1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dccg.h"
27 #include "rn_clk_mgr.h"
28
29 #include "dcn20/dcn20_clk_mgr.h"
30 #include "dml/dcn20/dcn20_fpu.h"
31
32 #include "dce100/dce_clk_mgr.h"
33 #include "rn_clk_mgr_vbios_smu.h"
34 #include "reg_helper.h"
35 #include "core_types.h"
36 #include "dm_helpers.h"
37
38 #include "atomfirmware.h"
39 #include "clk/clk_10_0_2_offset.h"
40 #include "clk/clk_10_0_2_sh_mask.h"
41 #include "renoir_ip_offset.h"
42
43
44 /* Constants */
45
46 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
47
48 /* Macros */
49
50 #define REG(reg_name) \
51 (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
52
53
54 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
rn_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)55 static int rn_get_active_display_cnt_wa(struct dc *dc, struct dc_state *context)
56 {
57 int i, display_count;
58 bool tmds_present = false;
59
60 display_count = 0;
61 for (i = 0; i < context->stream_count; i++) {
62 const struct dc_stream_state *stream = context->streams[i];
63
64 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
65 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
66 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
67 tmds_present = true;
68 }
69
70 for (i = 0; i < dc->link_count; i++) {
71 const struct dc_link *link = dc->links[i];
72
73 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
74 if (link->link_enc->funcs->is_dig_enabled &&
75 link->link_enc->funcs->is_dig_enabled(link->link_enc))
76 display_count++;
77 }
78
79 /* WA for hang on HDMI after display off back back on*/
80 if (display_count == 0 && tmds_present)
81 display_count = 1;
82
83 return display_count;
84 }
85
rn_set_low_power_state(struct clk_mgr * clk_mgr_base)86 static void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
87 {
88 int display_count;
89 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
90 struct dc *dc = clk_mgr_base->ctx->dc;
91 struct dc_state *context = dc->current_state;
92
93 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
94
95 display_count = rn_get_active_display_cnt_wa(dc, context);
96
97 /* if we can go lower, go lower */
98 if (display_count == 0) {
99 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
100 /* update power state */
101 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
102 }
103 }
104 }
105
rn_update_clocks_update_dpp_dto(struct clk_mgr_internal * clk_mgr,struct dc_state * context,int ref_dpp_clk,bool safe_to_lower)106 static void rn_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr,
107 struct dc_state *context, int ref_dpp_clk, bool safe_to_lower)
108 {
109 int i;
110
111 clk_mgr->dccg->ref_dppclk = ref_dpp_clk;
112
113 for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
114 int dpp_inst, dppclk_khz, prev_dppclk_khz;
115
116 /* Loop index may not match dpp->inst if some pipes disabled,
117 * so select correct inst from res_pool
118 */
119 dpp_inst = clk_mgr->base.ctx->dc->res_pool->dpps[i]->inst;
120 dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz;
121
122 prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[dpp_inst];
123
124 if (safe_to_lower || prev_dppclk_khz < dppclk_khz)
125 clk_mgr->dccg->funcs->update_dpp_dto(
126 clk_mgr->dccg, dpp_inst, dppclk_khz);
127 }
128 }
129
130
rn_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)131 static void rn_update_clocks(struct clk_mgr *clk_mgr_base,
132 struct dc_state *context,
133 bool safe_to_lower)
134 {
135 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
136 struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
137 struct dc *dc = clk_mgr_base->ctx->dc;
138 int display_count;
139 bool update_dppclk = false;
140 bool update_dispclk = false;
141 bool dpp_clock_lowered = false;
142
143 struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
144
145 if (dc->work_arounds.skip_clock_update)
146 return;
147
148 /*
149 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
150 * also if safe to lower is false, we just go in the higher state
151 */
152 if (safe_to_lower && !dc->debug.disable_48mhz_pwrdwn) {
153 /* check that we're not already in lower */
154 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
155
156 display_count = rn_get_active_display_cnt_wa(dc, context);
157
158 /* if we can go lower, go lower */
159 if (display_count == 0) {
160 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
161 /* update power state */
162 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
163 }
164 }
165 } else {
166 /* check that we're not already in D0 */
167 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
168 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
169 /* update power state */
170 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
171 }
172 }
173
174 if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
175 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
176 rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
177 }
178
179 if (should_set_clock(safe_to_lower,
180 new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
181 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
182 rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
183 }
184
185 // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
186 // Do not adjust dppclk if dppclk is 0 to avoid unexpected result
187 if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
188 new_clocks->dppclk_khz = 100000;
189
190 /*
191 * Temporally ignore thew 0 cases for disp and dpp clks.
192 * We may have a new feature that requires 0 clks in the future.
193 */
194 if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
195 new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
196 new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
197 }
198
199 if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
200 if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
201 dpp_clock_lowered = true;
202 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
203 update_dppclk = true;
204 }
205
206 if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
207 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
208 clk_mgr_base->clks.actual_dispclk_khz = rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
209
210 update_dispclk = true;
211 }
212
213 if (dpp_clock_lowered) {
214 // increase per DPP DTO before lowering global dppclk with requested dppclk
215 rn_update_clocks_update_dpp_dto(
216 clk_mgr,
217 context,
218 clk_mgr_base->clks.dppclk_khz,
219 safe_to_lower);
220
221 clk_mgr_base->clks.actual_dppclk_khz =
222 rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
223
224 //update dpp dto with actual dpp clk.
225 rn_update_clocks_update_dpp_dto(
226 clk_mgr,
227 context,
228 clk_mgr_base->clks.actual_dppclk_khz,
229 safe_to_lower);
230
231 } else {
232 // increase global DPPCLK before lowering per DPP DTO
233 if (update_dppclk || update_dispclk)
234 clk_mgr_base->clks.actual_dppclk_khz =
235 rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
236
237 // always update dtos unless clock is lowered and not safe to lower
238 rn_update_clocks_update_dpp_dto(
239 clk_mgr,
240 context,
241 clk_mgr_base->clks.actual_dppclk_khz,
242 safe_to_lower);
243 }
244
245 if (update_dispclk &&
246 dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
247 /*update dmcu for wait_loop count*/
248 dmcu->funcs->set_psr_wait_loop(dmcu,
249 clk_mgr_base->clks.dispclk_khz / 1000 / 7);
250 }
251 }
252
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)253 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
254 {
255 /* get FbMult value */
256 struct fixed31_32 pll_req;
257 unsigned int fbmult_frac_val = 0;
258 unsigned int fbmult_int_val = 0;
259
260
261 /*
262 * Register value of fbmult is in 8.16 format, we are converting to 31.32
263 * to leverage the fix point operations available in driver
264 */
265
266 REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
267 REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
268
269 pll_req = dc_fixpt_from_int(fbmult_int_val);
270
271 /*
272 * since fractional part is only 16 bit in register definition but is 32 bit
273 * in our fix point definiton, need to shift left by 16 to obtain correct value
274 */
275 pll_req.value |= fbmult_frac_val << 16;
276
277 /* multiply by REFCLK period */
278 pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
279
280 /* integer part is now VCO frequency in kHz */
281 return dc_fixpt_floor(pll_req);
282 }
283
rn_dump_clk_registers_internal(struct rn_clk_internal * internal,struct clk_mgr * clk_mgr_base)284 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
285 {
286 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
287
288 internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
289 internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
290
291 internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL); //dcf deep sleep divider
292 internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
293
294 internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
295 internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
296
297 internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
298 internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
299
300 internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
301 internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
302 }
303
304 /* This function collect raw clk register values */
rn_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)305 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
306 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
307 {
308 struct rn_clk_internal internal = {0};
309 char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
310 unsigned int chars_printed = 0;
311 unsigned int remaining_buffer = log_info->bufSize;
312
313 rn_dump_clk_registers_internal(&internal, clk_mgr_base);
314
315 regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
316 regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
317 regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
318 regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
319 regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
320 regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
321
322 regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
323 if (regs_and_bypass->dppclk_bypass > 4)
324 regs_and_bypass->dppclk_bypass = 0;
325 regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
326 if (regs_and_bypass->dcfclk_bypass > 4)
327 regs_and_bypass->dcfclk_bypass = 0;
328 regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
329 if (regs_and_bypass->dispclk_bypass > 4)
330 regs_and_bypass->dispclk_bypass = 0;
331 regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
332 if (regs_and_bypass->dprefclk_bypass > 4)
333 regs_and_bypass->dprefclk_bypass = 0;
334
335 if (log_info->enabled) {
336 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
337 remaining_buffer -= chars_printed;
338 *log_info->sum_chars_printed += chars_printed;
339 log_info->pBuf += chars_printed;
340
341 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
342 regs_and_bypass->dcfclk,
343 regs_and_bypass->dcf_deep_sleep_divider,
344 regs_and_bypass->dcf_deep_sleep_allow,
345 bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
346 remaining_buffer -= chars_printed;
347 *log_info->sum_chars_printed += chars_printed;
348 log_info->pBuf += chars_printed;
349
350 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
351 regs_and_bypass->dprefclk,
352 bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
353 remaining_buffer -= chars_printed;
354 *log_info->sum_chars_printed += chars_printed;
355 log_info->pBuf += chars_printed;
356
357 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
358 regs_and_bypass->dispclk,
359 bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
360 remaining_buffer -= chars_printed;
361 *log_info->sum_chars_printed += chars_printed;
362 log_info->pBuf += chars_printed;
363
364 //split
365 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
366 remaining_buffer -= chars_printed;
367 *log_info->sum_chars_printed += chars_printed;
368 log_info->pBuf += chars_printed;
369
370 // REGISTER VALUES
371 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
372 remaining_buffer -= chars_printed;
373 *log_info->sum_chars_printed += chars_printed;
374 log_info->pBuf += chars_printed;
375
376 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
377 internal.CLK1_CLK3_CURRENT_CNT);
378 remaining_buffer -= chars_printed;
379 *log_info->sum_chars_printed += chars_printed;
380 log_info->pBuf += chars_printed;
381
382 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
383 internal.CLK1_CLK3_DS_CNTL);
384 remaining_buffer -= chars_printed;
385 *log_info->sum_chars_printed += chars_printed;
386 log_info->pBuf += chars_printed;
387
388 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
389 internal.CLK1_CLK3_ALLOW_DS);
390 remaining_buffer -= chars_printed;
391 *log_info->sum_chars_printed += chars_printed;
392 log_info->pBuf += chars_printed;
393
394 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
395 internal.CLK1_CLK2_CURRENT_CNT);
396 remaining_buffer -= chars_printed;
397 *log_info->sum_chars_printed += chars_printed;
398 log_info->pBuf += chars_printed;
399
400 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
401 internal.CLK1_CLK0_CURRENT_CNT);
402 remaining_buffer -= chars_printed;
403 *log_info->sum_chars_printed += chars_printed;
404 log_info->pBuf += chars_printed;
405
406 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
407 internal.CLK1_CLK1_CURRENT_CNT);
408 remaining_buffer -= chars_printed;
409 *log_info->sum_chars_printed += chars_printed;
410 log_info->pBuf += chars_printed;
411
412 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
413 internal.CLK1_CLK3_BYPASS_CNTL);
414 remaining_buffer -= chars_printed;
415 *log_info->sum_chars_printed += chars_printed;
416 log_info->pBuf += chars_printed;
417
418 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
419 internal.CLK1_CLK2_BYPASS_CNTL);
420 remaining_buffer -= chars_printed;
421 *log_info->sum_chars_printed += chars_printed;
422 log_info->pBuf += chars_printed;
423
424 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
425 internal.CLK1_CLK0_BYPASS_CNTL);
426 remaining_buffer -= chars_printed;
427 *log_info->sum_chars_printed += chars_printed;
428 log_info->pBuf += chars_printed;
429
430 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
431 internal.CLK1_CLK1_BYPASS_CNTL);
432 remaining_buffer -= chars_printed;
433 *log_info->sum_chars_printed += chars_printed;
434 log_info->pBuf += chars_printed;
435 }
436 }
437
rn_enable_pme_wa(struct clk_mgr * clk_mgr_base)438 static void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
439 {
440 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
441
442 rn_vbios_smu_enable_pme_wa(clk_mgr);
443 }
444
rn_init_clocks(struct clk_mgr * clk_mgr)445 static void rn_init_clocks(struct clk_mgr *clk_mgr)
446 {
447 memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
448 // Assumption is that boot state always supports pstate
449 clk_mgr->clks.p_state_change_support = true;
450 clk_mgr->clks.prev_p_state_change_support = true;
451 clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
452 }
453
build_watermark_ranges(struct clk_bw_params * bw_params,struct pp_smu_wm_range_sets * ranges)454 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
455 {
456 int i, num_valid_sets;
457
458 num_valid_sets = 0;
459
460 for (i = 0; i < WM_SET_COUNT; i++) {
461 /* skip empty entries, the smu array has no holes*/
462 if (!bw_params->wm_table.entries[i].valid)
463 continue;
464
465 ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
466 ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
467 /* We will not select WM based on fclk, so leave it as unconstrained */
468 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
469 ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
470 /* dcfclk wil be used to select WM*/
471
472 if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
473 if (i == 0)
474 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
475 else {
476 /* add 1 to make it non-overlapping with next lvl */
477 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
478 }
479 ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
480
481 } else {
482 /* unconstrained for memory retraining */
483 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
484 ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
485
486 /* Modify previous watermark range to cover up to max */
487 if (num_valid_sets > 0)
488 ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
489 }
490 num_valid_sets++;
491 }
492
493 ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
494 ranges->num_reader_wm_sets = num_valid_sets;
495
496 /* modify the min and max to make sure we cover the whole range*/
497 ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
498 ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
499 ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
500 ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
501
502 /* This is for writeback only, does not matter currently as no writeback support*/
503 ranges->num_writer_wm_sets = 1;
504 ranges->writer_wm_sets[0].wm_inst = WM_A;
505 ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
506 ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
507 ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
508 ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
509
510 }
511
rn_notify_wm_ranges(struct clk_mgr * clk_mgr_base)512 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
513 {
514 struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
515 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
516 struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
517
518 if (!debug->disable_pplib_wm_range) {
519 build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
520
521 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
522 if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
523 pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
524 }
525
526 }
527
rn_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)528 static bool rn_are_clock_states_equal(struct dc_clocks *a,
529 struct dc_clocks *b)
530 {
531 if (a->dispclk_khz != b->dispclk_khz)
532 return false;
533 else if (a->dppclk_khz != b->dppclk_khz)
534 return false;
535 else if (a->dcfclk_khz != b->dcfclk_khz)
536 return false;
537 else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
538 return false;
539
540 return true;
541 }
542
543
544 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
rn_notify_link_rate_change(struct clk_mgr * clk_mgr_base,struct dc_link * link)545 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
546 {
547 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
548 unsigned int i, max_phyclk_req = 0;
549
550 clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
551
552 for (i = 0; i < MAX_LINKS; i++) {
553 if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
554 max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
555 }
556
557 if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
558 clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
559 rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
560 }
561 }
562
563 static struct clk_mgr_funcs dcn21_funcs = {
564 .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
565 .update_clocks = rn_update_clocks,
566 .init_clocks = rn_init_clocks,
567 .enable_pme_wa = rn_enable_pme_wa,
568 .are_clock_states_equal = rn_are_clock_states_equal,
569 .set_low_power_state = rn_set_low_power_state,
570 .notify_wm_ranges = rn_notify_wm_ranges,
571 .notify_link_rate_change = rn_notify_link_rate_change,
572 };
573
574 static struct clk_bw_params rn_bw_params = {
575 .vram_type = Ddr4MemType,
576 .num_channels = 1,
577 .clk_table = {
578 .entries = {
579 {
580 .voltage = 0,
581 .dcfclk_mhz = 400,
582 .fclk_mhz = 400,
583 .memclk_mhz = 800,
584 .socclk_mhz = 0,
585 },
586 {
587 .voltage = 0,
588 .dcfclk_mhz = 483,
589 .fclk_mhz = 800,
590 .memclk_mhz = 1600,
591 .socclk_mhz = 0,
592 },
593 {
594 .voltage = 0,
595 .dcfclk_mhz = 602,
596 .fclk_mhz = 1067,
597 .memclk_mhz = 1067,
598 .socclk_mhz = 0,
599 },
600 {
601 .voltage = 0,
602 .dcfclk_mhz = 738,
603 .fclk_mhz = 1333,
604 .memclk_mhz = 1600,
605 .socclk_mhz = 0,
606 },
607 },
608
609 .num_entries = 4,
610 },
611
612 };
613
find_socclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)614 static unsigned int find_socclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
615 {
616 int i;
617
618 for (i = 0; i < PP_SMU_NUM_SOCCLK_DPM_LEVELS; i++) {
619 if (clock_table->SocClocks[i].Vol == voltage)
620 return clock_table->SocClocks[i].Freq;
621 }
622
623 ASSERT(0);
624 return 0;
625 }
626
find_dcfclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)627 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
628 {
629 int i;
630
631 for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
632 if (clock_table->DcfClocks[i].Vol == voltage)
633 return clock_table->DcfClocks[i].Freq;
634 }
635
636 ASSERT(0);
637 return 0;
638 }
639
rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params * bw_params,struct dpm_clocks * clock_table,struct integrated_info * bios_info)640 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
641 {
642 int i, j = 0;
643
644 j = -1;
645
646 static_assert(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL,
647 "number of reported FCLK DPM levels exceed maximum");
648
649 /* Find lowest DPM, FCLK is filled in reverse order*/
650
651 for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
652 if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
653 j = i;
654 break;
655 }
656 }
657
658 if (j == -1) {
659 /* clock table is all 0s, just use our own hardcode */
660 ASSERT(0);
661 return;
662 }
663
664 bw_params->clk_table.num_entries = j + 1;
665
666 for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
667 bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
668 bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
669 bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
670 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
671 bw_params->clk_table.entries[i].socclk_mhz = find_socclk_for_voltage(clock_table,
672 bw_params->clk_table.entries[i].voltage);
673 }
674
675 bw_params->vram_type = bios_info->memory_type;
676 bw_params->num_channels = bios_info->ma_channel_number;
677
678 for (i = 0; i < WM_SET_COUNT; i++) {
679 bw_params->wm_table.entries[i].wm_inst = i;
680
681 if (i >= bw_params->clk_table.num_entries) {
682 bw_params->wm_table.entries[i].valid = false;
683 continue;
684 }
685
686 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
687 bw_params->wm_table.entries[i].valid = true;
688 }
689
690 if (bw_params->vram_type == LpDdr4MemType) {
691 /*
692 * WM set D will be re-purposed for memory retraining
693 */
694 DC_FP_START();
695 dcn21_clk_mgr_set_bw_params_wm_table(bw_params);
696 DC_FP_END();
697 }
698 }
699
rn_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_internal * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)700 void rn_clk_mgr_construct(
701 struct dc_context *ctx,
702 struct clk_mgr_internal *clk_mgr,
703 struct pp_smu_funcs *pp_smu,
704 struct dccg *dccg)
705 {
706 struct dc_debug_options *debug = &ctx->dc->debug;
707 struct dpm_clocks clock_table = { 0 };
708 enum pp_smu_status status = 0;
709 int is_green_sardine = 0;
710 struct clk_log_info log_info = {0};
711
712 is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
713
714 clk_mgr->base.ctx = ctx;
715 clk_mgr->base.funcs = &dcn21_funcs;
716
717 clk_mgr->pp_smu = pp_smu;
718
719 clk_mgr->dccg = dccg;
720 clk_mgr->dfs_bypass_disp_clk = 0;
721
722 clk_mgr->dprefclk_ss_percentage = 0;
723 clk_mgr->dprefclk_ss_divider = 1000;
724 clk_mgr->ss_on_dprefclk = false;
725 clk_mgr->dfs_ref_freq_khz = 48000;
726
727 clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
728
729 clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
730
731 /* SMU Version 55.51.0 and up no longer have an issue
732 * that needs to limit minimum dispclk */
733 if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
734 debug->min_disp_clk_khz = 0;
735
736 /* TODO: Check we get what we expect during bringup */
737 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
738
739 /* in case we don't get a value from the register, use default */
740 if (clk_mgr->base.dentist_vco_freq_khz == 0)
741 clk_mgr->base.dentist_vco_freq_khz = 3600000;
742
743 if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
744 if (clk_mgr->periodic_retraining_disabled) {
745 rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
746 } else {
747 if (is_green_sardine)
748 rn_bw_params.wm_table = lpddr4_wm_table_gs;
749 else
750 rn_bw_params.wm_table = lpddr4_wm_table_rn;
751 }
752 } else {
753 if (is_green_sardine)
754 rn_bw_params.wm_table = ddr4_wm_table_gs;
755 else {
756 if (ctx->dc->config.is_single_rank_dimm)
757 rn_bw_params.wm_table = ddr4_1R_wm_table_rn;
758 else
759 rn_bw_params.wm_table = ddr4_wm_table_rn;
760 }
761 }
762 /* Saved clocks configured at boot for debug purposes */
763 rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
764
765 clk_mgr->base.dprefclk_khz = 600000;
766 dce_clock_read_ss_info(clk_mgr);
767
768
769 clk_mgr->base.bw_params = &rn_bw_params;
770
771 if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
772 status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
773
774 if (status == PP_SMU_RESULT_OK &&
775 ctx->dc_bios->integrated_info) {
776 rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
777 /* treat memory config as single channel if memory is asymmetrics. */
778 if (ctx->dc->config.is_asymmetric_memory)
779 clk_mgr->base.bw_params->num_channels = 1;
780 }
781 }
782
783 /* enable powerfeatures when displaycount goes to 0 */
784 if (clk_mgr->smu_ver >= 0x00371500)
785 rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
786 }
787
788