kernel address on success or NULL on failure
193   */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)194  void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195  {
196  	struct rproc_mem_entry *carveout;
197  	void *ptr = NULL;
198  
199  	if (rproc->ops->da_to_va) {
200  		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201  		if (ptr)
202  			goto out;
203  	}
204  
205  	list_for_each_entry(carveout, &rproc->carveouts, node) {
206  		int offset = da - carveout->da;
207  
208  		/*  Verify that carveout is allocated */
209  		if (!carveout->va)
210  			continue;
211  
212  		/* try next carveout if da is too small */
213  		if (offset < 0)
214  			continue;
215  
216  		/* try next carveout if da is too large */
217  		if (offset + len > carveout->len)
218  			continue;
219  
220  		ptr = carveout->va + offset;
221  
222  		if (is_iomem)
223  			*is_iomem = carveout->is_iomem;
224  
225  		break;
226  	}
227  
228  out:
229  	return ptr;
230  }
231  EXPORT_SYMBOL(rproc_da_to_va);
232  
233  /**
234   * rproc_find_carveout_by_name() - lookup the carveout region by a name
235   * @rproc: handle of a remote processor
236   * @name: carveout name to find (format string)
237   * @...: optional parameters matching @name string
238   *
239   * Platform driver has the capability to register some pre-allacoted carveout
240   * (physically contiguous memory regions) before rproc firmware loading and
241   * associated resource table analysis. These regions may be dedicated memory
242   * regions internal to the coprocessor or specified DDR region with specific
243   * attributes
244   *
245   * This function is a helper function with which we can go over the
246   * allocated carveouts and return associated region characteristics like
247   * coprocessor address, length or processor virtual address.
248   *
249   * Return: a valid pointer on carveout entry on success or NULL on failure.
250   */
251  __printf(2, 3)
252  struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)253  rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254  {
255  	va_list args;
256  	char _name[32];
257  	struct rproc_mem_entry *carveout, *mem = NULL;
258  
259  	if (!name)
260  		return NULL;
261  
262  	va_start(args, name);
263  	vsnprintf(_name, sizeof(_name), name, args);
264  	va_end(args);
265  
266  	list_for_each_entry(carveout, &rproc->carveouts, node) {
267  		/* Compare carveout and requested names */
268  		if (!strcmp(carveout->name, _name)) {
269  			mem = carveout;
270  			break;
271  		}
272  	}
273  
274  	return mem;
275  }
276  
277  /**
278   * rproc_check_carveout_da() - Check specified carveout da configuration
279   * @rproc: handle of a remote processor
280   * @mem: pointer on carveout to check
281   * @da: area device address
282   * @len: associated area size
283   *
284   * This function is a helper function to verify requested device area (couple
285   * da, len) is part of specified carveout.
286   * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287   * checked.
288   *
289   * Return: 0 if carveout matches request else error
290   */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)291  static int rproc_check_carveout_da(struct rproc *rproc,
292  				   struct rproc_mem_entry *mem, u32 da, u32 len)
293  {
294  	struct device *dev = &rproc->dev;
295  	int delta;
296  
297  	/* Check requested resource length */
298  	if (len > mem->len) {
299  		dev_err(dev, "Registered carveout doesn't fit len request\n");
300  		return -EINVAL;
301  	}
302  
303  	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304  		/* Address doesn't match registered carveout configuration */
305  		return -EINVAL;
306  	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307  		delta = da - mem->da;
308  
309  		/* Check requested resource belongs to registered carveout */
310  		if (delta < 0) {
311  			dev_err(dev,
312  				"Registered carveout doesn't fit da request\n");
313  			return -EINVAL;
314  		}
315  
316  		if (delta + len > mem->len) {
317  			dev_err(dev,
318  				"Registered carveout doesn't fit len request\n");
319  			return -EINVAL;
320  		}
321  	}
322  
323  	return 0;
324  }
325  
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)326  int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327  {
328  	struct rproc *rproc = rvdev->rproc;
329  	struct device *dev = &rproc->dev;
330  	struct rproc_vring *rvring = &rvdev->vring[i];
331  	struct fw_rsc_vdev *rsc;
332  	int ret, notifyid;
333  	struct rproc_mem_entry *mem;
334  	size_t size;
335  
336  	/* actual size of vring (in bytes) */
337  	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
338  
339  	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340  
341  	/* Search for pre-registered carveout */
342  	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343  					  i);
344  	if (mem) {
345  		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346  			return -ENOMEM;
347  	} else {
348  		/* Register carveout in list */
349  		mem = rproc_mem_entry_init(dev, NULL, 0,
350  					   size, rsc->vring[i].da,
351  					   rproc_alloc_carveout,
352  					   rproc_release_carveout,
353  					   "vdev%dvring%d",
354  					   rvdev->index, i);
355  		if (!mem) {
356  			dev_err(dev, "Can't allocate memory entry structure\n");
357  			return -ENOMEM;
358  		}
359  
360  		rproc_add_carveout(rproc, mem);
361  	}
362  
363  	/*
364  	 * Assign an rproc-wide unique index for this vring
365  	 * TODO: assign a notifyid for rvdev updates as well
366  	 * TODO: support predefined notifyids (via resource table)
367  	 */
368  	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369  	if (ret < 0) {
370  		dev_err(dev, "idr_alloc failed: %d\n", ret);
371  		return ret;
372  	}
373  	notifyid = ret;
374  
375  	/* Potentially bump max_notifyid */
376  	if (notifyid > rproc->max_notifyid)
377  		rproc->max_notifyid = notifyid;
378  
379  	rvring->notifyid = notifyid;
380  
381  	/* Let the rproc know the notifyid of this vring.*/
382  	rsc->vring[i].notifyid = notifyid;
383  	return 0;
384  }
385  
386  int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)387  rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388  {
389  	struct rproc *rproc = rvdev->rproc;
390  	struct device *dev = &rproc->dev;
391  	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392  	struct rproc_vring *rvring = &rvdev->vring[i];
393  
394  	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395  		i, vring->da, vring->num, vring->align);
396  
397  	/* verify queue size and vring alignment are sane */
398  	if (!vring->num || !vring->align) {
399  		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400  			vring->num, vring->align);
401  		return -EINVAL;
402  	}
403  
404  	rvring->num = vring->num;
405  	rvring->align = vring->align;
406  	rvring->rvdev = rvdev;
407  
408  	return 0;
409  }
410  
rproc_free_vring(struct rproc_vring * rvring)411  void rproc_free_vring(struct rproc_vring *rvring)
412  {
413  	struct rproc *rproc = rvring->rvdev->rproc;
414  	int idx = rvring - rvring->rvdev->vring;
415  	struct fw_rsc_vdev *rsc;
416  
417  	idr_remove(&rproc->notifyids, rvring->notifyid);
418  
419  	/*
420  	 * At this point rproc_stop() has been called and the installed resource
421  	 * table in the remote processor memory may no longer be accessible. As
422  	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423  	 * resource table (rproc->cached_table).  The cached resource table is
424  	 * only available when a remote processor has been booted by the
425  	 * remoteproc core, otherwise it is NULL.
426  	 *
427  	 * Based on the above, reset the virtio device section in the cached
428  	 * resource table only if there is one to work with.
429  	 */
430  	if (rproc->table_ptr) {
431  		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432  		rsc->vring[idx].da = 0;
433  		rsc->vring[idx].notifyid = -1;
434  	}
435  }
436  
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)437  void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
438  {
439  	if (rvdev && rproc)
440  		list_add_tail(&rvdev->node, &rproc->rvdevs);
441  }
442  
rproc_remove_rvdev(struct rproc_vdev * rvdev)443  void rproc_remove_rvdev(struct rproc_vdev *rvdev)
444  {
445  	if (rvdev)
446  		list_del(&rvdev->node);
447  }
448  /**
449   * rproc_handle_vdev() - handle a vdev fw resource
450   * @rproc: the remote processor
451   * @ptr: the vring resource descriptor
452   * @offset: offset of the resource entry
453   * @avail: size of available data (for sanity checking the image)
454   *
455   * This resource entry requests the host to statically register a virtio
456   * device (vdev), and setup everything needed to support it. It contains
457   * everything needed to make it possible: the virtio device id, virtio
458   * device features, vrings information, virtio config space, etc...
459   *
460   * Before registering the vdev, the vrings are allocated from non-cacheable
461   * physically contiguous memory. Currently we only support two vrings per
462   * remote processor (temporary limitation). We might also want to consider
463   * doing the vring allocation only later when ->find_vqs() is invoked, and
464   * then release them upon ->del_vqs().
465   *
466   * Note: @da is currently not really handled correctly: we dynamically
467   * allocate it using the DMA API, ignoring requested hard coded addresses,
468   * and we don't take care of any required IOMMU programming. This is all
469   * going to be taken care of when the generic iommu-based DMA API will be
470   * merged. Meanwhile, statically-addressed iommu-based firmware images should
471   * use RSC_DEVMEM resource entries to map their required @da to the physical
472   * address of their base CMA region (ouch, hacky!).
473   *
474   * Return: 0 on success, or an appropriate error code otherwise
475   */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)476  static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
477  			     int offset, int avail)
478  {
479  	struct fw_rsc_vdev *rsc = ptr;
480  	struct device *dev = &rproc->dev;
481  	struct rproc_vdev *rvdev;
482  	size_t rsc_size;
483  	struct rproc_vdev_data rvdev_data;
484  	struct platform_device *pdev;
485  
486  	/* make sure resource isn't truncated */
487  	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
488  	if (size_add(rsc_size, rsc->config_len) > avail) {
489  		dev_err(dev, "vdev rsc is truncated\n");
490  		return -EINVAL;
491  	}
492  
493  	/* make sure reserved bytes are zeroes */
494  	if (rsc->reserved[0] || rsc->reserved[1]) {
495  		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
496  		return -EINVAL;
497  	}
498  
499  	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500  		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501  
502  	/* we currently support only two vrings per rvdev */
503  	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
504  		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
505  		return -EINVAL;
506  	}
507  
508  	rvdev_data.id = rsc->id;
509  	rvdev_data.index = rproc->nb_vdev++;
510  	rvdev_data.rsc_offset = offset;
511  	rvdev_data.rsc = rsc;
512  
513  	/*
514  	 * When there is more than one remote processor, rproc->nb_vdev number is
515  	 * same for each separate instances of "rproc". If rvdev_data.index is used
516  	 * as device id, then we get duplication in sysfs, so need to use
517  	 * PLATFORM_DEVID_AUTO to auto select device id.
518  	 */
519  	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
520  					     sizeof(rvdev_data));
521  	if (IS_ERR(pdev)) {
522  		dev_err(dev, "failed to create rproc-virtio device\n");
523  		return PTR_ERR(pdev);
524  	}
525  
526  	return 0;
527  }
528  
529  /**
530   * rproc_handle_trace() - handle a shared trace buffer resource
531   * @rproc: the remote processor
532   * @ptr: the trace resource descriptor
533   * @offset: offset of the resource entry
534   * @avail: size of available data (for sanity checking the image)
535   *
536   * In case the remote processor dumps trace logs into memory,
537   * export it via debugfs.
538   *
539   * Currently, the 'da' member of @rsc should contain the device address
540   * where the remote processor is dumping the traces. Later we could also
541   * support dynamically allocating this address using the generic
542   * DMA API (but currently there isn't a use case for that).
543   *
544   * Return: 0 on success, or an appropriate error code otherwise
545   */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)546  static int rproc_handle_trace(struct rproc *rproc, void *ptr,
547  			      int offset, int avail)
548  {
549  	struct fw_rsc_trace *rsc = ptr;
550  	struct rproc_debug_trace *trace;
551  	struct device *dev = &rproc->dev;
552  	char name[15];
553  
554  	if (sizeof(*rsc) > avail) {
555  		dev_err(dev, "trace rsc is truncated\n");
556  		return -EINVAL;
557  	}
558  
559  	/* make sure reserved bytes are zeroes */
560  	if (rsc->reserved) {
561  		dev_err(dev, "trace rsc has non zero reserved bytes\n");
562  		return -EINVAL;
563  	}
564  
565  	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
566  	if (!trace)
567  		return -ENOMEM;
568  
569  	/* set the trace buffer dma properties */
570  	trace->trace_mem.len = rsc->len;
571  	trace->trace_mem.da = rsc->da;
572  
573  	/* set pointer on rproc device */
574  	trace->rproc = rproc;
575  
576  	/* make sure snprintf always null terminates, even if truncating */
577  	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
578  
579  	/* create the debugfs entry */
580  	trace->tfile = rproc_create_trace_file(name, rproc, trace);
581  
582  	list_add_tail(&trace->node, &rproc->traces);
583  
584  	rproc->num_traces++;
585  
586  	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
587  		name, rsc->da, rsc->len);
588  
589  	return 0;
590  }
591  
592  /**
593   * rproc_handle_devmem() - handle devmem resource entry
594   * @rproc: remote processor handle
595   * @ptr: the devmem resource entry
596   * @offset: offset of the resource entry
597   * @avail: size of available data (for sanity checking the image)
598   *
599   * Remote processors commonly need to access certain on-chip peripherals.
600   *
601   * Some of these remote processors access memory via an iommu device,
602   * and might require us to configure their iommu before they can access
603   * the on-chip peripherals they need.
604   *
605   * This resource entry is a request to map such a peripheral device.
606   *
607   * These devmem entries will contain the physical address of the device in
608   * the 'pa' member. If a specific device address is expected, then 'da' will
609   * contain it (currently this is the only use case supported). 'len' will
610   * contain the size of the physical region we need to map.
611   *
612   * Currently we just "trust" those devmem entries to contain valid physical
613   * addresses, but this is going to change: we want the implementations to
614   * tell us ranges of physical addresses the firmware is allowed to request,
615   * and not allow firmwares to request access to physical addresses that
616   * are outside those ranges.
617   *
618   * Return: 0 on success, or an appropriate error code otherwise
619   */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)620  static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
621  			       int offset, int avail)
622  {
623  	struct fw_rsc_devmem *rsc = ptr;
624  	struct rproc_mem_entry *mapping;
625  	struct device *dev = &rproc->dev;
626  	int ret;
627  
628  	/* no point in handling this resource without a valid iommu domain */
629  	if (!rproc->domain)
630  		return -EINVAL;
631  
632  	if (sizeof(*rsc) > avail) {
633  		dev_err(dev, "devmem rsc is truncated\n");
634  		return -EINVAL;
635  	}
636  
637  	/* make sure reserved bytes are zeroes */
638  	if (rsc->reserved) {
639  		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
640  		return -EINVAL;
641  	}
642  
643  	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
644  	if (!mapping)
645  		return -ENOMEM;
646  
647  	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
648  			GFP_KERNEL);
649  	if (ret) {
650  		dev_err(dev, "failed to map devmem: %d\n", ret);
651  		goto out;
652  	}
653  
654  	/*
655  	 * We'll need this info later when we'll want to unmap everything
656  	 * (e.g. on shutdown).
657  	 *
658  	 * We can't trust the remote processor not to change the resource
659  	 * table, so we must maintain this info independently.
660  	 */
661  	mapping->da = rsc->da;
662  	mapping->len = rsc->len;
663  	list_add_tail(&mapping->node, &rproc->mappings);
664  
665  	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
666  		rsc->pa, rsc->da, rsc->len);
667  
668  	return 0;
669  
670  out:
671  	kfree(mapping);
672  	return ret;
673  }
674  
675  /**
676   * rproc_alloc_carveout() - allocated specified carveout
677   * @rproc: rproc handle
678   * @mem: the memory entry to allocate
679   *
680   * This function allocate specified memory entry @mem using
681   * dma_alloc_coherent() as default allocator
682   *
683   * Return: 0 on success, or an appropriate error code otherwise
684   */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)685  static int rproc_alloc_carveout(struct rproc *rproc,
686  				struct rproc_mem_entry *mem)
687  {
688  	struct rproc_mem_entry *mapping = NULL;
689  	struct device *dev = &rproc->dev;
690  	dma_addr_t dma;
691  	void *va;
692  	int ret;
693  
694  	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
695  	if (!va) {
696  		dev_err(dev->parent,
697  			"failed to allocate dma memory: len 0x%zx\n",
698  			mem->len);
699  		return -ENOMEM;
700  	}
701  
702  	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
703  		va, &dma, mem->len);
704  
705  	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
706  		/*
707  		 * Check requested da is equal to dma address
708  		 * and print a warn message in case of missalignment.
709  		 * Don't stop rproc_start sequence as coprocessor may
710  		 * build pa to da translation on its side.
711  		 */
712  		if (mem->da != (u32)dma)
713  			dev_warn(dev->parent,
714  				 "Allocated carveout doesn't fit device address request\n");
715  	}
716  
717  	/*
718  	 * Ok, this is non-standard.
719  	 *
720  	 * Sometimes we can't rely on the generic iommu-based DMA API
721  	 * to dynamically allocate the device address and then set the IOMMU
722  	 * tables accordingly, because some remote processors might
723  	 * _require_ us to use hard coded device addresses that their
724  	 * firmware was compiled with.
725  	 *
726  	 * In this case, we must use the IOMMU API directly and map
727  	 * the memory to the device address as expected by the remote
728  	 * processor.
729  	 *
730  	 * Obviously such remote processor devices should not be configured
731  	 * to use the iommu-based DMA API: we expect 'dma' to contain the
732  	 * physical address in this case.
733  	 */
734  	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
735  		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
736  		if (!mapping) {
737  			ret = -ENOMEM;
738  			goto dma_free;
739  		}
740  
741  		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
742  				mem->flags, GFP_KERNEL);
743  		if (ret) {
744  			dev_err(dev, "iommu_map failed: %d\n", ret);
745  			goto free_mapping;
746  		}
747  
748  		/*
749  		 * We'll need this info later when we'll want to unmap
750  		 * everything (e.g. on shutdown).
751  		 *
752  		 * We can't trust the remote processor not to change the
753  		 * resource table, so we must maintain this info independently.
754  		 */
755  		mapping->da = mem->da;
756  		mapping->len = mem->len;
757  		list_add_tail(&mapping->node, &rproc->mappings);
758  
759  		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
760  			mem->da, &dma);
761  	}
762  
763  	if (mem->da == FW_RSC_ADDR_ANY) {
764  		/* Update device address as undefined by requester */
765  		if ((u64)dma & HIGH_BITS_MASK)
766  			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
767  
768  		mem->da = (u32)dma;
769  	}
770  
771  	mem->dma = dma;
772  	mem->va = va;
773  
774  	return 0;
775  
776  free_mapping:
777  	kfree(mapping);
778  dma_free:
779  	dma_free_coherent(dev->parent, mem->len, va, dma);
780  	return ret;
781  }
782  
783  /**
784   * rproc_release_carveout() - release acquired carveout
785   * @rproc: rproc handle
786   * @mem: the memory entry to release
787   *
788   * This function releases specified memory entry @mem allocated via
789   * rproc_alloc_carveout() function by @rproc.
790   *
791   * Return: 0 on success, or an appropriate error code otherwise
792   */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)793  static int rproc_release_carveout(struct rproc *rproc,
794  				  struct rproc_mem_entry *mem)
795  {
796  	struct device *dev = &rproc->dev;
797  
798  	/* clean up carveout allocations */
799  	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
800  	return 0;
801  }
802  
803  /**
804   * rproc_handle_carveout() - handle phys contig memory allocation requests
805   * @rproc: rproc handle
806   * @ptr: the resource entry
807   * @offset: offset of the resource entry
808   * @avail: size of available data (for image validation)
809   *
810   * This function will handle firmware requests for allocation of physically
811   * contiguous memory regions.
812   *
813   * These request entries should come first in the firmware's resource table,
814   * as other firmware entries might request placing other data objects inside
815   * these memory regions (e.g. data/code segments, trace resource entries, ...).
816   *
817   * Allocating memory this way helps utilizing the reserved physical memory
818   * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
819   * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
820   * pressure is important; it may have a substantial impact on performance.
821   *
822   * Return: 0 on success, or an appropriate error code otherwise
823   */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)824  static int rproc_handle_carveout(struct rproc *rproc,
825  				 void *ptr, int offset, int avail)
826  {
827  	struct fw_rsc_carveout *rsc = ptr;
828  	struct rproc_mem_entry *carveout;
829  	struct device *dev = &rproc->dev;
830  
831  	if (sizeof(*rsc) > avail) {
832  		dev_err(dev, "carveout rsc is truncated\n");
833  		return -EINVAL;
834  	}
835  
836  	/* make sure reserved bytes are zeroes */
837  	if (rsc->reserved) {
838  		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
839  		return -EINVAL;
840  	}
841  
842  	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
843  		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
844  
845  	/*
846  	 * Check carveout rsc already part of a registered carveout,
847  	 * Search by name, then check the da and length
848  	 */
849  	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
850  
851  	if (carveout) {
852  		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
853  			dev_err(dev,
854  				"Carveout already associated to resource table\n");
855  			return -ENOMEM;
856  		}
857  
858  		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
859  			return -ENOMEM;
860  
861  		/* Update memory carveout with resource table info */
862  		carveout->rsc_offset = offset;
863  		carveout->flags = rsc->flags;
864  
865  		return 0;
866  	}
867  
868  	/* Register carveout in list */
869  	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
870  					rproc_alloc_carveout,
871  					rproc_release_carveout, rsc->name);
872  	if (!carveout) {
873  		dev_err(dev, "Can't allocate memory entry structure\n");
874  		return -ENOMEM;
875  	}
876  
877  	carveout->flags = rsc->flags;
878  	carveout->rsc_offset = offset;
879  	rproc_add_carveout(rproc, carveout);
880  
881  	return 0;
882  }
883  
884  /**
885   * rproc_add_carveout() - register an allocated carveout region
886   * @rproc: rproc handle
887   * @mem: memory entry to register
888   *
889   * This function registers specified memory entry in @rproc carveouts list.
890   * Specified carveout should have been allocated before registering.
891   */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)892  void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
893  {
894  	list_add_tail(&mem->node, &rproc->carveouts);
895  }
896  EXPORT_SYMBOL(rproc_add_carveout);
897  
898  /**
899   * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
900   * @dev: pointer on device struct
901   * @va: virtual address
902   * @dma: dma address
903   * @len: memory carveout length
904   * @da: device address
905   * @alloc: memory carveout allocation function
906   * @release: memory carveout release function
907   * @name: carveout name
908   *
909   * This function allocates a rproc_mem_entry struct and fill it with parameters
910   * provided by client.
911   *
912   * Return: a valid pointer on success, or NULL on failure
913   */
914  __printf(8, 9)
915  struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)916  rproc_mem_entry_init(struct device *dev,
917  		     void *va, dma_addr_t dma, size_t len, u32 da,
918  		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
919  		     int (*release)(struct rproc *, struct rproc_mem_entry *),
920  		     const char *name, ...)
921  {
922  	struct rproc_mem_entry *mem;
923  	va_list args;
924  
925  	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
926  	if (!mem)
927  		return mem;
928  
929  	mem->va = va;
930  	mem->dma = dma;
931  	mem->da = da;
932  	mem->len = len;
933  	mem->alloc = alloc;
934  	mem->release = release;
935  	mem->rsc_offset = FW_RSC_ADDR_ANY;
936  	mem->of_resm_idx = -1;
937  
938  	va_start(args, name);
939  	vsnprintf(mem->name, sizeof(mem->name), name, args);
940  	va_end(args);
941  
942  	return mem;
943  }
944  EXPORT_SYMBOL(rproc_mem_entry_init);
945  
946  /**
947   * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
948   * from a reserved memory phandle
949   * @dev: pointer on device struct
950   * @of_resm_idx: reserved memory phandle index in "memory-region"
951   * @len: memory carveout length
952   * @da: device address
953   * @name: carveout name
954   *
955   * This function allocates a rproc_mem_entry struct and fill it with parameters
956   * provided by client.
957   *
958   * Return: a valid pointer on success, or NULL on failure
959   */
960  __printf(5, 6)
961  struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)962  rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
963  			     u32 da, const char *name, ...)
964  {
965  	struct rproc_mem_entry *mem;
966  	va_list args;
967  
968  	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969  	if (!mem)
970  		return mem;
971  
972  	mem->da = da;
973  	mem->len = len;
974  	mem->rsc_offset = FW_RSC_ADDR_ANY;
975  	mem->of_resm_idx = of_resm_idx;
976  
977  	va_start(args, name);
978  	vsnprintf(mem->name, sizeof(mem->name), name, args);
979  	va_end(args);
980  
981  	return mem;
982  }
983  EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
984  
985  /**
986   * rproc_of_parse_firmware() - parse and return the firmware-name
987   * @dev: pointer on device struct representing a rproc
988   * @index: index to use for the firmware-name retrieval
989   * @fw_name: pointer to a character string, in which the firmware
990   *           name is returned on success and unmodified otherwise.
991   *
992   * This is an OF helper function that parses a device's DT node for
993   * the "firmware-name" property and returns the firmware name pointer
994   * in @fw_name on success.
995   *
996   * Return: 0 on success, or an appropriate failure.
997   */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)998  int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
999  {
1000  	int ret;
1001  
1002  	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1003  					    index, fw_name);
1004  	return ret ? ret : 0;
1005  }
1006  EXPORT_SYMBOL(rproc_of_parse_firmware);
1007  
1008  /*
1009   * A lookup table for resource handlers. The indices are defined in
1010   * enum fw_resource_type.
1011   */
1012  static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1013  	[RSC_CARVEOUT] = rproc_handle_carveout,
1014  	[RSC_DEVMEM] = rproc_handle_devmem,
1015  	[RSC_TRACE] = rproc_handle_trace,
1016  	[RSC_VDEV] = rproc_handle_vdev,
1017  };
1018  
1019  /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1020  static int rproc_handle_resources(struct rproc *rproc,
1021  				  rproc_handle_resource_t handlers[RSC_LAST])
1022  {
1023  	struct device *dev = &rproc->dev;
1024  	rproc_handle_resource_t handler;
1025  	int ret = 0, i;
1026  
1027  	if (!rproc->table_ptr)
1028  		return 0;
1029  
1030  	for (i = 0; i < rproc->table_ptr->num; i++) {
1031  		int offset = rproc->table_ptr->offset[i];
1032  		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1033  		int avail = rproc->table_sz - offset - sizeof(*hdr);
1034  		void *rsc = (void *)hdr + sizeof(*hdr);
1035  
1036  		/* make sure table isn't truncated */
1037  		if (avail < 0) {
1038  			dev_err(dev, "rsc table is truncated\n");
1039  			return -EINVAL;
1040  		}
1041  
1042  		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1043  
1044  		if (hdr->type >= RSC_VENDOR_START &&
1045  		    hdr->type <= RSC_VENDOR_END) {
1046  			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1047  					       offset + sizeof(*hdr), avail);
1048  			if (ret == RSC_HANDLED)
1049  				continue;
1050  			else if (ret < 0)
1051  				break;
1052  
1053  			dev_warn(dev, "unsupported vendor resource %d\n",
1054  				 hdr->type);
1055  			continue;
1056  		}
1057  
1058  		if (hdr->type >= RSC_LAST) {
1059  			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1060  			continue;
1061  		}
1062  
1063  		handler = handlers[hdr->type];
1064  		if (!handler)
1065  			continue;
1066  
1067  		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1068  		if (ret)
1069  			break;
1070  	}
1071  
1072  	return ret;
1073  }
1074  
rproc_prepare_subdevices(struct rproc * rproc)1075  static int rproc_prepare_subdevices(struct rproc *rproc)
1076  {
1077  	struct rproc_subdev *subdev;
1078  	int ret;
1079  
1080  	list_for_each_entry(subdev, &rproc->subdevs, node) {
1081  		if (subdev->prepare) {
1082  			ret = subdev->prepare(subdev);
1083  			if (ret)
1084  				goto unroll_preparation;
1085  		}
1086  	}
1087  
1088  	return 0;
1089  
1090  unroll_preparation:
1091  	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1092  		if (subdev->unprepare)
1093  			subdev->unprepare(subdev);
1094  	}
1095  
1096  	return ret;
1097  }
1098  
rproc_start_subdevices(struct rproc * rproc)1099  static int rproc_start_subdevices(struct rproc *rproc)
1100  {
1101  	struct rproc_subdev *subdev;
1102  	int ret;
1103  
1104  	list_for_each_entry(subdev, &rproc->subdevs, node) {
1105  		if (subdev->start) {
1106  			ret = subdev->start(subdev);
1107  			if (ret)
1108  				goto unroll_registration;
1109  		}
1110  	}
1111  
1112  	return 0;
1113  
1114  unroll_registration:
1115  	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1116  		if (subdev->stop)
1117  			subdev->stop(subdev, true);
1118  	}
1119  
1120  	return ret;
1121  }
1122  
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1123  static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1124  {
1125  	struct rproc_subdev *subdev;
1126  
1127  	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1128  		if (subdev->stop)
1129  			subdev->stop(subdev, crashed);
1130  	}
1131  }
1132  
rproc_unprepare_subdevices(struct rproc * rproc)1133  static void rproc_unprepare_subdevices(struct rproc *rproc)
1134  {
1135  	struct rproc_subdev *subdev;
1136  
1137  	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1138  		if (subdev->unprepare)
1139  			subdev->unprepare(subdev);
1140  	}
1141  }
1142  
1143  /**
1144   * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1145   * in the list
1146   * @rproc: the remote processor handle
1147   *
1148   * This function parses registered carveout list, performs allocation
1149   * if alloc() ops registered and updates resource table information
1150   * if rsc_offset set.
1151   *
1152   * Return: 0 on success
1153   */
rproc_alloc_registered_carveouts(struct rproc * rproc)1154  static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1155  {
1156  	struct rproc_mem_entry *entry, *tmp;
1157  	struct fw_rsc_carveout *rsc;
1158  	struct device *dev = &rproc->dev;
1159  	u64 pa;
1160  	int ret;
1161  
1162  	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1163  		if (entry->alloc) {
1164  			ret = entry->alloc(rproc, entry);
1165  			if (ret) {
1166  				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1167  					entry->name, ret);
1168  				return -ENOMEM;
1169  			}
1170  		}
1171  
1172  		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1173  			/* update resource table */
1174  			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1175  
1176  			/*
1177  			 * Some remote processors might need to know the pa
1178  			 * even though they are behind an IOMMU. E.g., OMAP4's
1179  			 * remote M3 processor needs this so it can control
1180  			 * on-chip hardware accelerators that are not behind
1181  			 * the IOMMU, and therefor must know the pa.
1182  			 *
1183  			 * Generally we don't want to expose physical addresses
1184  			 * if we don't have to (remote processors are generally
1185  			 * _not_ trusted), so we might want to do this only for
1186  			 * remote processor that _must_ have this (e.g. OMAP4's
1187  			 * dual M3 subsystem).
1188  			 *
1189  			 * Non-IOMMU processors might also want to have this info.
1190  			 * In this case, the device address and the physical address
1191  			 * are the same.
1192  			 */
1193  
1194  			/* Use va if defined else dma to generate pa */
1195  			if (entry->va)
1196  				pa = (u64)rproc_va_to_pa(entry->va);
1197  			else
1198  				pa = (u64)entry->dma;
1199  
1200  			if (((u64)pa) & HIGH_BITS_MASK)
1201  				dev_warn(dev,
1202  					 "Physical address cast in 32bit to fit resource table format\n");
1203  
1204  			rsc->pa = (u32)pa;
1205  			rsc->da = entry->da;
1206  			rsc->len = entry->len;
1207  		}
1208  	}
1209  
1210  	return 0;
1211  }
1212  
1213  
1214  /**
1215   * rproc_resource_cleanup() - clean up and free all acquired resources
1216   * @rproc: rproc handle
1217   *
1218   * This function will free all resources acquired for @rproc, and it
1219   * is called whenever @rproc either shuts down or fails to boot.
1220   */
rproc_resource_cleanup(struct rproc * rproc)1221  void rproc_resource_cleanup(struct rproc *rproc)
1222  {
1223  	struct rproc_mem_entry *entry, *tmp;
1224  	struct rproc_debug_trace *trace, *ttmp;
1225  	struct rproc_vdev *rvdev, *rvtmp;
1226  	struct device *dev = &rproc->dev;
1227  
1228  	/* clean up debugfs trace entries */
1229  	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1230  		rproc_remove_trace_file(trace->tfile);
1231  		rproc->num_traces--;
1232  		list_del(&trace->node);
1233  		kfree(trace);
1234  	}
1235  
1236  	/* clean up iommu mapping entries */
1237  	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1238  		size_t unmapped;
1239  
1240  		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1241  		if (unmapped != entry->len) {
1242  			/* nothing much to do besides complaining */
1243  			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1244  				unmapped);
1245  		}
1246  
1247  		list_del(&entry->node);
1248  		kfree(entry);
1249  	}
1250  
1251  	/* clean up carveout allocations */
1252  	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1253  		if (entry->release)
1254  			entry->release(rproc, entry);
1255  		list_del(&entry->node);
1256  		kfree(entry);
1257  	}
1258  
1259  	/* clean up remote vdev entries */
1260  	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1261  		platform_device_unregister(rvdev->pdev);
1262  
1263  	rproc_coredump_cleanup(rproc);
1264  }
1265  EXPORT_SYMBOL(rproc_resource_cleanup);
1266  
rproc_start(struct rproc * rproc,const struct firmware * fw)1267  static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1268  {
1269  	struct resource_table *loaded_table;
1270  	struct device *dev = &rproc->dev;
1271  	int ret;
1272  
1273  	/* load the ELF segments to memory */
1274  	ret = rproc_load_segments(rproc, fw);
1275  	if (ret) {
1276  		dev_err(dev, "Failed to load program segments: %d\n", ret);
1277  		return ret;
1278  	}
1279  
1280  	/*
1281  	 * The starting device has been given the rproc->cached_table as the
1282  	 * resource table. The address of the vring along with the other
1283  	 * allocated resources (carveouts etc) is stored in cached_table.
1284  	 * In order to pass this information to the remote device we must copy
1285  	 * this information to device memory. We also update the table_ptr so
1286  	 * that any subsequent changes will be applied to the loaded version.
1287  	 */
1288  	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1289  	if (loaded_table) {
1290  		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1291  		rproc->table_ptr = loaded_table;
1292  	}
1293  
1294  	ret = rproc_prepare_subdevices(rproc);
1295  	if (ret) {
1296  		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1297  			rproc->name, ret);
1298  		goto reset_table_ptr;
1299  	}
1300  
1301  	/* power up the remote processor */
1302  	ret = rproc->ops->start(rproc);
1303  	if (ret) {
1304  		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1305  		goto unprepare_subdevices;
1306  	}
1307  
1308  	/* Start any subdevices for the remote processor */
1309  	ret = rproc_start_subdevices(rproc);
1310  	if (ret) {
1311  		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1312  			rproc->name, ret);
1313  		goto stop_rproc;
1314  	}
1315  
1316  	rproc->state = RPROC_RUNNING;
1317  
1318  	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1319  
1320  	return 0;
1321  
1322  stop_rproc:
1323  	rproc->ops->stop(rproc);
1324  unprepare_subdevices:
1325  	rproc_unprepare_subdevices(rproc);
1326  reset_table_ptr:
1327  	rproc->table_ptr = rproc->cached_table;
1328  
1329  	return ret;
1330  }
1331  
__rproc_attach(struct rproc * rproc)1332  static int __rproc_attach(struct rproc *rproc)
1333  {
1334  	struct device *dev = &rproc->dev;
1335  	int ret;
1336  
1337  	ret = rproc_prepare_subdevices(rproc);
1338  	if (ret) {
1339  		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1340  			rproc->name, ret);
1341  		goto out;
1342  	}
1343  
1344  	/* Attach to the remote processor */
1345  	ret = rproc_attach_device(rproc);
1346  	if (ret) {
1347  		dev_err(dev, "can't attach to rproc %s: %d\n",
1348  			rproc->name, ret);
1349  		goto unprepare_subdevices;
1350  	}
1351  
1352  	/* Start any subdevices for the remote processor */
1353  	ret = rproc_start_subdevices(rproc);
1354  	if (ret) {
1355  		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1356  			rproc->name, ret);
1357  		goto stop_rproc;
1358  	}
1359  
1360  	rproc->state = RPROC_ATTACHED;
1361  
1362  	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1363  
1364  	return 0;
1365  
1366  stop_rproc:
1367  	rproc->ops->stop(rproc);
1368  unprepare_subdevices:
1369  	rproc_unprepare_subdevices(rproc);
1370  out:
1371  	return ret;
1372  }
1373  
1374  /*
1375   * take a firmware and boot a remote processor with it.
1376   */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1377  static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1378  {
1379  	struct device *dev = &rproc->dev;
1380  	const char *name = rproc->firmware;
1381  	int ret;
1382  
1383  	ret = rproc_fw_sanity_check(rproc, fw);
1384  	if (ret)
1385  		return ret;
1386  
1387  	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1388  
1389  	/*
1390  	 * if enabling an IOMMU isn't relevant for this rproc, this is
1391  	 * just a nop
1392  	 */
1393  	ret = rproc_enable_iommu(rproc);
1394  	if (ret) {
1395  		dev_err(dev, "can't enable iommu: %d\n", ret);
1396  		return ret;
1397  	}
1398  
1399  	/* Prepare rproc for firmware loading if needed */
1400  	ret = rproc_prepare_device(rproc);
1401  	if (ret) {
1402  		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1403  		goto disable_iommu;
1404  	}
1405  
1406  	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1407  
1408  	/* Load resource table, core dump segment list etc from the firmware */
1409  	ret = rproc_parse_fw(rproc, fw);
1410  	if (ret)
1411  		goto unprepare_rproc;
1412  
1413  	/* reset max_notifyid */
1414  	rproc->max_notifyid = -1;
1415  
1416  	/* reset handled vdev */
1417  	rproc->nb_vdev = 0;
1418  
1419  	/* handle fw resources which are required to boot rproc */
1420  	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1421  	if (ret) {
1422  		dev_err(dev, "Failed to process resources: %d\n", ret);
1423  		goto clean_up_resources;
1424  	}
1425  
1426  	/* Allocate carveout resources associated to rproc */
1427  	ret = rproc_alloc_registered_carveouts(rproc);
1428  	if (ret) {
1429  		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1430  			ret);
1431  		goto clean_up_resources;
1432  	}
1433  
1434  	ret = rproc_start(rproc, fw);
1435  	if (ret)
1436  		goto clean_up_resources;
1437  
1438  	return 0;
1439  
1440  clean_up_resources:
1441  	rproc_resource_cleanup(rproc);
1442  	kfree(rproc->cached_table);
1443  	rproc->cached_table = NULL;
1444  	rproc->table_ptr = NULL;
1445  unprepare_rproc:
1446  	/* release HW resources if needed */
1447  	rproc_unprepare_device(rproc);
1448  disable_iommu:
1449  	rproc_disable_iommu(rproc);
1450  	return ret;
1451  }
1452  
rproc_set_rsc_table(struct rproc * rproc)1453  static int rproc_set_rsc_table(struct rproc *rproc)
1454  {
1455  	struct resource_table *table_ptr;
1456  	struct device *dev = &rproc->dev;
1457  	size_t table_sz;
1458  	int ret;
1459  
1460  	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1461  	if (!table_ptr) {
1462  		/* Not having a resource table is acceptable */
1463  		return 0;
1464  	}
1465  
1466  	if (IS_ERR(table_ptr)) {
1467  		ret = PTR_ERR(table_ptr);
1468  		dev_err(dev, "can't load resource table: %d\n", ret);
1469  		return ret;
1470  	}
1471  
1472  	/*
1473  	 * If it is possible to detach the remote processor, keep an untouched
1474  	 * copy of the resource table.  That way we can start fresh again when
1475  	 * the remote processor is re-attached, that is:
1476  	 *
1477  	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1478  	 *
1479  	 * Free'd in rproc_reset_rsc_table_on_detach() and
1480  	 * rproc_reset_rsc_table_on_stop().
1481  	 */
1482  	if (rproc->ops->detach) {
1483  		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1484  		if (!rproc->clean_table)
1485  			return -ENOMEM;
1486  	} else {
1487  		rproc->clean_table = NULL;
1488  	}
1489  
1490  	rproc->cached_table = NULL;
1491  	rproc->table_ptr = table_ptr;
1492  	rproc->table_sz = table_sz;
1493  
1494  	return 0;
1495  }
1496  
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1497  static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1498  {
1499  	struct resource_table *table_ptr;
1500  
1501  	/* A resource table was never retrieved, nothing to do here */
1502  	if (!rproc->table_ptr)
1503  		return 0;
1504  
1505  	/*
1506  	 * If we made it to this point a clean_table _must_ have been
1507  	 * allocated in rproc_set_rsc_table().  If one isn't present
1508  	 * something went really wrong and we must complain.
1509  	 */
1510  	if (WARN_ON(!rproc->clean_table))
1511  		return -EINVAL;
1512  
1513  	/* Remember where the external entity installed the resource table */
1514  	table_ptr = rproc->table_ptr;
1515  
1516  	/*
1517  	 * If we made it here the remote processor was started by another
1518  	 * entity and a cache table doesn't exist.  As such make a copy of
1519  	 * the resource table currently used by the remote processor and
1520  	 * use that for the rest of the shutdown process.  The memory
1521  	 * allocated here is free'd in rproc_detach().
1522  	 */
1523  	rproc->cached_table = kmemdup(rproc->table_ptr,
1524  				      rproc->table_sz, GFP_KERNEL);
1525  	if (!rproc->cached_table)
1526  		return -ENOMEM;
1527  
1528  	/*
1529  	 * Use a copy of the resource table for the remainder of the
1530  	 * shutdown process.
1531  	 */
1532  	rproc->table_ptr = rproc->cached_table;
1533  
1534  	/*
1535  	 * Reset the memory area where the firmware loaded the resource table
1536  	 * to its original value.  That way when we re-attach the remote
1537  	 * processor the resource table is clean and ready to be used again.
1538  	 */
1539  	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1540  
1541  	/*
1542  	 * The clean resource table is no longer needed.  Allocated in
1543  	 * rproc_set_rsc_table().
1544  	 */
1545  	kfree(rproc->clean_table);
1546  
1547  	return 0;
1548  }
1549  
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1550  static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1551  {
1552  	/* A resource table was never retrieved, nothing to do here */
1553  	if (!rproc->table_ptr)
1554  		return 0;
1555  
1556  	/*
1557  	 * If a cache table exists the remote processor was started by
1558  	 * the remoteproc core.  That cache table should be used for
1559  	 * the rest of the shutdown process.
1560  	 */
1561  	if (rproc->cached_table)
1562  		goto out;
1563  
1564  	/*
1565  	 * If we made it here the remote processor was started by another
1566  	 * entity and a cache table doesn't exist.  As such make a copy of
1567  	 * the resource table currently used by the remote processor and
1568  	 * use that for the rest of the shutdown process.  The memory
1569  	 * allocated here is free'd in rproc_shutdown().
1570  	 */
1571  	rproc->cached_table = kmemdup(rproc->table_ptr,
1572  				      rproc->table_sz, GFP_KERNEL);
1573  	if (!rproc->cached_table)
1574  		return -ENOMEM;
1575  
1576  	/*
1577  	 * Since the remote processor is being switched off the clean table
1578  	 * won't be needed.  Allocated in rproc_set_rsc_table().
1579  	 */
1580  	kfree(rproc->clean_table);
1581  
1582  out:
1583  	/*
1584  	 * Use a copy of the resource table for the remainder of the
1585  	 * shutdown process.
1586  	 */
1587  	rproc->table_ptr = rproc->cached_table;
1588  	return 0;
1589  }
1590  
1591  /*
1592   * Attach to remote processor - similar to rproc_fw_boot() but without
1593   * the steps that deal with the firmware image.
1594   */
rproc_attach(struct rproc * rproc)1595  static int rproc_attach(struct rproc *rproc)
1596  {
1597  	struct device *dev = &rproc->dev;
1598  	int ret;
1599  
1600  	/*
1601  	 * if enabling an IOMMU isn't relevant for this rproc, this is
1602  	 * just a nop
1603  	 */
1604  	ret = rproc_enable_iommu(rproc);
1605  	if (ret) {
1606  		dev_err(dev, "can't enable iommu: %d\n", ret);
1607  		return ret;
1608  	}
1609  
1610  	/* Do anything that is needed to boot the remote processor */
1611  	ret = rproc_prepare_device(rproc);
1612  	if (ret) {
1613  		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1614  		goto disable_iommu;
1615  	}
1616  
1617  	ret = rproc_set_rsc_table(rproc);
1618  	if (ret) {
1619  		dev_err(dev, "can't load resource table: %d\n", ret);
1620  		goto unprepare_device;
1621  	}
1622  
1623  	/* reset max_notifyid */
1624  	rproc->max_notifyid = -1;
1625  
1626  	/* reset handled vdev */
1627  	rproc->nb_vdev = 0;
1628  
1629  	/*
1630  	 * Handle firmware resources required to attach to a remote processor.
1631  	 * Because we are attaching rather than booting the remote processor,
1632  	 * we expect the platform driver to properly set rproc->table_ptr.
1633  	 */
1634  	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1635  	if (ret) {
1636  		dev_err(dev, "Failed to process resources: %d\n", ret);
1637  		goto unprepare_device;
1638  	}
1639  
1640  	/* Allocate carveout resources associated to rproc */
1641  	ret = rproc_alloc_registered_carveouts(rproc);
1642  	if (ret) {
1643  		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1644  			ret);
1645  		goto clean_up_resources;
1646  	}
1647  
1648  	ret = __rproc_attach(rproc);
1649  	if (ret)
1650  		goto clean_up_resources;
1651  
1652  	return 0;
1653  
1654  clean_up_resources:
1655  	rproc_resource_cleanup(rproc);
1656  unprepare_device:
1657  	/* release HW resources if needed */
1658  	rproc_unprepare_device(rproc);
1659  disable_iommu:
1660  	rproc_disable_iommu(rproc);
1661  	return ret;
1662  }
1663  
1664  /*
1665   * take a firmware and boot it up.
1666   *
1667   * Note: this function is called asynchronously upon registration of the
1668   * remote processor (so we must wait until it completes before we try
1669   * to unregister the device. one other option is just to use kref here,
1670   * that might be cleaner).
1671   */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1672  static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1673  {
1674  	struct rproc *rproc = context;
1675  
1676  	rproc_boot(rproc);
1677  
1678  	release_firmware(fw);
1679  }
1680  
rproc_trigger_auto_boot(struct rproc * rproc)1681  static int rproc_trigger_auto_boot(struct rproc *rproc)
1682  {
1683  	int ret;
1684  
1685  	/*
1686  	 * Since the remote processor is in a detached state, it has already
1687  	 * been booted by another entity.  As such there is no point in waiting
1688  	 * for a firmware image to be loaded, we can simply initiate the process
1689  	 * of attaching to it immediately.
1690  	 */
1691  	if (rproc->state == RPROC_DETACHED)
1692  		return rproc_boot(rproc);
1693  
1694  	/*
1695  	 * We're initiating an asynchronous firmware loading, so we can
1696  	 * be built-in kernel code, without hanging the boot process.
1697  	 */
1698  	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1699  				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1700  				      rproc, rproc_auto_boot_callback);
1701  	if (ret < 0)
1702  		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1703  
1704  	return ret;
1705  }
1706  
rproc_stop(struct rproc * rproc,bool crashed)1707  static int rproc_stop(struct rproc *rproc, bool crashed)
1708  {
1709  	struct device *dev = &rproc->dev;
1710  	int ret;
1711  
1712  	/* No need to continue if a stop() operation has not been provided */
1713  	if (!rproc->ops->stop)
1714  		return -EINVAL;
1715  
1716  	/* Stop any subdevices for the remote processor */
1717  	rproc_stop_subdevices(rproc, crashed);
1718  
1719  	/* the installed resource table is no longer accessible */
1720  	ret = rproc_reset_rsc_table_on_stop(rproc);
1721  	if (ret) {
1722  		dev_err(dev, "can't reset resource table: %d\n", ret);
1723  		return ret;
1724  	}
1725  
1726  
1727  	/* power off the remote processor */
1728  	ret = rproc->ops->stop(rproc);
1729  	if (ret) {
1730  		dev_err(dev, "can't stop rproc: %d\n", ret);
1731  		return ret;
1732  	}
1733  
1734  	rproc_unprepare_subdevices(rproc);
1735  
1736  	rproc->state = RPROC_OFFLINE;
1737  
1738  	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1739  
1740  	return 0;
1741  }
1742  
1743  /*
1744   * __rproc_detach(): Does the opposite of __rproc_attach()
1745   */
__rproc_detach(struct rproc * rproc)1746  static int __rproc_detach(struct rproc *rproc)
1747  {
1748  	struct device *dev = &rproc->dev;
1749  	int ret;
1750  
1751  	/* No need to continue if a detach() operation has not been provided */
1752  	if (!rproc->ops->detach)
1753  		return -EINVAL;
1754  
1755  	/* Stop any subdevices for the remote processor */
1756  	rproc_stop_subdevices(rproc, false);
1757  
1758  	/* the installed resource table is no longer accessible */
1759  	ret = rproc_reset_rsc_table_on_detach(rproc);
1760  	if (ret) {
1761  		dev_err(dev, "can't reset resource table: %d\n", ret);
1762  		return ret;
1763  	}
1764  
1765  	/* Tell the remote processor the core isn't available anymore */
1766  	ret = rproc->ops->detach(rproc);
1767  	if (ret) {
1768  		dev_err(dev, "can't detach from rproc: %d\n", ret);
1769  		return ret;
1770  	}
1771  
1772  	rproc_unprepare_subdevices(rproc);
1773  
1774  	rproc->state = RPROC_DETACHED;
1775  
1776  	dev_info(dev, "detached remote processor %s\n", rproc->name);
1777  
1778  	return 0;
1779  }
1780  
rproc_attach_recovery(struct rproc * rproc)1781  static int rproc_attach_recovery(struct rproc *rproc)
1782  {
1783  	int ret;
1784  
1785  	ret = __rproc_detach(rproc);
1786  	if (ret)
1787  		return ret;
1788  
1789  	return __rproc_attach(rproc);
1790  }
1791  
rproc_boot_recovery(struct rproc * rproc)1792  static int rproc_boot_recovery(struct rproc *rproc)
1793  {
1794  	const struct firmware *firmware_p;
1795  	struct device *dev = &rproc->dev;
1796  	int ret;
1797  
1798  	ret = rproc_stop(rproc, true);
1799  	if (ret)
1800  		return ret;
1801  
1802  	/* generate coredump */
1803  	rproc->ops->coredump(rproc);
1804  
1805  	/* load firmware */
1806  	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1807  	if (ret < 0) {
1808  		dev_err(dev, "request_firmware failed: %d\n", ret);
1809  		return ret;
1810  	}
1811  
1812  	/* boot the remote processor up again */
1813  	ret = rproc_start(rproc, firmware_p);
1814  
1815  	release_firmware(firmware_p);
1816  
1817  	return ret;
1818  }
1819  
1820  /**
1821   * rproc_trigger_recovery() - recover a remoteproc
1822   * @rproc: the remote processor
1823   *
1824   * The recovery is done by resetting all the virtio devices, that way all the
1825   * rpmsg drivers will be reseted along with the remote processor making the
1826   * remoteproc functional again.
1827   *
1828   * This function can sleep, so it cannot be called from atomic context.
1829   *
1830   * Return: 0 on success or a negative value upon failure
1831   */
rproc_trigger_recovery(struct rproc * rproc)1832  int rproc_trigger_recovery(struct rproc *rproc)
1833  {
1834  	struct device *dev = &rproc->dev;
1835  	int ret;
1836  
1837  	ret = mutex_lock_interruptible(&rproc->lock);
1838  	if (ret)
1839  		return ret;
1840  
1841  	/* State could have changed before we got the mutex */
1842  	if (rproc->state != RPROC_CRASHED)
1843  		goto unlock_mutex;
1844  
1845  	dev_err(dev, "recovering %s\n", rproc->name);
1846  
1847  	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1848  		ret = rproc_attach_recovery(rproc);
1849  	else
1850  		ret = rproc_boot_recovery(rproc);
1851  
1852  unlock_mutex:
1853  	mutex_unlock(&rproc->lock);
1854  	return ret;
1855  }
1856  
1857  /**
1858   * rproc_crash_handler_work() - handle a crash
1859   * @work: work treating the crash
1860   *
1861   * This function needs to handle everything related to a crash, like cpu
1862   * registers and stack dump, information to help to debug the fatal error, etc.
1863   */
rproc_crash_handler_work(struct work_struct * work)1864  static void rproc_crash_handler_work(struct work_struct *work)
1865  {
1866  	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1867  	struct device *dev = &rproc->dev;
1868  
1869  	dev_dbg(dev, "enter %s\n", __func__);
1870  
1871  	mutex_lock(&rproc->lock);
1872  
1873  	if (rproc->state == RPROC_CRASHED) {
1874  		/* handle only the first crash detected */
1875  		mutex_unlock(&rproc->lock);
1876  		return;
1877  	}
1878  
1879  	if (rproc->state == RPROC_OFFLINE) {
1880  		/* Don't recover if the remote processor was stopped */
1881  		mutex_unlock(&rproc->lock);
1882  		goto out;
1883  	}
1884  
1885  	rproc->state = RPROC_CRASHED;
1886  	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1887  		rproc->name);
1888  
1889  	mutex_unlock(&rproc->lock);
1890  
1891  	if (!rproc->recovery_disabled)
1892  		rproc_trigger_recovery(rproc);
1893  
1894  out:
1895  	pm_relax(rproc->dev.parent);
1896  }
1897  
1898  /**
1899   * rproc_boot() - boot a remote processor
1900   * @rproc: handle of a remote processor
1901   *
1902   * Boot a remote processor (i.e. load its firmware, power it on, ...).
1903   *
1904   * If the remote processor is already powered on, this function immediately
1905   * returns (successfully).
1906   *
1907   * Return: 0 on success, and an appropriate error value otherwise
1908   */
rproc_boot(struct rproc * rproc)1909  int rproc_boot(struct rproc *rproc)
1910  {
1911  	const struct firmware *firmware_p;
1912  	struct device *dev;
1913  	int ret;
1914  
1915  	if (!rproc) {
1916  		pr_err("invalid rproc handle\n");
1917  		return -EINVAL;
1918  	}
1919  
1920  	dev = &rproc->dev;
1921  
1922  	ret = mutex_lock_interruptible(&rproc->lock);
1923  	if (ret) {
1924  		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1925  		return ret;
1926  	}
1927  
1928  	if (rproc->state == RPROC_DELETED) {
1929  		ret = -ENODEV;
1930  		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1931  		goto unlock_mutex;
1932  	}
1933  
1934  	/* skip the boot or attach process if rproc is already powered up */
1935  	if (atomic_inc_return(&rproc->power) > 1) {
1936  		ret = 0;
1937  		goto unlock_mutex;
1938  	}
1939  
1940  	if (rproc->state == RPROC_DETACHED) {
1941  		dev_info(dev, "attaching to %s\n", rproc->name);
1942  
1943  		ret = rproc_attach(rproc);
1944  	} else {
1945  		dev_info(dev, "powering up %s\n", rproc->name);
1946  
1947  		/* load firmware */
1948  		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1949  		if (ret < 0) {
1950  			dev_err(dev, "request_firmware failed: %d\n", ret);
1951  			goto downref_rproc;
1952  		}
1953  
1954  		ret = rproc_fw_boot(rproc, firmware_p);
1955  
1956  		release_firmware(firmware_p);
1957  	}
1958  
1959  downref_rproc:
1960  	if (ret)
1961  		atomic_dec(&rproc->power);
1962  unlock_mutex:
1963  	mutex_unlock(&rproc->lock);
1964  	return ret;
1965  }
1966  EXPORT_SYMBOL(rproc_boot);
1967  
1968  /**
1969   * rproc_shutdown() - power off the remote processor
1970   * @rproc: the remote processor
1971   *
1972   * Power off a remote processor (previously booted with rproc_boot()).
1973   *
1974   * In case @rproc is still being used by an additional user(s), then
1975   * this function will just decrement the power refcount and exit,
1976   * without really powering off the device.
1977   *
1978   * Every call to rproc_boot() must (eventually) be accompanied by a call
1979   * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1980   *
1981   * Notes:
1982   * - we're not decrementing the rproc's refcount, only the power refcount.
1983   *   which means that the @rproc handle stays valid even after rproc_shutdown()
1984   *   returns, and users can still use it with a subsequent rproc_boot(), if
1985   *   needed.
1986   *
1987   * Return: 0 on success, and an appropriate error value otherwise
1988   */
rproc_shutdown(struct rproc * rproc)1989  int rproc_shutdown(struct rproc *rproc)
1990  {
1991  	struct device *dev = &rproc->dev;
1992  	int ret = 0;
1993  
1994  	ret = mutex_lock_interruptible(&rproc->lock);
1995  	if (ret) {
1996  		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1997  		return ret;
1998  	}
1999  
2000  	if (rproc->state != RPROC_RUNNING &&
2001  	    rproc->state != RPROC_ATTACHED) {
2002  		ret = -EINVAL;
2003  		goto out;
2004  	}
2005  
2006  	/* if the remote proc is still needed, bail out */
2007  	if (!atomic_dec_and_test(&rproc->power))
2008  		goto out;
2009  
2010  	ret = rproc_stop(rproc, false);
2011  	if (ret) {
2012  		atomic_inc(&rproc->power);
2013  		goto out;
2014  	}
2015  
2016  	/* clean up all acquired resources */
2017  	rproc_resource_cleanup(rproc);
2018  
2019  	/* release HW resources if needed */
2020  	rproc_unprepare_device(rproc);
2021  
2022  	rproc_disable_iommu(rproc);
2023  
2024  	/* Free the copy of the resource table */
2025  	kfree(rproc->cached_table);
2026  	rproc->cached_table = NULL;
2027  	rproc->table_ptr = NULL;
2028  out:
2029  	mutex_unlock(&rproc->lock);
2030  	return ret;
2031  }
2032  EXPORT_SYMBOL(rproc_shutdown);
2033  
2034  /**
2035   * rproc_detach() - Detach the remote processor from the
2036   * remoteproc core
2037   *
2038   * @rproc: the remote processor
2039   *
2040   * Detach a remote processor (previously attached to with rproc_attach()).
2041   *
2042   * In case @rproc is still being used by an additional user(s), then
2043   * this function will just decrement the power refcount and exit,
2044   * without disconnecting the device.
2045   *
2046   * Function rproc_detach() calls __rproc_detach() in order to let a remote
2047   * processor know that services provided by the application processor are
2048   * no longer available.  From there it should be possible to remove the
2049   * platform driver and even power cycle the application processor (if the HW
2050   * supports it) without needing to switch off the remote processor.
2051   *
2052   * Return: 0 on success, and an appropriate error value otherwise
2053   */
rproc_detach(struct rproc * rproc)2054  int rproc_detach(struct rproc *rproc)
2055  {
2056  	struct device *dev = &rproc->dev;
2057  	int ret;
2058  
2059  	ret = mutex_lock_interruptible(&rproc->lock);
2060  	if (ret) {
2061  		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2062  		return ret;
2063  	}
2064  
2065  	if (rproc->state != RPROC_ATTACHED) {
2066  		ret = -EINVAL;
2067  		goto out;
2068  	}
2069  
2070  	/* if the remote proc is still needed, bail out */
2071  	if (!atomic_dec_and_test(&rproc->power)) {
2072  		ret = 0;
2073  		goto out;
2074  	}
2075  
2076  	ret = __rproc_detach(rproc);
2077  	if (ret) {
2078  		atomic_inc(&rproc->power);
2079  		goto out;
2080  	}
2081  
2082  	/* clean up all acquired resources */
2083  	rproc_resource_cleanup(rproc);
2084  
2085  	/* release HW resources if needed */
2086  	rproc_unprepare_device(rproc);
2087  
2088  	rproc_disable_iommu(rproc);
2089  
2090  	/* Free the copy of the resource table */
2091  	kfree(rproc->cached_table);
2092  	rproc->cached_table = NULL;
2093  	rproc->table_ptr = NULL;
2094  out:
2095  	mutex_unlock(&rproc->lock);
2096  	return ret;
2097  }
2098  EXPORT_SYMBOL(rproc_detach);
2099  
2100  /**
2101   * rproc_get_by_phandle() - find a remote processor by phandle
2102   * @phandle: phandle to the rproc
2103   *
2104   * Finds an rproc handle using the remote processor's phandle, and then
2105   * return a handle to the rproc.
2106   *
2107   * This function increments the remote processor's refcount, so always
2108   * use rproc_put() to decrement it back once rproc isn't needed anymore.
2109   *
2110   * Return: rproc handle on success, and NULL on failure
2111   */
2112  #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2113  struct rproc *rproc_get_by_phandle(phandle phandle)
2114  {
2115  	struct rproc *rproc = NULL, *r;
2116  	struct device_driver *driver;
2117  	struct device_node *np;
2118  
2119  	np = of_find_node_by_phandle(phandle);
2120  	if (!np)
2121  		return NULL;
2122  
2123  	rcu_read_lock();
2124  	list_for_each_entry_rcu(r, &rproc_list, node) {
2125  		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2126  			/* prevent underlying implementation from being removed */
2127  
2128  			/*
2129  			 * If the remoteproc's parent has a driver, the
2130  			 * remoteproc is not part of a cluster and we can use
2131  			 * that driver.
2132  			 */
2133  			driver = r->dev.parent->driver;
2134  
2135  			/*
2136  			 * If the remoteproc's parent does not have a driver,
2137  			 * look for the driver associated with the cluster.
2138  			 */
2139  			if (!driver) {
2140  				if (r->dev.parent->parent)
2141  					driver = r->dev.parent->parent->driver;
2142  				if (!driver)
2143  					break;
2144  			}
2145  
2146  			if (!try_module_get(driver->owner)) {
2147  				dev_err(&r->dev, "can't get owner\n");
2148  				break;
2149  			}
2150  
2151  			rproc = r;
2152  			get_device(&rproc->dev);
2153  			break;
2154  		}
2155  	}
2156  	rcu_read_unlock();
2157  
2158  	of_node_put(np);
2159  
2160  	return rproc;
2161  }
2162  #else
rproc_get_by_phandle(phandle phandle)2163  struct rproc *rproc_get_by_phandle(phandle phandle)
2164  {
2165  	return NULL;
2166  }
2167  #endif
2168  EXPORT_SYMBOL(rproc_get_by_phandle);
2169  
2170  /**
2171   * rproc_set_firmware() - assign a new firmware
2172   * @rproc: rproc handle to which the new firmware is being assigned
2173   * @fw_name: new firmware name to be assigned
2174   *
2175   * This function allows remoteproc drivers or clients to configure a custom
2176   * firmware name that is different from the default name used during remoteproc
2177   * registration. The function does not trigger a remote processor boot,
2178   * only sets the firmware name used for a subsequent boot. This function
2179   * should also be called only when the remote processor is offline.
2180   *
2181   * This allows either the userspace to configure a different name through
2182   * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2183   * a specific firmware when it is controlling the boot and shutdown of the
2184   * remote processor.
2185   *
2186   * Return: 0 on success or a negative value upon failure
2187   */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2188  int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2189  {
2190  	struct device *dev;
2191  	int ret, len;
2192  	char *p;
2193  
2194  	if (!rproc || !fw_name)
2195  		return -EINVAL;
2196  
2197  	dev = rproc->dev.parent;
2198  
2199  	ret = mutex_lock_interruptible(&rproc->lock);
2200  	if (ret) {
2201  		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2202  		return -EINVAL;
2203  	}
2204  
2205  	if (rproc->state != RPROC_OFFLINE) {
2206  		dev_err(dev, "can't change firmware while running\n");
2207  		ret = -EBUSY;
2208  		goto out;
2209  	}
2210  
2211  	len = strcspn(fw_name, "\n");
2212  	if (!len) {
2213  		dev_err(dev, "can't provide empty string for firmware name\n");
2214  		ret = -EINVAL;
2215  		goto out;
2216  	}
2217  
2218  	p = kstrndup(fw_name, len, GFP_KERNEL);
2219  	if (!p) {
2220  		ret = -ENOMEM;
2221  		goto out;
2222  	}
2223  
2224  	kfree_const(rproc->firmware);
2225  	rproc->firmware = p;
2226  
2227  out:
2228  	mutex_unlock(&rproc->lock);
2229  	return ret;
2230  }
2231  EXPORT_SYMBOL(rproc_set_firmware);
2232  
rproc_validate(struct rproc * rproc)2233  static int rproc_validate(struct rproc *rproc)
2234  {
2235  	switch (rproc->state) {
2236  	case RPROC_OFFLINE:
2237  		/*
2238  		 * An offline processor without a start()
2239  		 * function makes no sense.
2240  		 */
2241  		if (!rproc->ops->start)
2242  			return -EINVAL;
2243  		break;
2244  	case RPROC_DETACHED:
2245  		/*
2246  		 * A remote processor in a detached state without an
2247  		 * attach() function makes not sense.
2248  		 */
2249  		if (!rproc->ops->attach)
2250  			return -EINVAL;
2251  		/*
2252  		 * When attaching to a remote processor the device memory
2253  		 * is already available and as such there is no need to have a
2254  		 * cached table.
2255  		 */
2256  		if (rproc->cached_table)
2257  			return -EINVAL;
2258  		break;
2259  	default:
2260  		/*
2261  		 * When adding a remote processor, the state of the device
2262  		 * can be offline or detached, nothing else.
2263  		 */
2264  		return -EINVAL;
2265  	}
2266  
2267  	return 0;
2268  }
2269  
2270  /**
2271   * rproc_add() - register a remote processor
2272   * @rproc: the remote processor handle to register
2273   *
2274   * Registers @rproc with the remoteproc framework, after it has been
2275   * allocated with rproc_alloc().
2276   *
2277   * This is called by the platform-specific rproc implementation, whenever
2278   * a new remote processor device is probed.
2279   *
2280   * Note: this function initiates an asynchronous firmware loading
2281   * context, which will look for virtio devices supported by the rproc's
2282   * firmware.
2283   *
2284   * If found, those virtio devices will be created and added, so as a result
2285   * of registering this remote processor, additional virtio drivers might be
2286   * probed.
2287   *
2288   * Return: 0 on success and an appropriate error code otherwise
2289   */
rproc_add(struct rproc * rproc)2290  int rproc_add(struct rproc *rproc)
2291  {
2292  	struct device *dev = &rproc->dev;
2293  	int ret;
2294  
2295  	ret = rproc_validate(rproc);
2296  	if (ret < 0)
2297  		return ret;
2298  
2299  	/* add char device for this remoteproc */
2300  	ret = rproc_char_device_add(rproc);
2301  	if (ret < 0)
2302  		return ret;
2303  
2304  	ret = device_add(dev);
2305  	if (ret < 0) {
2306  		put_device(dev);
2307  		goto rproc_remove_cdev;
2308  	}
2309  
2310  	dev_info(dev, "%s is available\n", rproc->name);
2311  
2312  	/* create debugfs entries */
2313  	rproc_create_debug_dir(rproc);
2314  
2315  	/* if rproc is marked always-on, request it to boot */
2316  	if (rproc->auto_boot) {
2317  		ret = rproc_trigger_auto_boot(rproc);
2318  		if (ret < 0)
2319  			goto rproc_remove_dev;
2320  	}
2321  
2322  	/* expose to rproc_get_by_phandle users */
2323  	mutex_lock(&rproc_list_mutex);
2324  	list_add_rcu(&rproc->node, &rproc_list);
2325  	mutex_unlock(&rproc_list_mutex);
2326  
2327  	return 0;
2328  
2329  rproc_remove_dev:
2330  	rproc_delete_debug_dir(rproc);
2331  	device_del(dev);
2332  rproc_remove_cdev:
2333  	rproc_char_device_remove(rproc);
2334  	return ret;
2335  }
2336  EXPORT_SYMBOL(rproc_add);
2337  
devm_rproc_remove(void * rproc)2338  static void devm_rproc_remove(void *rproc)
2339  {
2340  	rproc_del(rproc);
2341  }
2342  
2343  /**
2344   * devm_rproc_add() - resource managed rproc_add()
2345   * @dev: the underlying device
2346   * @rproc: the remote processor handle to register
2347   *
2348   * This function performs like rproc_add() but the registered rproc device will
2349   * automatically be removed on driver detach.
2350   *
2351   * Return: 0 on success, negative errno on failure
2352   */
devm_rproc_add(struct device * dev,struct rproc * rproc)2353  int devm_rproc_add(struct device *dev, struct rproc *rproc)
2354  {
2355  	int err;
2356  
2357  	err = rproc_add(rproc);
2358  	if (err)
2359  		return err;
2360  
2361  	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2362  }
2363  EXPORT_SYMBOL(devm_rproc_add);
2364  
2365  /**
2366   * rproc_type_release() - release a remote processor instance
2367   * @dev: the rproc's device
2368   *
2369   * This function should _never_ be called directly.
2370   *
2371   * It will be called by the driver core when no one holds a valid pointer
2372   * to @dev anymore.
2373   */
rproc_type_release(struct device * dev)2374  static void rproc_type_release(struct device *dev)
2375  {
2376  	struct rproc *rproc = container_of(dev, struct rproc, dev);
2377  
2378  	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2379  
2380  	idr_destroy(&rproc->notifyids);
2381  
2382  	if (rproc->index >= 0)
2383  		ida_free(&rproc_dev_index, rproc->index);
2384  
2385  	kfree_const(rproc->firmware);
2386  	kfree_const(rproc->name);
2387  	kfree(rproc->ops);
2388  	kfree(rproc);
2389  }
2390  
2391  static const struct device_type rproc_type = {
2392  	.name		= "remoteproc",
2393  	.release	= rproc_type_release,
2394  };
2395  
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2396  static int rproc_alloc_firmware(struct rproc *rproc,
2397  				const char *name, const char *firmware)
2398  {
2399  	const char *p;
2400  
2401  	/*
2402  	 * Allocate a firmware name if the caller gave us one to work
2403  	 * with.  Otherwise construct a new one using a default pattern.
2404  	 */
2405  	if (firmware)
2406  		p = kstrdup_const(firmware, GFP_KERNEL);
2407  	else
2408  		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2409  
2410  	if (!p)
2411  		return -ENOMEM;
2412  
2413  	rproc->firmware = p;
2414  
2415  	return 0;
2416  }
2417  
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2418  static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2419  {
2420  	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2421  	if (!rproc->ops)
2422  		return -ENOMEM;
2423  
2424  	/* Default to rproc_coredump if no coredump function is specified */
2425  	if (!rproc->ops->coredump)
2426  		rproc->ops->coredump = rproc_coredump;
2427  
2428  	if (rproc->ops->load)
2429  		return 0;
2430  
2431  	/* Default to ELF loader if no load function is specified */
2432  	rproc->ops->load = rproc_elf_load_segments;
2433  	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2434  	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2435  	rproc->ops->sanity_check = rproc_elf_sanity_check;
2436  	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2437  
2438  	return 0;
2439  }
2440  
2441  /**
2442   * rproc_alloc() - allocate a remote processor handle
2443   * @dev: the underlying device
2444   * @name: name of this remote processor
2445   * @ops: platform-specific handlers (mainly start/stop)
2446   * @firmware: name of firmware file to load, can be NULL
2447   * @len: length of private data needed by the rproc driver (in bytes)
2448   *
2449   * Allocates a new remote processor handle, but does not register
2450   * it yet. if @firmware is NULL, a default name is used.
2451   *
2452   * This function should be used by rproc implementations during initialization
2453   * of the remote processor.
2454   *
2455   * After creating an rproc handle using this function, and when ready,
2456   * implementations should then call rproc_add() to complete
2457   * the registration of the remote processor.
2458   *
2459   * Note: _never_ directly deallocate @rproc, even if it was not registered
2460   * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2461   *
2462   * Return: new rproc pointer on success, and NULL on failure
2463   */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2464  struct rproc *rproc_alloc(struct device *dev, const char *name,
2465  			  const struct rproc_ops *ops,
2466  			  const char *firmware, int len)
2467  {
2468  	struct rproc *rproc;
2469  
2470  	if (!dev || !name || !ops)
2471  		return NULL;
2472  
2473  	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2474  	if (!rproc)
2475  		return NULL;
2476  
2477  	rproc->priv = &rproc[1];
2478  	rproc->auto_boot = true;
2479  	rproc->elf_class = ELFCLASSNONE;
2480  	rproc->elf_machine = EM_NONE;
2481  
2482  	device_initialize(&rproc->dev);
2483  	rproc->dev.parent = dev;
2484  	rproc->dev.type = &rproc_type;
2485  	rproc->dev.class = &rproc_class;
2486  	rproc->dev.driver_data = rproc;
2487  	idr_init(&rproc->notifyids);
2488  
2489  	rproc->name = kstrdup_const(name, GFP_KERNEL);
2490  	if (!rproc->name)
2491  		goto put_device;
2492  
2493  	if (rproc_alloc_firmware(rproc, name, firmware))
2494  		goto put_device;
2495  
2496  	if (rproc_alloc_ops(rproc, ops))
2497  		goto put_device;
2498  
2499  	/* Assign a unique device index and name */
2500  	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2501  	if (rproc->index < 0) {
2502  		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2503  		goto put_device;
2504  	}
2505  
2506  	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2507  
2508  	atomic_set(&rproc->power, 0);
2509  
2510  	mutex_init(&rproc->lock);
2511  
2512  	INIT_LIST_HEAD(&rproc->carveouts);
2513  	INIT_LIST_HEAD(&rproc->mappings);
2514  	INIT_LIST_HEAD(&rproc->traces);
2515  	INIT_LIST_HEAD(&rproc->rvdevs);
2516  	INIT_LIST_HEAD(&rproc->subdevs);
2517  	INIT_LIST_HEAD(&rproc->dump_segments);
2518  
2519  	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2520  
2521  	rproc->state = RPROC_OFFLINE;
2522  
2523  	return rproc;
2524  
2525  put_device:
2526  	put_device(&rproc->dev);
2527  	return NULL;
2528  }
2529  EXPORT_SYMBOL(rproc_alloc);
2530  
2531  /**
2532   * rproc_free() - unroll rproc_alloc()
2533   * @rproc: the remote processor handle
2534   *
2535   * This function decrements the rproc dev refcount.
2536   *
2537   * If no one holds any reference to rproc anymore, then its refcount would
2538   * now drop to zero, and it would be freed.
2539   */
rproc_free(struct rproc * rproc)2540  void rproc_free(struct rproc *rproc)
2541  {
2542  	put_device(&rproc->dev);
2543  }
2544  EXPORT_SYMBOL(rproc_free);
2545  
2546  /**
2547   * rproc_put() - release rproc reference
2548   * @rproc: the remote processor handle
2549   *
2550   * This function decrements the rproc dev refcount.
2551   *
2552   * If no one holds any reference to rproc anymore, then its refcount would
2553   * now drop to zero, and it would be freed.
2554   */
rproc_put(struct rproc * rproc)2555  void rproc_put(struct rproc *rproc)
2556  {
2557  	if (rproc->dev.parent->driver)
2558  		module_put(rproc->dev.parent->driver->owner);
2559  	else
2560  		module_put(rproc->dev.parent->parent->driver->owner);
2561  
2562  	put_device(&rproc->dev);
2563  }
2564  EXPORT_SYMBOL(rproc_put);
2565  
2566  /**
2567   * rproc_del() - unregister a remote processor
2568   * @rproc: rproc handle to unregister
2569   *
2570   * This function should be called when the platform specific rproc
2571   * implementation decides to remove the rproc device. it should
2572   * _only_ be called if a previous invocation of rproc_add()
2573   * has completed successfully.
2574   *
2575   * After rproc_del() returns, @rproc isn't freed yet, because
2576   * of the outstanding reference created by rproc_alloc. To decrement that
2577   * one last refcount, one still needs to call rproc_free().
2578   *
2579   * Return: 0 on success and -EINVAL if @rproc isn't valid
2580   */
rproc_del(struct rproc * rproc)2581  int rproc_del(struct rproc *rproc)
2582  {
2583  	if (!rproc)
2584  		return -EINVAL;
2585  
2586  	/* TODO: make sure this works with rproc->power > 1 */
2587  	rproc_shutdown(rproc);
2588  
2589  	mutex_lock(&rproc->lock);
2590  	rproc->state = RPROC_DELETED;
2591  	mutex_unlock(&rproc->lock);
2592  
2593  	rproc_delete_debug_dir(rproc);
2594  
2595  	/* the rproc is downref'ed as soon as it's removed from the klist */
2596  	mutex_lock(&rproc_list_mutex);
2597  	list_del_rcu(&rproc->node);
2598  	mutex_unlock(&rproc_list_mutex);
2599  
2600  	/* Ensure that no readers of rproc_list are still active */
2601  	synchronize_rcu();
2602  
2603  	device_del(&rproc->dev);
2604  	rproc_char_device_remove(rproc);
2605  
2606  	return 0;
2607  }
2608  EXPORT_SYMBOL(rproc_del);
2609  
devm_rproc_free(struct device * dev,void * res)2610  static void devm_rproc_free(struct device *dev, void *res)
2611  {
2612  	rproc_free(*(struct rproc **)res);
2613  }
2614  
2615  /**
2616   * devm_rproc_alloc() - resource managed rproc_alloc()
2617   * @dev: the underlying device
2618   * @name: name of this remote processor
2619   * @ops: platform-specific handlers (mainly start/stop)
2620   * @firmware: name of firmware file to load, can be NULL
2621   * @len: length of private data needed by the rproc driver (in bytes)
2622   *
2623   * This function performs like rproc_alloc() but the acquired rproc device will
2624   * automatically be released on driver detach.
2625   *
2626   * Return: new rproc instance, or NULL on failure
2627   */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2628  struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2629  			       const struct rproc_ops *ops,
2630  			       const char *firmware, int len)
2631  {
2632  	struct rproc **ptr, *rproc;
2633  
2634  	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2635  	if (!ptr)
2636  		return NULL;
2637  
2638  	rproc = rproc_alloc(dev, name, ops, firmware, len);
2639  	if (rproc) {
2640  		*ptr = rproc;
2641  		devres_add(dev, ptr);
2642  	} else {
2643  		devres_free(ptr);
2644  	}
2645  
2646  	return rproc;
2647  }
2648  EXPORT_SYMBOL(devm_rproc_alloc);
2649  
2650  /**
2651   * rproc_add_subdev() - add a subdevice to a remoteproc
2652   * @rproc: rproc handle to add the subdevice to
2653   * @subdev: subdev handle to register
2654   *
2655   * Caller is responsible for populating optional subdevice function pointers.
2656   */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2657  void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2658  {
2659  	list_add_tail(&subdev->node, &rproc->subdevs);
2660  }
2661  EXPORT_SYMBOL(rproc_add_subdev);
2662  
2663  /**
2664   * rproc_remove_subdev() - remove a subdevice from a remoteproc
2665   * @rproc: rproc handle to remove the subdevice from
2666   * @subdev: subdev handle, previously registered with rproc_add_subdev()
2667   */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2668  void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2669  {
2670  	list_del(&subdev->node);
2671  }
2672  EXPORT_SYMBOL(rproc_remove_subdev);
2673  
2674  /**
2675   * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2676   * @dev:	child device to find ancestor of
2677   *
2678   * Return: the ancestor rproc instance, or NULL if not found
2679   */
rproc_get_by_child(struct device * dev)2680  struct rproc *rproc_get_by_child(struct device *dev)
2681  {
2682  	for (dev = dev->parent; dev; dev = dev->parent) {
2683  		if (dev->type == &rproc_type)
2684  			return dev->driver_data;
2685  	}
2686  
2687  	return NULL;
2688  }
2689  EXPORT_SYMBOL(rproc_get_by_child);
2690  
2691  /**
2692   * rproc_report_crash() - rproc crash reporter function
2693   * @rproc: remote processor
2694   * @type: crash type
2695   *
2696   * This function must be called every time a crash is detected by the low-level
2697   * drivers implementing a specific remoteproc. This should not be called from a
2698   * non-remoteproc driver.
2699   *
2700   * This function can be called from atomic/interrupt context.
2701   */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2702  void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2703  {
2704  	if (!rproc) {
2705  		pr_err("NULL rproc pointer\n");
2706  		return;
2707  	}
2708  
2709  	/* Prevent suspend while the remoteproc is being recovered */
2710  	pm_stay_awake(rproc->dev.parent);
2711  
2712  	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2713  		rproc->name, rproc_crash_to_string(type));
2714  
2715  	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2716  }
2717  EXPORT_SYMBOL(rproc_report_crash);
2718  
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2719  static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2720  			       void *ptr)
2721  {
2722  	unsigned int longest = 0;
2723  	struct rproc *rproc;
2724  	unsigned int d;
2725  
2726  	rcu_read_lock();
2727  	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2728  		if (!rproc->ops->panic)
2729  			continue;
2730  
2731  		if (rproc->state != RPROC_RUNNING &&
2732  		    rproc->state != RPROC_ATTACHED)
2733  			continue;
2734  
2735  		d = rproc->ops->panic(rproc);
2736  		longest = max(longest, d);
2737  	}
2738  	rcu_read_unlock();
2739  
2740  	/*
2741  	 * Delay for the longest requested duration before returning. This can
2742  	 * be used by the remoteproc drivers to give the remote processor time
2743  	 * to perform any requested operations (such as flush caches), when
2744  	 * it's not possible to signal the Linux side due to the panic.
2745  	 */
2746  	mdelay(longest);
2747  
2748  	return NOTIFY_DONE;
2749  }
2750  
rproc_init_panic(void)2751  static void __init rproc_init_panic(void)
2752  {
2753  	rproc_panic_nb.notifier_call = rproc_panic_handler;
2754  	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2755  }
2756  
rproc_exit_panic(void)2757  static void __exit rproc_exit_panic(void)
2758  {
2759  	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2760  }
2761  
remoteproc_init(void)2762  static int __init remoteproc_init(void)
2763  {
2764  	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2765  						WQ_UNBOUND | WQ_FREEZABLE, 0);
2766  	if (!rproc_recovery_wq) {
2767  		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2768  		return -ENOMEM;
2769  	}
2770  
2771  	rproc_init_sysfs();
2772  	rproc_init_debugfs();
2773  	rproc_init_cdev();
2774  	rproc_init_panic();
2775  
2776  	return 0;
2777  }
2778  subsys_initcall(remoteproc_init);
2779  
remoteproc_exit(void)2780  static void __exit remoteproc_exit(void)
2781  {
2782  	ida_destroy(&rproc_dev_index);
2783  
2784  	if (!rproc_recovery_wq)
2785  		return;
2786  
2787  	rproc_exit_panic();
2788  	rproc_exit_debugfs();
2789  	rproc_exit_sysfs();
2790  	destroy_workqueue(rproc_recovery_wq);
2791  }
2792  module_exit(remoteproc_exit);
2793  
2794  MODULE_DESCRIPTION("Generic Remote Processor Framework");
2795