1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Generic ring buffer
4   *
5   * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6   */
7  #include <linux/trace_recursion.h>
8  #include <linux/trace_events.h>
9  #include <linux/ring_buffer.h>
10  #include <linux/trace_clock.h>
11  #include <linux/sched/clock.h>
12  #include <linux/cacheflush.h>
13  #include <linux/trace_seq.h>
14  #include <linux/spinlock.h>
15  #include <linux/irq_work.h>
16  #include <linux/security.h>
17  #include <linux/uaccess.h>
18  #include <linux/hardirq.h>
19  #include <linux/kthread.h>	/* for self test */
20  #include <linux/module.h>
21  #include <linux/percpu.h>
22  #include <linux/mutex.h>
23  #include <linux/delay.h>
24  #include <linux/slab.h>
25  #include <linux/init.h>
26  #include <linux/hash.h>
27  #include <linux/list.h>
28  #include <linux/cpu.h>
29  #include <linux/oom.h>
30  #include <linux/mm.h>
31  
32  #include <asm/local64.h>
33  #include <asm/local.h>
34  
35  #include "trace.h"
36  
37  /*
38   * The "absolute" timestamp in the buffer is only 59 bits.
39   * If a clock has the 5 MSBs set, it needs to be saved and
40   * reinserted.
41   */
42  #define TS_MSB		(0xf8ULL << 56)
43  #define ABS_TS_MASK	(~TS_MSB)
44  
45  static void update_pages_handler(struct work_struct *work);
46  
47  #define RING_BUFFER_META_MAGIC	0xBADFEED
48  
49  struct ring_buffer_meta {
50  	int		magic;
51  	int		struct_size;
52  	unsigned long	text_addr;
53  	unsigned long	data_addr;
54  	unsigned long	first_buffer;
55  	unsigned long	head_buffer;
56  	unsigned long	commit_buffer;
57  	__u32		subbuf_size;
58  	__u32		nr_subbufs;
59  	int		buffers[];
60  };
61  
62  /*
63   * The ring buffer header is special. We must manually up keep it.
64   */
ring_buffer_print_entry_header(struct trace_seq * s)65  int ring_buffer_print_entry_header(struct trace_seq *s)
66  {
67  	trace_seq_puts(s, "# compressed entry header\n");
68  	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69  	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70  	trace_seq_puts(s, "\tarray       :   32 bits\n");
71  	trace_seq_putc(s, '\n');
72  	trace_seq_printf(s, "\tpadding     : type == %d\n",
73  			 RINGBUF_TYPE_PADDING);
74  	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75  			 RINGBUF_TYPE_TIME_EXTEND);
76  	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77  			 RINGBUF_TYPE_TIME_STAMP);
78  	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79  			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80  
81  	return !trace_seq_has_overflowed(s);
82  }
83  
84  /*
85   * The ring buffer is made up of a list of pages. A separate list of pages is
86   * allocated for each CPU. A writer may only write to a buffer that is
87   * associated with the CPU it is currently executing on.  A reader may read
88   * from any per cpu buffer.
89   *
90   * The reader is special. For each per cpu buffer, the reader has its own
91   * reader page. When a reader has read the entire reader page, this reader
92   * page is swapped with another page in the ring buffer.
93   *
94   * Now, as long as the writer is off the reader page, the reader can do what
95   * ever it wants with that page. The writer will never write to that page
96   * again (as long as it is out of the ring buffer).
97   *
98   * Here's some silly ASCII art.
99   *
100   *   +------+
101   *   |reader|          RING BUFFER
102   *   |page  |
103   *   +------+        +---+   +---+   +---+
104   *                   |   |-->|   |-->|   |
105   *                   +---+   +---+   +---+
106   *                     ^               |
107   *                     |               |
108   *                     +---------------+
109   *
110   *
111   *   +------+
112   *   |reader|          RING BUFFER
113   *   |page  |------------------v
114   *   +------+        +---+   +---+   +---+
115   *                   |   |-->|   |-->|   |
116   *                   +---+   +---+   +---+
117   *                     ^               |
118   *                     |               |
119   *                     +---------------+
120   *
121   *
122   *   +------+
123   *   |reader|          RING BUFFER
124   *   |page  |------------------v
125   *   +------+        +---+   +---+   +---+
126   *      ^            |   |-->|   |-->|   |
127   *      |            +---+   +---+   +---+
128   *      |                              |
129   *      |                              |
130   *      +------------------------------+
131   *
132   *
133   *   +------+
134   *   |buffer|          RING BUFFER
135   *   |page  |------------------v
136   *   +------+        +---+   +---+   +---+
137   *      ^            |   |   |   |-->|   |
138   *      |   New      +---+   +---+   +---+
139   *      |  Reader------^               |
140   *      |   page                       |
141   *      +------------------------------+
142   *
143   *
144   * After we make this swap, the reader can hand this page off to the splice
145   * code and be done with it. It can even allocate a new page if it needs to
146   * and swap that into the ring buffer.
147   *
148   * We will be using cmpxchg soon to make all this lockless.
149   *
150   */
151  
152  /* Used for individual buffers (after the counter) */
153  #define RB_BUFFER_OFF		(1 << 20)
154  
155  #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156  
157  #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158  #define RB_ALIGNMENT		4U
159  #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160  #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
161  
162  #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163  # define RB_FORCE_8BYTE_ALIGNMENT	0
164  # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
165  #else
166  # define RB_FORCE_8BYTE_ALIGNMENT	1
167  # define RB_ARCH_ALIGNMENT		8U
168  #endif
169  
170  #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
171  
172  /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173  #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174  
175  enum {
176  	RB_LEN_TIME_EXTEND = 8,
177  	RB_LEN_TIME_STAMP =  8,
178  };
179  
180  #define skip_time_extend(event) \
181  	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182  
183  #define extended_time(event) \
184  	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185  
rb_null_event(struct ring_buffer_event * event)186  static inline bool rb_null_event(struct ring_buffer_event *event)
187  {
188  	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189  }
190  
rb_event_set_padding(struct ring_buffer_event * event)191  static void rb_event_set_padding(struct ring_buffer_event *event)
192  {
193  	/* padding has a NULL time_delta */
194  	event->type_len = RINGBUF_TYPE_PADDING;
195  	event->time_delta = 0;
196  }
197  
198  static unsigned
rb_event_data_length(struct ring_buffer_event * event)199  rb_event_data_length(struct ring_buffer_event *event)
200  {
201  	unsigned length;
202  
203  	if (event->type_len)
204  		length = event->type_len * RB_ALIGNMENT;
205  	else
206  		length = event->array[0];
207  	return length + RB_EVNT_HDR_SIZE;
208  }
209  
210  /*
211   * Return the length of the given event. Will return
212   * the length of the time extend if the event is a
213   * time extend.
214   */
215  static inline unsigned
rb_event_length(struct ring_buffer_event * event)216  rb_event_length(struct ring_buffer_event *event)
217  {
218  	switch (event->type_len) {
219  	case RINGBUF_TYPE_PADDING:
220  		if (rb_null_event(event))
221  			/* undefined */
222  			return -1;
223  		return  event->array[0] + RB_EVNT_HDR_SIZE;
224  
225  	case RINGBUF_TYPE_TIME_EXTEND:
226  		return RB_LEN_TIME_EXTEND;
227  
228  	case RINGBUF_TYPE_TIME_STAMP:
229  		return RB_LEN_TIME_STAMP;
230  
231  	case RINGBUF_TYPE_DATA:
232  		return rb_event_data_length(event);
233  	default:
234  		WARN_ON_ONCE(1);
235  	}
236  	/* not hit */
237  	return 0;
238  }
239  
240  /*
241   * Return total length of time extend and data,
242   *   or just the event length for all other events.
243   */
244  static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)245  rb_event_ts_length(struct ring_buffer_event *event)
246  {
247  	unsigned len = 0;
248  
249  	if (extended_time(event)) {
250  		/* time extends include the data event after it */
251  		len = RB_LEN_TIME_EXTEND;
252  		event = skip_time_extend(event);
253  	}
254  	return len + rb_event_length(event);
255  }
256  
257  /**
258   * ring_buffer_event_length - return the length of the event
259   * @event: the event to get the length of
260   *
261   * Returns the size of the data load of a data event.
262   * If the event is something other than a data event, it
263   * returns the size of the event itself. With the exception
264   * of a TIME EXTEND, where it still returns the size of the
265   * data load of the data event after it.
266   */
ring_buffer_event_length(struct ring_buffer_event * event)267  unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268  {
269  	unsigned length;
270  
271  	if (extended_time(event))
272  		event = skip_time_extend(event);
273  
274  	length = rb_event_length(event);
275  	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276  		return length;
277  	length -= RB_EVNT_HDR_SIZE;
278  	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                  length -= sizeof(event->array[0]);
280  	return length;
281  }
282  EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283  
284  /* inline for ring buffer fast paths */
285  static __always_inline void *
rb_event_data(struct ring_buffer_event * event)286  rb_event_data(struct ring_buffer_event *event)
287  {
288  	if (extended_time(event))
289  		event = skip_time_extend(event);
290  	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291  	/* If length is in len field, then array[0] has the data */
292  	if (event->type_len)
293  		return (void *)&event->array[0];
294  	/* Otherwise length is in array[0] and array[1] has the data */
295  	return (void *)&event->array[1];
296  }
297  
298  /**
299   * ring_buffer_event_data - return the data of the event
300   * @event: the event to get the data from
301   */
ring_buffer_event_data(struct ring_buffer_event * event)302  void *ring_buffer_event_data(struct ring_buffer_event *event)
303  {
304  	return rb_event_data(event);
305  }
306  EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307  
308  #define for_each_buffer_cpu(buffer, cpu)		\
309  	for_each_cpu(cpu, buffer->cpumask)
310  
311  #define for_each_online_buffer_cpu(buffer, cpu)		\
312  	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313  
314  #define TS_SHIFT	27
315  #define TS_MASK		((1ULL << TS_SHIFT) - 1)
316  #define TS_DELTA_TEST	(~TS_MASK)
317  
rb_event_time_stamp(struct ring_buffer_event * event)318  static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319  {
320  	u64 ts;
321  
322  	ts = event->array[0];
323  	ts <<= TS_SHIFT;
324  	ts += event->time_delta;
325  
326  	return ts;
327  }
328  
329  /* Flag when events were overwritten */
330  #define RB_MISSED_EVENTS	(1 << 31)
331  /* Missed count stored at end */
332  #define RB_MISSED_STORED	(1 << 30)
333  
334  #define RB_MISSED_MASK		(3 << 30)
335  
336  struct buffer_data_page {
337  	u64		 time_stamp;	/* page time stamp */
338  	local_t		 commit;	/* write committed index */
339  	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340  };
341  
342  struct buffer_data_read_page {
343  	unsigned		order;	/* order of the page */
344  	struct buffer_data_page	*data;	/* actual data, stored in this page */
345  };
346  
347  /*
348   * Note, the buffer_page list must be first. The buffer pages
349   * are allocated in cache lines, which means that each buffer
350   * page will be at the beginning of a cache line, and thus
351   * the least significant bits will be zero. We use this to
352   * add flags in the list struct pointers, to make the ring buffer
353   * lockless.
354   */
355  struct buffer_page {
356  	struct list_head list;		/* list of buffer pages */
357  	local_t		 write;		/* index for next write */
358  	unsigned	 read;		/* index for next read */
359  	local_t		 entries;	/* entries on this page */
360  	unsigned long	 real_end;	/* real end of data */
361  	unsigned	 order;		/* order of the page */
362  	u32		 id:30;		/* ID for external mapping */
363  	u32		 range:1;	/* Mapped via a range */
364  	struct buffer_data_page *page;	/* Actual data page */
365  };
366  
367  /*
368   * The buffer page counters, write and entries, must be reset
369   * atomically when crossing page boundaries. To synchronize this
370   * update, two counters are inserted into the number. One is
371   * the actual counter for the write position or count on the page.
372   *
373   * The other is a counter of updaters. Before an update happens
374   * the update partition of the counter is incremented. This will
375   * allow the updater to update the counter atomically.
376   *
377   * The counter is 20 bits, and the state data is 12.
378   */
379  #define RB_WRITE_MASK		0xfffff
380  #define RB_WRITE_INTCNT		(1 << 20)
381  
rb_init_page(struct buffer_data_page * bpage)382  static void rb_init_page(struct buffer_data_page *bpage)
383  {
384  	local_set(&bpage->commit, 0);
385  }
386  
rb_page_commit(struct buffer_page * bpage)387  static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388  {
389  	return local_read(&bpage->page->commit);
390  }
391  
free_buffer_page(struct buffer_page * bpage)392  static void free_buffer_page(struct buffer_page *bpage)
393  {
394  	/* Range pages are not to be freed */
395  	if (!bpage->range)
396  		free_pages((unsigned long)bpage->page, bpage->order);
397  	kfree(bpage);
398  }
399  
400  /*
401   * We need to fit the time_stamp delta into 27 bits.
402   */
test_time_stamp(u64 delta)403  static inline bool test_time_stamp(u64 delta)
404  {
405  	return !!(delta & TS_DELTA_TEST);
406  }
407  
408  struct rb_irq_work {
409  	struct irq_work			work;
410  	wait_queue_head_t		waiters;
411  	wait_queue_head_t		full_waiters;
412  	atomic_t			seq;
413  	bool				waiters_pending;
414  	bool				full_waiters_pending;
415  	bool				wakeup_full;
416  };
417  
418  /*
419   * Structure to hold event state and handle nested events.
420   */
421  struct rb_event_info {
422  	u64			ts;
423  	u64			delta;
424  	u64			before;
425  	u64			after;
426  	unsigned long		length;
427  	struct buffer_page	*tail_page;
428  	int			add_timestamp;
429  };
430  
431  /*
432   * Used for the add_timestamp
433   *  NONE
434   *  EXTEND - wants a time extend
435   *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436   *  FORCE - force a full time stamp.
437   */
438  enum {
439  	RB_ADD_STAMP_NONE		= 0,
440  	RB_ADD_STAMP_EXTEND		= BIT(1),
441  	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442  	RB_ADD_STAMP_FORCE		= BIT(3)
443  };
444  /*
445   * Used for which event context the event is in.
446   *  TRANSITION = 0
447   *  NMI     = 1
448   *  IRQ     = 2
449   *  SOFTIRQ = 3
450   *  NORMAL  = 4
451   *
452   * See trace_recursive_lock() comment below for more details.
453   */
454  enum {
455  	RB_CTX_TRANSITION,
456  	RB_CTX_NMI,
457  	RB_CTX_IRQ,
458  	RB_CTX_SOFTIRQ,
459  	RB_CTX_NORMAL,
460  	RB_CTX_MAX
461  };
462  
463  struct rb_time_struct {
464  	local64_t	time;
465  };
466  typedef struct rb_time_struct rb_time_t;
467  
468  #define MAX_NEST	5
469  
470  /*
471   * head_page == tail_page && head == tail then buffer is empty.
472   */
473  struct ring_buffer_per_cpu {
474  	int				cpu;
475  	atomic_t			record_disabled;
476  	atomic_t			resize_disabled;
477  	struct trace_buffer	*buffer;
478  	raw_spinlock_t			reader_lock;	/* serialize readers */
479  	arch_spinlock_t			lock;
480  	struct lock_class_key		lock_key;
481  	struct buffer_data_page		*free_page;
482  	unsigned long			nr_pages;
483  	unsigned int			current_context;
484  	struct list_head		*pages;
485  	struct buffer_page		*head_page;	/* read from head */
486  	struct buffer_page		*tail_page;	/* write to tail */
487  	struct buffer_page		*commit_page;	/* committed pages */
488  	struct buffer_page		*reader_page;
489  	unsigned long			lost_events;
490  	unsigned long			last_overrun;
491  	unsigned long			nest;
492  	local_t				entries_bytes;
493  	local_t				entries;
494  	local_t				overrun;
495  	local_t				commit_overrun;
496  	local_t				dropped_events;
497  	local_t				committing;
498  	local_t				commits;
499  	local_t				pages_touched;
500  	local_t				pages_lost;
501  	local_t				pages_read;
502  	long				last_pages_touch;
503  	size_t				shortest_full;
504  	unsigned long			read;
505  	unsigned long			read_bytes;
506  	rb_time_t			write_stamp;
507  	rb_time_t			before_stamp;
508  	u64				event_stamp[MAX_NEST];
509  	u64				read_stamp;
510  	/* pages removed since last reset */
511  	unsigned long			pages_removed;
512  
513  	unsigned int			mapped;
514  	unsigned int			user_mapped;	/* user space mapping */
515  	struct mutex			mapping_lock;
516  	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
517  	struct trace_buffer_meta	*meta_page;
518  	struct ring_buffer_meta		*ring_meta;
519  
520  	/* ring buffer pages to update, > 0 to add, < 0 to remove */
521  	long				nr_pages_to_update;
522  	struct list_head		new_pages; /* new pages to add */
523  	struct work_struct		update_pages_work;
524  	struct completion		update_done;
525  
526  	struct rb_irq_work		irq_work;
527  };
528  
529  struct trace_buffer {
530  	unsigned			flags;
531  	int				cpus;
532  	atomic_t			record_disabled;
533  	atomic_t			resizing;
534  	cpumask_var_t			cpumask;
535  
536  	struct lock_class_key		*reader_lock_key;
537  
538  	struct mutex			mutex;
539  
540  	struct ring_buffer_per_cpu	**buffers;
541  
542  	struct hlist_node		node;
543  	u64				(*clock)(void);
544  
545  	struct rb_irq_work		irq_work;
546  	bool				time_stamp_abs;
547  
548  	unsigned long			range_addr_start;
549  	unsigned long			range_addr_end;
550  
551  	long				last_text_delta;
552  	long				last_data_delta;
553  
554  	unsigned int			subbuf_size;
555  	unsigned int			subbuf_order;
556  	unsigned int			max_data_size;
557  };
558  
559  struct ring_buffer_iter {
560  	struct ring_buffer_per_cpu	*cpu_buffer;
561  	unsigned long			head;
562  	unsigned long			next_event;
563  	struct buffer_page		*head_page;
564  	struct buffer_page		*cache_reader_page;
565  	unsigned long			cache_read;
566  	unsigned long			cache_pages_removed;
567  	u64				read_stamp;
568  	u64				page_stamp;
569  	struct ring_buffer_event	*event;
570  	size_t				event_size;
571  	int				missed_events;
572  };
573  
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)574  int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
575  {
576  	struct buffer_data_page field;
577  
578  	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
579  			 "offset:0;\tsize:%u;\tsigned:%u;\n",
580  			 (unsigned int)sizeof(field.time_stamp),
581  			 (unsigned int)is_signed_type(u64));
582  
583  	trace_seq_printf(s, "\tfield: local_t commit;\t"
584  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
585  			 (unsigned int)offsetof(typeof(field), commit),
586  			 (unsigned int)sizeof(field.commit),
587  			 (unsigned int)is_signed_type(long));
588  
589  	trace_seq_printf(s, "\tfield: int overwrite;\t"
590  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
591  			 (unsigned int)offsetof(typeof(field), commit),
592  			 1,
593  			 (unsigned int)is_signed_type(long));
594  
595  	trace_seq_printf(s, "\tfield: char data;\t"
596  			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
597  			 (unsigned int)offsetof(typeof(field), data),
598  			 (unsigned int)buffer->subbuf_size,
599  			 (unsigned int)is_signed_type(char));
600  
601  	return !trace_seq_has_overflowed(s);
602  }
603  
rb_time_read(rb_time_t * t,u64 * ret)604  static inline void rb_time_read(rb_time_t *t, u64 *ret)
605  {
606  	*ret = local64_read(&t->time);
607  }
rb_time_set(rb_time_t * t,u64 val)608  static void rb_time_set(rb_time_t *t, u64 val)
609  {
610  	local64_set(&t->time, val);
611  }
612  
613  /*
614   * Enable this to make sure that the event passed to
615   * ring_buffer_event_time_stamp() is not committed and also
616   * is on the buffer that it passed in.
617   */
618  //#define RB_VERIFY_EVENT
619  #ifdef RB_VERIFY_EVENT
620  static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)621  static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
622  			 void *event)
623  {
624  	struct buffer_page *page = cpu_buffer->commit_page;
625  	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
626  	struct list_head *next;
627  	long commit, write;
628  	unsigned long addr = (unsigned long)event;
629  	bool done = false;
630  	int stop = 0;
631  
632  	/* Make sure the event exists and is not committed yet */
633  	do {
634  		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
635  			done = true;
636  		commit = local_read(&page->page->commit);
637  		write = local_read(&page->write);
638  		if (addr >= (unsigned long)&page->page->data[commit] &&
639  		    addr < (unsigned long)&page->page->data[write])
640  			return;
641  
642  		next = rb_list_head(page->list.next);
643  		page = list_entry(next, struct buffer_page, list);
644  	} while (!done);
645  	WARN_ON_ONCE(1);
646  }
647  #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)648  static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
649  			 void *event)
650  {
651  }
652  #endif
653  
654  /*
655   * The absolute time stamp drops the 5 MSBs and some clocks may
656   * require them. The rb_fix_abs_ts() will take a previous full
657   * time stamp, and add the 5 MSB of that time stamp on to the
658   * saved absolute time stamp. Then they are compared in case of
659   * the unlikely event that the latest time stamp incremented
660   * the 5 MSB.
661   */
rb_fix_abs_ts(u64 abs,u64 save_ts)662  static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
663  {
664  	if (save_ts & TS_MSB) {
665  		abs |= save_ts & TS_MSB;
666  		/* Check for overflow */
667  		if (unlikely(abs < save_ts))
668  			abs += 1ULL << 59;
669  	}
670  	return abs;
671  }
672  
673  static inline u64 rb_time_stamp(struct trace_buffer *buffer);
674  
675  /**
676   * ring_buffer_event_time_stamp - return the event's current time stamp
677   * @buffer: The buffer that the event is on
678   * @event: the event to get the time stamp of
679   *
680   * Note, this must be called after @event is reserved, and before it is
681   * committed to the ring buffer. And must be called from the same
682   * context where the event was reserved (normal, softirq, irq, etc).
683   *
684   * Returns the time stamp associated with the current event.
685   * If the event has an extended time stamp, then that is used as
686   * the time stamp to return.
687   * In the highly unlikely case that the event was nested more than
688   * the max nesting, then the write_stamp of the buffer is returned,
689   * otherwise  current time is returned, but that really neither of
690   * the last two cases should ever happen.
691   */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)692  u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
693  				 struct ring_buffer_event *event)
694  {
695  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
696  	unsigned int nest;
697  	u64 ts;
698  
699  	/* If the event includes an absolute time, then just use that */
700  	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
701  		ts = rb_event_time_stamp(event);
702  		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
703  	}
704  
705  	nest = local_read(&cpu_buffer->committing);
706  	verify_event(cpu_buffer, event);
707  	if (WARN_ON_ONCE(!nest))
708  		goto fail;
709  
710  	/* Read the current saved nesting level time stamp */
711  	if (likely(--nest < MAX_NEST))
712  		return cpu_buffer->event_stamp[nest];
713  
714  	/* Shouldn't happen, warn if it does */
715  	WARN_ONCE(1, "nest (%d) greater than max", nest);
716  
717   fail:
718  	rb_time_read(&cpu_buffer->write_stamp, &ts);
719  
720  	return ts;
721  }
722  
723  /**
724   * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
725   * @buffer: The ring_buffer to get the number of pages from
726   * @cpu: The cpu of the ring_buffer to get the number of pages from
727   *
728   * Returns the number of pages that have content in the ring buffer.
729   */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)730  size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
731  {
732  	size_t read;
733  	size_t lost;
734  	size_t cnt;
735  
736  	read = local_read(&buffer->buffers[cpu]->pages_read);
737  	lost = local_read(&buffer->buffers[cpu]->pages_lost);
738  	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
739  
740  	if (WARN_ON_ONCE(cnt < lost))
741  		return 0;
742  
743  	cnt -= lost;
744  
745  	/* The reader can read an empty page, but not more than that */
746  	if (cnt < read) {
747  		WARN_ON_ONCE(read > cnt + 1);
748  		return 0;
749  	}
750  
751  	return cnt - read;
752  }
753  
full_hit(struct trace_buffer * buffer,int cpu,int full)754  static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
755  {
756  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
757  	size_t nr_pages;
758  	size_t dirty;
759  
760  	nr_pages = cpu_buffer->nr_pages;
761  	if (!nr_pages || !full)
762  		return true;
763  
764  	/*
765  	 * Add one as dirty will never equal nr_pages, as the sub-buffer
766  	 * that the writer is on is not counted as dirty.
767  	 * This is needed if "buffer_percent" is set to 100.
768  	 */
769  	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
770  
771  	return (dirty * 100) >= (full * nr_pages);
772  }
773  
774  /*
775   * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
776   *
777   * Schedules a delayed work to wake up any task that is blocked on the
778   * ring buffer waiters queue.
779   */
rb_wake_up_waiters(struct irq_work * work)780  static void rb_wake_up_waiters(struct irq_work *work)
781  {
782  	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
783  
784  	/* For waiters waiting for the first wake up */
785  	(void)atomic_fetch_inc_release(&rbwork->seq);
786  
787  	wake_up_all(&rbwork->waiters);
788  	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
789  		/* Only cpu_buffer sets the above flags */
790  		struct ring_buffer_per_cpu *cpu_buffer =
791  			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
792  
793  		/* Called from interrupt context */
794  		raw_spin_lock(&cpu_buffer->reader_lock);
795  		rbwork->wakeup_full = false;
796  		rbwork->full_waiters_pending = false;
797  
798  		/* Waking up all waiters, they will reset the shortest full */
799  		cpu_buffer->shortest_full = 0;
800  		raw_spin_unlock(&cpu_buffer->reader_lock);
801  
802  		wake_up_all(&rbwork->full_waiters);
803  	}
804  }
805  
806  /**
807   * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
808   * @buffer: The ring buffer to wake waiters on
809   * @cpu: The CPU buffer to wake waiters on
810   *
811   * In the case of a file that represents a ring buffer is closing,
812   * it is prudent to wake up any waiters that are on this.
813   */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)814  void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
815  {
816  	struct ring_buffer_per_cpu *cpu_buffer;
817  	struct rb_irq_work *rbwork;
818  
819  	if (!buffer)
820  		return;
821  
822  	if (cpu == RING_BUFFER_ALL_CPUS) {
823  
824  		/* Wake up individual ones too. One level recursion */
825  		for_each_buffer_cpu(buffer, cpu)
826  			ring_buffer_wake_waiters(buffer, cpu);
827  
828  		rbwork = &buffer->irq_work;
829  	} else {
830  		if (WARN_ON_ONCE(!buffer->buffers))
831  			return;
832  		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
833  			return;
834  
835  		cpu_buffer = buffer->buffers[cpu];
836  		/* The CPU buffer may not have been initialized yet */
837  		if (!cpu_buffer)
838  			return;
839  		rbwork = &cpu_buffer->irq_work;
840  	}
841  
842  	/* This can be called in any context */
843  	irq_work_queue(&rbwork->work);
844  }
845  
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)846  static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
847  {
848  	struct ring_buffer_per_cpu *cpu_buffer;
849  	bool ret = false;
850  
851  	/* Reads of all CPUs always waits for any data */
852  	if (cpu == RING_BUFFER_ALL_CPUS)
853  		return !ring_buffer_empty(buffer);
854  
855  	cpu_buffer = buffer->buffers[cpu];
856  
857  	if (!ring_buffer_empty_cpu(buffer, cpu)) {
858  		unsigned long flags;
859  		bool pagebusy;
860  
861  		if (!full)
862  			return true;
863  
864  		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
865  		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
866  		ret = !pagebusy && full_hit(buffer, cpu, full);
867  
868  		if (!ret && (!cpu_buffer->shortest_full ||
869  			     cpu_buffer->shortest_full > full)) {
870  		    cpu_buffer->shortest_full = full;
871  		}
872  		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
873  	}
874  	return ret;
875  }
876  
877  static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)878  rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
879  	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
880  {
881  	if (rb_watermark_hit(buffer, cpu, full))
882  		return true;
883  
884  	if (cond(data))
885  		return true;
886  
887  	/*
888  	 * The events can happen in critical sections where
889  	 * checking a work queue can cause deadlocks.
890  	 * After adding a task to the queue, this flag is set
891  	 * only to notify events to try to wake up the queue
892  	 * using irq_work.
893  	 *
894  	 * We don't clear it even if the buffer is no longer
895  	 * empty. The flag only causes the next event to run
896  	 * irq_work to do the work queue wake up. The worse
897  	 * that can happen if we race with !trace_empty() is that
898  	 * an event will cause an irq_work to try to wake up
899  	 * an empty queue.
900  	 *
901  	 * There's no reason to protect this flag either, as
902  	 * the work queue and irq_work logic will do the necessary
903  	 * synchronization for the wake ups. The only thing
904  	 * that is necessary is that the wake up happens after
905  	 * a task has been queued. It's OK for spurious wake ups.
906  	 */
907  	if (full)
908  		rbwork->full_waiters_pending = true;
909  	else
910  		rbwork->waiters_pending = true;
911  
912  	return false;
913  }
914  
915  struct rb_wait_data {
916  	struct rb_irq_work		*irq_work;
917  	int				seq;
918  };
919  
920  /*
921   * The default wait condition for ring_buffer_wait() is to just to exit the
922   * wait loop the first time it is woken up.
923   */
rb_wait_once(void * data)924  static bool rb_wait_once(void *data)
925  {
926  	struct rb_wait_data *rdata = data;
927  	struct rb_irq_work *rbwork = rdata->irq_work;
928  
929  	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
930  }
931  
932  /**
933   * ring_buffer_wait - wait for input to the ring buffer
934   * @buffer: buffer to wait on
935   * @cpu: the cpu buffer to wait on
936   * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
937   * @cond: condition function to break out of wait (NULL to run once)
938   * @data: the data to pass to @cond.
939   *
940   * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
941   * as data is added to any of the @buffer's cpu buffers. Otherwise
942   * it will wait for data to be added to a specific cpu buffer.
943   */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)944  int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
945  		     ring_buffer_cond_fn cond, void *data)
946  {
947  	struct ring_buffer_per_cpu *cpu_buffer;
948  	struct wait_queue_head *waitq;
949  	struct rb_irq_work *rbwork;
950  	struct rb_wait_data rdata;
951  	int ret = 0;
952  
953  	/*
954  	 * Depending on what the caller is waiting for, either any
955  	 * data in any cpu buffer, or a specific buffer, put the
956  	 * caller on the appropriate wait queue.
957  	 */
958  	if (cpu == RING_BUFFER_ALL_CPUS) {
959  		rbwork = &buffer->irq_work;
960  		/* Full only makes sense on per cpu reads */
961  		full = 0;
962  	} else {
963  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
964  			return -ENODEV;
965  		cpu_buffer = buffer->buffers[cpu];
966  		rbwork = &cpu_buffer->irq_work;
967  	}
968  
969  	if (full)
970  		waitq = &rbwork->full_waiters;
971  	else
972  		waitq = &rbwork->waiters;
973  
974  	/* Set up to exit loop as soon as it is woken */
975  	if (!cond) {
976  		cond = rb_wait_once;
977  		rdata.irq_work = rbwork;
978  		rdata.seq = atomic_read_acquire(&rbwork->seq);
979  		data = &rdata;
980  	}
981  
982  	ret = wait_event_interruptible((*waitq),
983  				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
984  
985  	return ret;
986  }
987  
988  /**
989   * ring_buffer_poll_wait - poll on buffer input
990   * @buffer: buffer to wait on
991   * @cpu: the cpu buffer to wait on
992   * @filp: the file descriptor
993   * @poll_table: The poll descriptor
994   * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
995   *
996   * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
997   * as data is added to any of the @buffer's cpu buffers. Otherwise
998   * it will wait for data to be added to a specific cpu buffer.
999   *
1000   * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1001   * zero otherwise.
1002   */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1003  __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1004  			  struct file *filp, poll_table *poll_table, int full)
1005  {
1006  	struct ring_buffer_per_cpu *cpu_buffer;
1007  	struct rb_irq_work *rbwork;
1008  
1009  	if (cpu == RING_BUFFER_ALL_CPUS) {
1010  		rbwork = &buffer->irq_work;
1011  		full = 0;
1012  	} else {
1013  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1014  			return EPOLLERR;
1015  
1016  		cpu_buffer = buffer->buffers[cpu];
1017  		rbwork = &cpu_buffer->irq_work;
1018  	}
1019  
1020  	if (full) {
1021  		poll_wait(filp, &rbwork->full_waiters, poll_table);
1022  
1023  		if (rb_watermark_hit(buffer, cpu, full))
1024  			return EPOLLIN | EPOLLRDNORM;
1025  		/*
1026  		 * Only allow full_waiters_pending update to be seen after
1027  		 * the shortest_full is set (in rb_watermark_hit). If the
1028  		 * writer sees the full_waiters_pending flag set, it will
1029  		 * compare the amount in the ring buffer to shortest_full.
1030  		 * If the amount in the ring buffer is greater than the
1031  		 * shortest_full percent, it will call the irq_work handler
1032  		 * to wake up this list. The irq_handler will reset shortest_full
1033  		 * back to zero. That's done under the reader_lock, but
1034  		 * the below smp_mb() makes sure that the update to
1035  		 * full_waiters_pending doesn't leak up into the above.
1036  		 */
1037  		smp_mb();
1038  		rbwork->full_waiters_pending = true;
1039  		return 0;
1040  	}
1041  
1042  	poll_wait(filp, &rbwork->waiters, poll_table);
1043  	rbwork->waiters_pending = true;
1044  
1045  	/*
1046  	 * There's a tight race between setting the waiters_pending and
1047  	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1048  	 * is set, the next event will wake the task up, but we can get stuck
1049  	 * if there's only a single event in.
1050  	 *
1051  	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1052  	 * but adding a memory barrier to all events will cause too much of a
1053  	 * performance hit in the fast path.  We only need a memory barrier when
1054  	 * the buffer goes from empty to having content.  But as this race is
1055  	 * extremely small, and it's not a problem if another event comes in, we
1056  	 * will fix it later.
1057  	 */
1058  	smp_mb();
1059  
1060  	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1061  	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1062  		return EPOLLIN | EPOLLRDNORM;
1063  	return 0;
1064  }
1065  
1066  /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1067  #define RB_WARN_ON(b, cond)						\
1068  	({								\
1069  		int _____ret = unlikely(cond);				\
1070  		if (_____ret) {						\
1071  			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1072  				struct ring_buffer_per_cpu *__b =	\
1073  					(void *)b;			\
1074  				atomic_inc(&__b->buffer->record_disabled); \
1075  			} else						\
1076  				atomic_inc(&b->record_disabled);	\
1077  			WARN_ON(1);					\
1078  		}							\
1079  		_____ret;						\
1080  	})
1081  
1082  /* Up this if you want to test the TIME_EXTENTS and normalization */
1083  #define DEBUG_SHIFT 0
1084  
rb_time_stamp(struct trace_buffer * buffer)1085  static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1086  {
1087  	u64 ts;
1088  
1089  	/* Skip retpolines :-( */
1090  	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1091  		ts = trace_clock_local();
1092  	else
1093  		ts = buffer->clock();
1094  
1095  	/* shift to debug/test normalization and TIME_EXTENTS */
1096  	return ts << DEBUG_SHIFT;
1097  }
1098  
ring_buffer_time_stamp(struct trace_buffer * buffer)1099  u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1100  {
1101  	u64 time;
1102  
1103  	preempt_disable_notrace();
1104  	time = rb_time_stamp(buffer);
1105  	preempt_enable_notrace();
1106  
1107  	return time;
1108  }
1109  EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1110  
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1111  void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1112  				      int cpu, u64 *ts)
1113  {
1114  	/* Just stupid testing the normalize function and deltas */
1115  	*ts >>= DEBUG_SHIFT;
1116  }
1117  EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1118  
1119  /*
1120   * Making the ring buffer lockless makes things tricky.
1121   * Although writes only happen on the CPU that they are on,
1122   * and they only need to worry about interrupts. Reads can
1123   * happen on any CPU.
1124   *
1125   * The reader page is always off the ring buffer, but when the
1126   * reader finishes with a page, it needs to swap its page with
1127   * a new one from the buffer. The reader needs to take from
1128   * the head (writes go to the tail). But if a writer is in overwrite
1129   * mode and wraps, it must push the head page forward.
1130   *
1131   * Here lies the problem.
1132   *
1133   * The reader must be careful to replace only the head page, and
1134   * not another one. As described at the top of the file in the
1135   * ASCII art, the reader sets its old page to point to the next
1136   * page after head. It then sets the page after head to point to
1137   * the old reader page. But if the writer moves the head page
1138   * during this operation, the reader could end up with the tail.
1139   *
1140   * We use cmpxchg to help prevent this race. We also do something
1141   * special with the page before head. We set the LSB to 1.
1142   *
1143   * When the writer must push the page forward, it will clear the
1144   * bit that points to the head page, move the head, and then set
1145   * the bit that points to the new head page.
1146   *
1147   * We also don't want an interrupt coming in and moving the head
1148   * page on another writer. Thus we use the second LSB to catch
1149   * that too. Thus:
1150   *
1151   * head->list->prev->next        bit 1          bit 0
1152   *                              -------        -------
1153   * Normal page                     0              0
1154   * Points to head page             0              1
1155   * New head page                   1              0
1156   *
1157   * Note we can not trust the prev pointer of the head page, because:
1158   *
1159   * +----+       +-----+        +-----+
1160   * |    |------>|  T  |---X--->|  N  |
1161   * |    |<------|     |        |     |
1162   * +----+       +-----+        +-----+
1163   *   ^                           ^ |
1164   *   |          +-----+          | |
1165   *   +----------|  R  |----------+ |
1166   *              |     |<-----------+
1167   *              +-----+
1168   *
1169   * Key:  ---X-->  HEAD flag set in pointer
1170   *         T      Tail page
1171   *         R      Reader page
1172   *         N      Next page
1173   *
1174   * (see __rb_reserve_next() to see where this happens)
1175   *
1176   *  What the above shows is that the reader just swapped out
1177   *  the reader page with a page in the buffer, but before it
1178   *  could make the new header point back to the new page added
1179   *  it was preempted by a writer. The writer moved forward onto
1180   *  the new page added by the reader and is about to move forward
1181   *  again.
1182   *
1183   *  You can see, it is legitimate for the previous pointer of
1184   *  the head (or any page) not to point back to itself. But only
1185   *  temporarily.
1186   */
1187  
1188  #define RB_PAGE_NORMAL		0UL
1189  #define RB_PAGE_HEAD		1UL
1190  #define RB_PAGE_UPDATE		2UL
1191  
1192  
1193  #define RB_FLAG_MASK		3UL
1194  
1195  /* PAGE_MOVED is not part of the mask */
1196  #define RB_PAGE_MOVED		4UL
1197  
1198  /*
1199   * rb_list_head - remove any bit
1200   */
rb_list_head(struct list_head * list)1201  static struct list_head *rb_list_head(struct list_head *list)
1202  {
1203  	unsigned long val = (unsigned long)list;
1204  
1205  	return (struct list_head *)(val & ~RB_FLAG_MASK);
1206  }
1207  
1208  /*
1209   * rb_is_head_page - test if the given page is the head page
1210   *
1211   * Because the reader may move the head_page pointer, we can
1212   * not trust what the head page is (it may be pointing to
1213   * the reader page). But if the next page is a header page,
1214   * its flags will be non zero.
1215   */
1216  static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1217  rb_is_head_page(struct buffer_page *page, struct list_head *list)
1218  {
1219  	unsigned long val;
1220  
1221  	val = (unsigned long)list->next;
1222  
1223  	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1224  		return RB_PAGE_MOVED;
1225  
1226  	return val & RB_FLAG_MASK;
1227  }
1228  
1229  /*
1230   * rb_is_reader_page
1231   *
1232   * The unique thing about the reader page, is that, if the
1233   * writer is ever on it, the previous pointer never points
1234   * back to the reader page.
1235   */
rb_is_reader_page(struct buffer_page * page)1236  static bool rb_is_reader_page(struct buffer_page *page)
1237  {
1238  	struct list_head *list = page->list.prev;
1239  
1240  	return rb_list_head(list->next) != &page->list;
1241  }
1242  
1243  /*
1244   * rb_set_list_to_head - set a list_head to be pointing to head.
1245   */
rb_set_list_to_head(struct list_head * list)1246  static void rb_set_list_to_head(struct list_head *list)
1247  {
1248  	unsigned long *ptr;
1249  
1250  	ptr = (unsigned long *)&list->next;
1251  	*ptr |= RB_PAGE_HEAD;
1252  	*ptr &= ~RB_PAGE_UPDATE;
1253  }
1254  
1255  /*
1256   * rb_head_page_activate - sets up head page
1257   */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1258  static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1259  {
1260  	struct buffer_page *head;
1261  
1262  	head = cpu_buffer->head_page;
1263  	if (!head)
1264  		return;
1265  
1266  	/*
1267  	 * Set the previous list pointer to have the HEAD flag.
1268  	 */
1269  	rb_set_list_to_head(head->list.prev);
1270  
1271  	if (cpu_buffer->ring_meta) {
1272  		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1273  		meta->head_buffer = (unsigned long)head->page;
1274  	}
1275  }
1276  
rb_list_head_clear(struct list_head * list)1277  static void rb_list_head_clear(struct list_head *list)
1278  {
1279  	unsigned long *ptr = (unsigned long *)&list->next;
1280  
1281  	*ptr &= ~RB_FLAG_MASK;
1282  }
1283  
1284  /*
1285   * rb_head_page_deactivate - clears head page ptr (for free list)
1286   */
1287  static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1288  rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1289  {
1290  	struct list_head *hd;
1291  
1292  	/* Go through the whole list and clear any pointers found. */
1293  	rb_list_head_clear(cpu_buffer->pages);
1294  
1295  	list_for_each(hd, cpu_buffer->pages)
1296  		rb_list_head_clear(hd);
1297  }
1298  
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1299  static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1300  			    struct buffer_page *head,
1301  			    struct buffer_page *prev,
1302  			    int old_flag, int new_flag)
1303  {
1304  	struct list_head *list;
1305  	unsigned long val = (unsigned long)&head->list;
1306  	unsigned long ret;
1307  
1308  	list = &prev->list;
1309  
1310  	val &= ~RB_FLAG_MASK;
1311  
1312  	ret = cmpxchg((unsigned long *)&list->next,
1313  		      val | old_flag, val | new_flag);
1314  
1315  	/* check if the reader took the page */
1316  	if ((ret & ~RB_FLAG_MASK) != val)
1317  		return RB_PAGE_MOVED;
1318  
1319  	return ret & RB_FLAG_MASK;
1320  }
1321  
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1322  static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1323  				   struct buffer_page *head,
1324  				   struct buffer_page *prev,
1325  				   int old_flag)
1326  {
1327  	return rb_head_page_set(cpu_buffer, head, prev,
1328  				old_flag, RB_PAGE_UPDATE);
1329  }
1330  
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1331  static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1332  				 struct buffer_page *head,
1333  				 struct buffer_page *prev,
1334  				 int old_flag)
1335  {
1336  	return rb_head_page_set(cpu_buffer, head, prev,
1337  				old_flag, RB_PAGE_HEAD);
1338  }
1339  
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1340  static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1341  				   struct buffer_page *head,
1342  				   struct buffer_page *prev,
1343  				   int old_flag)
1344  {
1345  	return rb_head_page_set(cpu_buffer, head, prev,
1346  				old_flag, RB_PAGE_NORMAL);
1347  }
1348  
rb_inc_page(struct buffer_page ** bpage)1349  static inline void rb_inc_page(struct buffer_page **bpage)
1350  {
1351  	struct list_head *p = rb_list_head((*bpage)->list.next);
1352  
1353  	*bpage = list_entry(p, struct buffer_page, list);
1354  }
1355  
1356  static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1357  rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1358  {
1359  	struct buffer_page *head;
1360  	struct buffer_page *page;
1361  	struct list_head *list;
1362  	int i;
1363  
1364  	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1365  		return NULL;
1366  
1367  	/* sanity check */
1368  	list = cpu_buffer->pages;
1369  	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1370  		return NULL;
1371  
1372  	page = head = cpu_buffer->head_page;
1373  	/*
1374  	 * It is possible that the writer moves the header behind
1375  	 * where we started, and we miss in one loop.
1376  	 * A second loop should grab the header, but we'll do
1377  	 * three loops just because I'm paranoid.
1378  	 */
1379  	for (i = 0; i < 3; i++) {
1380  		do {
1381  			if (rb_is_head_page(page, page->list.prev)) {
1382  				cpu_buffer->head_page = page;
1383  				return page;
1384  			}
1385  			rb_inc_page(&page);
1386  		} while (page != head);
1387  	}
1388  
1389  	RB_WARN_ON(cpu_buffer, 1);
1390  
1391  	return NULL;
1392  }
1393  
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1394  static bool rb_head_page_replace(struct buffer_page *old,
1395  				struct buffer_page *new)
1396  {
1397  	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1398  	unsigned long val;
1399  
1400  	val = *ptr & ~RB_FLAG_MASK;
1401  	val |= RB_PAGE_HEAD;
1402  
1403  	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1404  }
1405  
1406  /*
1407   * rb_tail_page_update - move the tail page forward
1408   */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1409  static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1410  			       struct buffer_page *tail_page,
1411  			       struct buffer_page *next_page)
1412  {
1413  	unsigned long old_entries;
1414  	unsigned long old_write;
1415  
1416  	/*
1417  	 * The tail page now needs to be moved forward.
1418  	 *
1419  	 * We need to reset the tail page, but without messing
1420  	 * with possible erasing of data brought in by interrupts
1421  	 * that have moved the tail page and are currently on it.
1422  	 *
1423  	 * We add a counter to the write field to denote this.
1424  	 */
1425  	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1426  	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1427  
1428  	/*
1429  	 * Just make sure we have seen our old_write and synchronize
1430  	 * with any interrupts that come in.
1431  	 */
1432  	barrier();
1433  
1434  	/*
1435  	 * If the tail page is still the same as what we think
1436  	 * it is, then it is up to us to update the tail
1437  	 * pointer.
1438  	 */
1439  	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1440  		/* Zero the write counter */
1441  		unsigned long val = old_write & ~RB_WRITE_MASK;
1442  		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1443  
1444  		/*
1445  		 * This will only succeed if an interrupt did
1446  		 * not come in and change it. In which case, we
1447  		 * do not want to modify it.
1448  		 *
1449  		 * We add (void) to let the compiler know that we do not care
1450  		 * about the return value of these functions. We use the
1451  		 * cmpxchg to only update if an interrupt did not already
1452  		 * do it for us. If the cmpxchg fails, we don't care.
1453  		 */
1454  		(void)local_cmpxchg(&next_page->write, old_write, val);
1455  		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1456  
1457  		/*
1458  		 * No need to worry about races with clearing out the commit.
1459  		 * it only can increment when a commit takes place. But that
1460  		 * only happens in the outer most nested commit.
1461  		 */
1462  		local_set(&next_page->page->commit, 0);
1463  
1464  		/* Either we update tail_page or an interrupt does */
1465  		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1466  			local_inc(&cpu_buffer->pages_touched);
1467  	}
1468  }
1469  
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1470  static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1471  			  struct buffer_page *bpage)
1472  {
1473  	unsigned long val = (unsigned long)bpage;
1474  
1475  	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1476  }
1477  
1478  /**
1479   * rb_check_pages - integrity check of buffer pages
1480   * @cpu_buffer: CPU buffer with pages to test
1481   *
1482   * As a safety measure we check to make sure the data pages have not
1483   * been corrupted.
1484   *
1485   * Callers of this function need to guarantee that the list of pages doesn't get
1486   * modified during the check. In particular, if it's possible that the function
1487   * is invoked with concurrent readers which can swap in a new reader page then
1488   * the caller should take cpu_buffer->reader_lock.
1489   */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1490  static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1491  {
1492  	struct list_head *head = rb_list_head(cpu_buffer->pages);
1493  	struct list_head *tmp;
1494  
1495  	if (RB_WARN_ON(cpu_buffer,
1496  			rb_list_head(rb_list_head(head->next)->prev) != head))
1497  		return;
1498  
1499  	if (RB_WARN_ON(cpu_buffer,
1500  			rb_list_head(rb_list_head(head->prev)->next) != head))
1501  		return;
1502  
1503  	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1504  		if (RB_WARN_ON(cpu_buffer,
1505  				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1506  			return;
1507  
1508  		if (RB_WARN_ON(cpu_buffer,
1509  				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1510  			return;
1511  	}
1512  }
1513  
1514  /*
1515   * Take an address, add the meta data size as well as the array of
1516   * array subbuffer indexes, then align it to a subbuffer size.
1517   *
1518   * This is used to help find the next per cpu subbuffer within a mapped range.
1519   */
1520  static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1521  rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1522  {
1523  	addr += sizeof(struct ring_buffer_meta) +
1524  		sizeof(int) * nr_subbufs;
1525  	return ALIGN(addr, subbuf_size);
1526  }
1527  
1528  /*
1529   * Return the ring_buffer_meta for a given @cpu.
1530   */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1531  static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1532  {
1533  	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1534  	unsigned long ptr = buffer->range_addr_start;
1535  	struct ring_buffer_meta *meta;
1536  	int nr_subbufs;
1537  
1538  	if (!ptr)
1539  		return NULL;
1540  
1541  	/* When nr_pages passed in is zero, the first meta has already been initialized */
1542  	if (!nr_pages) {
1543  		meta = (struct ring_buffer_meta *)ptr;
1544  		nr_subbufs = meta->nr_subbufs;
1545  	} else {
1546  		meta = NULL;
1547  		/* Include the reader page */
1548  		nr_subbufs = nr_pages + 1;
1549  	}
1550  
1551  	/*
1552  	 * The first chunk may not be subbuffer aligned, where as
1553  	 * the rest of the chunks are.
1554  	 */
1555  	if (cpu) {
1556  		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1557  		ptr += subbuf_size * nr_subbufs;
1558  
1559  		/* We can use multiplication to find chunks greater than 1 */
1560  		if (cpu > 1) {
1561  			unsigned long size;
1562  			unsigned long p;
1563  
1564  			/* Save the beginning of this CPU chunk */
1565  			p = ptr;
1566  			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1567  			ptr += subbuf_size * nr_subbufs;
1568  
1569  			/* Now all chunks after this are the same size */
1570  			size = ptr - p;
1571  			ptr += size * (cpu - 2);
1572  		}
1573  	}
1574  	return (void *)ptr;
1575  }
1576  
1577  /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_meta * meta)1578  static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1579  {
1580  	int subbuf_size = meta->subbuf_size;
1581  	unsigned long ptr;
1582  
1583  	ptr = (unsigned long)meta;
1584  	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1585  
1586  	return (void *)ptr;
1587  }
1588  
1589  /*
1590   * Return a specific sub-buffer for a given @cpu defined by @idx.
1591   */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1592  static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1593  {
1594  	struct ring_buffer_meta *meta;
1595  	unsigned long ptr;
1596  	int subbuf_size;
1597  
1598  	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1599  	if (!meta)
1600  		return NULL;
1601  
1602  	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1603  		return NULL;
1604  
1605  	subbuf_size = meta->subbuf_size;
1606  
1607  	/* Map this buffer to the order that's in meta->buffers[] */
1608  	idx = meta->buffers[idx];
1609  
1610  	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1611  
1612  	ptr += subbuf_size * idx;
1613  	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1614  		return NULL;
1615  
1616  	return (void *)ptr;
1617  }
1618  
1619  /*
1620   * See if the existing memory contains valid ring buffer data.
1621   * As the previous kernel must be the same as this kernel, all
1622   * the calculations (size of buffers and number of buffers)
1623   * must be the same.
1624   */
rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages)1625  static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1626  			  struct trace_buffer *buffer, int nr_pages)
1627  {
1628  	int subbuf_size = PAGE_SIZE;
1629  	struct buffer_data_page *subbuf;
1630  	unsigned long buffers_start;
1631  	unsigned long buffers_end;
1632  	int i;
1633  
1634  	/* Check the meta magic and meta struct size */
1635  	if (meta->magic != RING_BUFFER_META_MAGIC ||
1636  	    meta->struct_size != sizeof(*meta)) {
1637  		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1638  		return false;
1639  	}
1640  
1641  	/* The subbuffer's size and number of subbuffers must match */
1642  	if (meta->subbuf_size != subbuf_size ||
1643  	    meta->nr_subbufs != nr_pages + 1) {
1644  		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1645  		return false;
1646  	}
1647  
1648  	buffers_start = meta->first_buffer;
1649  	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1650  
1651  	/* Is the head and commit buffers within the range of buffers? */
1652  	if (meta->head_buffer < buffers_start ||
1653  	    meta->head_buffer >= buffers_end) {
1654  		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1655  		return false;
1656  	}
1657  
1658  	if (meta->commit_buffer < buffers_start ||
1659  	    meta->commit_buffer >= buffers_end) {
1660  		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1661  		return false;
1662  	}
1663  
1664  	subbuf = rb_subbufs_from_meta(meta);
1665  
1666  	/* Is the meta buffers and the subbufs themselves have correct data? */
1667  	for (i = 0; i < meta->nr_subbufs; i++) {
1668  		if (meta->buffers[i] < 0 ||
1669  		    meta->buffers[i] >= meta->nr_subbufs) {
1670  			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1671  			return false;
1672  		}
1673  
1674  		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1675  			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1676  			return false;
1677  		}
1678  
1679  		subbuf = (void *)subbuf + subbuf_size;
1680  	}
1681  
1682  	return true;
1683  }
1684  
1685  static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1686  
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1687  static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1688  			       unsigned long long *timestamp, u64 *delta_ptr)
1689  {
1690  	struct ring_buffer_event *event;
1691  	u64 ts, delta;
1692  	int events = 0;
1693  	int e;
1694  
1695  	*delta_ptr = 0;
1696  	*timestamp = 0;
1697  
1698  	ts = dpage->time_stamp;
1699  
1700  	for (e = 0; e < tail; e += rb_event_length(event)) {
1701  
1702  		event = (struct ring_buffer_event *)(dpage->data + e);
1703  
1704  		switch (event->type_len) {
1705  
1706  		case RINGBUF_TYPE_TIME_EXTEND:
1707  			delta = rb_event_time_stamp(event);
1708  			ts += delta;
1709  			break;
1710  
1711  		case RINGBUF_TYPE_TIME_STAMP:
1712  			delta = rb_event_time_stamp(event);
1713  			delta = rb_fix_abs_ts(delta, ts);
1714  			if (delta < ts) {
1715  				*delta_ptr = delta;
1716  				*timestamp = ts;
1717  				return -1;
1718  			}
1719  			ts = delta;
1720  			break;
1721  
1722  		case RINGBUF_TYPE_PADDING:
1723  			if (event->time_delta == 1)
1724  				break;
1725  			fallthrough;
1726  		case RINGBUF_TYPE_DATA:
1727  			events++;
1728  			ts += event->time_delta;
1729  			break;
1730  
1731  		default:
1732  			return -1;
1733  		}
1734  	}
1735  	*timestamp = ts;
1736  	return events;
1737  }
1738  
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1739  static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1740  {
1741  	unsigned long long ts;
1742  	u64 delta;
1743  	int tail;
1744  
1745  	tail = local_read(&dpage->commit);
1746  	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1747  }
1748  
1749  /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1750  static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1751  {
1752  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1753  	struct buffer_page *head_page;
1754  	unsigned long entry_bytes = 0;
1755  	unsigned long entries = 0;
1756  	int ret;
1757  	int i;
1758  
1759  	if (!meta || !meta->head_buffer)
1760  		return;
1761  
1762  	/* Do the reader page first */
1763  	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1764  	if (ret < 0) {
1765  		pr_info("Ring buffer reader page is invalid\n");
1766  		goto invalid;
1767  	}
1768  	entries += ret;
1769  	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1770  	local_set(&cpu_buffer->reader_page->entries, ret);
1771  
1772  	head_page = cpu_buffer->head_page;
1773  
1774  	/* If both the head and commit are on the reader_page then we are done. */
1775  	if (head_page == cpu_buffer->reader_page &&
1776  	    head_page == cpu_buffer->commit_page)
1777  		goto done;
1778  
1779  	/* Iterate until finding the commit page */
1780  	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1781  
1782  		/* Reader page has already been done */
1783  		if (head_page == cpu_buffer->reader_page)
1784  			continue;
1785  
1786  		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1787  		if (ret < 0) {
1788  			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1789  				cpu_buffer->cpu);
1790  			goto invalid;
1791  		}
1792  		entries += ret;
1793  		entry_bytes += local_read(&head_page->page->commit);
1794  		local_set(&cpu_buffer->head_page->entries, ret);
1795  
1796  		if (head_page == cpu_buffer->commit_page)
1797  			break;
1798  	}
1799  
1800  	if (head_page != cpu_buffer->commit_page) {
1801  		pr_info("Ring buffer meta [%d] commit page not found\n",
1802  			cpu_buffer->cpu);
1803  		goto invalid;
1804  	}
1805   done:
1806  	local_set(&cpu_buffer->entries, entries);
1807  	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1808  
1809  	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1810  	return;
1811  
1812   invalid:
1813  	/* The content of the buffers are invalid, reset the meta data */
1814  	meta->head_buffer = 0;
1815  	meta->commit_buffer = 0;
1816  
1817  	/* Reset the reader page */
1818  	local_set(&cpu_buffer->reader_page->entries, 0);
1819  	local_set(&cpu_buffer->reader_page->page->commit, 0);
1820  
1821  	/* Reset all the subbuffers */
1822  	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1823  		local_set(&head_page->entries, 0);
1824  		local_set(&head_page->page->commit, 0);
1825  	}
1826  }
1827  
1828  /* Used to calculate data delta */
1829  static char rb_data_ptr[] = "";
1830  
1831  #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1832  #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1833  
rb_meta_init_text_addr(struct ring_buffer_meta * meta)1834  static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1835  {
1836  	meta->text_addr = THIS_TEXT_PTR;
1837  	meta->data_addr = THIS_DATA_PTR;
1838  }
1839  
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1840  static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1841  {
1842  	struct ring_buffer_meta *meta;
1843  	unsigned long delta;
1844  	void *subbuf;
1845  	int cpu;
1846  	int i;
1847  
1848  	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1849  		void *next_meta;
1850  
1851  		meta = rb_range_meta(buffer, nr_pages, cpu);
1852  
1853  		if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1854  			/* Make the mappings match the current address */
1855  			subbuf = rb_subbufs_from_meta(meta);
1856  			delta = (unsigned long)subbuf - meta->first_buffer;
1857  			meta->first_buffer += delta;
1858  			meta->head_buffer += delta;
1859  			meta->commit_buffer += delta;
1860  			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1861  			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1862  			continue;
1863  		}
1864  
1865  		if (cpu < nr_cpu_ids - 1)
1866  			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1867  		else
1868  			next_meta = (void *)buffer->range_addr_end;
1869  
1870  		memset(meta, 0, next_meta - (void *)meta);
1871  
1872  		meta->magic = RING_BUFFER_META_MAGIC;
1873  		meta->struct_size = sizeof(*meta);
1874  
1875  		meta->nr_subbufs = nr_pages + 1;
1876  		meta->subbuf_size = PAGE_SIZE;
1877  
1878  		subbuf = rb_subbufs_from_meta(meta);
1879  
1880  		meta->first_buffer = (unsigned long)subbuf;
1881  		rb_meta_init_text_addr(meta);
1882  
1883  		/*
1884  		 * The buffers[] array holds the order of the sub-buffers
1885  		 * that are after the meta data. The sub-buffers may
1886  		 * be swapped out when read and inserted into a different
1887  		 * location of the ring buffer. Although their addresses
1888  		 * remain the same, the buffers[] array contains the
1889  		 * index into the sub-buffers holding their actual order.
1890  		 */
1891  		for (i = 0; i < meta->nr_subbufs; i++) {
1892  			meta->buffers[i] = i;
1893  			rb_init_page(subbuf);
1894  			subbuf += meta->subbuf_size;
1895  		}
1896  	}
1897  }
1898  
rbm_start(struct seq_file * m,loff_t * pos)1899  static void *rbm_start(struct seq_file *m, loff_t *pos)
1900  {
1901  	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1902  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1903  	unsigned long val;
1904  
1905  	if (!meta)
1906  		return NULL;
1907  
1908  	if (*pos > meta->nr_subbufs)
1909  		return NULL;
1910  
1911  	val = *pos;
1912  	val++;
1913  
1914  	return (void *)val;
1915  }
1916  
rbm_next(struct seq_file * m,void * v,loff_t * pos)1917  static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1918  {
1919  	(*pos)++;
1920  
1921  	return rbm_start(m, pos);
1922  }
1923  
rbm_show(struct seq_file * m,void * v)1924  static int rbm_show(struct seq_file *m, void *v)
1925  {
1926  	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1927  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1928  	unsigned long val = (unsigned long)v;
1929  
1930  	if (val == 1) {
1931  		seq_printf(m, "head_buffer:   %d\n",
1932  			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1933  		seq_printf(m, "commit_buffer: %d\n",
1934  			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1935  		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
1936  		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
1937  		return 0;
1938  	}
1939  
1940  	val -= 2;
1941  	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
1942  
1943  	return 0;
1944  }
1945  
rbm_stop(struct seq_file * m,void * p)1946  static void rbm_stop(struct seq_file *m, void *p)
1947  {
1948  }
1949  
1950  static const struct seq_operations rb_meta_seq_ops = {
1951  	.start		= rbm_start,
1952  	.next		= rbm_next,
1953  	.show		= rbm_show,
1954  	.stop		= rbm_stop,
1955  };
1956  
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)1957  int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
1958  {
1959  	struct seq_file *m;
1960  	int ret;
1961  
1962  	ret = seq_open(file, &rb_meta_seq_ops);
1963  	if (ret)
1964  		return ret;
1965  
1966  	m = file->private_data;
1967  	m->private = buffer->buffers[cpu];
1968  
1969  	return 0;
1970  }
1971  
1972  /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1973  static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
1974  				  struct buffer_page *bpage)
1975  {
1976  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977  
1978  	if (meta->head_buffer == (unsigned long)bpage->page)
1979  		cpu_buffer->head_page = bpage;
1980  
1981  	if (meta->commit_buffer == (unsigned long)bpage->page) {
1982  		cpu_buffer->commit_page = bpage;
1983  		cpu_buffer->tail_page = bpage;
1984  	}
1985  }
1986  
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)1987  static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1988  		long nr_pages, struct list_head *pages)
1989  {
1990  	struct trace_buffer *buffer = cpu_buffer->buffer;
1991  	struct ring_buffer_meta *meta = NULL;
1992  	struct buffer_page *bpage, *tmp;
1993  	bool user_thread = current->mm != NULL;
1994  	gfp_t mflags;
1995  	long i;
1996  
1997  	/*
1998  	 * Check if the available memory is there first.
1999  	 * Note, si_mem_available() only gives us a rough estimate of available
2000  	 * memory. It may not be accurate. But we don't care, we just want
2001  	 * to prevent doing any allocation when it is obvious that it is
2002  	 * not going to succeed.
2003  	 */
2004  	i = si_mem_available();
2005  	if (i < nr_pages)
2006  		return -ENOMEM;
2007  
2008  	/*
2009  	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2010  	 * gracefully without invoking oom-killer and the system is not
2011  	 * destabilized.
2012  	 */
2013  	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2014  
2015  	/*
2016  	 * If a user thread allocates too much, and si_mem_available()
2017  	 * reports there's enough memory, even though there is not.
2018  	 * Make sure the OOM killer kills this thread. This can happen
2019  	 * even with RETRY_MAYFAIL because another task may be doing
2020  	 * an allocation after this task has taken all memory.
2021  	 * This is the task the OOM killer needs to take out during this
2022  	 * loop, even if it was triggered by an allocation somewhere else.
2023  	 */
2024  	if (user_thread)
2025  		set_current_oom_origin();
2026  
2027  	if (buffer->range_addr_start)
2028  		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2029  
2030  	for (i = 0; i < nr_pages; i++) {
2031  		struct page *page;
2032  
2033  		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2034  				    mflags, cpu_to_node(cpu_buffer->cpu));
2035  		if (!bpage)
2036  			goto free_pages;
2037  
2038  		rb_check_bpage(cpu_buffer, bpage);
2039  
2040  		/*
2041  		 * Append the pages as for mapped buffers we want to keep
2042  		 * the order
2043  		 */
2044  		list_add_tail(&bpage->list, pages);
2045  
2046  		if (meta) {
2047  			/* A range was given. Use that for the buffer page */
2048  			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2049  			if (!bpage->page)
2050  				goto free_pages;
2051  			/* If this is valid from a previous boot */
2052  			if (meta->head_buffer)
2053  				rb_meta_buffer_update(cpu_buffer, bpage);
2054  			bpage->range = 1;
2055  			bpage->id = i + 1;
2056  		} else {
2057  			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2058  						mflags | __GFP_COMP | __GFP_ZERO,
2059  						cpu_buffer->buffer->subbuf_order);
2060  			if (!page)
2061  				goto free_pages;
2062  			bpage->page = page_address(page);
2063  			rb_init_page(bpage->page);
2064  		}
2065  		bpage->order = cpu_buffer->buffer->subbuf_order;
2066  
2067  		if (user_thread && fatal_signal_pending(current))
2068  			goto free_pages;
2069  	}
2070  	if (user_thread)
2071  		clear_current_oom_origin();
2072  
2073  	return 0;
2074  
2075  free_pages:
2076  	list_for_each_entry_safe(bpage, tmp, pages, list) {
2077  		list_del_init(&bpage->list);
2078  		free_buffer_page(bpage);
2079  	}
2080  	if (user_thread)
2081  		clear_current_oom_origin();
2082  
2083  	return -ENOMEM;
2084  }
2085  
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2086  static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2087  			     unsigned long nr_pages)
2088  {
2089  	LIST_HEAD(pages);
2090  
2091  	WARN_ON(!nr_pages);
2092  
2093  	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2094  		return -ENOMEM;
2095  
2096  	/*
2097  	 * The ring buffer page list is a circular list that does not
2098  	 * start and end with a list head. All page list items point to
2099  	 * other pages.
2100  	 */
2101  	cpu_buffer->pages = pages.next;
2102  	list_del(&pages);
2103  
2104  	cpu_buffer->nr_pages = nr_pages;
2105  
2106  	rb_check_pages(cpu_buffer);
2107  
2108  	return 0;
2109  }
2110  
2111  static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2112  rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2113  {
2114  	struct ring_buffer_per_cpu *cpu_buffer;
2115  	struct ring_buffer_meta *meta;
2116  	struct buffer_page *bpage;
2117  	struct page *page;
2118  	int ret;
2119  
2120  	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2121  				  GFP_KERNEL, cpu_to_node(cpu));
2122  	if (!cpu_buffer)
2123  		return NULL;
2124  
2125  	cpu_buffer->cpu = cpu;
2126  	cpu_buffer->buffer = buffer;
2127  	raw_spin_lock_init(&cpu_buffer->reader_lock);
2128  	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2129  	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2130  	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2131  	init_completion(&cpu_buffer->update_done);
2132  	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2133  	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2134  	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2135  	mutex_init(&cpu_buffer->mapping_lock);
2136  
2137  	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2138  			    GFP_KERNEL, cpu_to_node(cpu));
2139  	if (!bpage)
2140  		goto fail_free_buffer;
2141  
2142  	rb_check_bpage(cpu_buffer, bpage);
2143  
2144  	cpu_buffer->reader_page = bpage;
2145  
2146  	if (buffer->range_addr_start) {
2147  		/*
2148  		 * Range mapped buffers have the same restrictions as memory
2149  		 * mapped ones do.
2150  		 */
2151  		cpu_buffer->mapped = 1;
2152  		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2153  		bpage->page = rb_range_buffer(cpu_buffer, 0);
2154  		if (!bpage->page)
2155  			goto fail_free_reader;
2156  		if (cpu_buffer->ring_meta->head_buffer)
2157  			rb_meta_buffer_update(cpu_buffer, bpage);
2158  		bpage->range = 1;
2159  	} else {
2160  		page = alloc_pages_node(cpu_to_node(cpu),
2161  					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2162  					cpu_buffer->buffer->subbuf_order);
2163  		if (!page)
2164  			goto fail_free_reader;
2165  		bpage->page = page_address(page);
2166  		rb_init_page(bpage->page);
2167  	}
2168  
2169  	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2170  	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2171  
2172  	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2173  	if (ret < 0)
2174  		goto fail_free_reader;
2175  
2176  	rb_meta_validate_events(cpu_buffer);
2177  
2178  	/* If the boot meta was valid then this has already been updated */
2179  	meta = cpu_buffer->ring_meta;
2180  	if (!meta || !meta->head_buffer ||
2181  	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2182  		if (meta && meta->head_buffer &&
2183  		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2184  			pr_warn("Ring buffer meta buffers not all mapped\n");
2185  			if (!cpu_buffer->head_page)
2186  				pr_warn("   Missing head_page\n");
2187  			if (!cpu_buffer->commit_page)
2188  				pr_warn("   Missing commit_page\n");
2189  			if (!cpu_buffer->tail_page)
2190  				pr_warn("   Missing tail_page\n");
2191  		}
2192  
2193  		cpu_buffer->head_page
2194  			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2195  		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2196  
2197  		rb_head_page_activate(cpu_buffer);
2198  
2199  		if (cpu_buffer->ring_meta)
2200  			meta->commit_buffer = meta->head_buffer;
2201  	} else {
2202  		/* The valid meta buffer still needs to activate the head page */
2203  		rb_head_page_activate(cpu_buffer);
2204  	}
2205  
2206  	return cpu_buffer;
2207  
2208   fail_free_reader:
2209  	free_buffer_page(cpu_buffer->reader_page);
2210  
2211   fail_free_buffer:
2212  	kfree(cpu_buffer);
2213  	return NULL;
2214  }
2215  
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2216  static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2217  {
2218  	struct list_head *head = cpu_buffer->pages;
2219  	struct buffer_page *bpage, *tmp;
2220  
2221  	irq_work_sync(&cpu_buffer->irq_work.work);
2222  
2223  	free_buffer_page(cpu_buffer->reader_page);
2224  
2225  	if (head) {
2226  		rb_head_page_deactivate(cpu_buffer);
2227  
2228  		list_for_each_entry_safe(bpage, tmp, head, list) {
2229  			list_del_init(&bpage->list);
2230  			free_buffer_page(bpage);
2231  		}
2232  		bpage = list_entry(head, struct buffer_page, list);
2233  		free_buffer_page(bpage);
2234  	}
2235  
2236  	free_page((unsigned long)cpu_buffer->free_page);
2237  
2238  	kfree(cpu_buffer);
2239  }
2240  
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key)2241  static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2242  					 int order, unsigned long start,
2243  					 unsigned long end,
2244  					 struct lock_class_key *key)
2245  {
2246  	struct trace_buffer *buffer;
2247  	long nr_pages;
2248  	int subbuf_size;
2249  	int bsize;
2250  	int cpu;
2251  	int ret;
2252  
2253  	/* keep it in its own cache line */
2254  	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2255  			 GFP_KERNEL);
2256  	if (!buffer)
2257  		return NULL;
2258  
2259  	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2260  		goto fail_free_buffer;
2261  
2262  	buffer->subbuf_order = order;
2263  	subbuf_size = (PAGE_SIZE << order);
2264  	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2265  
2266  	/* Max payload is buffer page size - header (8bytes) */
2267  	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2268  
2269  	buffer->flags = flags;
2270  	buffer->clock = trace_clock_local;
2271  	buffer->reader_lock_key = key;
2272  
2273  	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2274  	init_waitqueue_head(&buffer->irq_work.waiters);
2275  
2276  	buffer->cpus = nr_cpu_ids;
2277  
2278  	bsize = sizeof(void *) * nr_cpu_ids;
2279  	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2280  				  GFP_KERNEL);
2281  	if (!buffer->buffers)
2282  		goto fail_free_cpumask;
2283  
2284  	/* If start/end are specified, then that overrides size */
2285  	if (start && end) {
2286  		unsigned long ptr;
2287  		int n;
2288  
2289  		size = end - start;
2290  		size = size / nr_cpu_ids;
2291  
2292  		/*
2293  		 * The number of sub-buffers (nr_pages) is determined by the
2294  		 * total size allocated minus the meta data size.
2295  		 * Then that is divided by the number of per CPU buffers
2296  		 * needed, plus account for the integer array index that
2297  		 * will be appended to the meta data.
2298  		 */
2299  		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2300  			(subbuf_size + sizeof(int));
2301  		/* Need at least two pages plus the reader page */
2302  		if (nr_pages < 3)
2303  			goto fail_free_buffers;
2304  
2305   again:
2306  		/* Make sure that the size fits aligned */
2307  		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2308  			ptr += sizeof(struct ring_buffer_meta) +
2309  				sizeof(int) * nr_pages;
2310  			ptr = ALIGN(ptr, subbuf_size);
2311  			ptr += subbuf_size * nr_pages;
2312  		}
2313  		if (ptr > end) {
2314  			if (nr_pages <= 3)
2315  				goto fail_free_buffers;
2316  			nr_pages--;
2317  			goto again;
2318  		}
2319  
2320  		/* nr_pages should not count the reader page */
2321  		nr_pages--;
2322  		buffer->range_addr_start = start;
2323  		buffer->range_addr_end = end;
2324  
2325  		rb_range_meta_init(buffer, nr_pages);
2326  	} else {
2327  
2328  		/* need at least two pages */
2329  		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2330  		if (nr_pages < 2)
2331  			nr_pages = 2;
2332  	}
2333  
2334  	cpu = raw_smp_processor_id();
2335  	cpumask_set_cpu(cpu, buffer->cpumask);
2336  	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2337  	if (!buffer->buffers[cpu])
2338  		goto fail_free_buffers;
2339  
2340  	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2341  	if (ret < 0)
2342  		goto fail_free_buffers;
2343  
2344  	mutex_init(&buffer->mutex);
2345  
2346  	return buffer;
2347  
2348   fail_free_buffers:
2349  	for_each_buffer_cpu(buffer, cpu) {
2350  		if (buffer->buffers[cpu])
2351  			rb_free_cpu_buffer(buffer->buffers[cpu]);
2352  	}
2353  	kfree(buffer->buffers);
2354  
2355   fail_free_cpumask:
2356  	free_cpumask_var(buffer->cpumask);
2357  
2358   fail_free_buffer:
2359  	kfree(buffer);
2360  	return NULL;
2361  }
2362  
2363  /**
2364   * __ring_buffer_alloc - allocate a new ring_buffer
2365   * @size: the size in bytes per cpu that is needed.
2366   * @flags: attributes to set for the ring buffer.
2367   * @key: ring buffer reader_lock_key.
2368   *
2369   * Currently the only flag that is available is the RB_FL_OVERWRITE
2370   * flag. This flag means that the buffer will overwrite old data
2371   * when the buffer wraps. If this flag is not set, the buffer will
2372   * drop data when the tail hits the head.
2373   */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2374  struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2375  					struct lock_class_key *key)
2376  {
2377  	/* Default buffer page size - one system page */
2378  	return alloc_buffer(size, flags, 0, 0, 0,key);
2379  
2380  }
2381  EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2382  
2383  /**
2384   * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2385   * @size: the size in bytes per cpu that is needed.
2386   * @flags: attributes to set for the ring buffer.
2387   * @start: start of allocated range
2388   * @range_size: size of allocated range
2389   * @order: sub-buffer order
2390   * @key: ring buffer reader_lock_key.
2391   *
2392   * Currently the only flag that is available is the RB_FL_OVERWRITE
2393   * flag. This flag means that the buffer will overwrite old data
2394   * when the buffer wraps. If this flag is not set, the buffer will
2395   * drop data when the tail hits the head.
2396   */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2397  struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2398  					       int order, unsigned long start,
2399  					       unsigned long range_size,
2400  					       struct lock_class_key *key)
2401  {
2402  	return alloc_buffer(size, flags, order, start, start + range_size, key);
2403  }
2404  
2405  /**
2406   * ring_buffer_last_boot_delta - return the delta offset from last boot
2407   * @buffer: The buffer to return the delta from
2408   * @text: Return text delta
2409   * @data: Return data delta
2410   *
2411   * Returns: The true if the delta is non zero
2412   */
ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2413  bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2414  				 long *data)
2415  {
2416  	if (!buffer)
2417  		return false;
2418  
2419  	if (!buffer->last_text_delta)
2420  		return false;
2421  
2422  	*text = buffer->last_text_delta;
2423  	*data = buffer->last_data_delta;
2424  
2425  	return true;
2426  }
2427  
2428  /**
2429   * ring_buffer_free - free a ring buffer.
2430   * @buffer: the buffer to free.
2431   */
2432  void
ring_buffer_free(struct trace_buffer * buffer)2433  ring_buffer_free(struct trace_buffer *buffer)
2434  {
2435  	int cpu;
2436  
2437  	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2438  
2439  	irq_work_sync(&buffer->irq_work.work);
2440  
2441  	for_each_buffer_cpu(buffer, cpu)
2442  		rb_free_cpu_buffer(buffer->buffers[cpu]);
2443  
2444  	kfree(buffer->buffers);
2445  	free_cpumask_var(buffer->cpumask);
2446  
2447  	kfree(buffer);
2448  }
2449  EXPORT_SYMBOL_GPL(ring_buffer_free);
2450  
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2451  void ring_buffer_set_clock(struct trace_buffer *buffer,
2452  			   u64 (*clock)(void))
2453  {
2454  	buffer->clock = clock;
2455  }
2456  
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2457  void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2458  {
2459  	buffer->time_stamp_abs = abs;
2460  }
2461  
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2462  bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2463  {
2464  	return buffer->time_stamp_abs;
2465  }
2466  
rb_page_entries(struct buffer_page * bpage)2467  static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2468  {
2469  	return local_read(&bpage->entries) & RB_WRITE_MASK;
2470  }
2471  
rb_page_write(struct buffer_page * bpage)2472  static inline unsigned long rb_page_write(struct buffer_page *bpage)
2473  {
2474  	return local_read(&bpage->write) & RB_WRITE_MASK;
2475  }
2476  
2477  static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2478  rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2479  {
2480  	struct list_head *tail_page, *to_remove, *next_page;
2481  	struct buffer_page *to_remove_page, *tmp_iter_page;
2482  	struct buffer_page *last_page, *first_page;
2483  	unsigned long nr_removed;
2484  	unsigned long head_bit;
2485  	int page_entries;
2486  
2487  	head_bit = 0;
2488  
2489  	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2490  	atomic_inc(&cpu_buffer->record_disabled);
2491  	/*
2492  	 * We don't race with the readers since we have acquired the reader
2493  	 * lock. We also don't race with writers after disabling recording.
2494  	 * This makes it easy to figure out the first and the last page to be
2495  	 * removed from the list. We unlink all the pages in between including
2496  	 * the first and last pages. This is done in a busy loop so that we
2497  	 * lose the least number of traces.
2498  	 * The pages are freed after we restart recording and unlock readers.
2499  	 */
2500  	tail_page = &cpu_buffer->tail_page->list;
2501  
2502  	/*
2503  	 * tail page might be on reader page, we remove the next page
2504  	 * from the ring buffer
2505  	 */
2506  	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2507  		tail_page = rb_list_head(tail_page->next);
2508  	to_remove = tail_page;
2509  
2510  	/* start of pages to remove */
2511  	first_page = list_entry(rb_list_head(to_remove->next),
2512  				struct buffer_page, list);
2513  
2514  	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2515  		to_remove = rb_list_head(to_remove)->next;
2516  		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2517  	}
2518  	/* Read iterators need to reset themselves when some pages removed */
2519  	cpu_buffer->pages_removed += nr_removed;
2520  
2521  	next_page = rb_list_head(to_remove)->next;
2522  
2523  	/*
2524  	 * Now we remove all pages between tail_page and next_page.
2525  	 * Make sure that we have head_bit value preserved for the
2526  	 * next page
2527  	 */
2528  	tail_page->next = (struct list_head *)((unsigned long)next_page |
2529  						head_bit);
2530  	next_page = rb_list_head(next_page);
2531  	next_page->prev = tail_page;
2532  
2533  	/* make sure pages points to a valid page in the ring buffer */
2534  	cpu_buffer->pages = next_page;
2535  
2536  	/* update head page */
2537  	if (head_bit)
2538  		cpu_buffer->head_page = list_entry(next_page,
2539  						struct buffer_page, list);
2540  
2541  	/* pages are removed, resume tracing and then free the pages */
2542  	atomic_dec(&cpu_buffer->record_disabled);
2543  	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2544  
2545  	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2546  
2547  	/* last buffer page to remove */
2548  	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2549  				list);
2550  	tmp_iter_page = first_page;
2551  
2552  	do {
2553  		cond_resched();
2554  
2555  		to_remove_page = tmp_iter_page;
2556  		rb_inc_page(&tmp_iter_page);
2557  
2558  		/* update the counters */
2559  		page_entries = rb_page_entries(to_remove_page);
2560  		if (page_entries) {
2561  			/*
2562  			 * If something was added to this page, it was full
2563  			 * since it is not the tail page. So we deduct the
2564  			 * bytes consumed in ring buffer from here.
2565  			 * Increment overrun to account for the lost events.
2566  			 */
2567  			local_add(page_entries, &cpu_buffer->overrun);
2568  			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2569  			local_inc(&cpu_buffer->pages_lost);
2570  		}
2571  
2572  		/*
2573  		 * We have already removed references to this list item, just
2574  		 * free up the buffer_page and its page
2575  		 */
2576  		free_buffer_page(to_remove_page);
2577  		nr_removed--;
2578  
2579  	} while (to_remove_page != last_page);
2580  
2581  	RB_WARN_ON(cpu_buffer, nr_removed);
2582  
2583  	return nr_removed == 0;
2584  }
2585  
2586  static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2587  rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2588  {
2589  	struct list_head *pages = &cpu_buffer->new_pages;
2590  	unsigned long flags;
2591  	bool success;
2592  	int retries;
2593  
2594  	/* Can be called at early boot up, where interrupts must not been enabled */
2595  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2596  	/*
2597  	 * We are holding the reader lock, so the reader page won't be swapped
2598  	 * in the ring buffer. Now we are racing with the writer trying to
2599  	 * move head page and the tail page.
2600  	 * We are going to adapt the reader page update process where:
2601  	 * 1. We first splice the start and end of list of new pages between
2602  	 *    the head page and its previous page.
2603  	 * 2. We cmpxchg the prev_page->next to point from head page to the
2604  	 *    start of new pages list.
2605  	 * 3. Finally, we update the head->prev to the end of new list.
2606  	 *
2607  	 * We will try this process 10 times, to make sure that we don't keep
2608  	 * spinning.
2609  	 */
2610  	retries = 10;
2611  	success = false;
2612  	while (retries--) {
2613  		struct list_head *head_page, *prev_page;
2614  		struct list_head *last_page, *first_page;
2615  		struct list_head *head_page_with_bit;
2616  		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2617  
2618  		if (!hpage)
2619  			break;
2620  		head_page = &hpage->list;
2621  		prev_page = head_page->prev;
2622  
2623  		first_page = pages->next;
2624  		last_page  = pages->prev;
2625  
2626  		head_page_with_bit = (struct list_head *)
2627  				     ((unsigned long)head_page | RB_PAGE_HEAD);
2628  
2629  		last_page->next = head_page_with_bit;
2630  		first_page->prev = prev_page;
2631  
2632  		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2633  		if (try_cmpxchg(&prev_page->next,
2634  				&head_page_with_bit, first_page)) {
2635  			/*
2636  			 * yay, we replaced the page pointer to our new list,
2637  			 * now, we just have to update to head page's prev
2638  			 * pointer to point to end of list
2639  			 */
2640  			head_page->prev = last_page;
2641  			success = true;
2642  			break;
2643  		}
2644  	}
2645  
2646  	if (success)
2647  		INIT_LIST_HEAD(pages);
2648  	/*
2649  	 * If we weren't successful in adding in new pages, warn and stop
2650  	 * tracing
2651  	 */
2652  	RB_WARN_ON(cpu_buffer, !success);
2653  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2654  
2655  	/* free pages if they weren't inserted */
2656  	if (!success) {
2657  		struct buffer_page *bpage, *tmp;
2658  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2659  					 list) {
2660  			list_del_init(&bpage->list);
2661  			free_buffer_page(bpage);
2662  		}
2663  	}
2664  	return success;
2665  }
2666  
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2667  static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2668  {
2669  	bool success;
2670  
2671  	if (cpu_buffer->nr_pages_to_update > 0)
2672  		success = rb_insert_pages(cpu_buffer);
2673  	else
2674  		success = rb_remove_pages(cpu_buffer,
2675  					-cpu_buffer->nr_pages_to_update);
2676  
2677  	if (success)
2678  		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2679  }
2680  
update_pages_handler(struct work_struct * work)2681  static void update_pages_handler(struct work_struct *work)
2682  {
2683  	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2684  			struct ring_buffer_per_cpu, update_pages_work);
2685  	rb_update_pages(cpu_buffer);
2686  	complete(&cpu_buffer->update_done);
2687  }
2688  
2689  /**
2690   * ring_buffer_resize - resize the ring buffer
2691   * @buffer: the buffer to resize.
2692   * @size: the new size.
2693   * @cpu_id: the cpu buffer to resize
2694   *
2695   * Minimum size is 2 * buffer->subbuf_size.
2696   *
2697   * Returns 0 on success and < 0 on failure.
2698   */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2699  int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2700  			int cpu_id)
2701  {
2702  	struct ring_buffer_per_cpu *cpu_buffer;
2703  	unsigned long nr_pages;
2704  	int cpu, err;
2705  
2706  	/*
2707  	 * Always succeed at resizing a non-existent buffer:
2708  	 */
2709  	if (!buffer)
2710  		return 0;
2711  
2712  	/* Make sure the requested buffer exists */
2713  	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2714  	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2715  		return 0;
2716  
2717  	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2718  
2719  	/* we need a minimum of two pages */
2720  	if (nr_pages < 2)
2721  		nr_pages = 2;
2722  
2723  	/* prevent another thread from changing buffer sizes */
2724  	mutex_lock(&buffer->mutex);
2725  	atomic_inc(&buffer->resizing);
2726  
2727  	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2728  		/*
2729  		 * Don't succeed if resizing is disabled, as a reader might be
2730  		 * manipulating the ring buffer and is expecting a sane state while
2731  		 * this is true.
2732  		 */
2733  		for_each_buffer_cpu(buffer, cpu) {
2734  			cpu_buffer = buffer->buffers[cpu];
2735  			if (atomic_read(&cpu_buffer->resize_disabled)) {
2736  				err = -EBUSY;
2737  				goto out_err_unlock;
2738  			}
2739  		}
2740  
2741  		/* calculate the pages to update */
2742  		for_each_buffer_cpu(buffer, cpu) {
2743  			cpu_buffer = buffer->buffers[cpu];
2744  
2745  			cpu_buffer->nr_pages_to_update = nr_pages -
2746  							cpu_buffer->nr_pages;
2747  			/*
2748  			 * nothing more to do for removing pages or no update
2749  			 */
2750  			if (cpu_buffer->nr_pages_to_update <= 0)
2751  				continue;
2752  			/*
2753  			 * to add pages, make sure all new pages can be
2754  			 * allocated without receiving ENOMEM
2755  			 */
2756  			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2757  			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2758  						&cpu_buffer->new_pages)) {
2759  				/* not enough memory for new pages */
2760  				err = -ENOMEM;
2761  				goto out_err;
2762  			}
2763  
2764  			cond_resched();
2765  		}
2766  
2767  		cpus_read_lock();
2768  		/*
2769  		 * Fire off all the required work handlers
2770  		 * We can't schedule on offline CPUs, but it's not necessary
2771  		 * since we can change their buffer sizes without any race.
2772  		 */
2773  		for_each_buffer_cpu(buffer, cpu) {
2774  			cpu_buffer = buffer->buffers[cpu];
2775  			if (!cpu_buffer->nr_pages_to_update)
2776  				continue;
2777  
2778  			/* Can't run something on an offline CPU. */
2779  			if (!cpu_online(cpu)) {
2780  				rb_update_pages(cpu_buffer);
2781  				cpu_buffer->nr_pages_to_update = 0;
2782  			} else {
2783  				/* Run directly if possible. */
2784  				migrate_disable();
2785  				if (cpu != smp_processor_id()) {
2786  					migrate_enable();
2787  					schedule_work_on(cpu,
2788  							 &cpu_buffer->update_pages_work);
2789  				} else {
2790  					update_pages_handler(&cpu_buffer->update_pages_work);
2791  					migrate_enable();
2792  				}
2793  			}
2794  		}
2795  
2796  		/* wait for all the updates to complete */
2797  		for_each_buffer_cpu(buffer, cpu) {
2798  			cpu_buffer = buffer->buffers[cpu];
2799  			if (!cpu_buffer->nr_pages_to_update)
2800  				continue;
2801  
2802  			if (cpu_online(cpu))
2803  				wait_for_completion(&cpu_buffer->update_done);
2804  			cpu_buffer->nr_pages_to_update = 0;
2805  		}
2806  
2807  		cpus_read_unlock();
2808  	} else {
2809  		cpu_buffer = buffer->buffers[cpu_id];
2810  
2811  		if (nr_pages == cpu_buffer->nr_pages)
2812  			goto out;
2813  
2814  		/*
2815  		 * Don't succeed if resizing is disabled, as a reader might be
2816  		 * manipulating the ring buffer and is expecting a sane state while
2817  		 * this is true.
2818  		 */
2819  		if (atomic_read(&cpu_buffer->resize_disabled)) {
2820  			err = -EBUSY;
2821  			goto out_err_unlock;
2822  		}
2823  
2824  		cpu_buffer->nr_pages_to_update = nr_pages -
2825  						cpu_buffer->nr_pages;
2826  
2827  		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2828  		if (cpu_buffer->nr_pages_to_update > 0 &&
2829  			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2830  					    &cpu_buffer->new_pages)) {
2831  			err = -ENOMEM;
2832  			goto out_err;
2833  		}
2834  
2835  		cpus_read_lock();
2836  
2837  		/* Can't run something on an offline CPU. */
2838  		if (!cpu_online(cpu_id))
2839  			rb_update_pages(cpu_buffer);
2840  		else {
2841  			/* Run directly if possible. */
2842  			migrate_disable();
2843  			if (cpu_id == smp_processor_id()) {
2844  				rb_update_pages(cpu_buffer);
2845  				migrate_enable();
2846  			} else {
2847  				migrate_enable();
2848  				schedule_work_on(cpu_id,
2849  						 &cpu_buffer->update_pages_work);
2850  				wait_for_completion(&cpu_buffer->update_done);
2851  			}
2852  		}
2853  
2854  		cpu_buffer->nr_pages_to_update = 0;
2855  		cpus_read_unlock();
2856  	}
2857  
2858   out:
2859  	/*
2860  	 * The ring buffer resize can happen with the ring buffer
2861  	 * enabled, so that the update disturbs the tracing as little
2862  	 * as possible. But if the buffer is disabled, we do not need
2863  	 * to worry about that, and we can take the time to verify
2864  	 * that the buffer is not corrupt.
2865  	 */
2866  	if (atomic_read(&buffer->record_disabled)) {
2867  		atomic_inc(&buffer->record_disabled);
2868  		/*
2869  		 * Even though the buffer was disabled, we must make sure
2870  		 * that it is truly disabled before calling rb_check_pages.
2871  		 * There could have been a race between checking
2872  		 * record_disable and incrementing it.
2873  		 */
2874  		synchronize_rcu();
2875  		for_each_buffer_cpu(buffer, cpu) {
2876  			unsigned long flags;
2877  
2878  			cpu_buffer = buffer->buffers[cpu];
2879  			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2880  			rb_check_pages(cpu_buffer);
2881  			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2882  		}
2883  		atomic_dec(&buffer->record_disabled);
2884  	}
2885  
2886  	atomic_dec(&buffer->resizing);
2887  	mutex_unlock(&buffer->mutex);
2888  	return 0;
2889  
2890   out_err:
2891  	for_each_buffer_cpu(buffer, cpu) {
2892  		struct buffer_page *bpage, *tmp;
2893  
2894  		cpu_buffer = buffer->buffers[cpu];
2895  		cpu_buffer->nr_pages_to_update = 0;
2896  
2897  		if (list_empty(&cpu_buffer->new_pages))
2898  			continue;
2899  
2900  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2901  					list) {
2902  			list_del_init(&bpage->list);
2903  			free_buffer_page(bpage);
2904  		}
2905  	}
2906   out_err_unlock:
2907  	atomic_dec(&buffer->resizing);
2908  	mutex_unlock(&buffer->mutex);
2909  	return err;
2910  }
2911  EXPORT_SYMBOL_GPL(ring_buffer_resize);
2912  
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2913  void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2914  {
2915  	mutex_lock(&buffer->mutex);
2916  	if (val)
2917  		buffer->flags |= RB_FL_OVERWRITE;
2918  	else
2919  		buffer->flags &= ~RB_FL_OVERWRITE;
2920  	mutex_unlock(&buffer->mutex);
2921  }
2922  EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2923  
__rb_page_index(struct buffer_page * bpage,unsigned index)2924  static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2925  {
2926  	return bpage->page->data + index;
2927  }
2928  
2929  static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2930  rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2931  {
2932  	return __rb_page_index(cpu_buffer->reader_page,
2933  			       cpu_buffer->reader_page->read);
2934  }
2935  
2936  static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2937  rb_iter_head_event(struct ring_buffer_iter *iter)
2938  {
2939  	struct ring_buffer_event *event;
2940  	struct buffer_page *iter_head_page = iter->head_page;
2941  	unsigned long commit;
2942  	unsigned length;
2943  
2944  	if (iter->head != iter->next_event)
2945  		return iter->event;
2946  
2947  	/*
2948  	 * When the writer goes across pages, it issues a cmpxchg which
2949  	 * is a mb(), which will synchronize with the rmb here.
2950  	 * (see rb_tail_page_update() and __rb_reserve_next())
2951  	 */
2952  	commit = rb_page_commit(iter_head_page);
2953  	smp_rmb();
2954  
2955  	/* An event needs to be at least 8 bytes in size */
2956  	if (iter->head > commit - 8)
2957  		goto reset;
2958  
2959  	event = __rb_page_index(iter_head_page, iter->head);
2960  	length = rb_event_length(event);
2961  
2962  	/*
2963  	 * READ_ONCE() doesn't work on functions and we don't want the
2964  	 * compiler doing any crazy optimizations with length.
2965  	 */
2966  	barrier();
2967  
2968  	if ((iter->head + length) > commit || length > iter->event_size)
2969  		/* Writer corrupted the read? */
2970  		goto reset;
2971  
2972  	memcpy(iter->event, event, length);
2973  	/*
2974  	 * If the page stamp is still the same after this rmb() then the
2975  	 * event was safely copied without the writer entering the page.
2976  	 */
2977  	smp_rmb();
2978  
2979  	/* Make sure the page didn't change since we read this */
2980  	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2981  	    commit > rb_page_commit(iter_head_page))
2982  		goto reset;
2983  
2984  	iter->next_event = iter->head + length;
2985  	return iter->event;
2986   reset:
2987  	/* Reset to the beginning */
2988  	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2989  	iter->head = 0;
2990  	iter->next_event = 0;
2991  	iter->missed_events = 1;
2992  	return NULL;
2993  }
2994  
2995  /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2996  static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2997  {
2998  	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
2999  }
3000  
3001  static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3002  rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3003  {
3004  	return rb_page_commit(cpu_buffer->commit_page);
3005  }
3006  
3007  static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3008  rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3009  {
3010  	unsigned long addr = (unsigned long)event;
3011  
3012  	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3013  
3014  	return addr - BUF_PAGE_HDR_SIZE;
3015  }
3016  
rb_inc_iter(struct ring_buffer_iter * iter)3017  static void rb_inc_iter(struct ring_buffer_iter *iter)
3018  {
3019  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3020  
3021  	/*
3022  	 * The iterator could be on the reader page (it starts there).
3023  	 * But the head could have moved, since the reader was
3024  	 * found. Check for this case and assign the iterator
3025  	 * to the head page instead of next.
3026  	 */
3027  	if (iter->head_page == cpu_buffer->reader_page)
3028  		iter->head_page = rb_set_head_page(cpu_buffer);
3029  	else
3030  		rb_inc_page(&iter->head_page);
3031  
3032  	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3033  	iter->head = 0;
3034  	iter->next_event = 0;
3035  }
3036  
3037  /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3038  static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3039  {
3040  	void *subbuf_array;
3041  
3042  	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3043  	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3044  	return (subbuf - subbuf_array) / meta->subbuf_size;
3045  }
3046  
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3047  static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3048  				struct buffer_page *next_page)
3049  {
3050  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3051  	unsigned long old_head = (unsigned long)next_page->page;
3052  	unsigned long new_head;
3053  
3054  	rb_inc_page(&next_page);
3055  	new_head = (unsigned long)next_page->page;
3056  
3057  	/*
3058  	 * Only move it forward once, if something else came in and
3059  	 * moved it forward, then we don't want to touch it.
3060  	 */
3061  	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3062  }
3063  
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3064  static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3065  				  struct buffer_page *reader)
3066  {
3067  	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3068  	void *old_reader = cpu_buffer->reader_page->page;
3069  	void *new_reader = reader->page;
3070  	int id;
3071  
3072  	id = reader->id;
3073  	cpu_buffer->reader_page->id = id;
3074  	reader->id = 0;
3075  
3076  	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3077  	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3078  
3079  	/* The head pointer is the one after the reader */
3080  	rb_update_meta_head(cpu_buffer, reader);
3081  }
3082  
3083  /*
3084   * rb_handle_head_page - writer hit the head page
3085   *
3086   * Returns: +1 to retry page
3087   *           0 to continue
3088   *          -1 on error
3089   */
3090  static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3091  rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3092  		    struct buffer_page *tail_page,
3093  		    struct buffer_page *next_page)
3094  {
3095  	struct buffer_page *new_head;
3096  	int entries;
3097  	int type;
3098  	int ret;
3099  
3100  	entries = rb_page_entries(next_page);
3101  
3102  	/*
3103  	 * The hard part is here. We need to move the head
3104  	 * forward, and protect against both readers on
3105  	 * other CPUs and writers coming in via interrupts.
3106  	 */
3107  	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3108  				       RB_PAGE_HEAD);
3109  
3110  	/*
3111  	 * type can be one of four:
3112  	 *  NORMAL - an interrupt already moved it for us
3113  	 *  HEAD   - we are the first to get here.
3114  	 *  UPDATE - we are the interrupt interrupting
3115  	 *           a current move.
3116  	 *  MOVED  - a reader on another CPU moved the next
3117  	 *           pointer to its reader page. Give up
3118  	 *           and try again.
3119  	 */
3120  
3121  	switch (type) {
3122  	case RB_PAGE_HEAD:
3123  		/*
3124  		 * We changed the head to UPDATE, thus
3125  		 * it is our responsibility to update
3126  		 * the counters.
3127  		 */
3128  		local_add(entries, &cpu_buffer->overrun);
3129  		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3130  		local_inc(&cpu_buffer->pages_lost);
3131  
3132  		if (cpu_buffer->ring_meta)
3133  			rb_update_meta_head(cpu_buffer, next_page);
3134  		/*
3135  		 * The entries will be zeroed out when we move the
3136  		 * tail page.
3137  		 */
3138  
3139  		/* still more to do */
3140  		break;
3141  
3142  	case RB_PAGE_UPDATE:
3143  		/*
3144  		 * This is an interrupt that interrupt the
3145  		 * previous update. Still more to do.
3146  		 */
3147  		break;
3148  	case RB_PAGE_NORMAL:
3149  		/*
3150  		 * An interrupt came in before the update
3151  		 * and processed this for us.
3152  		 * Nothing left to do.
3153  		 */
3154  		return 1;
3155  	case RB_PAGE_MOVED:
3156  		/*
3157  		 * The reader is on another CPU and just did
3158  		 * a swap with our next_page.
3159  		 * Try again.
3160  		 */
3161  		return 1;
3162  	default:
3163  		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3164  		return -1;
3165  	}
3166  
3167  	/*
3168  	 * Now that we are here, the old head pointer is
3169  	 * set to UPDATE. This will keep the reader from
3170  	 * swapping the head page with the reader page.
3171  	 * The reader (on another CPU) will spin till
3172  	 * we are finished.
3173  	 *
3174  	 * We just need to protect against interrupts
3175  	 * doing the job. We will set the next pointer
3176  	 * to HEAD. After that, we set the old pointer
3177  	 * to NORMAL, but only if it was HEAD before.
3178  	 * otherwise we are an interrupt, and only
3179  	 * want the outer most commit to reset it.
3180  	 */
3181  	new_head = next_page;
3182  	rb_inc_page(&new_head);
3183  
3184  	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3185  				    RB_PAGE_NORMAL);
3186  
3187  	/*
3188  	 * Valid returns are:
3189  	 *  HEAD   - an interrupt came in and already set it.
3190  	 *  NORMAL - One of two things:
3191  	 *            1) We really set it.
3192  	 *            2) A bunch of interrupts came in and moved
3193  	 *               the page forward again.
3194  	 */
3195  	switch (ret) {
3196  	case RB_PAGE_HEAD:
3197  	case RB_PAGE_NORMAL:
3198  		/* OK */
3199  		break;
3200  	default:
3201  		RB_WARN_ON(cpu_buffer, 1);
3202  		return -1;
3203  	}
3204  
3205  	/*
3206  	 * It is possible that an interrupt came in,
3207  	 * set the head up, then more interrupts came in
3208  	 * and moved it again. When we get back here,
3209  	 * the page would have been set to NORMAL but we
3210  	 * just set it back to HEAD.
3211  	 *
3212  	 * How do you detect this? Well, if that happened
3213  	 * the tail page would have moved.
3214  	 */
3215  	if (ret == RB_PAGE_NORMAL) {
3216  		struct buffer_page *buffer_tail_page;
3217  
3218  		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3219  		/*
3220  		 * If the tail had moved passed next, then we need
3221  		 * to reset the pointer.
3222  		 */
3223  		if (buffer_tail_page != tail_page &&
3224  		    buffer_tail_page != next_page)
3225  			rb_head_page_set_normal(cpu_buffer, new_head,
3226  						next_page,
3227  						RB_PAGE_HEAD);
3228  	}
3229  
3230  	/*
3231  	 * If this was the outer most commit (the one that
3232  	 * changed the original pointer from HEAD to UPDATE),
3233  	 * then it is up to us to reset it to NORMAL.
3234  	 */
3235  	if (type == RB_PAGE_HEAD) {
3236  		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3237  					      tail_page,
3238  					      RB_PAGE_UPDATE);
3239  		if (RB_WARN_ON(cpu_buffer,
3240  			       ret != RB_PAGE_UPDATE))
3241  			return -1;
3242  	}
3243  
3244  	return 0;
3245  }
3246  
3247  static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3248  rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3249  	      unsigned long tail, struct rb_event_info *info)
3250  {
3251  	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3252  	struct buffer_page *tail_page = info->tail_page;
3253  	struct ring_buffer_event *event;
3254  	unsigned long length = info->length;
3255  
3256  	/*
3257  	 * Only the event that crossed the page boundary
3258  	 * must fill the old tail_page with padding.
3259  	 */
3260  	if (tail >= bsize) {
3261  		/*
3262  		 * If the page was filled, then we still need
3263  		 * to update the real_end. Reset it to zero
3264  		 * and the reader will ignore it.
3265  		 */
3266  		if (tail == bsize)
3267  			tail_page->real_end = 0;
3268  
3269  		local_sub(length, &tail_page->write);
3270  		return;
3271  	}
3272  
3273  	event = __rb_page_index(tail_page, tail);
3274  
3275  	/*
3276  	 * Save the original length to the meta data.
3277  	 * This will be used by the reader to add lost event
3278  	 * counter.
3279  	 */
3280  	tail_page->real_end = tail;
3281  
3282  	/*
3283  	 * If this event is bigger than the minimum size, then
3284  	 * we need to be careful that we don't subtract the
3285  	 * write counter enough to allow another writer to slip
3286  	 * in on this page.
3287  	 * We put in a discarded commit instead, to make sure
3288  	 * that this space is not used again, and this space will
3289  	 * not be accounted into 'entries_bytes'.
3290  	 *
3291  	 * If we are less than the minimum size, we don't need to
3292  	 * worry about it.
3293  	 */
3294  	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3295  		/* No room for any events */
3296  
3297  		/* Mark the rest of the page with padding */
3298  		rb_event_set_padding(event);
3299  
3300  		/* Make sure the padding is visible before the write update */
3301  		smp_wmb();
3302  
3303  		/* Set the write back to the previous setting */
3304  		local_sub(length, &tail_page->write);
3305  		return;
3306  	}
3307  
3308  	/* Put in a discarded event */
3309  	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3310  	event->type_len = RINGBUF_TYPE_PADDING;
3311  	/* time delta must be non zero */
3312  	event->time_delta = 1;
3313  
3314  	/* account for padding bytes */
3315  	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3316  
3317  	/* Make sure the padding is visible before the tail_page->write update */
3318  	smp_wmb();
3319  
3320  	/* Set write to end of buffer */
3321  	length = (tail + length) - bsize;
3322  	local_sub(length, &tail_page->write);
3323  }
3324  
3325  static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3326  
3327  /*
3328   * This is the slow path, force gcc not to inline it.
3329   */
3330  static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3331  rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3332  	     unsigned long tail, struct rb_event_info *info)
3333  {
3334  	struct buffer_page *tail_page = info->tail_page;
3335  	struct buffer_page *commit_page = cpu_buffer->commit_page;
3336  	struct trace_buffer *buffer = cpu_buffer->buffer;
3337  	struct buffer_page *next_page;
3338  	int ret;
3339  
3340  	next_page = tail_page;
3341  
3342  	rb_inc_page(&next_page);
3343  
3344  	/*
3345  	 * If for some reason, we had an interrupt storm that made
3346  	 * it all the way around the buffer, bail, and warn
3347  	 * about it.
3348  	 */
3349  	if (unlikely(next_page == commit_page)) {
3350  		local_inc(&cpu_buffer->commit_overrun);
3351  		goto out_reset;
3352  	}
3353  
3354  	/*
3355  	 * This is where the fun begins!
3356  	 *
3357  	 * We are fighting against races between a reader that
3358  	 * could be on another CPU trying to swap its reader
3359  	 * page with the buffer head.
3360  	 *
3361  	 * We are also fighting against interrupts coming in and
3362  	 * moving the head or tail on us as well.
3363  	 *
3364  	 * If the next page is the head page then we have filled
3365  	 * the buffer, unless the commit page is still on the
3366  	 * reader page.
3367  	 */
3368  	if (rb_is_head_page(next_page, &tail_page->list)) {
3369  
3370  		/*
3371  		 * If the commit is not on the reader page, then
3372  		 * move the header page.
3373  		 */
3374  		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3375  			/*
3376  			 * If we are not in overwrite mode,
3377  			 * this is easy, just stop here.
3378  			 */
3379  			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3380  				local_inc(&cpu_buffer->dropped_events);
3381  				goto out_reset;
3382  			}
3383  
3384  			ret = rb_handle_head_page(cpu_buffer,
3385  						  tail_page,
3386  						  next_page);
3387  			if (ret < 0)
3388  				goto out_reset;
3389  			if (ret)
3390  				goto out_again;
3391  		} else {
3392  			/*
3393  			 * We need to be careful here too. The
3394  			 * commit page could still be on the reader
3395  			 * page. We could have a small buffer, and
3396  			 * have filled up the buffer with events
3397  			 * from interrupts and such, and wrapped.
3398  			 *
3399  			 * Note, if the tail page is also on the
3400  			 * reader_page, we let it move out.
3401  			 */
3402  			if (unlikely((cpu_buffer->commit_page !=
3403  				      cpu_buffer->tail_page) &&
3404  				     (cpu_buffer->commit_page ==
3405  				      cpu_buffer->reader_page))) {
3406  				local_inc(&cpu_buffer->commit_overrun);
3407  				goto out_reset;
3408  			}
3409  		}
3410  	}
3411  
3412  	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3413  
3414   out_again:
3415  
3416  	rb_reset_tail(cpu_buffer, tail, info);
3417  
3418  	/* Commit what we have for now. */
3419  	rb_end_commit(cpu_buffer);
3420  	/* rb_end_commit() decs committing */
3421  	local_inc(&cpu_buffer->committing);
3422  
3423  	/* fail and let the caller try again */
3424  	return ERR_PTR(-EAGAIN);
3425  
3426   out_reset:
3427  	/* reset write */
3428  	rb_reset_tail(cpu_buffer, tail, info);
3429  
3430  	return NULL;
3431  }
3432  
3433  /* Slow path */
3434  static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3435  rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3436  		  struct ring_buffer_event *event, u64 delta, bool abs)
3437  {
3438  	if (abs)
3439  		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3440  	else
3441  		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3442  
3443  	/* Not the first event on the page, or not delta? */
3444  	if (abs || rb_event_index(cpu_buffer, event)) {
3445  		event->time_delta = delta & TS_MASK;
3446  		event->array[0] = delta >> TS_SHIFT;
3447  	} else {
3448  		/* nope, just zero it */
3449  		event->time_delta = 0;
3450  		event->array[0] = 0;
3451  	}
3452  
3453  	return skip_time_extend(event);
3454  }
3455  
3456  #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3457  static inline bool sched_clock_stable(void)
3458  {
3459  	return true;
3460  }
3461  #endif
3462  
3463  static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3464  rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3465  		   struct rb_event_info *info)
3466  {
3467  	u64 write_stamp;
3468  
3469  	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3470  		  (unsigned long long)info->delta,
3471  		  (unsigned long long)info->ts,
3472  		  (unsigned long long)info->before,
3473  		  (unsigned long long)info->after,
3474  		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3475  		  sched_clock_stable() ? "" :
3476  		  "If you just came from a suspend/resume,\n"
3477  		  "please switch to the trace global clock:\n"
3478  		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3479  		  "or add trace_clock=global to the kernel command line\n");
3480  }
3481  
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3482  static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3483  				      struct ring_buffer_event **event,
3484  				      struct rb_event_info *info,
3485  				      u64 *delta,
3486  				      unsigned int *length)
3487  {
3488  	bool abs = info->add_timestamp &
3489  		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3490  
3491  	if (unlikely(info->delta > (1ULL << 59))) {
3492  		/*
3493  		 * Some timers can use more than 59 bits, and when a timestamp
3494  		 * is added to the buffer, it will lose those bits.
3495  		 */
3496  		if (abs && (info->ts & TS_MSB)) {
3497  			info->delta &= ABS_TS_MASK;
3498  
3499  		/* did the clock go backwards */
3500  		} else if (info->before == info->after && info->before > info->ts) {
3501  			/* not interrupted */
3502  			static int once;
3503  
3504  			/*
3505  			 * This is possible with a recalibrating of the TSC.
3506  			 * Do not produce a call stack, but just report it.
3507  			 */
3508  			if (!once) {
3509  				once++;
3510  				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3511  					info->before, info->ts);
3512  			}
3513  		} else
3514  			rb_check_timestamp(cpu_buffer, info);
3515  		if (!abs)
3516  			info->delta = 0;
3517  	}
3518  	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3519  	*length -= RB_LEN_TIME_EXTEND;
3520  	*delta = 0;
3521  }
3522  
3523  /**
3524   * rb_update_event - update event type and data
3525   * @cpu_buffer: The per cpu buffer of the @event
3526   * @event: the event to update
3527   * @info: The info to update the @event with (contains length and delta)
3528   *
3529   * Update the type and data fields of the @event. The length
3530   * is the actual size that is written to the ring buffer,
3531   * and with this, we can determine what to place into the
3532   * data field.
3533   */
3534  static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3535  rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3536  		struct ring_buffer_event *event,
3537  		struct rb_event_info *info)
3538  {
3539  	unsigned length = info->length;
3540  	u64 delta = info->delta;
3541  	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3542  
3543  	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3544  		cpu_buffer->event_stamp[nest] = info->ts;
3545  
3546  	/*
3547  	 * If we need to add a timestamp, then we
3548  	 * add it to the start of the reserved space.
3549  	 */
3550  	if (unlikely(info->add_timestamp))
3551  		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3552  
3553  	event->time_delta = delta;
3554  	length -= RB_EVNT_HDR_SIZE;
3555  	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3556  		event->type_len = 0;
3557  		event->array[0] = length;
3558  	} else
3559  		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3560  }
3561  
rb_calculate_event_length(unsigned length)3562  static unsigned rb_calculate_event_length(unsigned length)
3563  {
3564  	struct ring_buffer_event event; /* Used only for sizeof array */
3565  
3566  	/* zero length can cause confusions */
3567  	if (!length)
3568  		length++;
3569  
3570  	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3571  		length += sizeof(event.array[0]);
3572  
3573  	length += RB_EVNT_HDR_SIZE;
3574  	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3575  
3576  	/*
3577  	 * In case the time delta is larger than the 27 bits for it
3578  	 * in the header, we need to add a timestamp. If another
3579  	 * event comes in when trying to discard this one to increase
3580  	 * the length, then the timestamp will be added in the allocated
3581  	 * space of this event. If length is bigger than the size needed
3582  	 * for the TIME_EXTEND, then padding has to be used. The events
3583  	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3584  	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3585  	 * As length is a multiple of 4, we only need to worry if it
3586  	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3587  	 */
3588  	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3589  		length += RB_ALIGNMENT;
3590  
3591  	return length;
3592  }
3593  
3594  static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3595  rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3596  		  struct ring_buffer_event *event)
3597  {
3598  	unsigned long new_index, old_index;
3599  	struct buffer_page *bpage;
3600  	unsigned long addr;
3601  
3602  	new_index = rb_event_index(cpu_buffer, event);
3603  	old_index = new_index + rb_event_ts_length(event);
3604  	addr = (unsigned long)event;
3605  	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3606  
3607  	bpage = READ_ONCE(cpu_buffer->tail_page);
3608  
3609  	/*
3610  	 * Make sure the tail_page is still the same and
3611  	 * the next write location is the end of this event
3612  	 */
3613  	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3614  		unsigned long write_mask =
3615  			local_read(&bpage->write) & ~RB_WRITE_MASK;
3616  		unsigned long event_length = rb_event_length(event);
3617  
3618  		/*
3619  		 * For the before_stamp to be different than the write_stamp
3620  		 * to make sure that the next event adds an absolute
3621  		 * value and does not rely on the saved write stamp, which
3622  		 * is now going to be bogus.
3623  		 *
3624  		 * By setting the before_stamp to zero, the next event
3625  		 * is not going to use the write_stamp and will instead
3626  		 * create an absolute timestamp. This means there's no
3627  		 * reason to update the wirte_stamp!
3628  		 */
3629  		rb_time_set(&cpu_buffer->before_stamp, 0);
3630  
3631  		/*
3632  		 * If an event were to come in now, it would see that the
3633  		 * write_stamp and the before_stamp are different, and assume
3634  		 * that this event just added itself before updating
3635  		 * the write stamp. The interrupting event will fix the
3636  		 * write stamp for us, and use an absolute timestamp.
3637  		 */
3638  
3639  		/*
3640  		 * This is on the tail page. It is possible that
3641  		 * a write could come in and move the tail page
3642  		 * and write to the next page. That is fine
3643  		 * because we just shorten what is on this page.
3644  		 */
3645  		old_index += write_mask;
3646  		new_index += write_mask;
3647  
3648  		/* caution: old_index gets updated on cmpxchg failure */
3649  		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3650  			/* update counters */
3651  			local_sub(event_length, &cpu_buffer->entries_bytes);
3652  			return true;
3653  		}
3654  	}
3655  
3656  	/* could not discard */
3657  	return false;
3658  }
3659  
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3660  static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3661  {
3662  	local_inc(&cpu_buffer->committing);
3663  	local_inc(&cpu_buffer->commits);
3664  }
3665  
3666  static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3667  rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3668  {
3669  	unsigned long max_count;
3670  
3671  	/*
3672  	 * We only race with interrupts and NMIs on this CPU.
3673  	 * If we own the commit event, then we can commit
3674  	 * all others that interrupted us, since the interruptions
3675  	 * are in stack format (they finish before they come
3676  	 * back to us). This allows us to do a simple loop to
3677  	 * assign the commit to the tail.
3678  	 */
3679   again:
3680  	max_count = cpu_buffer->nr_pages * 100;
3681  
3682  	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3683  		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3684  			return;
3685  		if (RB_WARN_ON(cpu_buffer,
3686  			       rb_is_reader_page(cpu_buffer->tail_page)))
3687  			return;
3688  		/*
3689  		 * No need for a memory barrier here, as the update
3690  		 * of the tail_page did it for this page.
3691  		 */
3692  		local_set(&cpu_buffer->commit_page->page->commit,
3693  			  rb_page_write(cpu_buffer->commit_page));
3694  		rb_inc_page(&cpu_buffer->commit_page);
3695  		if (cpu_buffer->ring_meta) {
3696  			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3697  			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3698  		}
3699  		/* add barrier to keep gcc from optimizing too much */
3700  		barrier();
3701  	}
3702  	while (rb_commit_index(cpu_buffer) !=
3703  	       rb_page_write(cpu_buffer->commit_page)) {
3704  
3705  		/* Make sure the readers see the content of what is committed. */
3706  		smp_wmb();
3707  		local_set(&cpu_buffer->commit_page->page->commit,
3708  			  rb_page_write(cpu_buffer->commit_page));
3709  		RB_WARN_ON(cpu_buffer,
3710  			   local_read(&cpu_buffer->commit_page->page->commit) &
3711  			   ~RB_WRITE_MASK);
3712  		barrier();
3713  	}
3714  
3715  	/* again, keep gcc from optimizing */
3716  	barrier();
3717  
3718  	/*
3719  	 * If an interrupt came in just after the first while loop
3720  	 * and pushed the tail page forward, we will be left with
3721  	 * a dangling commit that will never go forward.
3722  	 */
3723  	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3724  		goto again;
3725  }
3726  
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3727  static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3728  {
3729  	unsigned long commits;
3730  
3731  	if (RB_WARN_ON(cpu_buffer,
3732  		       !local_read(&cpu_buffer->committing)))
3733  		return;
3734  
3735   again:
3736  	commits = local_read(&cpu_buffer->commits);
3737  	/* synchronize with interrupts */
3738  	barrier();
3739  	if (local_read(&cpu_buffer->committing) == 1)
3740  		rb_set_commit_to_write(cpu_buffer);
3741  
3742  	local_dec(&cpu_buffer->committing);
3743  
3744  	/* synchronize with interrupts */
3745  	barrier();
3746  
3747  	/*
3748  	 * Need to account for interrupts coming in between the
3749  	 * updating of the commit page and the clearing of the
3750  	 * committing counter.
3751  	 */
3752  	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3753  	    !local_read(&cpu_buffer->committing)) {
3754  		local_inc(&cpu_buffer->committing);
3755  		goto again;
3756  	}
3757  }
3758  
rb_event_discard(struct ring_buffer_event * event)3759  static inline void rb_event_discard(struct ring_buffer_event *event)
3760  {
3761  	if (extended_time(event))
3762  		event = skip_time_extend(event);
3763  
3764  	/* array[0] holds the actual length for the discarded event */
3765  	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3766  	event->type_len = RINGBUF_TYPE_PADDING;
3767  	/* time delta must be non zero */
3768  	if (!event->time_delta)
3769  		event->time_delta = 1;
3770  }
3771  
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3772  static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3773  {
3774  	local_inc(&cpu_buffer->entries);
3775  	rb_end_commit(cpu_buffer);
3776  }
3777  
3778  static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3779  rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3780  {
3781  	if (buffer->irq_work.waiters_pending) {
3782  		buffer->irq_work.waiters_pending = false;
3783  		/* irq_work_queue() supplies it's own memory barriers */
3784  		irq_work_queue(&buffer->irq_work.work);
3785  	}
3786  
3787  	if (cpu_buffer->irq_work.waiters_pending) {
3788  		cpu_buffer->irq_work.waiters_pending = false;
3789  		/* irq_work_queue() supplies it's own memory barriers */
3790  		irq_work_queue(&cpu_buffer->irq_work.work);
3791  	}
3792  
3793  	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3794  		return;
3795  
3796  	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3797  		return;
3798  
3799  	if (!cpu_buffer->irq_work.full_waiters_pending)
3800  		return;
3801  
3802  	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3803  
3804  	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3805  		return;
3806  
3807  	cpu_buffer->irq_work.wakeup_full = true;
3808  	cpu_buffer->irq_work.full_waiters_pending = false;
3809  	/* irq_work_queue() supplies it's own memory barriers */
3810  	irq_work_queue(&cpu_buffer->irq_work.work);
3811  }
3812  
3813  #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3814  # define do_ring_buffer_record_recursion()	\
3815  	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3816  #else
3817  # define do_ring_buffer_record_recursion() do { } while (0)
3818  #endif
3819  
3820  /*
3821   * The lock and unlock are done within a preempt disable section.
3822   * The current_context per_cpu variable can only be modified
3823   * by the current task between lock and unlock. But it can
3824   * be modified more than once via an interrupt. To pass this
3825   * information from the lock to the unlock without having to
3826   * access the 'in_interrupt()' functions again (which do show
3827   * a bit of overhead in something as critical as function tracing,
3828   * we use a bitmask trick.
3829   *
3830   *  bit 1 =  NMI context
3831   *  bit 2 =  IRQ context
3832   *  bit 3 =  SoftIRQ context
3833   *  bit 4 =  normal context.
3834   *
3835   * This works because this is the order of contexts that can
3836   * preempt other contexts. A SoftIRQ never preempts an IRQ
3837   * context.
3838   *
3839   * When the context is determined, the corresponding bit is
3840   * checked and set (if it was set, then a recursion of that context
3841   * happened).
3842   *
3843   * On unlock, we need to clear this bit. To do so, just subtract
3844   * 1 from the current_context and AND it to itself.
3845   *
3846   * (binary)
3847   *  101 - 1 = 100
3848   *  101 & 100 = 100 (clearing bit zero)
3849   *
3850   *  1010 - 1 = 1001
3851   *  1010 & 1001 = 1000 (clearing bit 1)
3852   *
3853   * The least significant bit can be cleared this way, and it
3854   * just so happens that it is the same bit corresponding to
3855   * the current context.
3856   *
3857   * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3858   * is set when a recursion is detected at the current context, and if
3859   * the TRANSITION bit is already set, it will fail the recursion.
3860   * This is needed because there's a lag between the changing of
3861   * interrupt context and updating the preempt count. In this case,
3862   * a false positive will be found. To handle this, one extra recursion
3863   * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3864   * bit is already set, then it is considered a recursion and the function
3865   * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3866   *
3867   * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3868   * to be cleared. Even if it wasn't the context that set it. That is,
3869   * if an interrupt comes in while NORMAL bit is set and the ring buffer
3870   * is called before preempt_count() is updated, since the check will
3871   * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3872   * NMI then comes in, it will set the NMI bit, but when the NMI code
3873   * does the trace_recursive_unlock() it will clear the TRANSITION bit
3874   * and leave the NMI bit set. But this is fine, because the interrupt
3875   * code that set the TRANSITION bit will then clear the NMI bit when it
3876   * calls trace_recursive_unlock(). If another NMI comes in, it will
3877   * set the TRANSITION bit and continue.
3878   *
3879   * Note: The TRANSITION bit only handles a single transition between context.
3880   */
3881  
3882  static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3883  trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3884  {
3885  	unsigned int val = cpu_buffer->current_context;
3886  	int bit = interrupt_context_level();
3887  
3888  	bit = RB_CTX_NORMAL - bit;
3889  
3890  	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3891  		/*
3892  		 * It is possible that this was called by transitioning
3893  		 * between interrupt context, and preempt_count() has not
3894  		 * been updated yet. In this case, use the TRANSITION bit.
3895  		 */
3896  		bit = RB_CTX_TRANSITION;
3897  		if (val & (1 << (bit + cpu_buffer->nest))) {
3898  			do_ring_buffer_record_recursion();
3899  			return true;
3900  		}
3901  	}
3902  
3903  	val |= (1 << (bit + cpu_buffer->nest));
3904  	cpu_buffer->current_context = val;
3905  
3906  	return false;
3907  }
3908  
3909  static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3910  trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3911  {
3912  	cpu_buffer->current_context &=
3913  		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3914  }
3915  
3916  /* The recursive locking above uses 5 bits */
3917  #define NESTED_BITS 5
3918  
3919  /**
3920   * ring_buffer_nest_start - Allow to trace while nested
3921   * @buffer: The ring buffer to modify
3922   *
3923   * The ring buffer has a safety mechanism to prevent recursion.
3924   * But there may be a case where a trace needs to be done while
3925   * tracing something else. In this case, calling this function
3926   * will allow this function to nest within a currently active
3927   * ring_buffer_lock_reserve().
3928   *
3929   * Call this function before calling another ring_buffer_lock_reserve() and
3930   * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3931   */
ring_buffer_nest_start(struct trace_buffer * buffer)3932  void ring_buffer_nest_start(struct trace_buffer *buffer)
3933  {
3934  	struct ring_buffer_per_cpu *cpu_buffer;
3935  	int cpu;
3936  
3937  	/* Enabled by ring_buffer_nest_end() */
3938  	preempt_disable_notrace();
3939  	cpu = raw_smp_processor_id();
3940  	cpu_buffer = buffer->buffers[cpu];
3941  	/* This is the shift value for the above recursive locking */
3942  	cpu_buffer->nest += NESTED_BITS;
3943  }
3944  
3945  /**
3946   * ring_buffer_nest_end - Allow to trace while nested
3947   * @buffer: The ring buffer to modify
3948   *
3949   * Must be called after ring_buffer_nest_start() and after the
3950   * ring_buffer_unlock_commit().
3951   */
ring_buffer_nest_end(struct trace_buffer * buffer)3952  void ring_buffer_nest_end(struct trace_buffer *buffer)
3953  {
3954  	struct ring_buffer_per_cpu *cpu_buffer;
3955  	int cpu;
3956  
3957  	/* disabled by ring_buffer_nest_start() */
3958  	cpu = raw_smp_processor_id();
3959  	cpu_buffer = buffer->buffers[cpu];
3960  	/* This is the shift value for the above recursive locking */
3961  	cpu_buffer->nest -= NESTED_BITS;
3962  	preempt_enable_notrace();
3963  }
3964  
3965  /**
3966   * ring_buffer_unlock_commit - commit a reserved
3967   * @buffer: The buffer to commit to
3968   *
3969   * This commits the data to the ring buffer, and releases any locks held.
3970   *
3971   * Must be paired with ring_buffer_lock_reserve.
3972   */
ring_buffer_unlock_commit(struct trace_buffer * buffer)3973  int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3974  {
3975  	struct ring_buffer_per_cpu *cpu_buffer;
3976  	int cpu = raw_smp_processor_id();
3977  
3978  	cpu_buffer = buffer->buffers[cpu];
3979  
3980  	rb_commit(cpu_buffer);
3981  
3982  	rb_wakeups(buffer, cpu_buffer);
3983  
3984  	trace_recursive_unlock(cpu_buffer);
3985  
3986  	preempt_enable_notrace();
3987  
3988  	return 0;
3989  }
3990  EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3991  
3992  /* Special value to validate all deltas on a page. */
3993  #define CHECK_FULL_PAGE		1L
3994  
3995  #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3996  
show_irq_str(int bits)3997  static const char *show_irq_str(int bits)
3998  {
3999  	const char *type[] = {
4000  		".",	// 0
4001  		"s",	// 1
4002  		"h",	// 2
4003  		"Hs",	// 3
4004  		"n",	// 4
4005  		"Ns",	// 5
4006  		"Nh",	// 6
4007  		"NHs",	// 7
4008  	};
4009  
4010  	return type[bits];
4011  }
4012  
4013  /* Assume this is an trace event */
show_flags(struct ring_buffer_event * event)4014  static const char *show_flags(struct ring_buffer_event *event)
4015  {
4016  	struct trace_entry *entry;
4017  	int bits = 0;
4018  
4019  	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4020  		return "X";
4021  
4022  	entry = ring_buffer_event_data(event);
4023  
4024  	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4025  		bits |= 1;
4026  
4027  	if (entry->flags & TRACE_FLAG_HARDIRQ)
4028  		bits |= 2;
4029  
4030  	if (entry->flags & TRACE_FLAG_NMI)
4031  		bits |= 4;
4032  
4033  	return show_irq_str(bits);
4034  }
4035  
show_irq(struct ring_buffer_event * event)4036  static const char *show_irq(struct ring_buffer_event *event)
4037  {
4038  	struct trace_entry *entry;
4039  
4040  	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4041  		return "";
4042  
4043  	entry = ring_buffer_event_data(event);
4044  	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4045  		return "d";
4046  	return "";
4047  }
4048  
show_interrupt_level(void)4049  static const char *show_interrupt_level(void)
4050  {
4051  	unsigned long pc = preempt_count();
4052  	unsigned char level = 0;
4053  
4054  	if (pc & SOFTIRQ_OFFSET)
4055  		level |= 1;
4056  
4057  	if (pc & HARDIRQ_MASK)
4058  		level |= 2;
4059  
4060  	if (pc & NMI_MASK)
4061  		level |= 4;
4062  
4063  	return show_irq_str(level);
4064  }
4065  
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4066  static void dump_buffer_page(struct buffer_data_page *bpage,
4067  			     struct rb_event_info *info,
4068  			     unsigned long tail)
4069  {
4070  	struct ring_buffer_event *event;
4071  	u64 ts, delta;
4072  	int e;
4073  
4074  	ts = bpage->time_stamp;
4075  	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4076  
4077  	for (e = 0; e < tail; e += rb_event_length(event)) {
4078  
4079  		event = (struct ring_buffer_event *)(bpage->data + e);
4080  
4081  		switch (event->type_len) {
4082  
4083  		case RINGBUF_TYPE_TIME_EXTEND:
4084  			delta = rb_event_time_stamp(event);
4085  			ts += delta;
4086  			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4087  				e, ts, delta);
4088  			break;
4089  
4090  		case RINGBUF_TYPE_TIME_STAMP:
4091  			delta = rb_event_time_stamp(event);
4092  			ts = rb_fix_abs_ts(delta, ts);
4093  			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4094  				e, ts, delta);
4095  			break;
4096  
4097  		case RINGBUF_TYPE_PADDING:
4098  			ts += event->time_delta;
4099  			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4100  				e, ts, event->time_delta);
4101  			break;
4102  
4103  		case RINGBUF_TYPE_DATA:
4104  			ts += event->time_delta;
4105  			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4106  				e, ts, event->time_delta,
4107  				show_flags(event), show_irq(event));
4108  			break;
4109  
4110  		default:
4111  			break;
4112  		}
4113  	}
4114  	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4115  }
4116  
4117  static DEFINE_PER_CPU(atomic_t, checking);
4118  static atomic_t ts_dump;
4119  
4120  #define buffer_warn_return(fmt, ...)					\
4121  	do {								\
4122  		/* If another report is happening, ignore this one */	\
4123  		if (atomic_inc_return(&ts_dump) != 1) {			\
4124  			atomic_dec(&ts_dump);				\
4125  			goto out;					\
4126  		}							\
4127  		atomic_inc(&cpu_buffer->record_disabled);		\
4128  		pr_warn(fmt, ##__VA_ARGS__);				\
4129  		dump_buffer_page(bpage, info, tail);			\
4130  		atomic_dec(&ts_dump);					\
4131  		/* There's some cases in boot up that this can happen */ \
4132  		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4133  			/* Do not re-enable checking */			\
4134  			return;						\
4135  	} while (0)
4136  
4137  /*
4138   * Check if the current event time stamp matches the deltas on
4139   * the buffer page.
4140   */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4141  static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4142  			 struct rb_event_info *info,
4143  			 unsigned long tail)
4144  {
4145  	struct buffer_data_page *bpage;
4146  	u64 ts, delta;
4147  	bool full = false;
4148  	int ret;
4149  
4150  	bpage = info->tail_page->page;
4151  
4152  	if (tail == CHECK_FULL_PAGE) {
4153  		full = true;
4154  		tail = local_read(&bpage->commit);
4155  	} else if (info->add_timestamp &
4156  		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4157  		/* Ignore events with absolute time stamps */
4158  		return;
4159  	}
4160  
4161  	/*
4162  	 * Do not check the first event (skip possible extends too).
4163  	 * Also do not check if previous events have not been committed.
4164  	 */
4165  	if (tail <= 8 || tail > local_read(&bpage->commit))
4166  		return;
4167  
4168  	/*
4169  	 * If this interrupted another event,
4170  	 */
4171  	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4172  		goto out;
4173  
4174  	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4175  	if (ret < 0) {
4176  		if (delta < ts) {
4177  			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4178  					   cpu_buffer->cpu, ts, delta);
4179  			goto out;
4180  		}
4181  	}
4182  	if ((full && ts > info->ts) ||
4183  	    (!full && ts + info->delta != info->ts)) {
4184  		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4185  				   cpu_buffer->cpu,
4186  				   ts + info->delta, info->ts, info->delta,
4187  				   info->before, info->after,
4188  				   full ? " (full)" : "", show_interrupt_level());
4189  	}
4190  out:
4191  	atomic_dec(this_cpu_ptr(&checking));
4192  }
4193  #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4194  static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4195  			 struct rb_event_info *info,
4196  			 unsigned long tail)
4197  {
4198  }
4199  #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4200  
4201  static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4202  __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4203  		  struct rb_event_info *info)
4204  {
4205  	struct ring_buffer_event *event;
4206  	struct buffer_page *tail_page;
4207  	unsigned long tail, write, w;
4208  
4209  	/* Don't let the compiler play games with cpu_buffer->tail_page */
4210  	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4211  
4212   /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4213  	barrier();
4214  	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4215  	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4216  	barrier();
4217  	info->ts = rb_time_stamp(cpu_buffer->buffer);
4218  
4219  	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4220  		info->delta = info->ts;
4221  	} else {
4222  		/*
4223  		 * If interrupting an event time update, we may need an
4224  		 * absolute timestamp.
4225  		 * Don't bother if this is the start of a new page (w == 0).
4226  		 */
4227  		if (!w) {
4228  			/* Use the sub-buffer timestamp */
4229  			info->delta = 0;
4230  		} else if (unlikely(info->before != info->after)) {
4231  			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4232  			info->length += RB_LEN_TIME_EXTEND;
4233  		} else {
4234  			info->delta = info->ts - info->after;
4235  			if (unlikely(test_time_stamp(info->delta))) {
4236  				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4237  				info->length += RB_LEN_TIME_EXTEND;
4238  			}
4239  		}
4240  	}
4241  
4242   /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4243  
4244   /*C*/	write = local_add_return(info->length, &tail_page->write);
4245  
4246  	/* set write to only the index of the write */
4247  	write &= RB_WRITE_MASK;
4248  
4249  	tail = write - info->length;
4250  
4251  	/* See if we shot pass the end of this buffer page */
4252  	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4253  		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4254  		return rb_move_tail(cpu_buffer, tail, info);
4255  	}
4256  
4257  	if (likely(tail == w)) {
4258  		/* Nothing interrupted us between A and C */
4259   /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4260  		/*
4261  		 * If something came in between C and D, the write stamp
4262  		 * may now not be in sync. But that's fine as the before_stamp
4263  		 * will be different and then next event will just be forced
4264  		 * to use an absolute timestamp.
4265  		 */
4266  		if (likely(!(info->add_timestamp &
4267  			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4268  			/* This did not interrupt any time update */
4269  			info->delta = info->ts - info->after;
4270  		else
4271  			/* Just use full timestamp for interrupting event */
4272  			info->delta = info->ts;
4273  		check_buffer(cpu_buffer, info, tail);
4274  	} else {
4275  		u64 ts;
4276  		/* SLOW PATH - Interrupted between A and C */
4277  
4278  		/* Save the old before_stamp */
4279  		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4280  
4281  		/*
4282  		 * Read a new timestamp and update the before_stamp to make
4283  		 * the next event after this one force using an absolute
4284  		 * timestamp. This is in case an interrupt were to come in
4285  		 * between E and F.
4286  		 */
4287  		ts = rb_time_stamp(cpu_buffer->buffer);
4288  		rb_time_set(&cpu_buffer->before_stamp, ts);
4289  
4290  		barrier();
4291   /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4292  		barrier();
4293   /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4294  		    info->after == info->before && info->after < ts) {
4295  			/*
4296  			 * Nothing came after this event between C and F, it is
4297  			 * safe to use info->after for the delta as it
4298  			 * matched info->before and is still valid.
4299  			 */
4300  			info->delta = ts - info->after;
4301  		} else {
4302  			/*
4303  			 * Interrupted between C and F:
4304  			 * Lost the previous events time stamp. Just set the
4305  			 * delta to zero, and this will be the same time as
4306  			 * the event this event interrupted. And the events that
4307  			 * came after this will still be correct (as they would
4308  			 * have built their delta on the previous event.
4309  			 */
4310  			info->delta = 0;
4311  		}
4312  		info->ts = ts;
4313  		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4314  	}
4315  
4316  	/*
4317  	 * If this is the first commit on the page, then it has the same
4318  	 * timestamp as the page itself.
4319  	 */
4320  	if (unlikely(!tail && !(info->add_timestamp &
4321  				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4322  		info->delta = 0;
4323  
4324  	/* We reserved something on the buffer */
4325  
4326  	event = __rb_page_index(tail_page, tail);
4327  	rb_update_event(cpu_buffer, event, info);
4328  
4329  	local_inc(&tail_page->entries);
4330  
4331  	/*
4332  	 * If this is the first commit on the page, then update
4333  	 * its timestamp.
4334  	 */
4335  	if (unlikely(!tail))
4336  		tail_page->page->time_stamp = info->ts;
4337  
4338  	/* account for these added bytes */
4339  	local_add(info->length, &cpu_buffer->entries_bytes);
4340  
4341  	return event;
4342  }
4343  
4344  static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4345  rb_reserve_next_event(struct trace_buffer *buffer,
4346  		      struct ring_buffer_per_cpu *cpu_buffer,
4347  		      unsigned long length)
4348  {
4349  	struct ring_buffer_event *event;
4350  	struct rb_event_info info;
4351  	int nr_loops = 0;
4352  	int add_ts_default;
4353  
4354  	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
4355  	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
4356  	    (unlikely(in_nmi()))) {
4357  		return NULL;
4358  	}
4359  
4360  	rb_start_commit(cpu_buffer);
4361  	/* The commit page can not change after this */
4362  
4363  #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4364  	/*
4365  	 * Due to the ability to swap a cpu buffer from a buffer
4366  	 * it is possible it was swapped before we committed.
4367  	 * (committing stops a swap). We check for it here and
4368  	 * if it happened, we have to fail the write.
4369  	 */
4370  	barrier();
4371  	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4372  		local_dec(&cpu_buffer->committing);
4373  		local_dec(&cpu_buffer->commits);
4374  		return NULL;
4375  	}
4376  #endif
4377  
4378  	info.length = rb_calculate_event_length(length);
4379  
4380  	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4381  		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4382  		info.length += RB_LEN_TIME_EXTEND;
4383  		if (info.length > cpu_buffer->buffer->max_data_size)
4384  			goto out_fail;
4385  	} else {
4386  		add_ts_default = RB_ADD_STAMP_NONE;
4387  	}
4388  
4389   again:
4390  	info.add_timestamp = add_ts_default;
4391  	info.delta = 0;
4392  
4393  	/*
4394  	 * We allow for interrupts to reenter here and do a trace.
4395  	 * If one does, it will cause this original code to loop
4396  	 * back here. Even with heavy interrupts happening, this
4397  	 * should only happen a few times in a row. If this happens
4398  	 * 1000 times in a row, there must be either an interrupt
4399  	 * storm or we have something buggy.
4400  	 * Bail!
4401  	 */
4402  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4403  		goto out_fail;
4404  
4405  	event = __rb_reserve_next(cpu_buffer, &info);
4406  
4407  	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4408  		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4409  			info.length -= RB_LEN_TIME_EXTEND;
4410  		goto again;
4411  	}
4412  
4413  	if (likely(event))
4414  		return event;
4415   out_fail:
4416  	rb_end_commit(cpu_buffer);
4417  	return NULL;
4418  }
4419  
4420  /**
4421   * ring_buffer_lock_reserve - reserve a part of the buffer
4422   * @buffer: the ring buffer to reserve from
4423   * @length: the length of the data to reserve (excluding event header)
4424   *
4425   * Returns a reserved event on the ring buffer to copy directly to.
4426   * The user of this interface will need to get the body to write into
4427   * and can use the ring_buffer_event_data() interface.
4428   *
4429   * The length is the length of the data needed, not the event length
4430   * which also includes the event header.
4431   *
4432   * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4433   * If NULL is returned, then nothing has been allocated or locked.
4434   */
4435  struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4436  ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4437  {
4438  	struct ring_buffer_per_cpu *cpu_buffer;
4439  	struct ring_buffer_event *event;
4440  	int cpu;
4441  
4442  	/* If we are tracing schedule, we don't want to recurse */
4443  	preempt_disable_notrace();
4444  
4445  	if (unlikely(atomic_read(&buffer->record_disabled)))
4446  		goto out;
4447  
4448  	cpu = raw_smp_processor_id();
4449  
4450  	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4451  		goto out;
4452  
4453  	cpu_buffer = buffer->buffers[cpu];
4454  
4455  	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4456  		goto out;
4457  
4458  	if (unlikely(length > buffer->max_data_size))
4459  		goto out;
4460  
4461  	if (unlikely(trace_recursive_lock(cpu_buffer)))
4462  		goto out;
4463  
4464  	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4465  	if (!event)
4466  		goto out_unlock;
4467  
4468  	return event;
4469  
4470   out_unlock:
4471  	trace_recursive_unlock(cpu_buffer);
4472   out:
4473  	preempt_enable_notrace();
4474  	return NULL;
4475  }
4476  EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4477  
4478  /*
4479   * Decrement the entries to the page that an event is on.
4480   * The event does not even need to exist, only the pointer
4481   * to the page it is on. This may only be called before the commit
4482   * takes place.
4483   */
4484  static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4485  rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4486  		   struct ring_buffer_event *event)
4487  {
4488  	unsigned long addr = (unsigned long)event;
4489  	struct buffer_page *bpage = cpu_buffer->commit_page;
4490  	struct buffer_page *start;
4491  
4492  	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4493  
4494  	/* Do the likely case first */
4495  	if (likely(bpage->page == (void *)addr)) {
4496  		local_dec(&bpage->entries);
4497  		return;
4498  	}
4499  
4500  	/*
4501  	 * Because the commit page may be on the reader page we
4502  	 * start with the next page and check the end loop there.
4503  	 */
4504  	rb_inc_page(&bpage);
4505  	start = bpage;
4506  	do {
4507  		if (bpage->page == (void *)addr) {
4508  			local_dec(&bpage->entries);
4509  			return;
4510  		}
4511  		rb_inc_page(&bpage);
4512  	} while (bpage != start);
4513  
4514  	/* commit not part of this buffer?? */
4515  	RB_WARN_ON(cpu_buffer, 1);
4516  }
4517  
4518  /**
4519   * ring_buffer_discard_commit - discard an event that has not been committed
4520   * @buffer: the ring buffer
4521   * @event: non committed event to discard
4522   *
4523   * Sometimes an event that is in the ring buffer needs to be ignored.
4524   * This function lets the user discard an event in the ring buffer
4525   * and then that event will not be read later.
4526   *
4527   * This function only works if it is called before the item has been
4528   * committed. It will try to free the event from the ring buffer
4529   * if another event has not been added behind it.
4530   *
4531   * If another event has been added behind it, it will set the event
4532   * up as discarded, and perform the commit.
4533   *
4534   * If this function is called, do not call ring_buffer_unlock_commit on
4535   * the event.
4536   */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4537  void ring_buffer_discard_commit(struct trace_buffer *buffer,
4538  				struct ring_buffer_event *event)
4539  {
4540  	struct ring_buffer_per_cpu *cpu_buffer;
4541  	int cpu;
4542  
4543  	/* The event is discarded regardless */
4544  	rb_event_discard(event);
4545  
4546  	cpu = smp_processor_id();
4547  	cpu_buffer = buffer->buffers[cpu];
4548  
4549  	/*
4550  	 * This must only be called if the event has not been
4551  	 * committed yet. Thus we can assume that preemption
4552  	 * is still disabled.
4553  	 */
4554  	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4555  
4556  	rb_decrement_entry(cpu_buffer, event);
4557  	if (rb_try_to_discard(cpu_buffer, event))
4558  		goto out;
4559  
4560   out:
4561  	rb_end_commit(cpu_buffer);
4562  
4563  	trace_recursive_unlock(cpu_buffer);
4564  
4565  	preempt_enable_notrace();
4566  
4567  }
4568  EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4569  
4570  /**
4571   * ring_buffer_write - write data to the buffer without reserving
4572   * @buffer: The ring buffer to write to.
4573   * @length: The length of the data being written (excluding the event header)
4574   * @data: The data to write to the buffer.
4575   *
4576   * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4577   * one function. If you already have the data to write to the buffer, it
4578   * may be easier to simply call this function.
4579   *
4580   * Note, like ring_buffer_lock_reserve, the length is the length of the data
4581   * and not the length of the event which would hold the header.
4582   */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4583  int ring_buffer_write(struct trace_buffer *buffer,
4584  		      unsigned long length,
4585  		      void *data)
4586  {
4587  	struct ring_buffer_per_cpu *cpu_buffer;
4588  	struct ring_buffer_event *event;
4589  	void *body;
4590  	int ret = -EBUSY;
4591  	int cpu;
4592  
4593  	preempt_disable_notrace();
4594  
4595  	if (atomic_read(&buffer->record_disabled))
4596  		goto out;
4597  
4598  	cpu = raw_smp_processor_id();
4599  
4600  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4601  		goto out;
4602  
4603  	cpu_buffer = buffer->buffers[cpu];
4604  
4605  	if (atomic_read(&cpu_buffer->record_disabled))
4606  		goto out;
4607  
4608  	if (length > buffer->max_data_size)
4609  		goto out;
4610  
4611  	if (unlikely(trace_recursive_lock(cpu_buffer)))
4612  		goto out;
4613  
4614  	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4615  	if (!event)
4616  		goto out_unlock;
4617  
4618  	body = rb_event_data(event);
4619  
4620  	memcpy(body, data, length);
4621  
4622  	rb_commit(cpu_buffer);
4623  
4624  	rb_wakeups(buffer, cpu_buffer);
4625  
4626  	ret = 0;
4627  
4628   out_unlock:
4629  	trace_recursive_unlock(cpu_buffer);
4630  
4631   out:
4632  	preempt_enable_notrace();
4633  
4634  	return ret;
4635  }
4636  EXPORT_SYMBOL_GPL(ring_buffer_write);
4637  
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4638  static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4639  {
4640  	struct buffer_page *reader = cpu_buffer->reader_page;
4641  	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4642  	struct buffer_page *commit = cpu_buffer->commit_page;
4643  
4644  	/* In case of error, head will be NULL */
4645  	if (unlikely(!head))
4646  		return true;
4647  
4648  	/* Reader should exhaust content in reader page */
4649  	if (reader->read != rb_page_size(reader))
4650  		return false;
4651  
4652  	/*
4653  	 * If writers are committing on the reader page, knowing all
4654  	 * committed content has been read, the ring buffer is empty.
4655  	 */
4656  	if (commit == reader)
4657  		return true;
4658  
4659  	/*
4660  	 * If writers are committing on a page other than reader page
4661  	 * and head page, there should always be content to read.
4662  	 */
4663  	if (commit != head)
4664  		return false;
4665  
4666  	/*
4667  	 * Writers are committing on the head page, we just need
4668  	 * to care about there're committed data, and the reader will
4669  	 * swap reader page with head page when it is to read data.
4670  	 */
4671  	return rb_page_commit(commit) == 0;
4672  }
4673  
4674  /**
4675   * ring_buffer_record_disable - stop all writes into the buffer
4676   * @buffer: The ring buffer to stop writes to.
4677   *
4678   * This prevents all writes to the buffer. Any attempt to write
4679   * to the buffer after this will fail and return NULL.
4680   *
4681   * The caller should call synchronize_rcu() after this.
4682   */
ring_buffer_record_disable(struct trace_buffer * buffer)4683  void ring_buffer_record_disable(struct trace_buffer *buffer)
4684  {
4685  	atomic_inc(&buffer->record_disabled);
4686  }
4687  EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4688  
4689  /**
4690   * ring_buffer_record_enable - enable writes to the buffer
4691   * @buffer: The ring buffer to enable writes
4692   *
4693   * Note, multiple disables will need the same number of enables
4694   * to truly enable the writing (much like preempt_disable).
4695   */
ring_buffer_record_enable(struct trace_buffer * buffer)4696  void ring_buffer_record_enable(struct trace_buffer *buffer)
4697  {
4698  	atomic_dec(&buffer->record_disabled);
4699  }
4700  EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4701  
4702  /**
4703   * ring_buffer_record_off - stop all writes into the buffer
4704   * @buffer: The ring buffer to stop writes to.
4705   *
4706   * This prevents all writes to the buffer. Any attempt to write
4707   * to the buffer after this will fail and return NULL.
4708   *
4709   * This is different than ring_buffer_record_disable() as
4710   * it works like an on/off switch, where as the disable() version
4711   * must be paired with a enable().
4712   */
ring_buffer_record_off(struct trace_buffer * buffer)4713  void ring_buffer_record_off(struct trace_buffer *buffer)
4714  {
4715  	unsigned int rd;
4716  	unsigned int new_rd;
4717  
4718  	rd = atomic_read(&buffer->record_disabled);
4719  	do {
4720  		new_rd = rd | RB_BUFFER_OFF;
4721  	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4722  }
4723  EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4724  
4725  /**
4726   * ring_buffer_record_on - restart writes into the buffer
4727   * @buffer: The ring buffer to start writes to.
4728   *
4729   * This enables all writes to the buffer that was disabled by
4730   * ring_buffer_record_off().
4731   *
4732   * This is different than ring_buffer_record_enable() as
4733   * it works like an on/off switch, where as the enable() version
4734   * must be paired with a disable().
4735   */
ring_buffer_record_on(struct trace_buffer * buffer)4736  void ring_buffer_record_on(struct trace_buffer *buffer)
4737  {
4738  	unsigned int rd;
4739  	unsigned int new_rd;
4740  
4741  	rd = atomic_read(&buffer->record_disabled);
4742  	do {
4743  		new_rd = rd & ~RB_BUFFER_OFF;
4744  	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4745  }
4746  EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4747  
4748  /**
4749   * ring_buffer_record_is_on - return true if the ring buffer can write
4750   * @buffer: The ring buffer to see if write is enabled
4751   *
4752   * Returns true if the ring buffer is in a state that it accepts writes.
4753   */
ring_buffer_record_is_on(struct trace_buffer * buffer)4754  bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4755  {
4756  	return !atomic_read(&buffer->record_disabled);
4757  }
4758  
4759  /**
4760   * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4761   * @buffer: The ring buffer to see if write is set enabled
4762   *
4763   * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4764   * Note that this does NOT mean it is in a writable state.
4765   *
4766   * It may return true when the ring buffer has been disabled by
4767   * ring_buffer_record_disable(), as that is a temporary disabling of
4768   * the ring buffer.
4769   */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4770  bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4771  {
4772  	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4773  }
4774  
4775  /**
4776   * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4777   * @buffer: The ring buffer to stop writes to.
4778   * @cpu: The CPU buffer to stop
4779   *
4780   * This prevents all writes to the buffer. Any attempt to write
4781   * to the buffer after this will fail and return NULL.
4782   *
4783   * The caller should call synchronize_rcu() after this.
4784   */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4785  void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4786  {
4787  	struct ring_buffer_per_cpu *cpu_buffer;
4788  
4789  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4790  		return;
4791  
4792  	cpu_buffer = buffer->buffers[cpu];
4793  	atomic_inc(&cpu_buffer->record_disabled);
4794  }
4795  EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4796  
4797  /**
4798   * ring_buffer_record_enable_cpu - enable writes to the buffer
4799   * @buffer: The ring buffer to enable writes
4800   * @cpu: The CPU to enable.
4801   *
4802   * Note, multiple disables will need the same number of enables
4803   * to truly enable the writing (much like preempt_disable).
4804   */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4805  void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4806  {
4807  	struct ring_buffer_per_cpu *cpu_buffer;
4808  
4809  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4810  		return;
4811  
4812  	cpu_buffer = buffer->buffers[cpu];
4813  	atomic_dec(&cpu_buffer->record_disabled);
4814  }
4815  EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4816  
4817  /*
4818   * The total entries in the ring buffer is the running counter
4819   * of entries entered into the ring buffer, minus the sum of
4820   * the entries read from the ring buffer and the number of
4821   * entries that were overwritten.
4822   */
4823  static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4824  rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4825  {
4826  	return local_read(&cpu_buffer->entries) -
4827  		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4828  }
4829  
4830  /**
4831   * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4832   * @buffer: The ring buffer
4833   * @cpu: The per CPU buffer to read from.
4834   */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4835  u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4836  {
4837  	unsigned long flags;
4838  	struct ring_buffer_per_cpu *cpu_buffer;
4839  	struct buffer_page *bpage;
4840  	u64 ret = 0;
4841  
4842  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4843  		return 0;
4844  
4845  	cpu_buffer = buffer->buffers[cpu];
4846  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4847  	/*
4848  	 * if the tail is on reader_page, oldest time stamp is on the reader
4849  	 * page
4850  	 */
4851  	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4852  		bpage = cpu_buffer->reader_page;
4853  	else
4854  		bpage = rb_set_head_page(cpu_buffer);
4855  	if (bpage)
4856  		ret = bpage->page->time_stamp;
4857  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4858  
4859  	return ret;
4860  }
4861  EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4862  
4863  /**
4864   * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4865   * @buffer: The ring buffer
4866   * @cpu: The per CPU buffer to read from.
4867   */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4868  unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4869  {
4870  	struct ring_buffer_per_cpu *cpu_buffer;
4871  	unsigned long ret;
4872  
4873  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4874  		return 0;
4875  
4876  	cpu_buffer = buffer->buffers[cpu];
4877  	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4878  
4879  	return ret;
4880  }
4881  EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4882  
4883  /**
4884   * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4885   * @buffer: The ring buffer
4886   * @cpu: The per CPU buffer to get the entries from.
4887   */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4888  unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4889  {
4890  	struct ring_buffer_per_cpu *cpu_buffer;
4891  
4892  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4893  		return 0;
4894  
4895  	cpu_buffer = buffer->buffers[cpu];
4896  
4897  	return rb_num_of_entries(cpu_buffer);
4898  }
4899  EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4900  
4901  /**
4902   * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4903   * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4904   * @buffer: The ring buffer
4905   * @cpu: The per CPU buffer to get the number of overruns from
4906   */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4907  unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4908  {
4909  	struct ring_buffer_per_cpu *cpu_buffer;
4910  	unsigned long ret;
4911  
4912  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4913  		return 0;
4914  
4915  	cpu_buffer = buffer->buffers[cpu];
4916  	ret = local_read(&cpu_buffer->overrun);
4917  
4918  	return ret;
4919  }
4920  EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4921  
4922  /**
4923   * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4924   * commits failing due to the buffer wrapping around while there are uncommitted
4925   * events, such as during an interrupt storm.
4926   * @buffer: The ring buffer
4927   * @cpu: The per CPU buffer to get the number of overruns from
4928   */
4929  unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4930  ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4931  {
4932  	struct ring_buffer_per_cpu *cpu_buffer;
4933  	unsigned long ret;
4934  
4935  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4936  		return 0;
4937  
4938  	cpu_buffer = buffer->buffers[cpu];
4939  	ret = local_read(&cpu_buffer->commit_overrun);
4940  
4941  	return ret;
4942  }
4943  EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4944  
4945  /**
4946   * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4947   * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4948   * @buffer: The ring buffer
4949   * @cpu: The per CPU buffer to get the number of overruns from
4950   */
4951  unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4952  ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4953  {
4954  	struct ring_buffer_per_cpu *cpu_buffer;
4955  	unsigned long ret;
4956  
4957  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4958  		return 0;
4959  
4960  	cpu_buffer = buffer->buffers[cpu];
4961  	ret = local_read(&cpu_buffer->dropped_events);
4962  
4963  	return ret;
4964  }
4965  EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4966  
4967  /**
4968   * ring_buffer_read_events_cpu - get the number of events successfully read
4969   * @buffer: The ring buffer
4970   * @cpu: The per CPU buffer to get the number of events read
4971   */
4972  unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)4973  ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4974  {
4975  	struct ring_buffer_per_cpu *cpu_buffer;
4976  
4977  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4978  		return 0;
4979  
4980  	cpu_buffer = buffer->buffers[cpu];
4981  	return cpu_buffer->read;
4982  }
4983  EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4984  
4985  /**
4986   * ring_buffer_entries - get the number of entries in a buffer
4987   * @buffer: The ring buffer
4988   *
4989   * Returns the total number of entries in the ring buffer
4990   * (all CPU entries)
4991   */
ring_buffer_entries(struct trace_buffer * buffer)4992  unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4993  {
4994  	struct ring_buffer_per_cpu *cpu_buffer;
4995  	unsigned long entries = 0;
4996  	int cpu;
4997  
4998  	/* if you care about this being correct, lock the buffer */
4999  	for_each_buffer_cpu(buffer, cpu) {
5000  		cpu_buffer = buffer->buffers[cpu];
5001  		entries += rb_num_of_entries(cpu_buffer);
5002  	}
5003  
5004  	return entries;
5005  }
5006  EXPORT_SYMBOL_GPL(ring_buffer_entries);
5007  
5008  /**
5009   * ring_buffer_overruns - get the number of overruns in buffer
5010   * @buffer: The ring buffer
5011   *
5012   * Returns the total number of overruns in the ring buffer
5013   * (all CPU entries)
5014   */
ring_buffer_overruns(struct trace_buffer * buffer)5015  unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5016  {
5017  	struct ring_buffer_per_cpu *cpu_buffer;
5018  	unsigned long overruns = 0;
5019  	int cpu;
5020  
5021  	/* if you care about this being correct, lock the buffer */
5022  	for_each_buffer_cpu(buffer, cpu) {
5023  		cpu_buffer = buffer->buffers[cpu];
5024  		overruns += local_read(&cpu_buffer->overrun);
5025  	}
5026  
5027  	return overruns;
5028  }
5029  EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5030  
rb_iter_reset(struct ring_buffer_iter * iter)5031  static void rb_iter_reset(struct ring_buffer_iter *iter)
5032  {
5033  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5034  
5035  	/* Iterator usage is expected to have record disabled */
5036  	iter->head_page = cpu_buffer->reader_page;
5037  	iter->head = cpu_buffer->reader_page->read;
5038  	iter->next_event = iter->head;
5039  
5040  	iter->cache_reader_page = iter->head_page;
5041  	iter->cache_read = cpu_buffer->read;
5042  	iter->cache_pages_removed = cpu_buffer->pages_removed;
5043  
5044  	if (iter->head) {
5045  		iter->read_stamp = cpu_buffer->read_stamp;
5046  		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5047  	} else {
5048  		iter->read_stamp = iter->head_page->page->time_stamp;
5049  		iter->page_stamp = iter->read_stamp;
5050  	}
5051  }
5052  
5053  /**
5054   * ring_buffer_iter_reset - reset an iterator
5055   * @iter: The iterator to reset
5056   *
5057   * Resets the iterator, so that it will start from the beginning
5058   * again.
5059   */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5060  void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5061  {
5062  	struct ring_buffer_per_cpu *cpu_buffer;
5063  	unsigned long flags;
5064  
5065  	if (!iter)
5066  		return;
5067  
5068  	cpu_buffer = iter->cpu_buffer;
5069  
5070  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5071  	rb_iter_reset(iter);
5072  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5073  }
5074  EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5075  
5076  /**
5077   * ring_buffer_iter_empty - check if an iterator has no more to read
5078   * @iter: The iterator to check
5079   */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5080  int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5081  {
5082  	struct ring_buffer_per_cpu *cpu_buffer;
5083  	struct buffer_page *reader;
5084  	struct buffer_page *head_page;
5085  	struct buffer_page *commit_page;
5086  	struct buffer_page *curr_commit_page;
5087  	unsigned commit;
5088  	u64 curr_commit_ts;
5089  	u64 commit_ts;
5090  
5091  	cpu_buffer = iter->cpu_buffer;
5092  	reader = cpu_buffer->reader_page;
5093  	head_page = cpu_buffer->head_page;
5094  	commit_page = READ_ONCE(cpu_buffer->commit_page);
5095  	commit_ts = commit_page->page->time_stamp;
5096  
5097  	/*
5098  	 * When the writer goes across pages, it issues a cmpxchg which
5099  	 * is a mb(), which will synchronize with the rmb here.
5100  	 * (see rb_tail_page_update())
5101  	 */
5102  	smp_rmb();
5103  	commit = rb_page_commit(commit_page);
5104  	/* We want to make sure that the commit page doesn't change */
5105  	smp_rmb();
5106  
5107  	/* Make sure commit page didn't change */
5108  	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5109  	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5110  
5111  	/* If the commit page changed, then there's more data */
5112  	if (curr_commit_page != commit_page ||
5113  	    curr_commit_ts != commit_ts)
5114  		return 0;
5115  
5116  	/* Still racy, as it may return a false positive, but that's OK */
5117  	return ((iter->head_page == commit_page && iter->head >= commit) ||
5118  		(iter->head_page == reader && commit_page == head_page &&
5119  		 head_page->read == commit &&
5120  		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5121  }
5122  EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5123  
5124  static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5125  rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5126  		     struct ring_buffer_event *event)
5127  {
5128  	u64 delta;
5129  
5130  	switch (event->type_len) {
5131  	case RINGBUF_TYPE_PADDING:
5132  		return;
5133  
5134  	case RINGBUF_TYPE_TIME_EXTEND:
5135  		delta = rb_event_time_stamp(event);
5136  		cpu_buffer->read_stamp += delta;
5137  		return;
5138  
5139  	case RINGBUF_TYPE_TIME_STAMP:
5140  		delta = rb_event_time_stamp(event);
5141  		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5142  		cpu_buffer->read_stamp = delta;
5143  		return;
5144  
5145  	case RINGBUF_TYPE_DATA:
5146  		cpu_buffer->read_stamp += event->time_delta;
5147  		return;
5148  
5149  	default:
5150  		RB_WARN_ON(cpu_buffer, 1);
5151  	}
5152  }
5153  
5154  static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5155  rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5156  			  struct ring_buffer_event *event)
5157  {
5158  	u64 delta;
5159  
5160  	switch (event->type_len) {
5161  	case RINGBUF_TYPE_PADDING:
5162  		return;
5163  
5164  	case RINGBUF_TYPE_TIME_EXTEND:
5165  		delta = rb_event_time_stamp(event);
5166  		iter->read_stamp += delta;
5167  		return;
5168  
5169  	case RINGBUF_TYPE_TIME_STAMP:
5170  		delta = rb_event_time_stamp(event);
5171  		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5172  		iter->read_stamp = delta;
5173  		return;
5174  
5175  	case RINGBUF_TYPE_DATA:
5176  		iter->read_stamp += event->time_delta;
5177  		return;
5178  
5179  	default:
5180  		RB_WARN_ON(iter->cpu_buffer, 1);
5181  	}
5182  }
5183  
5184  static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5185  rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5186  {
5187  	struct buffer_page *reader = NULL;
5188  	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5189  	unsigned long overwrite;
5190  	unsigned long flags;
5191  	int nr_loops = 0;
5192  	bool ret;
5193  
5194  	local_irq_save(flags);
5195  	arch_spin_lock(&cpu_buffer->lock);
5196  
5197   again:
5198  	/*
5199  	 * This should normally only loop twice. But because the
5200  	 * start of the reader inserts an empty page, it causes
5201  	 * a case where we will loop three times. There should be no
5202  	 * reason to loop four times (that I know of).
5203  	 */
5204  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5205  		reader = NULL;
5206  		goto out;
5207  	}
5208  
5209  	reader = cpu_buffer->reader_page;
5210  
5211  	/* If there's more to read, return this page */
5212  	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5213  		goto out;
5214  
5215  	/* Never should we have an index greater than the size */
5216  	if (RB_WARN_ON(cpu_buffer,
5217  		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5218  		goto out;
5219  
5220  	/* check if we caught up to the tail */
5221  	reader = NULL;
5222  	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5223  		goto out;
5224  
5225  	/* Don't bother swapping if the ring buffer is empty */
5226  	if (rb_num_of_entries(cpu_buffer) == 0)
5227  		goto out;
5228  
5229  	/*
5230  	 * Reset the reader page to size zero.
5231  	 */
5232  	local_set(&cpu_buffer->reader_page->write, 0);
5233  	local_set(&cpu_buffer->reader_page->entries, 0);
5234  	local_set(&cpu_buffer->reader_page->page->commit, 0);
5235  	cpu_buffer->reader_page->real_end = 0;
5236  
5237   spin:
5238  	/*
5239  	 * Splice the empty reader page into the list around the head.
5240  	 */
5241  	reader = rb_set_head_page(cpu_buffer);
5242  	if (!reader)
5243  		goto out;
5244  	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5245  	cpu_buffer->reader_page->list.prev = reader->list.prev;
5246  
5247  	/*
5248  	 * cpu_buffer->pages just needs to point to the buffer, it
5249  	 *  has no specific buffer page to point to. Lets move it out
5250  	 *  of our way so we don't accidentally swap it.
5251  	 */
5252  	cpu_buffer->pages = reader->list.prev;
5253  
5254  	/* The reader page will be pointing to the new head */
5255  	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5256  
5257  	/*
5258  	 * We want to make sure we read the overruns after we set up our
5259  	 * pointers to the next object. The writer side does a
5260  	 * cmpxchg to cross pages which acts as the mb on the writer
5261  	 * side. Note, the reader will constantly fail the swap
5262  	 * while the writer is updating the pointers, so this
5263  	 * guarantees that the overwrite recorded here is the one we
5264  	 * want to compare with the last_overrun.
5265  	 */
5266  	smp_mb();
5267  	overwrite = local_read(&(cpu_buffer->overrun));
5268  
5269  	/*
5270  	 * Here's the tricky part.
5271  	 *
5272  	 * We need to move the pointer past the header page.
5273  	 * But we can only do that if a writer is not currently
5274  	 * moving it. The page before the header page has the
5275  	 * flag bit '1' set if it is pointing to the page we want.
5276  	 * but if the writer is in the process of moving it
5277  	 * than it will be '2' or already moved '0'.
5278  	 */
5279  
5280  	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5281  
5282  	/*
5283  	 * If we did not convert it, then we must try again.
5284  	 */
5285  	if (!ret)
5286  		goto spin;
5287  
5288  	if (cpu_buffer->ring_meta)
5289  		rb_update_meta_reader(cpu_buffer, reader);
5290  
5291  	/*
5292  	 * Yay! We succeeded in replacing the page.
5293  	 *
5294  	 * Now make the new head point back to the reader page.
5295  	 */
5296  	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5297  	rb_inc_page(&cpu_buffer->head_page);
5298  
5299  	local_inc(&cpu_buffer->pages_read);
5300  
5301  	/* Finally update the reader page to the new head */
5302  	cpu_buffer->reader_page = reader;
5303  	cpu_buffer->reader_page->read = 0;
5304  
5305  	if (overwrite != cpu_buffer->last_overrun) {
5306  		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5307  		cpu_buffer->last_overrun = overwrite;
5308  	}
5309  
5310  	goto again;
5311  
5312   out:
5313  	/* Update the read_stamp on the first event */
5314  	if (reader && reader->read == 0)
5315  		cpu_buffer->read_stamp = reader->page->time_stamp;
5316  
5317  	arch_spin_unlock(&cpu_buffer->lock);
5318  	local_irq_restore(flags);
5319  
5320  	/*
5321  	 * The writer has preempt disable, wait for it. But not forever
5322  	 * Although, 1 second is pretty much "forever"
5323  	 */
5324  #define USECS_WAIT	1000000
5325          for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5326  		/* If the write is past the end of page, a writer is still updating it */
5327  		if (likely(!reader || rb_page_write(reader) <= bsize))
5328  			break;
5329  
5330  		udelay(1);
5331  
5332  		/* Get the latest version of the reader write value */
5333  		smp_rmb();
5334  	}
5335  
5336  	/* The writer is not moving forward? Something is wrong */
5337  	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5338  		reader = NULL;
5339  
5340  	/*
5341  	 * Make sure we see any padding after the write update
5342  	 * (see rb_reset_tail()).
5343  	 *
5344  	 * In addition, a writer may be writing on the reader page
5345  	 * if the page has not been fully filled, so the read barrier
5346  	 * is also needed to make sure we see the content of what is
5347  	 * committed by the writer (see rb_set_commit_to_write()).
5348  	 */
5349  	smp_rmb();
5350  
5351  
5352  	return reader;
5353  }
5354  
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5355  static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5356  {
5357  	struct ring_buffer_event *event;
5358  	struct buffer_page *reader;
5359  	unsigned length;
5360  
5361  	reader = rb_get_reader_page(cpu_buffer);
5362  
5363  	/* This function should not be called when buffer is empty */
5364  	if (RB_WARN_ON(cpu_buffer, !reader))
5365  		return;
5366  
5367  	event = rb_reader_event(cpu_buffer);
5368  
5369  	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5370  		cpu_buffer->read++;
5371  
5372  	rb_update_read_stamp(cpu_buffer, event);
5373  
5374  	length = rb_event_length(event);
5375  	cpu_buffer->reader_page->read += length;
5376  	cpu_buffer->read_bytes += length;
5377  }
5378  
rb_advance_iter(struct ring_buffer_iter * iter)5379  static void rb_advance_iter(struct ring_buffer_iter *iter)
5380  {
5381  	struct ring_buffer_per_cpu *cpu_buffer;
5382  
5383  	cpu_buffer = iter->cpu_buffer;
5384  
5385  	/* If head == next_event then we need to jump to the next event */
5386  	if (iter->head == iter->next_event) {
5387  		/* If the event gets overwritten again, there's nothing to do */
5388  		if (rb_iter_head_event(iter) == NULL)
5389  			return;
5390  	}
5391  
5392  	iter->head = iter->next_event;
5393  
5394  	/*
5395  	 * Check if we are at the end of the buffer.
5396  	 */
5397  	if (iter->next_event >= rb_page_size(iter->head_page)) {
5398  		/* discarded commits can make the page empty */
5399  		if (iter->head_page == cpu_buffer->commit_page)
5400  			return;
5401  		rb_inc_iter(iter);
5402  		return;
5403  	}
5404  
5405  	rb_update_iter_read_stamp(iter, iter->event);
5406  }
5407  
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5408  static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5409  {
5410  	return cpu_buffer->lost_events;
5411  }
5412  
5413  static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5414  rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5415  	       unsigned long *lost_events)
5416  {
5417  	struct ring_buffer_event *event;
5418  	struct buffer_page *reader;
5419  	int nr_loops = 0;
5420  
5421  	if (ts)
5422  		*ts = 0;
5423   again:
5424  	/*
5425  	 * We repeat when a time extend is encountered.
5426  	 * Since the time extend is always attached to a data event,
5427  	 * we should never loop more than once.
5428  	 * (We never hit the following condition more than twice).
5429  	 */
5430  	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5431  		return NULL;
5432  
5433  	reader = rb_get_reader_page(cpu_buffer);
5434  	if (!reader)
5435  		return NULL;
5436  
5437  	event = rb_reader_event(cpu_buffer);
5438  
5439  	switch (event->type_len) {
5440  	case RINGBUF_TYPE_PADDING:
5441  		if (rb_null_event(event))
5442  			RB_WARN_ON(cpu_buffer, 1);
5443  		/*
5444  		 * Because the writer could be discarding every
5445  		 * event it creates (which would probably be bad)
5446  		 * if we were to go back to "again" then we may never
5447  		 * catch up, and will trigger the warn on, or lock
5448  		 * the box. Return the padding, and we will release
5449  		 * the current locks, and try again.
5450  		 */
5451  		return event;
5452  
5453  	case RINGBUF_TYPE_TIME_EXTEND:
5454  		/* Internal data, OK to advance */
5455  		rb_advance_reader(cpu_buffer);
5456  		goto again;
5457  
5458  	case RINGBUF_TYPE_TIME_STAMP:
5459  		if (ts) {
5460  			*ts = rb_event_time_stamp(event);
5461  			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5462  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5463  							 cpu_buffer->cpu, ts);
5464  		}
5465  		/* Internal data, OK to advance */
5466  		rb_advance_reader(cpu_buffer);
5467  		goto again;
5468  
5469  	case RINGBUF_TYPE_DATA:
5470  		if (ts && !(*ts)) {
5471  			*ts = cpu_buffer->read_stamp + event->time_delta;
5472  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5473  							 cpu_buffer->cpu, ts);
5474  		}
5475  		if (lost_events)
5476  			*lost_events = rb_lost_events(cpu_buffer);
5477  		return event;
5478  
5479  	default:
5480  		RB_WARN_ON(cpu_buffer, 1);
5481  	}
5482  
5483  	return NULL;
5484  }
5485  EXPORT_SYMBOL_GPL(ring_buffer_peek);
5486  
5487  static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5488  rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5489  {
5490  	struct trace_buffer *buffer;
5491  	struct ring_buffer_per_cpu *cpu_buffer;
5492  	struct ring_buffer_event *event;
5493  	int nr_loops = 0;
5494  
5495  	if (ts)
5496  		*ts = 0;
5497  
5498  	cpu_buffer = iter->cpu_buffer;
5499  	buffer = cpu_buffer->buffer;
5500  
5501  	/*
5502  	 * Check if someone performed a consuming read to the buffer
5503  	 * or removed some pages from the buffer. In these cases,
5504  	 * iterator was invalidated and we need to reset it.
5505  	 */
5506  	if (unlikely(iter->cache_read != cpu_buffer->read ||
5507  		     iter->cache_reader_page != cpu_buffer->reader_page ||
5508  		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5509  		rb_iter_reset(iter);
5510  
5511   again:
5512  	if (ring_buffer_iter_empty(iter))
5513  		return NULL;
5514  
5515  	/*
5516  	 * As the writer can mess with what the iterator is trying
5517  	 * to read, just give up if we fail to get an event after
5518  	 * three tries. The iterator is not as reliable when reading
5519  	 * the ring buffer with an active write as the consumer is.
5520  	 * Do not warn if the three failures is reached.
5521  	 */
5522  	if (++nr_loops > 3)
5523  		return NULL;
5524  
5525  	if (rb_per_cpu_empty(cpu_buffer))
5526  		return NULL;
5527  
5528  	if (iter->head >= rb_page_size(iter->head_page)) {
5529  		rb_inc_iter(iter);
5530  		goto again;
5531  	}
5532  
5533  	event = rb_iter_head_event(iter);
5534  	if (!event)
5535  		goto again;
5536  
5537  	switch (event->type_len) {
5538  	case RINGBUF_TYPE_PADDING:
5539  		if (rb_null_event(event)) {
5540  			rb_inc_iter(iter);
5541  			goto again;
5542  		}
5543  		rb_advance_iter(iter);
5544  		return event;
5545  
5546  	case RINGBUF_TYPE_TIME_EXTEND:
5547  		/* Internal data, OK to advance */
5548  		rb_advance_iter(iter);
5549  		goto again;
5550  
5551  	case RINGBUF_TYPE_TIME_STAMP:
5552  		if (ts) {
5553  			*ts = rb_event_time_stamp(event);
5554  			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5555  			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5556  							 cpu_buffer->cpu, ts);
5557  		}
5558  		/* Internal data, OK to advance */
5559  		rb_advance_iter(iter);
5560  		goto again;
5561  
5562  	case RINGBUF_TYPE_DATA:
5563  		if (ts && !(*ts)) {
5564  			*ts = iter->read_stamp + event->time_delta;
5565  			ring_buffer_normalize_time_stamp(buffer,
5566  							 cpu_buffer->cpu, ts);
5567  		}
5568  		return event;
5569  
5570  	default:
5571  		RB_WARN_ON(cpu_buffer, 1);
5572  	}
5573  
5574  	return NULL;
5575  }
5576  EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5577  
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5578  static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5579  {
5580  	if (likely(!in_nmi())) {
5581  		raw_spin_lock(&cpu_buffer->reader_lock);
5582  		return true;
5583  	}
5584  
5585  	/*
5586  	 * If an NMI die dumps out the content of the ring buffer
5587  	 * trylock must be used to prevent a deadlock if the NMI
5588  	 * preempted a task that holds the ring buffer locks. If
5589  	 * we get the lock then all is fine, if not, then continue
5590  	 * to do the read, but this can corrupt the ring buffer,
5591  	 * so it must be permanently disabled from future writes.
5592  	 * Reading from NMI is a oneshot deal.
5593  	 */
5594  	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5595  		return true;
5596  
5597  	/* Continue without locking, but disable the ring buffer */
5598  	atomic_inc(&cpu_buffer->record_disabled);
5599  	return false;
5600  }
5601  
5602  static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5603  rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5604  {
5605  	if (likely(locked))
5606  		raw_spin_unlock(&cpu_buffer->reader_lock);
5607  }
5608  
5609  /**
5610   * ring_buffer_peek - peek at the next event to be read
5611   * @buffer: The ring buffer to read
5612   * @cpu: The cpu to peak at
5613   * @ts: The timestamp counter of this event.
5614   * @lost_events: a variable to store if events were lost (may be NULL)
5615   *
5616   * This will return the event that will be read next, but does
5617   * not consume the data.
5618   */
5619  struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5620  ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5621  		 unsigned long *lost_events)
5622  {
5623  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5624  	struct ring_buffer_event *event;
5625  	unsigned long flags;
5626  	bool dolock;
5627  
5628  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5629  		return NULL;
5630  
5631   again:
5632  	local_irq_save(flags);
5633  	dolock = rb_reader_lock(cpu_buffer);
5634  	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5635  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5636  		rb_advance_reader(cpu_buffer);
5637  	rb_reader_unlock(cpu_buffer, dolock);
5638  	local_irq_restore(flags);
5639  
5640  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5641  		goto again;
5642  
5643  	return event;
5644  }
5645  
5646  /** ring_buffer_iter_dropped - report if there are dropped events
5647   * @iter: The ring buffer iterator
5648   *
5649   * Returns true if there was dropped events since the last peek.
5650   */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5651  bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5652  {
5653  	bool ret = iter->missed_events != 0;
5654  
5655  	iter->missed_events = 0;
5656  	return ret;
5657  }
5658  EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5659  
5660  /**
5661   * ring_buffer_iter_peek - peek at the next event to be read
5662   * @iter: The ring buffer iterator
5663   * @ts: The timestamp counter of this event.
5664   *
5665   * This will return the event that will be read next, but does
5666   * not increment the iterator.
5667   */
5668  struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5669  ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5670  {
5671  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5672  	struct ring_buffer_event *event;
5673  	unsigned long flags;
5674  
5675   again:
5676  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5677  	event = rb_iter_peek(iter, ts);
5678  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5679  
5680  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5681  		goto again;
5682  
5683  	return event;
5684  }
5685  
5686  /**
5687   * ring_buffer_consume - return an event and consume it
5688   * @buffer: The ring buffer to get the next event from
5689   * @cpu: the cpu to read the buffer from
5690   * @ts: a variable to store the timestamp (may be NULL)
5691   * @lost_events: a variable to store if events were lost (may be NULL)
5692   *
5693   * Returns the next event in the ring buffer, and that event is consumed.
5694   * Meaning, that sequential reads will keep returning a different event,
5695   * and eventually empty the ring buffer if the producer is slower.
5696   */
5697  struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5698  ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5699  		    unsigned long *lost_events)
5700  {
5701  	struct ring_buffer_per_cpu *cpu_buffer;
5702  	struct ring_buffer_event *event = NULL;
5703  	unsigned long flags;
5704  	bool dolock;
5705  
5706   again:
5707  	/* might be called in atomic */
5708  	preempt_disable();
5709  
5710  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5711  		goto out;
5712  
5713  	cpu_buffer = buffer->buffers[cpu];
5714  	local_irq_save(flags);
5715  	dolock = rb_reader_lock(cpu_buffer);
5716  
5717  	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5718  	if (event) {
5719  		cpu_buffer->lost_events = 0;
5720  		rb_advance_reader(cpu_buffer);
5721  	}
5722  
5723  	rb_reader_unlock(cpu_buffer, dolock);
5724  	local_irq_restore(flags);
5725  
5726   out:
5727  	preempt_enable();
5728  
5729  	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5730  		goto again;
5731  
5732  	return event;
5733  }
5734  EXPORT_SYMBOL_GPL(ring_buffer_consume);
5735  
5736  /**
5737   * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5738   * @buffer: The ring buffer to read from
5739   * @cpu: The cpu buffer to iterate over
5740   * @flags: gfp flags to use for memory allocation
5741   *
5742   * This performs the initial preparations necessary to iterate
5743   * through the buffer.  Memory is allocated, buffer resizing
5744   * is disabled, and the iterator pointer is returned to the caller.
5745   *
5746   * After a sequence of ring_buffer_read_prepare calls, the user is
5747   * expected to make at least one call to ring_buffer_read_prepare_sync.
5748   * Afterwards, ring_buffer_read_start is invoked to get things going
5749   * for real.
5750   *
5751   * This overall must be paired with ring_buffer_read_finish.
5752   */
5753  struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5754  ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5755  {
5756  	struct ring_buffer_per_cpu *cpu_buffer;
5757  	struct ring_buffer_iter *iter;
5758  
5759  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5760  		return NULL;
5761  
5762  	iter = kzalloc(sizeof(*iter), flags);
5763  	if (!iter)
5764  		return NULL;
5765  
5766  	/* Holds the entire event: data and meta data */
5767  	iter->event_size = buffer->subbuf_size;
5768  	iter->event = kmalloc(iter->event_size, flags);
5769  	if (!iter->event) {
5770  		kfree(iter);
5771  		return NULL;
5772  	}
5773  
5774  	cpu_buffer = buffer->buffers[cpu];
5775  
5776  	iter->cpu_buffer = cpu_buffer;
5777  
5778  	atomic_inc(&cpu_buffer->resize_disabled);
5779  
5780  	return iter;
5781  }
5782  EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5783  
5784  /**
5785   * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5786   *
5787   * All previously invoked ring_buffer_read_prepare calls to prepare
5788   * iterators will be synchronized.  Afterwards, read_buffer_read_start
5789   * calls on those iterators are allowed.
5790   */
5791  void
ring_buffer_read_prepare_sync(void)5792  ring_buffer_read_prepare_sync(void)
5793  {
5794  	synchronize_rcu();
5795  }
5796  EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5797  
5798  /**
5799   * ring_buffer_read_start - start a non consuming read of the buffer
5800   * @iter: The iterator returned by ring_buffer_read_prepare
5801   *
5802   * This finalizes the startup of an iteration through the buffer.
5803   * The iterator comes from a call to ring_buffer_read_prepare and
5804   * an intervening ring_buffer_read_prepare_sync must have been
5805   * performed.
5806   *
5807   * Must be paired with ring_buffer_read_finish.
5808   */
5809  void
ring_buffer_read_start(struct ring_buffer_iter * iter)5810  ring_buffer_read_start(struct ring_buffer_iter *iter)
5811  {
5812  	struct ring_buffer_per_cpu *cpu_buffer;
5813  	unsigned long flags;
5814  
5815  	if (!iter)
5816  		return;
5817  
5818  	cpu_buffer = iter->cpu_buffer;
5819  
5820  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5821  	arch_spin_lock(&cpu_buffer->lock);
5822  	rb_iter_reset(iter);
5823  	arch_spin_unlock(&cpu_buffer->lock);
5824  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5825  }
5826  EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5827  
5828  /**
5829   * ring_buffer_read_finish - finish reading the iterator of the buffer
5830   * @iter: The iterator retrieved by ring_buffer_start
5831   *
5832   * This re-enables resizing of the buffer, and frees the iterator.
5833   */
5834  void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5835  ring_buffer_read_finish(struct ring_buffer_iter *iter)
5836  {
5837  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5838  	unsigned long flags;
5839  
5840  	/* Use this opportunity to check the integrity of the ring buffer. */
5841  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5842  	rb_check_pages(cpu_buffer);
5843  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5844  
5845  	atomic_dec(&cpu_buffer->resize_disabled);
5846  	kfree(iter->event);
5847  	kfree(iter);
5848  }
5849  EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5850  
5851  /**
5852   * ring_buffer_iter_advance - advance the iterator to the next location
5853   * @iter: The ring buffer iterator
5854   *
5855   * Move the location of the iterator such that the next read will
5856   * be the next location of the iterator.
5857   */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5858  void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5859  {
5860  	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5861  	unsigned long flags;
5862  
5863  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5864  
5865  	rb_advance_iter(iter);
5866  
5867  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5868  }
5869  EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5870  
5871  /**
5872   * ring_buffer_size - return the size of the ring buffer (in bytes)
5873   * @buffer: The ring buffer.
5874   * @cpu: The CPU to get ring buffer size from.
5875   */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5876  unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5877  {
5878  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5879  		return 0;
5880  
5881  	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5882  }
5883  EXPORT_SYMBOL_GPL(ring_buffer_size);
5884  
5885  /**
5886   * ring_buffer_max_event_size - return the max data size of an event
5887   * @buffer: The ring buffer.
5888   *
5889   * Returns the maximum size an event can be.
5890   */
ring_buffer_max_event_size(struct trace_buffer * buffer)5891  unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5892  {
5893  	/* If abs timestamp is requested, events have a timestamp too */
5894  	if (ring_buffer_time_stamp_abs(buffer))
5895  		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5896  	return buffer->max_data_size;
5897  }
5898  EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5899  
rb_clear_buffer_page(struct buffer_page * page)5900  static void rb_clear_buffer_page(struct buffer_page *page)
5901  {
5902  	local_set(&page->write, 0);
5903  	local_set(&page->entries, 0);
5904  	rb_init_page(page->page);
5905  	page->read = 0;
5906  }
5907  
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5908  static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5909  {
5910  	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5911  
5912  	if (!meta)
5913  		return;
5914  
5915  	meta->reader.read = cpu_buffer->reader_page->read;
5916  	meta->reader.id = cpu_buffer->reader_page->id;
5917  	meta->reader.lost_events = cpu_buffer->lost_events;
5918  
5919  	meta->entries = local_read(&cpu_buffer->entries);
5920  	meta->overrun = local_read(&cpu_buffer->overrun);
5921  	meta->read = cpu_buffer->read;
5922  
5923  	/* Some archs do not have data cache coherency between kernel and user-space */
5924  	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5925  }
5926  
5927  static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5928  rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5929  {
5930  	struct buffer_page *page;
5931  
5932  	rb_head_page_deactivate(cpu_buffer);
5933  
5934  	cpu_buffer->head_page
5935  		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5936  	rb_clear_buffer_page(cpu_buffer->head_page);
5937  	list_for_each_entry(page, cpu_buffer->pages, list) {
5938  		rb_clear_buffer_page(page);
5939  	}
5940  
5941  	cpu_buffer->tail_page = cpu_buffer->head_page;
5942  	cpu_buffer->commit_page = cpu_buffer->head_page;
5943  
5944  	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5945  	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5946  	rb_clear_buffer_page(cpu_buffer->reader_page);
5947  
5948  	local_set(&cpu_buffer->entries_bytes, 0);
5949  	local_set(&cpu_buffer->overrun, 0);
5950  	local_set(&cpu_buffer->commit_overrun, 0);
5951  	local_set(&cpu_buffer->dropped_events, 0);
5952  	local_set(&cpu_buffer->entries, 0);
5953  	local_set(&cpu_buffer->committing, 0);
5954  	local_set(&cpu_buffer->commits, 0);
5955  	local_set(&cpu_buffer->pages_touched, 0);
5956  	local_set(&cpu_buffer->pages_lost, 0);
5957  	local_set(&cpu_buffer->pages_read, 0);
5958  	cpu_buffer->last_pages_touch = 0;
5959  	cpu_buffer->shortest_full = 0;
5960  	cpu_buffer->read = 0;
5961  	cpu_buffer->read_bytes = 0;
5962  
5963  	rb_time_set(&cpu_buffer->write_stamp, 0);
5964  	rb_time_set(&cpu_buffer->before_stamp, 0);
5965  
5966  	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5967  
5968  	cpu_buffer->lost_events = 0;
5969  	cpu_buffer->last_overrun = 0;
5970  
5971  	rb_head_page_activate(cpu_buffer);
5972  	cpu_buffer->pages_removed = 0;
5973  
5974  	if (cpu_buffer->mapped) {
5975  		rb_update_meta_page(cpu_buffer);
5976  		if (cpu_buffer->ring_meta) {
5977  			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
5978  			meta->commit_buffer = meta->head_buffer;
5979  		}
5980  	}
5981  }
5982  
5983  /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)5984  static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5985  {
5986  	unsigned long flags;
5987  
5988  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5989  
5990  	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5991  		goto out;
5992  
5993  	arch_spin_lock(&cpu_buffer->lock);
5994  
5995  	rb_reset_cpu(cpu_buffer);
5996  
5997  	arch_spin_unlock(&cpu_buffer->lock);
5998  
5999   out:
6000  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6001  }
6002  
6003  /**
6004   * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6005   * @buffer: The ring buffer to reset a per cpu buffer of
6006   * @cpu: The CPU buffer to be reset
6007   */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6008  void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6009  {
6010  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6011  	struct ring_buffer_meta *meta;
6012  
6013  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6014  		return;
6015  
6016  	/* prevent another thread from changing buffer sizes */
6017  	mutex_lock(&buffer->mutex);
6018  
6019  	atomic_inc(&cpu_buffer->resize_disabled);
6020  	atomic_inc(&cpu_buffer->record_disabled);
6021  
6022  	/* Make sure all commits have finished */
6023  	synchronize_rcu();
6024  
6025  	reset_disabled_cpu_buffer(cpu_buffer);
6026  
6027  	atomic_dec(&cpu_buffer->record_disabled);
6028  	atomic_dec(&cpu_buffer->resize_disabled);
6029  
6030  	/* Make sure persistent meta now uses this buffer's addresses */
6031  	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6032  	if (meta)
6033  		rb_meta_init_text_addr(meta);
6034  
6035  	mutex_unlock(&buffer->mutex);
6036  }
6037  EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6038  
6039  /* Flag to ensure proper resetting of atomic variables */
6040  #define RESET_BIT	(1 << 30)
6041  
6042  /**
6043   * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6044   * @buffer: The ring buffer to reset a per cpu buffer of
6045   */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6046  void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6047  {
6048  	struct ring_buffer_per_cpu *cpu_buffer;
6049  	struct ring_buffer_meta *meta;
6050  	int cpu;
6051  
6052  	/* prevent another thread from changing buffer sizes */
6053  	mutex_lock(&buffer->mutex);
6054  
6055  	for_each_online_buffer_cpu(buffer, cpu) {
6056  		cpu_buffer = buffer->buffers[cpu];
6057  
6058  		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6059  		atomic_inc(&cpu_buffer->record_disabled);
6060  	}
6061  
6062  	/* Make sure all commits have finished */
6063  	synchronize_rcu();
6064  
6065  	for_each_buffer_cpu(buffer, cpu) {
6066  		cpu_buffer = buffer->buffers[cpu];
6067  
6068  		/*
6069  		 * If a CPU came online during the synchronize_rcu(), then
6070  		 * ignore it.
6071  		 */
6072  		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6073  			continue;
6074  
6075  		reset_disabled_cpu_buffer(cpu_buffer);
6076  
6077  		/* Make sure persistent meta now uses this buffer's addresses */
6078  		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6079  		if (meta)
6080  			rb_meta_init_text_addr(meta);
6081  
6082  		atomic_dec(&cpu_buffer->record_disabled);
6083  		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6084  	}
6085  
6086  	mutex_unlock(&buffer->mutex);
6087  }
6088  
6089  /**
6090   * ring_buffer_reset - reset a ring buffer
6091   * @buffer: The ring buffer to reset all cpu buffers
6092   */
ring_buffer_reset(struct trace_buffer * buffer)6093  void ring_buffer_reset(struct trace_buffer *buffer)
6094  {
6095  	struct ring_buffer_per_cpu *cpu_buffer;
6096  	int cpu;
6097  
6098  	/* prevent another thread from changing buffer sizes */
6099  	mutex_lock(&buffer->mutex);
6100  
6101  	for_each_buffer_cpu(buffer, cpu) {
6102  		cpu_buffer = buffer->buffers[cpu];
6103  
6104  		atomic_inc(&cpu_buffer->resize_disabled);
6105  		atomic_inc(&cpu_buffer->record_disabled);
6106  	}
6107  
6108  	/* Make sure all commits have finished */
6109  	synchronize_rcu();
6110  
6111  	for_each_buffer_cpu(buffer, cpu) {
6112  		cpu_buffer = buffer->buffers[cpu];
6113  
6114  		reset_disabled_cpu_buffer(cpu_buffer);
6115  
6116  		atomic_dec(&cpu_buffer->record_disabled);
6117  		atomic_dec(&cpu_buffer->resize_disabled);
6118  	}
6119  
6120  	mutex_unlock(&buffer->mutex);
6121  }
6122  EXPORT_SYMBOL_GPL(ring_buffer_reset);
6123  
6124  /**
6125   * ring_buffer_empty - is the ring buffer empty?
6126   * @buffer: The ring buffer to test
6127   */
ring_buffer_empty(struct trace_buffer * buffer)6128  bool ring_buffer_empty(struct trace_buffer *buffer)
6129  {
6130  	struct ring_buffer_per_cpu *cpu_buffer;
6131  	unsigned long flags;
6132  	bool dolock;
6133  	bool ret;
6134  	int cpu;
6135  
6136  	/* yes this is racy, but if you don't like the race, lock the buffer */
6137  	for_each_buffer_cpu(buffer, cpu) {
6138  		cpu_buffer = buffer->buffers[cpu];
6139  		local_irq_save(flags);
6140  		dolock = rb_reader_lock(cpu_buffer);
6141  		ret = rb_per_cpu_empty(cpu_buffer);
6142  		rb_reader_unlock(cpu_buffer, dolock);
6143  		local_irq_restore(flags);
6144  
6145  		if (!ret)
6146  			return false;
6147  	}
6148  
6149  	return true;
6150  }
6151  EXPORT_SYMBOL_GPL(ring_buffer_empty);
6152  
6153  /**
6154   * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6155   * @buffer: The ring buffer
6156   * @cpu: The CPU buffer to test
6157   */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6158  bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6159  {
6160  	struct ring_buffer_per_cpu *cpu_buffer;
6161  	unsigned long flags;
6162  	bool dolock;
6163  	bool ret;
6164  
6165  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6166  		return true;
6167  
6168  	cpu_buffer = buffer->buffers[cpu];
6169  	local_irq_save(flags);
6170  	dolock = rb_reader_lock(cpu_buffer);
6171  	ret = rb_per_cpu_empty(cpu_buffer);
6172  	rb_reader_unlock(cpu_buffer, dolock);
6173  	local_irq_restore(flags);
6174  
6175  	return ret;
6176  }
6177  EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6178  
6179  #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6180  /**
6181   * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6182   * @buffer_a: One buffer to swap with
6183   * @buffer_b: The other buffer to swap with
6184   * @cpu: the CPU of the buffers to swap
6185   *
6186   * This function is useful for tracers that want to take a "snapshot"
6187   * of a CPU buffer and has another back up buffer lying around.
6188   * it is expected that the tracer handles the cpu buffer not being
6189   * used at the moment.
6190   */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6191  int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6192  			 struct trace_buffer *buffer_b, int cpu)
6193  {
6194  	struct ring_buffer_per_cpu *cpu_buffer_a;
6195  	struct ring_buffer_per_cpu *cpu_buffer_b;
6196  	int ret = -EINVAL;
6197  
6198  	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6199  	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6200  		goto out;
6201  
6202  	cpu_buffer_a = buffer_a->buffers[cpu];
6203  	cpu_buffer_b = buffer_b->buffers[cpu];
6204  
6205  	/* It's up to the callers to not try to swap mapped buffers */
6206  	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6207  		ret = -EBUSY;
6208  		goto out;
6209  	}
6210  
6211  	/* At least make sure the two buffers are somewhat the same */
6212  	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6213  		goto out;
6214  
6215  	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6216  		goto out;
6217  
6218  	ret = -EAGAIN;
6219  
6220  	if (atomic_read(&buffer_a->record_disabled))
6221  		goto out;
6222  
6223  	if (atomic_read(&buffer_b->record_disabled))
6224  		goto out;
6225  
6226  	if (atomic_read(&cpu_buffer_a->record_disabled))
6227  		goto out;
6228  
6229  	if (atomic_read(&cpu_buffer_b->record_disabled))
6230  		goto out;
6231  
6232  	/*
6233  	 * We can't do a synchronize_rcu here because this
6234  	 * function can be called in atomic context.
6235  	 * Normally this will be called from the same CPU as cpu.
6236  	 * If not it's up to the caller to protect this.
6237  	 */
6238  	atomic_inc(&cpu_buffer_a->record_disabled);
6239  	atomic_inc(&cpu_buffer_b->record_disabled);
6240  
6241  	ret = -EBUSY;
6242  	if (local_read(&cpu_buffer_a->committing))
6243  		goto out_dec;
6244  	if (local_read(&cpu_buffer_b->committing))
6245  		goto out_dec;
6246  
6247  	/*
6248  	 * When resize is in progress, we cannot swap it because
6249  	 * it will mess the state of the cpu buffer.
6250  	 */
6251  	if (atomic_read(&buffer_a->resizing))
6252  		goto out_dec;
6253  	if (atomic_read(&buffer_b->resizing))
6254  		goto out_dec;
6255  
6256  	buffer_a->buffers[cpu] = cpu_buffer_b;
6257  	buffer_b->buffers[cpu] = cpu_buffer_a;
6258  
6259  	cpu_buffer_b->buffer = buffer_a;
6260  	cpu_buffer_a->buffer = buffer_b;
6261  
6262  	ret = 0;
6263  
6264  out_dec:
6265  	atomic_dec(&cpu_buffer_a->record_disabled);
6266  	atomic_dec(&cpu_buffer_b->record_disabled);
6267  out:
6268  	return ret;
6269  }
6270  EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6271  #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6272  
6273  /**
6274   * ring_buffer_alloc_read_page - allocate a page to read from buffer
6275   * @buffer: the buffer to allocate for.
6276   * @cpu: the cpu buffer to allocate.
6277   *
6278   * This function is used in conjunction with ring_buffer_read_page.
6279   * When reading a full page from the ring buffer, these functions
6280   * can be used to speed up the process. The calling function should
6281   * allocate a few pages first with this function. Then when it
6282   * needs to get pages from the ring buffer, it passes the result
6283   * of this function into ring_buffer_read_page, which will swap
6284   * the page that was allocated, with the read page of the buffer.
6285   *
6286   * Returns:
6287   *  The page allocated, or ERR_PTR
6288   */
6289  struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6290  ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6291  {
6292  	struct ring_buffer_per_cpu *cpu_buffer;
6293  	struct buffer_data_read_page *bpage = NULL;
6294  	unsigned long flags;
6295  	struct page *page;
6296  
6297  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6298  		return ERR_PTR(-ENODEV);
6299  
6300  	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6301  	if (!bpage)
6302  		return ERR_PTR(-ENOMEM);
6303  
6304  	bpage->order = buffer->subbuf_order;
6305  	cpu_buffer = buffer->buffers[cpu];
6306  	local_irq_save(flags);
6307  	arch_spin_lock(&cpu_buffer->lock);
6308  
6309  	if (cpu_buffer->free_page) {
6310  		bpage->data = cpu_buffer->free_page;
6311  		cpu_buffer->free_page = NULL;
6312  	}
6313  
6314  	arch_spin_unlock(&cpu_buffer->lock);
6315  	local_irq_restore(flags);
6316  
6317  	if (bpage->data)
6318  		goto out;
6319  
6320  	page = alloc_pages_node(cpu_to_node(cpu),
6321  				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6322  				cpu_buffer->buffer->subbuf_order);
6323  	if (!page) {
6324  		kfree(bpage);
6325  		return ERR_PTR(-ENOMEM);
6326  	}
6327  
6328  	bpage->data = page_address(page);
6329  
6330   out:
6331  	rb_init_page(bpage->data);
6332  
6333  	return bpage;
6334  }
6335  EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6336  
6337  /**
6338   * ring_buffer_free_read_page - free an allocated read page
6339   * @buffer: the buffer the page was allocate for
6340   * @cpu: the cpu buffer the page came from
6341   * @data_page: the page to free
6342   *
6343   * Free a page allocated from ring_buffer_alloc_read_page.
6344   */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6345  void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6346  				struct buffer_data_read_page *data_page)
6347  {
6348  	struct ring_buffer_per_cpu *cpu_buffer;
6349  	struct buffer_data_page *bpage = data_page->data;
6350  	struct page *page = virt_to_page(bpage);
6351  	unsigned long flags;
6352  
6353  	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6354  		return;
6355  
6356  	cpu_buffer = buffer->buffers[cpu];
6357  
6358  	/*
6359  	 * If the page is still in use someplace else, or order of the page
6360  	 * is different from the subbuffer order of the buffer -
6361  	 * we can't reuse it
6362  	 */
6363  	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6364  		goto out;
6365  
6366  	local_irq_save(flags);
6367  	arch_spin_lock(&cpu_buffer->lock);
6368  
6369  	if (!cpu_buffer->free_page) {
6370  		cpu_buffer->free_page = bpage;
6371  		bpage = NULL;
6372  	}
6373  
6374  	arch_spin_unlock(&cpu_buffer->lock);
6375  	local_irq_restore(flags);
6376  
6377   out:
6378  	free_pages((unsigned long)bpage, data_page->order);
6379  	kfree(data_page);
6380  }
6381  EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6382  
6383  /**
6384   * ring_buffer_read_page - extract a page from the ring buffer
6385   * @buffer: buffer to extract from
6386   * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6387   * @len: amount to extract
6388   * @cpu: the cpu of the buffer to extract
6389   * @full: should the extraction only happen when the page is full.
6390   *
6391   * This function will pull out a page from the ring buffer and consume it.
6392   * @data_page must be the address of the variable that was returned
6393   * from ring_buffer_alloc_read_page. This is because the page might be used
6394   * to swap with a page in the ring buffer.
6395   *
6396   * for example:
6397   *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6398   *	if (IS_ERR(rpage))
6399   *		return PTR_ERR(rpage);
6400   *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6401   *	if (ret >= 0)
6402   *		process_page(ring_buffer_read_page_data(rpage), ret);
6403   *	ring_buffer_free_read_page(buffer, cpu, rpage);
6404   *
6405   * When @full is set, the function will not return true unless
6406   * the writer is off the reader page.
6407   *
6408   * Note: it is up to the calling functions to handle sleeps and wakeups.
6409   *  The ring buffer can be used anywhere in the kernel and can not
6410   *  blindly call wake_up. The layer that uses the ring buffer must be
6411   *  responsible for that.
6412   *
6413   * Returns:
6414   *  >=0 if data has been transferred, returns the offset of consumed data.
6415   *  <0 if no data has been transferred.
6416   */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6417  int ring_buffer_read_page(struct trace_buffer *buffer,
6418  			  struct buffer_data_read_page *data_page,
6419  			  size_t len, int cpu, int full)
6420  {
6421  	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6422  	struct ring_buffer_event *event;
6423  	struct buffer_data_page *bpage;
6424  	struct buffer_page *reader;
6425  	unsigned long missed_events;
6426  	unsigned long flags;
6427  	unsigned int commit;
6428  	unsigned int read;
6429  	u64 save_timestamp;
6430  	int ret = -1;
6431  
6432  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6433  		goto out;
6434  
6435  	/*
6436  	 * If len is not big enough to hold the page header, then
6437  	 * we can not copy anything.
6438  	 */
6439  	if (len <= BUF_PAGE_HDR_SIZE)
6440  		goto out;
6441  
6442  	len -= BUF_PAGE_HDR_SIZE;
6443  
6444  	if (!data_page || !data_page->data)
6445  		goto out;
6446  	if (data_page->order != buffer->subbuf_order)
6447  		goto out;
6448  
6449  	bpage = data_page->data;
6450  	if (!bpage)
6451  		goto out;
6452  
6453  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6454  
6455  	reader = rb_get_reader_page(cpu_buffer);
6456  	if (!reader)
6457  		goto out_unlock;
6458  
6459  	event = rb_reader_event(cpu_buffer);
6460  
6461  	read = reader->read;
6462  	commit = rb_page_size(reader);
6463  
6464  	/* Check if any events were dropped */
6465  	missed_events = cpu_buffer->lost_events;
6466  
6467  	/*
6468  	 * If this page has been partially read or
6469  	 * if len is not big enough to read the rest of the page or
6470  	 * a writer is still on the page, then
6471  	 * we must copy the data from the page to the buffer.
6472  	 * Otherwise, we can simply swap the page with the one passed in.
6473  	 */
6474  	if (read || (len < (commit - read)) ||
6475  	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6476  	    cpu_buffer->mapped) {
6477  		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6478  		unsigned int rpos = read;
6479  		unsigned int pos = 0;
6480  		unsigned int size;
6481  
6482  		/*
6483  		 * If a full page is expected, this can still be returned
6484  		 * if there's been a previous partial read and the
6485  		 * rest of the page can be read and the commit page is off
6486  		 * the reader page.
6487  		 */
6488  		if (full &&
6489  		    (!read || (len < (commit - read)) ||
6490  		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6491  			goto out_unlock;
6492  
6493  		if (len > (commit - read))
6494  			len = (commit - read);
6495  
6496  		/* Always keep the time extend and data together */
6497  		size = rb_event_ts_length(event);
6498  
6499  		if (len < size)
6500  			goto out_unlock;
6501  
6502  		/* save the current timestamp, since the user will need it */
6503  		save_timestamp = cpu_buffer->read_stamp;
6504  
6505  		/* Need to copy one event at a time */
6506  		do {
6507  			/* We need the size of one event, because
6508  			 * rb_advance_reader only advances by one event,
6509  			 * whereas rb_event_ts_length may include the size of
6510  			 * one or two events.
6511  			 * We have already ensured there's enough space if this
6512  			 * is a time extend. */
6513  			size = rb_event_length(event);
6514  			memcpy(bpage->data + pos, rpage->data + rpos, size);
6515  
6516  			len -= size;
6517  
6518  			rb_advance_reader(cpu_buffer);
6519  			rpos = reader->read;
6520  			pos += size;
6521  
6522  			if (rpos >= commit)
6523  				break;
6524  
6525  			event = rb_reader_event(cpu_buffer);
6526  			/* Always keep the time extend and data together */
6527  			size = rb_event_ts_length(event);
6528  		} while (len >= size);
6529  
6530  		/* update bpage */
6531  		local_set(&bpage->commit, pos);
6532  		bpage->time_stamp = save_timestamp;
6533  
6534  		/* we copied everything to the beginning */
6535  		read = 0;
6536  	} else {
6537  		/* update the entry counter */
6538  		cpu_buffer->read += rb_page_entries(reader);
6539  		cpu_buffer->read_bytes += rb_page_size(reader);
6540  
6541  		/* swap the pages */
6542  		rb_init_page(bpage);
6543  		bpage = reader->page;
6544  		reader->page = data_page->data;
6545  		local_set(&reader->write, 0);
6546  		local_set(&reader->entries, 0);
6547  		reader->read = 0;
6548  		data_page->data = bpage;
6549  
6550  		/*
6551  		 * Use the real_end for the data size,
6552  		 * This gives us a chance to store the lost events
6553  		 * on the page.
6554  		 */
6555  		if (reader->real_end)
6556  			local_set(&bpage->commit, reader->real_end);
6557  	}
6558  	ret = read;
6559  
6560  	cpu_buffer->lost_events = 0;
6561  
6562  	commit = local_read(&bpage->commit);
6563  	/*
6564  	 * Set a flag in the commit field if we lost events
6565  	 */
6566  	if (missed_events) {
6567  		/* If there is room at the end of the page to save the
6568  		 * missed events, then record it there.
6569  		 */
6570  		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6571  			memcpy(&bpage->data[commit], &missed_events,
6572  			       sizeof(missed_events));
6573  			local_add(RB_MISSED_STORED, &bpage->commit);
6574  			commit += sizeof(missed_events);
6575  		}
6576  		local_add(RB_MISSED_EVENTS, &bpage->commit);
6577  	}
6578  
6579  	/*
6580  	 * This page may be off to user land. Zero it out here.
6581  	 */
6582  	if (commit < buffer->subbuf_size)
6583  		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6584  
6585   out_unlock:
6586  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6587  
6588   out:
6589  	return ret;
6590  }
6591  EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6592  
6593  /**
6594   * ring_buffer_read_page_data - get pointer to the data in the page.
6595   * @page:  the page to get the data from
6596   *
6597   * Returns pointer to the actual data in this page.
6598   */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6599  void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6600  {
6601  	return page->data;
6602  }
6603  EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6604  
6605  /**
6606   * ring_buffer_subbuf_size_get - get size of the sub buffer.
6607   * @buffer: the buffer to get the sub buffer size from
6608   *
6609   * Returns size of the sub buffer, in bytes.
6610   */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6611  int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6612  {
6613  	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6614  }
6615  EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6616  
6617  /**
6618   * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6619   * @buffer: The ring_buffer to get the system sub page order from
6620   *
6621   * By default, one ring buffer sub page equals to one system page. This parameter
6622   * is configurable, per ring buffer. The size of the ring buffer sub page can be
6623   * extended, but must be an order of system page size.
6624   *
6625   * Returns the order of buffer sub page size, in system pages:
6626   * 0 means the sub buffer size is 1 system page and so forth.
6627   * In case of an error < 0 is returned.
6628   */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6629  int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6630  {
6631  	if (!buffer)
6632  		return -EINVAL;
6633  
6634  	return buffer->subbuf_order;
6635  }
6636  EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6637  
6638  /**
6639   * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6640   * @buffer: The ring_buffer to set the new page size.
6641   * @order: Order of the system pages in one sub buffer page
6642   *
6643   * By default, one ring buffer pages equals to one system page. This API can be
6644   * used to set new size of the ring buffer page. The size must be order of
6645   * system page size, that's why the input parameter @order is the order of
6646   * system pages that are allocated for one ring buffer page:
6647   *  0 - 1 system page
6648   *  1 - 2 system pages
6649   *  3 - 4 system pages
6650   *  ...
6651   *
6652   * Returns 0 on success or < 0 in case of an error.
6653   */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6654  int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6655  {
6656  	struct ring_buffer_per_cpu *cpu_buffer;
6657  	struct buffer_page *bpage, *tmp;
6658  	int old_order, old_size;
6659  	int nr_pages;
6660  	int psize;
6661  	int err;
6662  	int cpu;
6663  
6664  	if (!buffer || order < 0)
6665  		return -EINVAL;
6666  
6667  	if (buffer->subbuf_order == order)
6668  		return 0;
6669  
6670  	psize = (1 << order) * PAGE_SIZE;
6671  	if (psize <= BUF_PAGE_HDR_SIZE)
6672  		return -EINVAL;
6673  
6674  	/* Size of a subbuf cannot be greater than the write counter */
6675  	if (psize > RB_WRITE_MASK + 1)
6676  		return -EINVAL;
6677  
6678  	old_order = buffer->subbuf_order;
6679  	old_size = buffer->subbuf_size;
6680  
6681  	/* prevent another thread from changing buffer sizes */
6682  	mutex_lock(&buffer->mutex);
6683  	atomic_inc(&buffer->record_disabled);
6684  
6685  	/* Make sure all commits have finished */
6686  	synchronize_rcu();
6687  
6688  	buffer->subbuf_order = order;
6689  	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6690  
6691  	/* Make sure all new buffers are allocated, before deleting the old ones */
6692  	for_each_buffer_cpu(buffer, cpu) {
6693  
6694  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6695  			continue;
6696  
6697  		cpu_buffer = buffer->buffers[cpu];
6698  
6699  		if (cpu_buffer->mapped) {
6700  			err = -EBUSY;
6701  			goto error;
6702  		}
6703  
6704  		/* Update the number of pages to match the new size */
6705  		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6706  		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6707  
6708  		/* we need a minimum of two pages */
6709  		if (nr_pages < 2)
6710  			nr_pages = 2;
6711  
6712  		cpu_buffer->nr_pages_to_update = nr_pages;
6713  
6714  		/* Include the reader page */
6715  		nr_pages++;
6716  
6717  		/* Allocate the new size buffer */
6718  		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6719  		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6720  					&cpu_buffer->new_pages)) {
6721  			/* not enough memory for new pages */
6722  			err = -ENOMEM;
6723  			goto error;
6724  		}
6725  	}
6726  
6727  	for_each_buffer_cpu(buffer, cpu) {
6728  		struct buffer_data_page *old_free_data_page;
6729  		struct list_head old_pages;
6730  		unsigned long flags;
6731  
6732  		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6733  			continue;
6734  
6735  		cpu_buffer = buffer->buffers[cpu];
6736  
6737  		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6738  
6739  		/* Clear the head bit to make the link list normal to read */
6740  		rb_head_page_deactivate(cpu_buffer);
6741  
6742  		/*
6743  		 * Collect buffers from the cpu_buffer pages list and the
6744  		 * reader_page on old_pages, so they can be freed later when not
6745  		 * under a spinlock. The pages list is a linked list with no
6746  		 * head, adding old_pages turns it into a regular list with
6747  		 * old_pages being the head.
6748  		 */
6749  		list_add(&old_pages, cpu_buffer->pages);
6750  		list_add(&cpu_buffer->reader_page->list, &old_pages);
6751  
6752  		/* One page was allocated for the reader page */
6753  		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6754  						     struct buffer_page, list);
6755  		list_del_init(&cpu_buffer->reader_page->list);
6756  
6757  		/* Install the new pages, remove the head from the list */
6758  		cpu_buffer->pages = cpu_buffer->new_pages.next;
6759  		list_del_init(&cpu_buffer->new_pages);
6760  
6761  		cpu_buffer->head_page
6762  			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6763  		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6764  
6765  		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6766  		cpu_buffer->nr_pages_to_update = 0;
6767  
6768  		old_free_data_page = cpu_buffer->free_page;
6769  		cpu_buffer->free_page = NULL;
6770  
6771  		rb_head_page_activate(cpu_buffer);
6772  
6773  		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6774  
6775  		/* Free old sub buffers */
6776  		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6777  			list_del_init(&bpage->list);
6778  			free_buffer_page(bpage);
6779  		}
6780  		free_pages((unsigned long)old_free_data_page, old_order);
6781  
6782  		rb_check_pages(cpu_buffer);
6783  	}
6784  
6785  	atomic_dec(&buffer->record_disabled);
6786  	mutex_unlock(&buffer->mutex);
6787  
6788  	return 0;
6789  
6790  error:
6791  	buffer->subbuf_order = old_order;
6792  	buffer->subbuf_size = old_size;
6793  
6794  	atomic_dec(&buffer->record_disabled);
6795  	mutex_unlock(&buffer->mutex);
6796  
6797  	for_each_buffer_cpu(buffer, cpu) {
6798  		cpu_buffer = buffer->buffers[cpu];
6799  
6800  		if (!cpu_buffer->nr_pages_to_update)
6801  			continue;
6802  
6803  		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6804  			list_del_init(&bpage->list);
6805  			free_buffer_page(bpage);
6806  		}
6807  	}
6808  
6809  	return err;
6810  }
6811  EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6812  
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6813  static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6814  {
6815  	struct page *page;
6816  
6817  	if (cpu_buffer->meta_page)
6818  		return 0;
6819  
6820  	page = alloc_page(GFP_USER | __GFP_ZERO);
6821  	if (!page)
6822  		return -ENOMEM;
6823  
6824  	cpu_buffer->meta_page = page_to_virt(page);
6825  
6826  	return 0;
6827  }
6828  
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6829  static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6830  {
6831  	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6832  
6833  	free_page(addr);
6834  	cpu_buffer->meta_page = NULL;
6835  }
6836  
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6837  static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6838  				   unsigned long *subbuf_ids)
6839  {
6840  	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6841  	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6842  	struct buffer_page *first_subbuf, *subbuf;
6843  	int id = 0;
6844  
6845  	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6846  	cpu_buffer->reader_page->id = id++;
6847  
6848  	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6849  	do {
6850  		if (WARN_ON(id >= nr_subbufs))
6851  			break;
6852  
6853  		subbuf_ids[id] = (unsigned long)subbuf->page;
6854  		subbuf->id = id;
6855  
6856  		rb_inc_page(&subbuf);
6857  		id++;
6858  	} while (subbuf != first_subbuf);
6859  
6860  	/* install subbuf ID to kern VA translation */
6861  	cpu_buffer->subbuf_ids = subbuf_ids;
6862  
6863  	meta->meta_struct_len = sizeof(*meta);
6864  	meta->nr_subbufs = nr_subbufs;
6865  	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6866  	meta->meta_page_size = meta->subbuf_size;
6867  
6868  	rb_update_meta_page(cpu_buffer);
6869  }
6870  
6871  static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)6872  rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6873  {
6874  	struct ring_buffer_per_cpu *cpu_buffer;
6875  
6876  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6877  		return ERR_PTR(-EINVAL);
6878  
6879  	cpu_buffer = buffer->buffers[cpu];
6880  
6881  	mutex_lock(&cpu_buffer->mapping_lock);
6882  
6883  	if (!cpu_buffer->user_mapped) {
6884  		mutex_unlock(&cpu_buffer->mapping_lock);
6885  		return ERR_PTR(-ENODEV);
6886  	}
6887  
6888  	return cpu_buffer;
6889  }
6890  
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)6891  static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6892  {
6893  	mutex_unlock(&cpu_buffer->mapping_lock);
6894  }
6895  
6896  /*
6897   * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6898   * to be set-up or torn-down.
6899   */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)6900  static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6901  			       bool inc)
6902  {
6903  	unsigned long flags;
6904  
6905  	lockdep_assert_held(&cpu_buffer->mapping_lock);
6906  
6907  	/* mapped is always greater or equal to user_mapped */
6908  	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6909  		return -EINVAL;
6910  
6911  	if (inc && cpu_buffer->mapped == UINT_MAX)
6912  		return -EBUSY;
6913  
6914  	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6915  		return -EINVAL;
6916  
6917  	mutex_lock(&cpu_buffer->buffer->mutex);
6918  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6919  
6920  	if (inc) {
6921  		cpu_buffer->user_mapped++;
6922  		cpu_buffer->mapped++;
6923  	} else {
6924  		cpu_buffer->user_mapped--;
6925  		cpu_buffer->mapped--;
6926  	}
6927  
6928  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6929  	mutex_unlock(&cpu_buffer->buffer->mutex);
6930  
6931  	return 0;
6932  }
6933  
6934  /*
6935   *   +--------------+  pgoff == 0
6936   *   |   meta page  |
6937   *   +--------------+  pgoff == 1
6938   *   | subbuffer 0  |
6939   *   |              |
6940   *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6941   *   | subbuffer 1  |
6942   *   |              |
6943   *         ...
6944   */
6945  #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)6946  static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6947  			struct vm_area_struct *vma)
6948  {
6949  	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6950  	unsigned int subbuf_pages, subbuf_order;
6951  	struct page **pages;
6952  	int p = 0, s = 0;
6953  	int err;
6954  
6955  	/* Refuse MP_PRIVATE or writable mappings */
6956  	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6957  	    !(vma->vm_flags & VM_MAYSHARE))
6958  		return -EPERM;
6959  
6960  	subbuf_order = cpu_buffer->buffer->subbuf_order;
6961  	subbuf_pages = 1 << subbuf_order;
6962  
6963  	if (subbuf_order && pgoff % subbuf_pages)
6964  		return -EINVAL;
6965  
6966  	/*
6967  	 * Make sure the mapping cannot become writable later. Also tell the VM
6968  	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
6969  	 */
6970  	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
6971  		     VM_MAYWRITE);
6972  
6973  	lockdep_assert_held(&cpu_buffer->mapping_lock);
6974  
6975  	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
6976  	nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */
6977  
6978  	nr_vma_pages = vma_pages(vma);
6979  	if (!nr_vma_pages || nr_vma_pages > nr_pages)
6980  		return -EINVAL;
6981  
6982  	nr_pages = nr_vma_pages;
6983  
6984  	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
6985  	if (!pages)
6986  		return -ENOMEM;
6987  
6988  	if (!pgoff) {
6989  		unsigned long meta_page_padding;
6990  
6991  		pages[p++] = virt_to_page(cpu_buffer->meta_page);
6992  
6993  		/*
6994  		 * Pad with the zero-page to align the meta-page with the
6995  		 * sub-buffers.
6996  		 */
6997  		meta_page_padding = subbuf_pages - 1;
6998  		while (meta_page_padding-- && p < nr_pages) {
6999  			unsigned long __maybe_unused zero_addr =
7000  				vma->vm_start + (PAGE_SIZE * p);
7001  
7002  			pages[p++] = ZERO_PAGE(zero_addr);
7003  		}
7004  	} else {
7005  		/* Skip the meta-page */
7006  		pgoff -= subbuf_pages;
7007  
7008  		s += pgoff / subbuf_pages;
7009  	}
7010  
7011  	while (p < nr_pages) {
7012  		struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7013  		int off = 0;
7014  
7015  		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7016  			err = -EINVAL;
7017  			goto out;
7018  		}
7019  
7020  		for (; off < (1 << (subbuf_order)); off++, page++) {
7021  			if (p >= nr_pages)
7022  				break;
7023  
7024  			pages[p++] = page;
7025  		}
7026  		s++;
7027  	}
7028  
7029  	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7030  
7031  out:
7032  	kfree(pages);
7033  
7034  	return err;
7035  }
7036  #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7037  static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7038  			struct vm_area_struct *vma)
7039  {
7040  	return -EOPNOTSUPP;
7041  }
7042  #endif
7043  
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7044  int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7045  		    struct vm_area_struct *vma)
7046  {
7047  	struct ring_buffer_per_cpu *cpu_buffer;
7048  	unsigned long flags, *subbuf_ids;
7049  	int err = 0;
7050  
7051  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7052  		return -EINVAL;
7053  
7054  	cpu_buffer = buffer->buffers[cpu];
7055  
7056  	mutex_lock(&cpu_buffer->mapping_lock);
7057  
7058  	if (cpu_buffer->user_mapped) {
7059  		err = __rb_map_vma(cpu_buffer, vma);
7060  		if (!err)
7061  			err = __rb_inc_dec_mapped(cpu_buffer, true);
7062  		mutex_unlock(&cpu_buffer->mapping_lock);
7063  		return err;
7064  	}
7065  
7066  	/* prevent another thread from changing buffer/sub-buffer sizes */
7067  	mutex_lock(&buffer->mutex);
7068  
7069  	err = rb_alloc_meta_page(cpu_buffer);
7070  	if (err)
7071  		goto unlock;
7072  
7073  	/* subbuf_ids include the reader while nr_pages does not */
7074  	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7075  	if (!subbuf_ids) {
7076  		rb_free_meta_page(cpu_buffer);
7077  		err = -ENOMEM;
7078  		goto unlock;
7079  	}
7080  
7081  	atomic_inc(&cpu_buffer->resize_disabled);
7082  
7083  	/*
7084  	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7085  	 * assigned.
7086  	 */
7087  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7088  	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7089  
7090  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7091  
7092  	err = __rb_map_vma(cpu_buffer, vma);
7093  	if (!err) {
7094  		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7095  		/* This is the first time it is mapped by user */
7096  		cpu_buffer->mapped++;
7097  		cpu_buffer->user_mapped = 1;
7098  		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7099  	} else {
7100  		kfree(cpu_buffer->subbuf_ids);
7101  		cpu_buffer->subbuf_ids = NULL;
7102  		rb_free_meta_page(cpu_buffer);
7103  	}
7104  
7105  unlock:
7106  	mutex_unlock(&buffer->mutex);
7107  	mutex_unlock(&cpu_buffer->mapping_lock);
7108  
7109  	return err;
7110  }
7111  
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7112  int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7113  {
7114  	struct ring_buffer_per_cpu *cpu_buffer;
7115  	unsigned long flags;
7116  	int err = 0;
7117  
7118  	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7119  		return -EINVAL;
7120  
7121  	cpu_buffer = buffer->buffers[cpu];
7122  
7123  	mutex_lock(&cpu_buffer->mapping_lock);
7124  
7125  	if (!cpu_buffer->user_mapped) {
7126  		err = -ENODEV;
7127  		goto out;
7128  	} else if (cpu_buffer->user_mapped > 1) {
7129  		__rb_inc_dec_mapped(cpu_buffer, false);
7130  		goto out;
7131  	}
7132  
7133  	mutex_lock(&buffer->mutex);
7134  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7135  
7136  	/* This is the last user space mapping */
7137  	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7138  		cpu_buffer->mapped--;
7139  	cpu_buffer->user_mapped = 0;
7140  
7141  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7142  
7143  	kfree(cpu_buffer->subbuf_ids);
7144  	cpu_buffer->subbuf_ids = NULL;
7145  	rb_free_meta_page(cpu_buffer);
7146  	atomic_dec(&cpu_buffer->resize_disabled);
7147  
7148  	mutex_unlock(&buffer->mutex);
7149  
7150  out:
7151  	mutex_unlock(&cpu_buffer->mapping_lock);
7152  
7153  	return err;
7154  }
7155  
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7156  int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7157  {
7158  	struct ring_buffer_per_cpu *cpu_buffer;
7159  	struct buffer_page *reader;
7160  	unsigned long missed_events;
7161  	unsigned long reader_size;
7162  	unsigned long flags;
7163  
7164  	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7165  	if (IS_ERR(cpu_buffer))
7166  		return (int)PTR_ERR(cpu_buffer);
7167  
7168  	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7169  
7170  consume:
7171  	if (rb_per_cpu_empty(cpu_buffer))
7172  		goto out;
7173  
7174  	reader_size = rb_page_size(cpu_buffer->reader_page);
7175  
7176  	/*
7177  	 * There are data to be read on the current reader page, we can
7178  	 * return to the caller. But before that, we assume the latter will read
7179  	 * everything. Let's update the kernel reader accordingly.
7180  	 */
7181  	if (cpu_buffer->reader_page->read < reader_size) {
7182  		while (cpu_buffer->reader_page->read < reader_size)
7183  			rb_advance_reader(cpu_buffer);
7184  		goto out;
7185  	}
7186  
7187  	reader = rb_get_reader_page(cpu_buffer);
7188  	if (WARN_ON(!reader))
7189  		goto out;
7190  
7191  	/* Check if any events were dropped */
7192  	missed_events = cpu_buffer->lost_events;
7193  
7194  	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7195  		if (missed_events) {
7196  			struct buffer_data_page *bpage = reader->page;
7197  			unsigned int commit;
7198  			/*
7199  			 * Use the real_end for the data size,
7200  			 * This gives us a chance to store the lost events
7201  			 * on the page.
7202  			 */
7203  			if (reader->real_end)
7204  				local_set(&bpage->commit, reader->real_end);
7205  			/*
7206  			 * If there is room at the end of the page to save the
7207  			 * missed events, then record it there.
7208  			 */
7209  			commit = rb_page_size(reader);
7210  			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7211  				memcpy(&bpage->data[commit], &missed_events,
7212  				       sizeof(missed_events));
7213  				local_add(RB_MISSED_STORED, &bpage->commit);
7214  			}
7215  			local_add(RB_MISSED_EVENTS, &bpage->commit);
7216  		}
7217  	} else {
7218  		/*
7219  		 * There really shouldn't be any missed events if the commit
7220  		 * is on the reader page.
7221  		 */
7222  		WARN_ON_ONCE(missed_events);
7223  	}
7224  
7225  	cpu_buffer->lost_events = 0;
7226  
7227  	goto consume;
7228  
7229  out:
7230  	/* Some archs do not have data cache coherency between kernel and user-space */
7231  	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7232  
7233  	rb_update_meta_page(cpu_buffer);
7234  
7235  	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7236  	rb_put_mapped_buffer(cpu_buffer);
7237  
7238  	return 0;
7239  }
7240  
7241  /*
7242   * We only allocate new buffers, never free them if the CPU goes down.
7243   * If we were to free the buffer, then the user would lose any trace that was in
7244   * the buffer.
7245   */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7246  int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7247  {
7248  	struct trace_buffer *buffer;
7249  	long nr_pages_same;
7250  	int cpu_i;
7251  	unsigned long nr_pages;
7252  
7253  	buffer = container_of(node, struct trace_buffer, node);
7254  	if (cpumask_test_cpu(cpu, buffer->cpumask))
7255  		return 0;
7256  
7257  	nr_pages = 0;
7258  	nr_pages_same = 1;
7259  	/* check if all cpu sizes are same */
7260  	for_each_buffer_cpu(buffer, cpu_i) {
7261  		/* fill in the size from first enabled cpu */
7262  		if (nr_pages == 0)
7263  			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7264  		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7265  			nr_pages_same = 0;
7266  			break;
7267  		}
7268  	}
7269  	/* allocate minimum pages, user can later expand it */
7270  	if (!nr_pages_same)
7271  		nr_pages = 2;
7272  	buffer->buffers[cpu] =
7273  		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7274  	if (!buffer->buffers[cpu]) {
7275  		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7276  		     cpu);
7277  		return -ENOMEM;
7278  	}
7279  	smp_wmb();
7280  	cpumask_set_cpu(cpu, buffer->cpumask);
7281  	return 0;
7282  }
7283  
7284  #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7285  /*
7286   * This is a basic integrity check of the ring buffer.
7287   * Late in the boot cycle this test will run when configured in.
7288   * It will kick off a thread per CPU that will go into a loop
7289   * writing to the per cpu ring buffer various sizes of data.
7290   * Some of the data will be large items, some small.
7291   *
7292   * Another thread is created that goes into a spin, sending out
7293   * IPIs to the other CPUs to also write into the ring buffer.
7294   * this is to test the nesting ability of the buffer.
7295   *
7296   * Basic stats are recorded and reported. If something in the
7297   * ring buffer should happen that's not expected, a big warning
7298   * is displayed and all ring buffers are disabled.
7299   */
7300  static struct task_struct *rb_threads[NR_CPUS] __initdata;
7301  
7302  struct rb_test_data {
7303  	struct trace_buffer *buffer;
7304  	unsigned long		events;
7305  	unsigned long		bytes_written;
7306  	unsigned long		bytes_alloc;
7307  	unsigned long		bytes_dropped;
7308  	unsigned long		events_nested;
7309  	unsigned long		bytes_written_nested;
7310  	unsigned long		bytes_alloc_nested;
7311  	unsigned long		bytes_dropped_nested;
7312  	int			min_size_nested;
7313  	int			max_size_nested;
7314  	int			max_size;
7315  	int			min_size;
7316  	int			cpu;
7317  	int			cnt;
7318  };
7319  
7320  static struct rb_test_data rb_data[NR_CPUS] __initdata;
7321  
7322  /* 1 meg per cpu */
7323  #define RB_TEST_BUFFER_SIZE	1048576
7324  
7325  static char rb_string[] __initdata =
7326  	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7327  	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7328  	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7329  
7330  static bool rb_test_started __initdata;
7331  
7332  struct rb_item {
7333  	int size;
7334  	char str[];
7335  };
7336  
rb_write_something(struct rb_test_data * data,bool nested)7337  static __init int rb_write_something(struct rb_test_data *data, bool nested)
7338  {
7339  	struct ring_buffer_event *event;
7340  	struct rb_item *item;
7341  	bool started;
7342  	int event_len;
7343  	int size;
7344  	int len;
7345  	int cnt;
7346  
7347  	/* Have nested writes different that what is written */
7348  	cnt = data->cnt + (nested ? 27 : 0);
7349  
7350  	/* Multiply cnt by ~e, to make some unique increment */
7351  	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7352  
7353  	len = size + sizeof(struct rb_item);
7354  
7355  	started = rb_test_started;
7356  	/* read rb_test_started before checking buffer enabled */
7357  	smp_rmb();
7358  
7359  	event = ring_buffer_lock_reserve(data->buffer, len);
7360  	if (!event) {
7361  		/* Ignore dropped events before test starts. */
7362  		if (started) {
7363  			if (nested)
7364  				data->bytes_dropped += len;
7365  			else
7366  				data->bytes_dropped_nested += len;
7367  		}
7368  		return len;
7369  	}
7370  
7371  	event_len = ring_buffer_event_length(event);
7372  
7373  	if (RB_WARN_ON(data->buffer, event_len < len))
7374  		goto out;
7375  
7376  	item = ring_buffer_event_data(event);
7377  	item->size = size;
7378  	memcpy(item->str, rb_string, size);
7379  
7380  	if (nested) {
7381  		data->bytes_alloc_nested += event_len;
7382  		data->bytes_written_nested += len;
7383  		data->events_nested++;
7384  		if (!data->min_size_nested || len < data->min_size_nested)
7385  			data->min_size_nested = len;
7386  		if (len > data->max_size_nested)
7387  			data->max_size_nested = len;
7388  	} else {
7389  		data->bytes_alloc += event_len;
7390  		data->bytes_written += len;
7391  		data->events++;
7392  		if (!data->min_size || len < data->min_size)
7393  			data->max_size = len;
7394  		if (len > data->max_size)
7395  			data->max_size = len;
7396  	}
7397  
7398   out:
7399  	ring_buffer_unlock_commit(data->buffer);
7400  
7401  	return 0;
7402  }
7403  
rb_test(void * arg)7404  static __init int rb_test(void *arg)
7405  {
7406  	struct rb_test_data *data = arg;
7407  
7408  	while (!kthread_should_stop()) {
7409  		rb_write_something(data, false);
7410  		data->cnt++;
7411  
7412  		set_current_state(TASK_INTERRUPTIBLE);
7413  		/* Now sleep between a min of 100-300us and a max of 1ms */
7414  		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7415  	}
7416  
7417  	return 0;
7418  }
7419  
rb_ipi(void * ignore)7420  static __init void rb_ipi(void *ignore)
7421  {
7422  	struct rb_test_data *data;
7423  	int cpu = smp_processor_id();
7424  
7425  	data = &rb_data[cpu];
7426  	rb_write_something(data, true);
7427  }
7428  
rb_hammer_test(void * arg)7429  static __init int rb_hammer_test(void *arg)
7430  {
7431  	while (!kthread_should_stop()) {
7432  
7433  		/* Send an IPI to all cpus to write data! */
7434  		smp_call_function(rb_ipi, NULL, 1);
7435  		/* No sleep, but for non preempt, let others run */
7436  		schedule();
7437  	}
7438  
7439  	return 0;
7440  }
7441  
test_ringbuffer(void)7442  static __init int test_ringbuffer(void)
7443  {
7444  	struct task_struct *rb_hammer;
7445  	struct trace_buffer *buffer;
7446  	int cpu;
7447  	int ret = 0;
7448  
7449  	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7450  		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7451  		return 0;
7452  	}
7453  
7454  	pr_info("Running ring buffer tests...\n");
7455  
7456  	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7457  	if (WARN_ON(!buffer))
7458  		return 0;
7459  
7460  	/* Disable buffer so that threads can't write to it yet */
7461  	ring_buffer_record_off(buffer);
7462  
7463  	for_each_online_cpu(cpu) {
7464  		rb_data[cpu].buffer = buffer;
7465  		rb_data[cpu].cpu = cpu;
7466  		rb_data[cpu].cnt = cpu;
7467  		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7468  						     cpu, "rbtester/%u");
7469  		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7470  			pr_cont("FAILED\n");
7471  			ret = PTR_ERR(rb_threads[cpu]);
7472  			goto out_free;
7473  		}
7474  	}
7475  
7476  	/* Now create the rb hammer! */
7477  	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7478  	if (WARN_ON(IS_ERR(rb_hammer))) {
7479  		pr_cont("FAILED\n");
7480  		ret = PTR_ERR(rb_hammer);
7481  		goto out_free;
7482  	}
7483  
7484  	ring_buffer_record_on(buffer);
7485  	/*
7486  	 * Show buffer is enabled before setting rb_test_started.
7487  	 * Yes there's a small race window where events could be
7488  	 * dropped and the thread wont catch it. But when a ring
7489  	 * buffer gets enabled, there will always be some kind of
7490  	 * delay before other CPUs see it. Thus, we don't care about
7491  	 * those dropped events. We care about events dropped after
7492  	 * the threads see that the buffer is active.
7493  	 */
7494  	smp_wmb();
7495  	rb_test_started = true;
7496  
7497  	set_current_state(TASK_INTERRUPTIBLE);
7498  	/* Just run for 10 seconds */;
7499  	schedule_timeout(10 * HZ);
7500  
7501  	kthread_stop(rb_hammer);
7502  
7503   out_free:
7504  	for_each_online_cpu(cpu) {
7505  		if (!rb_threads[cpu])
7506  			break;
7507  		kthread_stop(rb_threads[cpu]);
7508  	}
7509  	if (ret) {
7510  		ring_buffer_free(buffer);
7511  		return ret;
7512  	}
7513  
7514  	/* Report! */
7515  	pr_info("finished\n");
7516  	for_each_online_cpu(cpu) {
7517  		struct ring_buffer_event *event;
7518  		struct rb_test_data *data = &rb_data[cpu];
7519  		struct rb_item *item;
7520  		unsigned long total_events;
7521  		unsigned long total_dropped;
7522  		unsigned long total_written;
7523  		unsigned long total_alloc;
7524  		unsigned long total_read = 0;
7525  		unsigned long total_size = 0;
7526  		unsigned long total_len = 0;
7527  		unsigned long total_lost = 0;
7528  		unsigned long lost;
7529  		int big_event_size;
7530  		int small_event_size;
7531  
7532  		ret = -1;
7533  
7534  		total_events = data->events + data->events_nested;
7535  		total_written = data->bytes_written + data->bytes_written_nested;
7536  		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7537  		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7538  
7539  		big_event_size = data->max_size + data->max_size_nested;
7540  		small_event_size = data->min_size + data->min_size_nested;
7541  
7542  		pr_info("CPU %d:\n", cpu);
7543  		pr_info("              events:    %ld\n", total_events);
7544  		pr_info("       dropped bytes:    %ld\n", total_dropped);
7545  		pr_info("       alloced bytes:    %ld\n", total_alloc);
7546  		pr_info("       written bytes:    %ld\n", total_written);
7547  		pr_info("       biggest event:    %d\n", big_event_size);
7548  		pr_info("      smallest event:    %d\n", small_event_size);
7549  
7550  		if (RB_WARN_ON(buffer, total_dropped))
7551  			break;
7552  
7553  		ret = 0;
7554  
7555  		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7556  			total_lost += lost;
7557  			item = ring_buffer_event_data(event);
7558  			total_len += ring_buffer_event_length(event);
7559  			total_size += item->size + sizeof(struct rb_item);
7560  			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7561  				pr_info("FAILED!\n");
7562  				pr_info("buffer had: %.*s\n", item->size, item->str);
7563  				pr_info("expected:   %.*s\n", item->size, rb_string);
7564  				RB_WARN_ON(buffer, 1);
7565  				ret = -1;
7566  				break;
7567  			}
7568  			total_read++;
7569  		}
7570  		if (ret)
7571  			break;
7572  
7573  		ret = -1;
7574  
7575  		pr_info("         read events:   %ld\n", total_read);
7576  		pr_info("         lost events:   %ld\n", total_lost);
7577  		pr_info("        total events:   %ld\n", total_lost + total_read);
7578  		pr_info("  recorded len bytes:   %ld\n", total_len);
7579  		pr_info(" recorded size bytes:   %ld\n", total_size);
7580  		if (total_lost) {
7581  			pr_info(" With dropped events, record len and size may not match\n"
7582  				" alloced and written from above\n");
7583  		} else {
7584  			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7585  				       total_size != total_written))
7586  				break;
7587  		}
7588  		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7589  			break;
7590  
7591  		ret = 0;
7592  	}
7593  	if (!ret)
7594  		pr_info("Ring buffer PASSED!\n");
7595  
7596  	ring_buffer_free(buffer);
7597  	return 0;
7598  }
7599  
7600  late_initcall(test_ringbuffer);
7601  #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7602