1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * File Name:
4   *   skfddi.c
5   *
6   * Copyright Information:
7   *   Copyright SysKonnect 1998,1999.
8   *
9   * The information in this file is provided "AS IS" without warranty.
10   *
11   * Abstract:
12   *   A Linux device driver supporting the SysKonnect FDDI PCI controller
13   *   familie.
14   *
15   * Maintainers:
16   *   CG    Christoph Goos (cgoos@syskonnect.de)
17   *
18   * Contributors:
19   *   DM    David S. Miller
20   *
21   * Address all question to:
22   *   linux@syskonnect.de
23   *
24   * The technical manual for the adapters is available from SysKonnect's
25   * web pages: www.syskonnect.com
26   * Goto "Support" and search Knowledge Base for "manual".
27   *
28   * Driver Architecture:
29   *   The driver architecture is based on the DEC FDDI driver by
30   *   Lawrence V. Stefani and several ethernet drivers.
31   *   I also used an existing Windows NT miniport driver.
32   *   All hardware dependent functions are handled by the SysKonnect
33   *   Hardware Module.
34   *   The only headerfiles that are directly related to this source
35   *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
36   *   The others belong to the SysKonnect FDDI Hardware Module and
37   *   should better not be changed.
38   *
39   * Modification History:
40   *              Date            Name    Description
41   *              02-Mar-98       CG	Created.
42   *
43   *		10-Mar-99	CG	Support for 2.2.x added.
44   *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
45   *		26-Oct-99	CG	Fixed compilation error on 2.2.13
46   *		12-Nov-99	CG	Source code release
47   *		22-Nov-99	CG	Included in kernel source.
48   *		07-May-00	DM	64 bit fixes, new dma interface
49   *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
50   *					  Daniele Bellucci <bellucda@tiscali.it>
51   *		03-Dec-03	SH	Convert to PCI device model
52   *
53   * Compilation options (-Dxxx):
54   *              DRIVERDEBUG     print lots of messages to log file
55   *              DUMPPACKETS     print received/transmitted packets to logfile
56   *
57   * Tested cpu architectures:
58   *	- i386
59   *	- sparc64
60   */
61  
62  /* Version information string - should be updated prior to */
63  /* each new release!!! */
64  #define VERSION		"2.07"
65  
66  static const char * const boot_msg =
67  	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
68  	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
69  
70  /* Include files */
71  
72  #include <linux/capability.h>
73  #include <linux/compat.h>
74  #include <linux/module.h>
75  #include <linux/kernel.h>
76  #include <linux/errno.h>
77  #include <linux/ioport.h>
78  #include <linux/interrupt.h>
79  #include <linux/pci.h>
80  #include <linux/netdevice.h>
81  #include <linux/etherdevice.h>
82  #include <linux/fddidevice.h>
83  #include <linux/skbuff.h>
84  #include <linux/bitops.h>
85  #include <linux/gfp.h>
86  
87  #include <asm/byteorder.h>
88  #include <asm/io.h>
89  #include <linux/uaccess.h>
90  
91  #include	"h/types.h"
92  #undef ADDR			// undo Linux definition
93  #include	"h/skfbi.h"
94  #include	"h/fddi.h"
95  #include	"h/smc.h"
96  #include	"h/smtstate.h"
97  
98  
99  // Define module-wide (static) routines
100  static int skfp_driver_init(struct net_device *dev);
101  static int skfp_open(struct net_device *dev);
102  static int skfp_close(struct net_device *dev);
103  static irqreturn_t skfp_interrupt(int irq, void *dev_id);
104  static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
105  static void skfp_ctl_set_multicast_list(struct net_device *dev);
106  static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
107  static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
108  static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq,
109  			       void __user *data, int cmd);
110  static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
111  				       struct net_device *dev);
112  static void send_queued_packets(struct s_smc *smc);
113  static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
114  static void ResetAdapter(struct s_smc *smc);
115  
116  
117  // Functions needed by the hardware module
118  void *mac_drv_get_space(struct s_smc *smc, u_int size);
119  void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
120  unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
121  unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
122  void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
123  		  int flag);
124  void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
125  void llc_restart_tx(struct s_smc *smc);
126  void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
127  			 int frag_count, int len);
128  void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
129  			 int frag_count);
130  void mac_drv_fill_rxd(struct s_smc *smc);
131  void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
132  		       int frag_count);
133  int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
134  		    int la_len);
135  void dump_data(unsigned char *Data, int length);
136  
137  // External functions from the hardware module
138  extern u_int mac_drv_check_space(void);
139  extern int mac_drv_init(struct s_smc *smc);
140  extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
141  			int len, int frame_status);
142  extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
143  		       int frame_len, int frame_status);
144  extern void fddi_isr(struct s_smc *smc);
145  extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
146  			int len, int frame_status);
147  extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
148  extern void mac_drv_clear_rx_queue(struct s_smc *smc);
149  extern void enable_tx_irq(struct s_smc *smc, u_short queue);
150  
151  static const struct pci_device_id skfddi_pci_tbl[] = {
152  	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
153  	{ }			/* Terminating entry */
154  };
155  MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
156  MODULE_DESCRIPTION("SysKonnect FDDI PCI driver");
157  MODULE_LICENSE("GPL");
158  MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159  
160  // Define module-wide (static) variables
161  
162  static int num_boards;	/* total number of adapters configured */
163  
164  static const struct net_device_ops skfp_netdev_ops = {
165  	.ndo_open		= skfp_open,
166  	.ndo_stop		= skfp_close,
167  	.ndo_start_xmit		= skfp_send_pkt,
168  	.ndo_get_stats		= skfp_ctl_get_stats,
169  	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
170  	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
171  	.ndo_siocdevprivate	= skfp_siocdevprivate,
172  };
173  
174  /*
175   * =================
176   * = skfp_init_one =
177   * =================
178   *
179   * Overview:
180   *   Probes for supported FDDI PCI controllers
181   *
182   * Returns:
183   *   Condition code
184   *
185   * Arguments:
186   *   pdev - pointer to PCI device information
187   *
188   * Functional Description:
189   *   This is now called by PCI driver registration process
190   *   for each board found.
191   *
192   * Return Codes:
193   *   0           - This device (fddi0, fddi1, etc) configured successfully
194   *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
195   *                         present for this device name
196   *
197   *
198   * Side Effects:
199   *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
200   *   initialized and the board resources are read and stored in
201   *   the device structure.
202   */
skfp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)203  static int skfp_init_one(struct pci_dev *pdev,
204  				const struct pci_device_id *ent)
205  {
206  	struct net_device *dev;
207  	struct s_smc *smc;	/* board pointer */
208  	void __iomem *mem;
209  	int err;
210  
211  	pr_debug("entering skfp_init_one\n");
212  
213  	if (num_boards == 0)
214  		printk("%s\n", boot_msg);
215  
216  	err = pci_enable_device(pdev);
217  	if (err)
218  		return err;
219  
220  	err = pci_request_regions(pdev, "skfddi");
221  	if (err)
222  		goto err_out1;
223  
224  	pci_set_master(pdev);
225  
226  #ifdef MEM_MAPPED_IO
227  	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
228  		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
229  		err = -EIO;
230  		goto err_out2;
231  	}
232  
233  	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
234  #else
235  	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
236  		printk(KERN_ERR "skfp: region is not PIO resource\n");
237  		err = -EIO;
238  		goto err_out2;
239  	}
240  
241  	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
242  #endif
243  	if (!mem) {
244  		printk(KERN_ERR "skfp:  Unable to map register, "
245  				"FDDI adapter will be disabled.\n");
246  		err = -EIO;
247  		goto err_out2;
248  	}
249  
250  	dev = alloc_fddidev(sizeof(struct s_smc));
251  	if (!dev) {
252  		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
253  				"FDDI adapter will be disabled.\n");
254  		err = -ENOMEM;
255  		goto err_out3;
256  	}
257  
258  	dev->irq = pdev->irq;
259  	dev->netdev_ops = &skfp_netdev_ops;
260  
261  	SET_NETDEV_DEV(dev, &pdev->dev);
262  
263  	/* Initialize board structure with bus-specific info */
264  	smc = netdev_priv(dev);
265  	smc->os.dev = dev;
266  	smc->os.bus_type = SK_BUS_TYPE_PCI;
267  	smc->os.pdev = *pdev;
268  	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
269  	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
270  	smc->os.dev = dev;
271  	smc->hw.slot = -1;
272  	smc->hw.iop = mem;
273  	smc->os.ResetRequested = FALSE;
274  	skb_queue_head_init(&smc->os.SendSkbQueue);
275  
276  	dev->base_addr = (unsigned long)mem;
277  
278  	err = skfp_driver_init(dev);
279  	if (err)
280  		goto err_out4;
281  
282  	err = register_netdev(dev);
283  	if (err)
284  		goto err_out5;
285  
286  	++num_boards;
287  	pci_set_drvdata(pdev, dev);
288  
289  	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
290  	    (pdev->subsystem_device & 0xff00) == 0x5800)
291  		printk("%s: SysKonnect FDDI PCI adapter"
292  		       " found (SK-%04X)\n", dev->name,
293  		       pdev->subsystem_device);
294  	else
295  		printk("%s: FDDI PCI adapter found\n", dev->name);
296  
297  	return 0;
298  err_out5:
299  	if (smc->os.SharedMemAddr)
300  		dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
301  				  smc->os.SharedMemAddr,
302  				  smc->os.SharedMemDMA);
303  	dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
304  			  smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
305  err_out4:
306  	free_netdev(dev);
307  err_out3:
308  #ifdef MEM_MAPPED_IO
309  	iounmap(mem);
310  #else
311  	ioport_unmap(mem);
312  #endif
313  err_out2:
314  	pci_release_regions(pdev);
315  err_out1:
316  	pci_disable_device(pdev);
317  	return err;
318  }
319  
320  /*
321   * Called for each adapter board from pci_unregister_driver
322   */
skfp_remove_one(struct pci_dev * pdev)323  static void skfp_remove_one(struct pci_dev *pdev)
324  {
325  	struct net_device *p = pci_get_drvdata(pdev);
326  	struct s_smc *lp = netdev_priv(p);
327  
328  	unregister_netdev(p);
329  
330  	if (lp->os.SharedMemAddr) {
331  		dma_free_coherent(&pdev->dev,
332  				  lp->os.SharedMemSize,
333  				  lp->os.SharedMemAddr,
334  				  lp->os.SharedMemDMA);
335  		lp->os.SharedMemAddr = NULL;
336  	}
337  	if (lp->os.LocalRxBuffer) {
338  		dma_free_coherent(&pdev->dev,
339  				  MAX_FRAME_SIZE,
340  				  lp->os.LocalRxBuffer,
341  				  lp->os.LocalRxBufferDMA);
342  		lp->os.LocalRxBuffer = NULL;
343  	}
344  #ifdef MEM_MAPPED_IO
345  	iounmap(lp->hw.iop);
346  #else
347  	ioport_unmap(lp->hw.iop);
348  #endif
349  	pci_release_regions(pdev);
350  	free_netdev(p);
351  
352  	pci_disable_device(pdev);
353  }
354  
355  /*
356   * ====================
357   * = skfp_driver_init =
358   * ====================
359   *
360   * Overview:
361   *   Initializes remaining adapter board structure information
362   *   and makes sure adapter is in a safe state prior to skfp_open().
363   *
364   * Returns:
365   *   Condition code
366   *
367   * Arguments:
368   *   dev - pointer to device information
369   *
370   * Functional Description:
371   *   This function allocates additional resources such as the host memory
372   *   blocks needed by the adapter.
373   *   The adapter is also reset. The OS must call skfp_open() to open
374   *   the adapter and bring it on-line.
375   *
376   * Return Codes:
377   *    0 - initialization succeeded
378   *   -1 - initialization failed
379   */
skfp_driver_init(struct net_device * dev)380  static  int skfp_driver_init(struct net_device *dev)
381  {
382  	struct s_smc *smc = netdev_priv(dev);
383  	skfddi_priv *bp = &smc->os;
384  	int err = -EIO;
385  
386  	pr_debug("entering skfp_driver_init\n");
387  
388  	// set the io address in private structures
389  	bp->base_addr = dev->base_addr;
390  
391  	// Get the interrupt level from the PCI Configuration Table
392  	smc->hw.irq = dev->irq;
393  
394  	spin_lock_init(&bp->DriverLock);
395  
396  	// Allocate invalid frame
397  	bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
398  					       &bp->LocalRxBufferDMA,
399  					       GFP_ATOMIC);
400  	if (!bp->LocalRxBuffer) {
401  		printk("could not allocate mem for ");
402  		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403  		goto fail;
404  	}
405  
406  	// Determine the required size of the 'shared' memory area.
407  	bp->SharedMemSize = mac_drv_check_space();
408  	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
409  	if (bp->SharedMemSize > 0) {
410  		bp->SharedMemSize += 16;	// for descriptor alignment
411  
412  		bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
413  						       bp->SharedMemSize,
414  						       &bp->SharedMemDMA,
415  						       GFP_ATOMIC);
416  		if (!bp->SharedMemAddr) {
417  			printk("could not allocate mem for ");
418  			printk("hardware module: %ld byte\n",
419  			       bp->SharedMemSize);
420  			goto fail;
421  		}
422  
423  	} else {
424  		bp->SharedMemAddr = NULL;
425  	}
426  
427  	bp->SharedMemHeap = 0;
428  
429  	card_stop(smc);		// Reset adapter.
430  
431  	pr_debug("mac_drv_init()..\n");
432  	if (mac_drv_init(smc) != 0) {
433  		pr_debug("mac_drv_init() failed\n");
434  		goto fail;
435  	}
436  	read_address(smc, NULL);
437  	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
438  	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
439  
440  	smt_reset_defaults(smc, 0);
441  
442  	return 0;
443  
444  fail:
445  	if (bp->SharedMemAddr) {
446  		dma_free_coherent(&bp->pdev.dev,
447  				  bp->SharedMemSize,
448  				  bp->SharedMemAddr,
449  				  bp->SharedMemDMA);
450  		bp->SharedMemAddr = NULL;
451  	}
452  	if (bp->LocalRxBuffer) {
453  		dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
454  				  bp->LocalRxBuffer, bp->LocalRxBufferDMA);
455  		bp->LocalRxBuffer = NULL;
456  	}
457  	return err;
458  }				// skfp_driver_init
459  
460  
461  /*
462   * =============
463   * = skfp_open =
464   * =============
465   *
466   * Overview:
467   *   Opens the adapter
468   *
469   * Returns:
470   *   Condition code
471   *
472   * Arguments:
473   *   dev - pointer to device information
474   *
475   * Functional Description:
476   *   This function brings the adapter to an operational state.
477   *
478   * Return Codes:
479   *   0           - Adapter was successfully opened
480   *   -EAGAIN - Could not register IRQ
481   */
skfp_open(struct net_device * dev)482  static int skfp_open(struct net_device *dev)
483  {
484  	struct s_smc *smc = netdev_priv(dev);
485  	int err;
486  
487  	pr_debug("entering skfp_open\n");
488  	/* Register IRQ - support shared interrupts by passing device ptr */
489  	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
490  			  dev->name, dev);
491  	if (err)
492  		return err;
493  
494  	/*
495  	 * Set current address to factory MAC address
496  	 *
497  	 * Note: We've already done this step in skfp_driver_init.
498  	 *       However, it's possible that a user has set a node
499  	 *               address override, then closed and reopened the
500  	 *               adapter.  Unless we reset the device address field
501  	 *               now, we'll continue to use the existing modified
502  	 *               address.
503  	 */
504  	read_address(smc, NULL);
505  	eth_hw_addr_set(dev, smc->hw.fddi_canon_addr.a);
506  
507  	init_smt(smc, NULL);
508  	smt_online(smc, 1);
509  	STI_FBI();
510  
511  	/* Clear local multicast address tables */
512  	mac_clear_multicast(smc);
513  
514  	/* Disable promiscuous filter settings */
515  	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
516  
517  	netif_start_queue(dev);
518  	return 0;
519  }				// skfp_open
520  
521  
522  /*
523   * ==============
524   * = skfp_close =
525   * ==============
526   *
527   * Overview:
528   *   Closes the device/module.
529   *
530   * Returns:
531   *   Condition code
532   *
533   * Arguments:
534   *   dev - pointer to device information
535   *
536   * Functional Description:
537   *   This routine closes the adapter and brings it to a safe state.
538   *   The interrupt service routine is deregistered with the OS.
539   *   The adapter can be opened again with another call to skfp_open().
540   *
541   * Return Codes:
542   *   Always return 0.
543   *
544   * Assumptions:
545   *   No further requests for this adapter are made after this routine is
546   *   called.  skfp_open() can be called to reset and reinitialize the
547   *   adapter.
548   */
skfp_close(struct net_device * dev)549  static int skfp_close(struct net_device *dev)
550  {
551  	struct s_smc *smc = netdev_priv(dev);
552  	skfddi_priv *bp = &smc->os;
553  
554  	CLI_FBI();
555  	smt_reset_defaults(smc, 1);
556  	card_stop(smc);
557  	mac_drv_clear_tx_queue(smc);
558  	mac_drv_clear_rx_queue(smc);
559  
560  	netif_stop_queue(dev);
561  	/* Deregister (free) IRQ */
562  	free_irq(dev->irq, dev);
563  
564  	skb_queue_purge(&bp->SendSkbQueue);
565  	bp->QueueSkb = MAX_TX_QUEUE_LEN;
566  
567  	return 0;
568  }				// skfp_close
569  
570  
571  /*
572   * ==================
573   * = skfp_interrupt =
574   * ==================
575   *
576   * Overview:
577   *   Interrupt processing routine
578   *
579   * Returns:
580   *   None
581   *
582   * Arguments:
583   *   irq        - interrupt vector
584   *   dev_id     - pointer to device information
585   *
586   * Functional Description:
587   *   This routine calls the interrupt processing routine for this adapter.  It
588   *   disables and reenables adapter interrupts, as appropriate.  We can support
589   *   shared interrupts since the incoming dev_id pointer provides our device
590   *   structure context. All the real work is done in the hardware module.
591   *
592   * Return Codes:
593   *   None
594   *
595   * Assumptions:
596   *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
597   *   on Intel-based systems) is done by the operating system outside this
598   *   routine.
599   *
600   *       System interrupts are enabled through this call.
601   *
602   * Side Effects:
603   *   Interrupts are disabled, then reenabled at the adapter.
604   */
605  
skfp_interrupt(int irq,void * dev_id)606  static irqreturn_t skfp_interrupt(int irq, void *dev_id)
607  {
608  	struct net_device *dev = dev_id;
609  	struct s_smc *smc;	/* private board structure pointer */
610  	skfddi_priv *bp;
611  
612  	smc = netdev_priv(dev);
613  	bp = &smc->os;
614  
615  	// IRQs enabled or disabled ?
616  	if (inpd(ADDR(B0_IMSK)) == 0) {
617  		// IRQs are disabled: must be shared interrupt
618  		return IRQ_NONE;
619  	}
620  	// Note: At this point, IRQs are enabled.
621  	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
622  		// Adapter did not issue an IRQ: must be shared interrupt
623  		return IRQ_NONE;
624  	}
625  	CLI_FBI();		// Disable IRQs from our adapter.
626  	spin_lock(&bp->DriverLock);
627  
628  	// Call interrupt handler in hardware module (HWM).
629  	fddi_isr(smc);
630  
631  	if (smc->os.ResetRequested) {
632  		ResetAdapter(smc);
633  		smc->os.ResetRequested = FALSE;
634  	}
635  	spin_unlock(&bp->DriverLock);
636  	STI_FBI();		// Enable IRQs from our adapter.
637  
638  	return IRQ_HANDLED;
639  }				// skfp_interrupt
640  
641  
642  /*
643   * ======================
644   * = skfp_ctl_get_stats =
645   * ======================
646   *
647   * Overview:
648   *   Get statistics for FDDI adapter
649   *
650   * Returns:
651   *   Pointer to FDDI statistics structure
652   *
653   * Arguments:
654   *   dev - pointer to device information
655   *
656   * Functional Description:
657   *   Gets current MIB objects from adapter, then
658   *   returns FDDI statistics structure as defined
659   *   in if_fddi.h.
660   *
661   *   Note: Since the FDDI statistics structure is
662   *   still new and the device structure doesn't
663   *   have an FDDI-specific get statistics handler,
664   *   we'll return the FDDI statistics structure as
665   *   a pointer to an Ethernet statistics structure.
666   *   That way, at least the first part of the statistics
667   *   structure can be decoded properly.
668   *   We'll have to pay attention to this routine as the
669   *   device structure becomes more mature and LAN media
670   *   independent.
671   *
672   */
skfp_ctl_get_stats(struct net_device * dev)673  static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
674  {
675  	struct s_smc *bp = netdev_priv(dev);
676  
677  	/* Fill the bp->stats structure with driver-maintained counters */
678  
679  	bp->os.MacStat.port_bs_flag[0] = 0x1234;
680  	bp->os.MacStat.port_bs_flag[1] = 0x5678;
681  // goos: need to fill out fddi statistic
682  #if 0
683  	/* Get FDDI SMT MIB objects */
684  
685  /* Fill the bp->stats structure with the SMT MIB object values */
686  
687  	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
688  	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
689  	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
690  	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
691  	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
692  	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
693  	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
694  	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
695  	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
696  	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
697  	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
698  	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
699  	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
700  	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
701  	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
702  	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
703  	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
704  	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
705  	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
706  	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
707  	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
708  	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
709  	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
710  	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
711  	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
712  	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
713  	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
714  	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
715  	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
716  	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
717  	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
718  	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
719  	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
720  	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
721  	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
722  	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
723  	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
724  	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
725  	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
726  	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
727  	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
728  	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
729  	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
730  	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
731  	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
732  	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
733  	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
734  	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
735  	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
736  	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
737  	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
738  	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
739  	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
740  	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
741  	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
742  	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
743  	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
744  	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
745  	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
746  	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
747  	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
748  	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
749  	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
750  	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
751  	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
752  	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
753  	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
754  	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
755  	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
756  	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
757  	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
758  	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
759  	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
760  	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
761  	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
762  	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
763  	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
764  	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
765  	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
766  	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
767  	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
768  	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
769  	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
770  	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
771  	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
772  	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
773  	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
774  	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
775  	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
776  	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
777  	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
778  	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
779  
780  
781  	/* Fill the bp->stats structure with the FDDI counter values */
782  
783  	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
784  	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
785  	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
786  	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
787  	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
788  	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
789  	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
790  	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
791  	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
792  	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
793  	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
794  
795  #endif
796  	return (struct net_device_stats *)&bp->os.MacStat;
797  }				// ctl_get_stat
798  
799  
800  /*
801   * ==============================
802   * = skfp_ctl_set_multicast_list =
803   * ==============================
804   *
805   * Overview:
806   *   Enable/Disable LLC frame promiscuous mode reception
807   *   on the adapter and/or update multicast address table.
808   *
809   * Returns:
810   *   None
811   *
812   * Arguments:
813   *   dev - pointer to device information
814   *
815   * Functional Description:
816   *   This function acquires the driver lock and only calls
817   *   skfp_ctl_set_multicast_list_wo_lock then.
818   *   This routine follows a fairly simple algorithm for setting the
819   *   adapter filters and CAM:
820   *
821   *      if IFF_PROMISC flag is set
822   *              enable promiscuous mode
823   *      else
824   *              disable promiscuous mode
825   *              if number of multicast addresses <= max. multicast number
826   *                      add mc addresses to adapter table
827   *              else
828   *                      enable promiscuous mode
829   *              update adapter filters
830   *
831   * Assumptions:
832   *   Multicast addresses are presented in canonical (LSB) format.
833   *
834   * Side Effects:
835   *   On-board adapter filters are updated.
836   */
skfp_ctl_set_multicast_list(struct net_device * dev)837  static void skfp_ctl_set_multicast_list(struct net_device *dev)
838  {
839  	struct s_smc *smc = netdev_priv(dev);
840  	skfddi_priv *bp = &smc->os;
841  	unsigned long Flags;
842  
843  	spin_lock_irqsave(&bp->DriverLock, Flags);
844  	skfp_ctl_set_multicast_list_wo_lock(dev);
845  	spin_unlock_irqrestore(&bp->DriverLock, Flags);
846  }				// skfp_ctl_set_multicast_list
847  
848  
849  
skfp_ctl_set_multicast_list_wo_lock(struct net_device * dev)850  static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
851  {
852  	struct s_smc *smc = netdev_priv(dev);
853  	struct netdev_hw_addr *ha;
854  
855  	/* Enable promiscuous mode, if necessary */
856  	if (dev->flags & IFF_PROMISC) {
857  		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
858  		pr_debug("PROMISCUOUS MODE ENABLED\n");
859  	}
860  	/* Else, update multicast address table */
861  	else {
862  		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
863  		pr_debug("PROMISCUOUS MODE DISABLED\n");
864  
865  		// Reset all MC addresses
866  		mac_clear_multicast(smc);
867  		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
868  
869  		if (dev->flags & IFF_ALLMULTI) {
870  			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
871  			pr_debug("ENABLE ALL MC ADDRESSES\n");
872  		} else if (!netdev_mc_empty(dev)) {
873  			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
874  				/* use exact filtering */
875  
876  				// point to first multicast addr
877  				netdev_for_each_mc_addr(ha, dev) {
878  					mac_add_multicast(smc,
879  						(struct fddi_addr *)ha->addr,
880  						1);
881  
882  					pr_debug("ENABLE MC ADDRESS: %pMF\n",
883  						 ha->addr);
884  				}
885  
886  			} else {	// more MC addresses than HW supports
887  
888  				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
889  				pr_debug("ENABLE ALL MC ADDRESSES\n");
890  			}
891  		} else {	// no MC addresses
892  
893  			pr_debug("DISABLE ALL MC ADDRESSES\n");
894  		}
895  
896  		/* Update adapter filters */
897  		mac_update_multicast(smc);
898  	}
899  }				// skfp_ctl_set_multicast_list_wo_lock
900  
901  
902  /*
903   * ===========================
904   * = skfp_ctl_set_mac_address =
905   * ===========================
906   *
907   * Overview:
908   *   set new mac address on adapter and update dev_addr field in device table.
909   *
910   * Returns:
911   *   None
912   *
913   * Arguments:
914   *   dev  - pointer to device information
915   *   addr - pointer to sockaddr structure containing unicast address to set
916   *
917   * Assumptions:
918   *   The address pointed to by addr->sa_data is a valid unicast
919   *   address and is presented in canonical (LSB) format.
920   */
skfp_ctl_set_mac_address(struct net_device * dev,void * addr)921  static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
922  {
923  	struct s_smc *smc = netdev_priv(dev);
924  	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
925  	skfddi_priv *bp = &smc->os;
926  	unsigned long Flags;
927  
928  
929  	dev_addr_set(dev, p_sockaddr->sa_data);
930  	spin_lock_irqsave(&bp->DriverLock, Flags);
931  	ResetAdapter(smc);
932  	spin_unlock_irqrestore(&bp->DriverLock, Flags);
933  
934  	return 0;		/* always return zero */
935  }				// skfp_ctl_set_mac_address
936  
937  
938  /*
939   * =======================
940   * = skfp_siocdevprivate =
941   * =======================
942   *
943   * Overview:
944   *
945   * Perform IOCTL call functions here. Some are privileged operations and the
946   * effective uid is checked in those cases.
947   *
948   * Returns:
949   *   status value
950   *   0 - success
951   *   other - failure
952   *
953   * Arguments:
954   *   dev  - pointer to device information
955   *   rq - pointer to ioctl request structure
956   *   cmd - ?
957   *
958   */
959  
960  
skfp_siocdevprivate(struct net_device * dev,struct ifreq * rq,void __user * data,int cmd)961  static int skfp_siocdevprivate(struct net_device *dev, struct ifreq *rq, void __user *data, int cmd)
962  {
963  	struct s_smc *smc = netdev_priv(dev);
964  	skfddi_priv *lp = &smc->os;
965  	struct s_skfp_ioctl ioc;
966  	int status = 0;
967  
968  	if (copy_from_user(&ioc, data, sizeof(struct s_skfp_ioctl)))
969  		return -EFAULT;
970  
971  	if (in_compat_syscall())
972  		return -EOPNOTSUPP;
973  
974  	switch (ioc.cmd) {
975  	case SKFP_GET_STATS:	/* Get the driver statistics */
976  		ioc.len = sizeof(lp->MacStat);
977  		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
978  				? -EFAULT : 0;
979  		break;
980  	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
981  		if (!capable(CAP_NET_ADMIN)) {
982  			status = -EPERM;
983  		} else {
984  			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
985  		}
986  		break;
987  	default:
988  		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
989  		status = -EOPNOTSUPP;
990  
991  	}			// switch
992  
993  	return status;
994  }				// skfp_ioctl
995  
996  
997  /*
998   * =====================
999   * = skfp_send_pkt     =
1000   * =====================
1001   *
1002   * Overview:
1003   *   Queues a packet for transmission and try to transmit it.
1004   *
1005   * Returns:
1006   *   Condition code
1007   *
1008   * Arguments:
1009   *   skb - pointer to sk_buff to queue for transmission
1010   *   dev - pointer to device information
1011   *
1012   * Functional Description:
1013   *   Here we assume that an incoming skb transmit request
1014   *   is contained in a single physically contiguous buffer
1015   *   in which the virtual address of the start of packet
1016   *   (skb->data) can be converted to a physical address
1017   *   by using dma_map_single().
1018   *
1019   *   We have an internal queue for packets we can not send
1020   *   immediately. Packets in this queue can be given to the
1021   *   adapter if transmit buffers are freed.
1022   *
1023   *   We can't free the skb until after it's been DMA'd
1024   *   out by the adapter, so we'll keep it in the driver and
1025   *   return it in mac_drv_tx_complete.
1026   *
1027   * Return Codes:
1028   *   0 - driver has queued and/or sent packet
1029   *       1 - caller should requeue the sk_buff for later transmission
1030   *
1031   * Assumptions:
1032   *   The entire packet is stored in one physically
1033   *   contiguous buffer which is not cached and whose
1034   *   32-bit physical address can be determined.
1035   *
1036   *   It's vital that this routine is NOT reentered for the
1037   *   same board and that the OS is not in another section of
1038   *   code (eg. skfp_interrupt) for the same board on a
1039   *   different thread.
1040   *
1041   * Side Effects:
1042   *   None
1043   */
skfp_send_pkt(struct sk_buff * skb,struct net_device * dev)1044  static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1045  				       struct net_device *dev)
1046  {
1047  	struct s_smc *smc = netdev_priv(dev);
1048  	skfddi_priv *bp = &smc->os;
1049  
1050  	pr_debug("skfp_send_pkt\n");
1051  
1052  	/*
1053  	 * Verify that incoming transmit request is OK
1054  	 *
1055  	 * Note: The packet size check is consistent with other
1056  	 *               Linux device drivers, although the correct packet
1057  	 *               size should be verified before calling the
1058  	 *               transmit routine.
1059  	 */
1060  
1061  	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1062  		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1063  		// dequeue packets from xmt queue and send them
1064  		netif_start_queue(dev);
1065  		dev_kfree_skb(skb);
1066  		return NETDEV_TX_OK;	/* return "success" */
1067  	}
1068  	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1069  
1070  		netif_stop_queue(dev);
1071  		return NETDEV_TX_BUSY;
1072  	}
1073  	bp->QueueSkb--;
1074  	skb_queue_tail(&bp->SendSkbQueue, skb);
1075  	send_queued_packets(netdev_priv(dev));
1076  	if (bp->QueueSkb == 0) {
1077  		netif_stop_queue(dev);
1078  	}
1079  	return NETDEV_TX_OK;
1080  
1081  }				// skfp_send_pkt
1082  
1083  
1084  /*
1085   * =======================
1086   * = send_queued_packets =
1087   * =======================
1088   *
1089   * Overview:
1090   *   Send packets from the driver queue as long as there are some and
1091   *   transmit resources are available.
1092   *
1093   * Returns:
1094   *   None
1095   *
1096   * Arguments:
1097   *   smc - pointer to smc (adapter) structure
1098   *
1099   * Functional Description:
1100   *   Take a packet from queue if there is any. If not, then we are done.
1101   *   Check if there are resources to send the packet. If not, requeue it
1102   *   and exit.
1103   *   Set packet descriptor flags and give packet to adapter.
1104   *   Check if any send resources can be freed (we do not use the
1105   *   transmit complete interrupt).
1106   */
send_queued_packets(struct s_smc * smc)1107  static void send_queued_packets(struct s_smc *smc)
1108  {
1109  	skfddi_priv *bp = &smc->os;
1110  	struct sk_buff *skb;
1111  	unsigned char fc;
1112  	int queue;
1113  	struct s_smt_fp_txd *txd;	// Current TxD.
1114  	dma_addr_t dma_address;
1115  	unsigned long Flags;
1116  
1117  	int frame_status;	// HWM tx frame status.
1118  
1119  	pr_debug("send queued packets\n");
1120  	for (;;) {
1121  		// send first buffer from queue
1122  		skb = skb_dequeue(&bp->SendSkbQueue);
1123  
1124  		if (!skb) {
1125  			pr_debug("queue empty\n");
1126  			return;
1127  		}		// queue empty !
1128  
1129  		spin_lock_irqsave(&bp->DriverLock, Flags);
1130  		fc = skb->data[0];
1131  		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1132  #ifdef ESS
1133  		// Check if the frame may/must be sent as a synchronous frame.
1134  
1135  		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1136  			// It's an LLC frame.
1137  			if (!smc->ess.sync_bw_available)
1138  				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1139  
1140  			else {	// Bandwidth is available.
1141  
1142  				if (smc->mib.fddiESSSynchTxMode) {
1143  					// Send as sync. frame.
1144  					fc |= FC_SYNC_BIT;
1145  				}
1146  			}
1147  		}
1148  #endif				// ESS
1149  		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1150  
1151  		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1152  			// Unable to send the frame.
1153  
1154  			if ((frame_status & RING_DOWN) != 0) {
1155  				// Ring is down.
1156  				pr_debug("Tx attempt while ring down.\n");
1157  			} else if ((frame_status & OUT_OF_TXD) != 0) {
1158  				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1159  			} else {
1160  				pr_debug("%s: out of transmit resources",
1161  					bp->dev->name);
1162  			}
1163  
1164  			// Note: We will retry the operation as soon as
1165  			// transmit resources become available.
1166  			skb_queue_head(&bp->SendSkbQueue, skb);
1167  			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1168  			return;	// Packet has been queued.
1169  
1170  		}		// if (unable to send frame)
1171  
1172  		bp->QueueSkb++;	// one packet less in local queue
1173  
1174  		// source address in packet ?
1175  		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1176  
1177  		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1178  
1179  		dma_address = dma_map_single(&(&bp->pdev)->dev, skb->data,
1180  					     skb->len, DMA_TO_DEVICE);
1181  		if (frame_status & LAN_TX) {
1182  			txd->txd_os.skb = skb;			// save skb
1183  			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1184  		}
1185  		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1186                        frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1187  
1188  		if (!(frame_status & LAN_TX)) {		// local only frame
1189  			dma_unmap_single(&(&bp->pdev)->dev, dma_address,
1190  					 skb->len, DMA_TO_DEVICE);
1191  			dev_kfree_skb_irq(skb);
1192  		}
1193  		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1194  	}			// for
1195  
1196  	return;			// never reached
1197  
1198  }				// send_queued_packets
1199  
1200  
1201  /************************
1202   *
1203   * CheckSourceAddress
1204   *
1205   * Verify if the source address is set. Insert it if necessary.
1206   *
1207   ************************/
CheckSourceAddress(unsigned char * frame,unsigned char * hw_addr)1208  static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1209  {
1210  	unsigned char SRBit;
1211  
1212  	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1213  
1214  		return;
1215  	if ((unsigned short) frame[1 + 10] != 0)
1216  		return;
1217  	SRBit = frame[1 + 6] & 0x01;
1218  	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1219  	frame[8] |= SRBit;
1220  }				// CheckSourceAddress
1221  
1222  
1223  /************************
1224   *
1225   *	ResetAdapter
1226   *
1227   *	Reset the adapter and bring it back to operational mode.
1228   * Args
1229   *	smc - A pointer to the SMT context struct.
1230   * Out
1231   *	Nothing.
1232   *
1233   ************************/
ResetAdapter(struct s_smc * smc)1234  static void ResetAdapter(struct s_smc *smc)
1235  {
1236  
1237  	pr_debug("[fddi: ResetAdapter]\n");
1238  
1239  	// Stop the adapter.
1240  
1241  	card_stop(smc);		// Stop all activity.
1242  
1243  	// Clear the transmit and receive descriptor queues.
1244  	mac_drv_clear_tx_queue(smc);
1245  	mac_drv_clear_rx_queue(smc);
1246  
1247  	// Restart the adapter.
1248  
1249  	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1250  
1251  	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1252  
1253  	smt_online(smc, 1);	// Insert into the ring again.
1254  	STI_FBI();
1255  
1256  	// Restore original receive mode (multicasts, promiscuous, etc.).
1257  	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1258  }				// ResetAdapter
1259  
1260  
1261  //--------------- functions called by hardware module ----------------
1262  
1263  /************************
1264   *
1265   *	llc_restart_tx
1266   *
1267   *	The hardware driver calls this routine when the transmit complete
1268   *	interrupt bits (end of frame) for the synchronous or asynchronous
1269   *	queue is set.
1270   *
1271   * NOTE The hardware driver calls this function also if no packets are queued.
1272   *	The routine must be able to handle this case.
1273   * Args
1274   *	smc - A pointer to the SMT context struct.
1275   * Out
1276   *	Nothing.
1277   *
1278   ************************/
llc_restart_tx(struct s_smc * smc)1279  void llc_restart_tx(struct s_smc *smc)
1280  {
1281  	skfddi_priv *bp = &smc->os;
1282  
1283  	pr_debug("[llc_restart_tx]\n");
1284  
1285  	// Try to send queued packets
1286  	spin_unlock(&bp->DriverLock);
1287  	send_queued_packets(smc);
1288  	spin_lock(&bp->DriverLock);
1289  	netif_start_queue(bp->dev);// system may send again if it was blocked
1290  
1291  }				// llc_restart_tx
1292  
1293  
1294  /************************
1295   *
1296   *	mac_drv_get_space
1297   *
1298   *	The hardware module calls this function to allocate the memory
1299   *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1300   * Args
1301   *	smc - A pointer to the SMT context struct.
1302   *
1303   *	size - Size of memory in bytes to allocate.
1304   * Out
1305   *	!= 0	A pointer to the virtual address of the allocated memory.
1306   *	== 0	Allocation error.
1307   *
1308   ************************/
mac_drv_get_space(struct s_smc * smc,unsigned int size)1309  void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1310  {
1311  	void *virt;
1312  
1313  	pr_debug("mac_drv_get_space (%d bytes), ", size);
1314  	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1315  
1316  	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1317  		printk("Unexpected SMT memory size requested: %d\n", size);
1318  		return NULL;
1319  	}
1320  	smc->os.SharedMemHeap += size;	// Move heap pointer.
1321  
1322  	pr_debug("mac_drv_get_space end\n");
1323  	pr_debug("virt addr: %lx\n", (ulong) virt);
1324  	pr_debug("bus  addr: %lx\n", (ulong)
1325  	       (smc->os.SharedMemDMA +
1326  		((char *) virt - (char *)smc->os.SharedMemAddr)));
1327  	return virt;
1328  }				// mac_drv_get_space
1329  
1330  
1331  /************************
1332   *
1333   *	mac_drv_get_desc_mem
1334   *
1335   *	This function is called by the hardware dependent module.
1336   *	It allocates the memory for the RxD and TxD descriptors.
1337   *
1338   *	This memory must be non-cached, non-movable and non-swappable.
1339   *	This memory should start at a physical page boundary.
1340   * Args
1341   *	smc - A pointer to the SMT context struct.
1342   *
1343   *	size - Size of memory in bytes to allocate.
1344   * Out
1345   *	!= 0	A pointer to the virtual address of the allocated memory.
1346   *	== 0	Allocation error.
1347   *
1348   ************************/
mac_drv_get_desc_mem(struct s_smc * smc,unsigned int size)1349  void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1350  {
1351  
1352  	char *virt;
1353  
1354  	pr_debug("mac_drv_get_desc_mem\n");
1355  
1356  	// Descriptor memory must be aligned on 16-byte boundary.
1357  
1358  	virt = mac_drv_get_space(smc, size);
1359  
1360  	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1361  	size = size % 16;
1362  
1363  	pr_debug("Allocate %u bytes alignment gap ", size);
1364  	pr_debug("for descriptor memory.\n");
1365  
1366  	if (!mac_drv_get_space(smc, size)) {
1367  		printk("fddi: Unable to align descriptor memory.\n");
1368  		return NULL;
1369  	}
1370  	return virt + size;
1371  }				// mac_drv_get_desc_mem
1372  
1373  
1374  /************************
1375   *
1376   *	mac_drv_virt2phys
1377   *
1378   *	Get the physical address of a given virtual address.
1379   * Args
1380   *	smc - A pointer to the SMT context struct.
1381   *
1382   *	virt - A (virtual) pointer into our 'shared' memory area.
1383   * Out
1384   *	Physical address of the given virtual address.
1385   *
1386   ************************/
mac_drv_virt2phys(struct s_smc * smc,void * virt)1387  unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1388  {
1389  	return smc->os.SharedMemDMA +
1390  		((char *) virt - (char *)smc->os.SharedMemAddr);
1391  }				// mac_drv_virt2phys
1392  
1393  
1394  /************************
1395   *
1396   *	dma_master
1397   *
1398   *	The HWM calls this function, when the driver leads through a DMA
1399   *	transfer. If the OS-specific module must prepare the system hardware
1400   *	for the DMA transfer, it should do it in this function.
1401   *
1402   *	The hardware module calls this dma_master if it wants to send an SMT
1403   *	frame.  This means that the virt address passed in here is part of
1404   *      the 'shared' memory area.
1405   * Args
1406   *	smc - A pointer to the SMT context struct.
1407   *
1408   *	virt - The virtual address of the data.
1409   *
1410   *	len - The length in bytes of the data.
1411   *
1412   *	flag - Indicates the transmit direction and the buffer type:
1413   *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1414   *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1415   *		SMT_BUF (0x80)	SMT buffer
1416   *
1417   *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1418   * Out
1419   *	Returns the pyhsical address for the DMA transfer.
1420   *
1421   ************************/
dma_master(struct s_smc * smc,void * virt,int len,int flag)1422  u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1423  {
1424  	return smc->os.SharedMemDMA +
1425  		((char *) virt - (char *)smc->os.SharedMemAddr);
1426  }				// dma_master
1427  
1428  
1429  /************************
1430   *
1431   *	dma_complete
1432   *
1433   *	The hardware module calls this routine when it has completed a DMA
1434   *	transfer. If the operating system dependent module has set up the DMA
1435   *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1436   *	the DMA channel.
1437   * Args
1438   *	smc - A pointer to the SMT context struct.
1439   *
1440   *	descr - A pointer to a TxD or RxD, respectively.
1441   *
1442   *	flag - Indicates the DMA transfer direction / SMT buffer:
1443   *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1444   *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1445   *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1446   * Out
1447   *	Nothing.
1448   *
1449   ************************/
dma_complete(struct s_smc * smc,volatile union s_fp_descr * descr,int flag)1450  void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1451  {
1452  	/* For TX buffers, there are two cases.  If it is an SMT transmit
1453  	 * buffer, there is nothing to do since we use consistent memory
1454  	 * for the 'shared' memory area.  The other case is for normal
1455  	 * transmit packets given to us by the networking stack, and in
1456  	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1457  	 * below.
1458  	 *
1459  	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1460  	 * because the hardware module is about to potentially look at
1461  	 * the contents of the buffer.  If we did not call the PCI DMA
1462  	 * unmap first, the hardware module could read inconsistent data.
1463  	 */
1464  	if (flag & DMA_WR) {
1465  		skfddi_priv *bp = &smc->os;
1466  		volatile struct s_smt_fp_rxd *r = &descr->r;
1467  
1468  		/* If SKB is NULL, we used the local buffer. */
1469  		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1470  			int MaxFrameSize = bp->MaxFrameSize;
1471  
1472  			dma_unmap_single(&(&bp->pdev)->dev,
1473  					 r->rxd_os.dma_addr, MaxFrameSize,
1474  					 DMA_FROM_DEVICE);
1475  			r->rxd_os.dma_addr = 0;
1476  		}
1477  	}
1478  }				// dma_complete
1479  
1480  
1481  /************************
1482   *
1483   *	mac_drv_tx_complete
1484   *
1485   *	Transmit of a packet is complete. Release the tx staging buffer.
1486   *
1487   * Args
1488   *	smc - A pointer to the SMT context struct.
1489   *
1490   *	txd - A pointer to the last TxD which is used by the frame.
1491   * Out
1492   *	Returns nothing.
1493   *
1494   ************************/
mac_drv_tx_complete(struct s_smc * smc,volatile struct s_smt_fp_txd * txd)1495  void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1496  {
1497  	struct sk_buff *skb;
1498  
1499  	pr_debug("entering mac_drv_tx_complete\n");
1500  	// Check if this TxD points to a skb
1501  
1502  	if (!(skb = txd->txd_os.skb)) {
1503  		pr_debug("TXD with no skb assigned.\n");
1504  		return;
1505  	}
1506  	txd->txd_os.skb = NULL;
1507  
1508  	// release the DMA mapping
1509  	dma_unmap_single(&(&smc->os.pdev)->dev, txd->txd_os.dma_addr,
1510  			 skb->len, DMA_TO_DEVICE);
1511  	txd->txd_os.dma_addr = 0;
1512  
1513  	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1514  	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1515  
1516  	// free the skb
1517  	dev_kfree_skb_irq(skb);
1518  
1519  	pr_debug("leaving mac_drv_tx_complete\n");
1520  }				// mac_drv_tx_complete
1521  
1522  
1523  /************************
1524   *
1525   * dump packets to logfile
1526   *
1527   ************************/
1528  #ifdef DUMPPACKETS
dump_data(unsigned char * Data,int length)1529  void dump_data(unsigned char *Data, int length)
1530  {
1531  	printk(KERN_INFO "---Packet start---\n");
1532  	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
1533  	printk(KERN_INFO "------------------\n");
1534  }				// dump_data
1535  #else
1536  #define dump_data(data,len)
1537  #endif				// DUMPPACKETS
1538  
1539  /************************
1540   *
1541   *	mac_drv_rx_complete
1542   *
1543   *	The hardware module calls this function if an LLC frame is received
1544   *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1545   *	from the network will be passed to the LLC layer by this function
1546   *	if passing is enabled.
1547   *
1548   *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1549   *	be received. It also fills the RxD ring with new receive buffers if
1550   *	some can be queued.
1551   * Args
1552   *	smc - A pointer to the SMT context struct.
1553   *
1554   *	rxd - A pointer to the first RxD which is used by the receive frame.
1555   *
1556   *	frag_count - Count of RxDs used by the received frame.
1557   *
1558   *	len - Frame length.
1559   * Out
1560   *	Nothing.
1561   *
1562   ************************/
mac_drv_rx_complete(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count,int len)1563  void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1564  			 int frag_count, int len)
1565  {
1566  	skfddi_priv *bp = &smc->os;
1567  	struct sk_buff *skb;
1568  	unsigned char *virt, *cp;
1569  	unsigned short ri;
1570  	u_int RifLength;
1571  
1572  	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1573  	if (frag_count != 1) {	// This is not allowed to happen.
1574  
1575  		printk("fddi: Multi-fragment receive!\n");
1576  		goto RequeueRxd;	// Re-use the given RXD(s).
1577  
1578  	}
1579  	skb = rxd->rxd_os.skb;
1580  	if (!skb) {
1581  		pr_debug("No skb in rxd\n");
1582  		smc->os.MacStat.gen.rx_errors++;
1583  		goto RequeueRxd;
1584  	}
1585  	virt = skb->data;
1586  
1587  	// The DMA mapping was released in dma_complete above.
1588  
1589  	dump_data(skb->data, len);
1590  
1591  	/*
1592  	 * FDDI Frame format:
1593  	 * +-------+-------+-------+------------+--------+------------+
1594  	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1595  	 * +-------+-------+-------+------------+--------+------------+
1596  	 *
1597  	 * FC = Frame Control
1598  	 * DA = Destination Address
1599  	 * SA = Source Address
1600  	 * RIF = Routing Information Field
1601  	 * LLC = Logical Link Control
1602  	 */
1603  
1604  	// Remove Routing Information Field (RIF), if present.
1605  
1606  	if ((virt[1 + 6] & FDDI_RII) == 0)
1607  		RifLength = 0;
1608  	else {
1609  		int n;
1610  // goos: RIF removal has still to be tested
1611  		pr_debug("RIF found\n");
1612  		// Get RIF length from Routing Control (RC) field.
1613  		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1614  
1615  		ri = ntohs(*((__be16 *) cp));
1616  		RifLength = ri & FDDI_RCF_LEN_MASK;
1617  		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1618  			printk("fddi: Invalid RIF.\n");
1619  			goto RequeueRxd;	// Discard the frame.
1620  
1621  		}
1622  		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1623  		// regions overlap
1624  
1625  		virt = cp + RifLength;
1626  		for (n = FDDI_MAC_HDR_LEN; n; n--)
1627  			*--virt = *--cp;
1628  		// adjust sbd->data pointer
1629  		skb_pull(skb, RifLength);
1630  		len -= RifLength;
1631  		RifLength = 0;
1632  	}
1633  
1634  	// Count statistics.
1635  	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1636  						// packets.
1637  	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1638  
1639  	// virt points to header again
1640  	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1641  
1642  		smc->os.MacStat.gen.multicast++;
1643  	}
1644  
1645  	// deliver frame to system
1646  	rxd->rxd_os.skb = NULL;
1647  	skb_trim(skb, len);
1648  	skb->protocol = fddi_type_trans(skb, bp->dev);
1649  
1650  	netif_rx(skb);
1651  
1652  	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1653  	return;
1654  
1655        RequeueRxd:
1656  	pr_debug("Rx: re-queue RXD.\n");
1657  	mac_drv_requeue_rxd(smc, rxd, frag_count);
1658  	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1659  						// not indicated.
1660  
1661  }				// mac_drv_rx_complete
1662  
1663  
1664  /************************
1665   *
1666   *	mac_drv_requeue_rxd
1667   *
1668   *	The hardware module calls this function to request the OS-specific
1669   *	module to queue the receive buffer(s) represented by the pointer
1670   *	to the RxD and the frag_count into the receive queue again. This
1671   *	buffer was filled with an invalid frame or an SMT frame.
1672   * Args
1673   *	smc - A pointer to the SMT context struct.
1674   *
1675   *	rxd - A pointer to the first RxD which is used by the receive frame.
1676   *
1677   *	frag_count - Count of RxDs used by the received frame.
1678   * Out
1679   *	Nothing.
1680   *
1681   ************************/
mac_drv_requeue_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1682  void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1683  			 int frag_count)
1684  {
1685  	volatile struct s_smt_fp_rxd *next_rxd;
1686  	volatile struct s_smt_fp_rxd *src_rxd;
1687  	struct sk_buff *skb;
1688  	int MaxFrameSize;
1689  	unsigned char *v_addr;
1690  	dma_addr_t b_addr;
1691  
1692  	if (frag_count != 1)	// This is not allowed to happen.
1693  
1694  		printk("fddi: Multi-fragment requeue!\n");
1695  
1696  	MaxFrameSize = smc->os.MaxFrameSize;
1697  	src_rxd = rxd;
1698  	for (; frag_count > 0; frag_count--) {
1699  		next_rxd = src_rxd->rxd_next;
1700  		rxd = HWM_GET_CURR_RXD(smc);
1701  
1702  		skb = src_rxd->rxd_os.skb;
1703  		if (skb == NULL) {	// this should not happen
1704  
1705  			pr_debug("Requeue with no skb in rxd!\n");
1706  			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1707  			if (skb) {
1708  				// we got a skb
1709  				rxd->rxd_os.skb = skb;
1710  				skb_reserve(skb, 3);
1711  				skb_put(skb, MaxFrameSize);
1712  				v_addr = skb->data;
1713  				b_addr = dma_map_single(&(&smc->os.pdev)->dev,
1714  							v_addr, MaxFrameSize,
1715  							DMA_FROM_DEVICE);
1716  				rxd->rxd_os.dma_addr = b_addr;
1717  			} else {
1718  				// no skb available, use local buffer
1719  				pr_debug("Queueing invalid buffer!\n");
1720  				rxd->rxd_os.skb = NULL;
1721  				v_addr = smc->os.LocalRxBuffer;
1722  				b_addr = smc->os.LocalRxBufferDMA;
1723  			}
1724  		} else {
1725  			// we use skb from old rxd
1726  			rxd->rxd_os.skb = skb;
1727  			v_addr = skb->data;
1728  			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1729  						MaxFrameSize, DMA_FROM_DEVICE);
1730  			rxd->rxd_os.dma_addr = b_addr;
1731  		}
1732  		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1733  			    FIRST_FRAG | LAST_FRAG);
1734  
1735  		src_rxd = next_rxd;
1736  	}
1737  }				// mac_drv_requeue_rxd
1738  
1739  
1740  /************************
1741   *
1742   *	mac_drv_fill_rxd
1743   *
1744   *	The hardware module calls this function at initialization time
1745   *	to fill the RxD ring with receive buffers. It is also called by
1746   *	mac_drv_rx_complete if rx_free is large enough to queue some new
1747   *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1748   *	receive buffers as long as enough RxDs and receive buffers are
1749   *	available.
1750   * Args
1751   *	smc - A pointer to the SMT context struct.
1752   * Out
1753   *	Nothing.
1754   *
1755   ************************/
mac_drv_fill_rxd(struct s_smc * smc)1756  void mac_drv_fill_rxd(struct s_smc *smc)
1757  {
1758  	int MaxFrameSize;
1759  	unsigned char *v_addr;
1760  	unsigned long b_addr;
1761  	struct sk_buff *skb;
1762  	volatile struct s_smt_fp_rxd *rxd;
1763  
1764  	pr_debug("entering mac_drv_fill_rxd\n");
1765  
1766  	// Walk through the list of free receive buffers, passing receive
1767  	// buffers to the HWM as long as RXDs are available.
1768  
1769  	MaxFrameSize = smc->os.MaxFrameSize;
1770  	// Check if there is any RXD left.
1771  	while (HWM_GET_RX_FREE(smc) > 0) {
1772  		pr_debug(".\n");
1773  
1774  		rxd = HWM_GET_CURR_RXD(smc);
1775  		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1776  		if (skb) {
1777  			// we got a skb
1778  			skb_reserve(skb, 3);
1779  			skb_put(skb, MaxFrameSize);
1780  			v_addr = skb->data;
1781  			b_addr = dma_map_single(&(&smc->os.pdev)->dev, v_addr,
1782  						MaxFrameSize, DMA_FROM_DEVICE);
1783  			rxd->rxd_os.dma_addr = b_addr;
1784  		} else {
1785  			// no skb available, use local buffer
1786  			// System has run out of buffer memory, but we want to
1787  			// keep the receiver running in hope of better times.
1788  			// Multiple descriptors may point to this local buffer,
1789  			// so data in it must be considered invalid.
1790  			pr_debug("Queueing invalid buffer!\n");
1791  			v_addr = smc->os.LocalRxBuffer;
1792  			b_addr = smc->os.LocalRxBufferDMA;
1793  		}
1794  
1795  		rxd->rxd_os.skb = skb;
1796  
1797  		// Pass receive buffer to HWM.
1798  		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1799  			    FIRST_FRAG | LAST_FRAG);
1800  	}
1801  	pr_debug("leaving mac_drv_fill_rxd\n");
1802  }				// mac_drv_fill_rxd
1803  
1804  
1805  /************************
1806   *
1807   *	mac_drv_clear_rxd
1808   *
1809   *	The hardware module calls this function to release unused
1810   *	receive buffers.
1811   * Args
1812   *	smc - A pointer to the SMT context struct.
1813   *
1814   *	rxd - A pointer to the first RxD which is used by the receive buffer.
1815   *
1816   *	frag_count - Count of RxDs used by the receive buffer.
1817   * Out
1818   *	Nothing.
1819   *
1820   ************************/
mac_drv_clear_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1821  void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1822  		       int frag_count)
1823  {
1824  
1825  	struct sk_buff *skb;
1826  
1827  	pr_debug("entering mac_drv_clear_rxd\n");
1828  
1829  	if (frag_count != 1)	// This is not allowed to happen.
1830  
1831  		printk("fddi: Multi-fragment clear!\n");
1832  
1833  	for (; frag_count > 0; frag_count--) {
1834  		skb = rxd->rxd_os.skb;
1835  		if (skb != NULL) {
1836  			skfddi_priv *bp = &smc->os;
1837  			int MaxFrameSize = bp->MaxFrameSize;
1838  
1839  			dma_unmap_single(&(&bp->pdev)->dev,
1840  					 rxd->rxd_os.dma_addr, MaxFrameSize,
1841  					 DMA_FROM_DEVICE);
1842  
1843  			dev_kfree_skb(skb);
1844  			rxd->rxd_os.skb = NULL;
1845  		}
1846  		rxd = rxd->rxd_next;	// Next RXD.
1847  
1848  	}
1849  }				// mac_drv_clear_rxd
1850  
1851  
1852  /************************
1853   *
1854   *	mac_drv_rx_init
1855   *
1856   *	The hardware module calls this routine when an SMT or NSA frame of the
1857   *	local SMT should be delivered to the LLC layer.
1858   *
1859   *	It is necessary to have this function, because there is no other way to
1860   *	copy the contents of SMT MBufs into receive buffers.
1861   *
1862   *	mac_drv_rx_init allocates the required target memory for this frame,
1863   *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1864   * Args
1865   *	smc - A pointer to the SMT context struct.
1866   *
1867   *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1868   *
1869   *	fc - The Frame Control field of the received frame.
1870   *
1871   *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1872   *
1873   *	la_len - The length of the lookahead data stored in the lookahead
1874   *	buffer (may be zero).
1875   * Out
1876   *	Always returns zero (0).
1877   *
1878   ************************/
mac_drv_rx_init(struct s_smc * smc,int len,int fc,char * look_ahead,int la_len)1879  int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1880  		    char *look_ahead, int la_len)
1881  {
1882  	struct sk_buff *skb;
1883  
1884  	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1885  
1886  	// "Received" a SMT or NSA frame of the local SMT.
1887  
1888  	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1889  		pr_debug("fddi: Discard invalid local SMT frame\n");
1890  		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1891  		       len, la_len, (unsigned long) look_ahead);
1892  		return 0;
1893  	}
1894  	skb = alloc_skb(len + 3, GFP_ATOMIC);
1895  	if (!skb) {
1896  		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1897  		return 0;
1898  	}
1899  	skb_reserve(skb, 3);
1900  	skb_put(skb, len);
1901  	skb_copy_to_linear_data(skb, look_ahead, len);
1902  
1903  	// deliver frame to system
1904  	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1905  	netif_rx(skb);
1906  
1907  	return 0;
1908  }				// mac_drv_rx_init
1909  
1910  
1911  /************************
1912   *
1913   *	smt_timer_poll
1914   *
1915   *	This routine is called periodically by the SMT module to clean up the
1916   *	driver.
1917   *
1918   *	Return any queued frames back to the upper protocol layers if the ring
1919   *	is down.
1920   * Args
1921   *	smc - A pointer to the SMT context struct.
1922   * Out
1923   *	Nothing.
1924   *
1925   ************************/
smt_timer_poll(struct s_smc * smc)1926  void smt_timer_poll(struct s_smc *smc)
1927  {
1928  }				// smt_timer_poll
1929  
1930  
1931  /************************
1932   *
1933   *	ring_status_indication
1934   *
1935   *	This function indicates a change of the ring state.
1936   * Args
1937   *	smc - A pointer to the SMT context struct.
1938   *
1939   *	status - The current ring status.
1940   * Out
1941   *	Nothing.
1942   *
1943   ************************/
ring_status_indication(struct s_smc * smc,u_long status)1944  void ring_status_indication(struct s_smc *smc, u_long status)
1945  {
1946  	pr_debug("ring_status_indication( ");
1947  	if (status & RS_RES15)
1948  		pr_debug("RS_RES15 ");
1949  	if (status & RS_HARDERROR)
1950  		pr_debug("RS_HARDERROR ");
1951  	if (status & RS_SOFTERROR)
1952  		pr_debug("RS_SOFTERROR ");
1953  	if (status & RS_BEACON)
1954  		pr_debug("RS_BEACON ");
1955  	if (status & RS_PATHTEST)
1956  		pr_debug("RS_PATHTEST ");
1957  	if (status & RS_SELFTEST)
1958  		pr_debug("RS_SELFTEST ");
1959  	if (status & RS_RES9)
1960  		pr_debug("RS_RES9 ");
1961  	if (status & RS_DISCONNECT)
1962  		pr_debug("RS_DISCONNECT ");
1963  	if (status & RS_RES7)
1964  		pr_debug("RS_RES7 ");
1965  	if (status & RS_DUPADDR)
1966  		pr_debug("RS_DUPADDR ");
1967  	if (status & RS_NORINGOP)
1968  		pr_debug("RS_NORINGOP ");
1969  	if (status & RS_VERSION)
1970  		pr_debug("RS_VERSION ");
1971  	if (status & RS_STUCKBYPASSS)
1972  		pr_debug("RS_STUCKBYPASSS ");
1973  	if (status & RS_EVENT)
1974  		pr_debug("RS_EVENT ");
1975  	if (status & RS_RINGOPCHANGE)
1976  		pr_debug("RS_RINGOPCHANGE ");
1977  	if (status & RS_RES0)
1978  		pr_debug("RS_RES0 ");
1979  	pr_debug("]\n");
1980  }				// ring_status_indication
1981  
1982  
1983  /************************
1984   *
1985   *	smt_get_time
1986   *
1987   *	Gets the current time from the system.
1988   * Args
1989   *	None.
1990   * Out
1991   *	The current time in TICKS_PER_SECOND.
1992   *
1993   *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1994   *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1995   *	to the time returned by smt_get_time().
1996   *
1997   ************************/
smt_get_time(void)1998  unsigned long smt_get_time(void)
1999  {
2000  	return jiffies;
2001  }				// smt_get_time
2002  
2003  
2004  /************************
2005   *
2006   *	smt_stat_counter
2007   *
2008   *	Status counter update (ring_op, fifo full).
2009   * Args
2010   *	smc - A pointer to the SMT context struct.
2011   *
2012   *	stat -	= 0: A ring operational change occurred.
2013   *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2014   * Out
2015   *	Nothing.
2016   *
2017   ************************/
smt_stat_counter(struct s_smc * smc,int stat)2018  void smt_stat_counter(struct s_smc *smc, int stat)
2019  {
2020  //      BOOLEAN RingIsUp ;
2021  
2022  	pr_debug("smt_stat_counter\n");
2023  	switch (stat) {
2024  	case 0:
2025  		pr_debug("Ring operational change.\n");
2026  		break;
2027  	case 1:
2028  		pr_debug("Receive fifo overflow.\n");
2029  		smc->os.MacStat.gen.rx_errors++;
2030  		break;
2031  	default:
2032  		pr_debug("Unknown status (%d).\n", stat);
2033  		break;
2034  	}
2035  }				// smt_stat_counter
2036  
2037  
2038  /************************
2039   *
2040   *	cfm_state_change
2041   *
2042   *	Sets CFM state in custom statistics.
2043   * Args
2044   *	smc - A pointer to the SMT context struct.
2045   *
2046   *	c_state - Possible values are:
2047   *
2048   *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2049   *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2050   * Out
2051   *	Nothing.
2052   *
2053   ************************/
cfm_state_change(struct s_smc * smc,int c_state)2054  void cfm_state_change(struct s_smc *smc, int c_state)
2055  {
2056  #ifdef DRIVERDEBUG
2057  	char *s;
2058  
2059  	switch (c_state) {
2060  	case SC0_ISOLATED:
2061  		s = "SC0_ISOLATED";
2062  		break;
2063  	case SC1_WRAP_A:
2064  		s = "SC1_WRAP_A";
2065  		break;
2066  	case SC2_WRAP_B:
2067  		s = "SC2_WRAP_B";
2068  		break;
2069  	case SC4_THRU_A:
2070  		s = "SC4_THRU_A";
2071  		break;
2072  	case SC5_THRU_B:
2073  		s = "SC5_THRU_B";
2074  		break;
2075  	case SC7_WRAP_S:
2076  		s = "SC7_WRAP_S";
2077  		break;
2078  	case SC9_C_WRAP_A:
2079  		s = "SC9_C_WRAP_A";
2080  		break;
2081  	case SC10_C_WRAP_B:
2082  		s = "SC10_C_WRAP_B";
2083  		break;
2084  	case SC11_C_WRAP_S:
2085  		s = "SC11_C_WRAP_S";
2086  		break;
2087  	default:
2088  		pr_debug("cfm_state_change: unknown %d\n", c_state);
2089  		return;
2090  	}
2091  	pr_debug("cfm_state_change: %s\n", s);
2092  #endif				// DRIVERDEBUG
2093  }				// cfm_state_change
2094  
2095  
2096  /************************
2097   *
2098   *	ecm_state_change
2099   *
2100   *	Sets ECM state in custom statistics.
2101   * Args
2102   *	smc - A pointer to the SMT context struct.
2103   *
2104   *	e_state - Possible values are:
2105   *
2106   *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2107   *		SC5_THRU_B (7), SC7_WRAP_S (8)
2108   * Out
2109   *	Nothing.
2110   *
2111   ************************/
ecm_state_change(struct s_smc * smc,int e_state)2112  void ecm_state_change(struct s_smc *smc, int e_state)
2113  {
2114  #ifdef DRIVERDEBUG
2115  	char *s;
2116  
2117  	switch (e_state) {
2118  	case EC0_OUT:
2119  		s = "EC0_OUT";
2120  		break;
2121  	case EC1_IN:
2122  		s = "EC1_IN";
2123  		break;
2124  	case EC2_TRACE:
2125  		s = "EC2_TRACE";
2126  		break;
2127  	case EC3_LEAVE:
2128  		s = "EC3_LEAVE";
2129  		break;
2130  	case EC4_PATH_TEST:
2131  		s = "EC4_PATH_TEST";
2132  		break;
2133  	case EC5_INSERT:
2134  		s = "EC5_INSERT";
2135  		break;
2136  	case EC6_CHECK:
2137  		s = "EC6_CHECK";
2138  		break;
2139  	case EC7_DEINSERT:
2140  		s = "EC7_DEINSERT";
2141  		break;
2142  	default:
2143  		s = "unknown";
2144  		break;
2145  	}
2146  	pr_debug("ecm_state_change: %s\n", s);
2147  #endif				//DRIVERDEBUG
2148  }				// ecm_state_change
2149  
2150  
2151  /************************
2152   *
2153   *	rmt_state_change
2154   *
2155   *	Sets RMT state in custom statistics.
2156   * Args
2157   *	smc - A pointer to the SMT context struct.
2158   *
2159   *	r_state - Possible values are:
2160   *
2161   *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2162   *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2163   * Out
2164   *	Nothing.
2165   *
2166   ************************/
rmt_state_change(struct s_smc * smc,int r_state)2167  void rmt_state_change(struct s_smc *smc, int r_state)
2168  {
2169  #ifdef DRIVERDEBUG
2170  	char *s;
2171  
2172  	switch (r_state) {
2173  	case RM0_ISOLATED:
2174  		s = "RM0_ISOLATED";
2175  		break;
2176  	case RM1_NON_OP:
2177  		s = "RM1_NON_OP - not operational";
2178  		break;
2179  	case RM2_RING_OP:
2180  		s = "RM2_RING_OP - ring operational";
2181  		break;
2182  	case RM3_DETECT:
2183  		s = "RM3_DETECT - detect dupl addresses";
2184  		break;
2185  	case RM4_NON_OP_DUP:
2186  		s = "RM4_NON_OP_DUP - dupl. addr detected";
2187  		break;
2188  	case RM5_RING_OP_DUP:
2189  		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2190  		break;
2191  	case RM6_DIRECTED:
2192  		s = "RM6_DIRECTED - sending directed beacons";
2193  		break;
2194  	case RM7_TRACE:
2195  		s = "RM7_TRACE - trace initiated";
2196  		break;
2197  	default:
2198  		s = "unknown";
2199  		break;
2200  	}
2201  	pr_debug("[rmt_state_change: %s]\n", s);
2202  #endif				// DRIVERDEBUG
2203  }				// rmt_state_change
2204  
2205  
2206  /************************
2207   *
2208   *	drv_reset_indication
2209   *
2210   *	This function is called by the SMT when it has detected a severe
2211   *	hardware problem. The driver should perform a reset on the adapter
2212   *	as soon as possible, but not from within this function.
2213   * Args
2214   *	smc - A pointer to the SMT context struct.
2215   * Out
2216   *	Nothing.
2217   *
2218   ************************/
drv_reset_indication(struct s_smc * smc)2219  void drv_reset_indication(struct s_smc *smc)
2220  {
2221  	pr_debug("entering drv_reset_indication\n");
2222  
2223  	smc->os.ResetRequested = TRUE;	// Set flag.
2224  
2225  }				// drv_reset_indication
2226  
2227  static struct pci_driver skfddi_pci_driver = {
2228  	.name		= "skfddi",
2229  	.id_table	= skfddi_pci_tbl,
2230  	.probe		= skfp_init_one,
2231  	.remove		= skfp_remove_one,
2232  };
2233  
2234  module_pci_driver(skfddi_pci_driver);
2235