1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/traps.h>
15 #include <asm/irq_regs.h>
16 
17 #include <uapi/asm/kvm.h>
18 
19 #include <linux/hardirq.h>
20 #include <linux/pkeys.h>
21 #include <linux/vmalloc.h>
22 
23 #include "context.h"
24 #include "internal.h"
25 #include "legacy.h"
26 #include "xstate.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/fpu.h>
30 
31 #ifdef CONFIG_X86_64
32 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
33 DEFINE_PER_CPU(u64, xfd_state);
34 #endif
35 
36 /* The FPU state configuration data for kernel and user space */
37 struct fpu_state_config	fpu_kernel_cfg __ro_after_init;
38 struct fpu_state_config fpu_user_cfg __ro_after_init;
39 
40 /*
41  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
42  * depending on the FPU hardware format:
43  */
44 struct fpstate init_fpstate __ro_after_init;
45 
46 /* Track in-kernel FPU usage */
47 static DEFINE_PER_CPU(bool, in_kernel_fpu);
48 
49 /*
50  * Track which context is using the FPU on the CPU:
51  */
52 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
53 
54 /*
55  * Can we use the FPU in kernel mode with the
56  * whole "kernel_fpu_begin/end()" sequence?
57  */
irq_fpu_usable(void)58 bool irq_fpu_usable(void)
59 {
60 	if (WARN_ON_ONCE(in_nmi()))
61 		return false;
62 
63 	/* In kernel FPU usage already active? */
64 	if (this_cpu_read(in_kernel_fpu))
65 		return false;
66 
67 	/*
68 	 * When not in NMI or hard interrupt context, FPU can be used in:
69 	 *
70 	 * - Task context except from within fpregs_lock()'ed critical
71 	 *   regions.
72 	 *
73 	 * - Soft interrupt processing context which cannot happen
74 	 *   while in a fpregs_lock()'ed critical region.
75 	 */
76 	if (!in_hardirq())
77 		return true;
78 
79 	/*
80 	 * In hard interrupt context it's safe when soft interrupts
81 	 * are enabled, which means the interrupt did not hit in
82 	 * a fpregs_lock()'ed critical region.
83 	 */
84 	return !softirq_count();
85 }
86 EXPORT_SYMBOL(irq_fpu_usable);
87 
88 /*
89  * Track AVX512 state use because it is known to slow the max clock
90  * speed of the core.
91  */
update_avx_timestamp(struct fpu * fpu)92 static void update_avx_timestamp(struct fpu *fpu)
93 {
94 
95 #define AVX512_TRACKING_MASK	(XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
96 
97 	if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
98 		fpu->avx512_timestamp = jiffies;
99 }
100 
101 /*
102  * Save the FPU register state in fpu->fpstate->regs. The register state is
103  * preserved.
104  *
105  * Must be called with fpregs_lock() held.
106  *
107  * The legacy FNSAVE instruction clears all FPU state unconditionally, so
108  * register state has to be reloaded. That might be a pointless exercise
109  * when the FPU is going to be used by another task right after that. But
110  * this only affects 20+ years old 32bit systems and avoids conditionals all
111  * over the place.
112  *
113  * FXSAVE and all XSAVE variants preserve the FPU register state.
114  */
save_fpregs_to_fpstate(struct fpu * fpu)115 void save_fpregs_to_fpstate(struct fpu *fpu)
116 {
117 	if (likely(use_xsave())) {
118 		os_xsave(fpu->fpstate);
119 		update_avx_timestamp(fpu);
120 		return;
121 	}
122 
123 	if (likely(use_fxsr())) {
124 		fxsave(&fpu->fpstate->regs.fxsave);
125 		return;
126 	}
127 
128 	/*
129 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
130 	 * so we have to reload them from the memory state.
131 	 */
132 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
133 	frstor(&fpu->fpstate->regs.fsave);
134 }
135 
restore_fpregs_from_fpstate(struct fpstate * fpstate,u64 mask)136 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
137 {
138 	/*
139 	 * AMD K7/K8 and later CPUs up to Zen don't save/restore
140 	 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
141 	 * here by setting it to fixed values.  "m" is a random variable
142 	 * that should be in L1.
143 	 */
144 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
145 		asm volatile(
146 			"fnclex\n\t"
147 			"emms\n\t"
148 			"fildl %[addr]"	/* set F?P to defined value */
149 			: : [addr] "m" (*fpstate));
150 	}
151 
152 	if (use_xsave()) {
153 		/*
154 		 * Dynamically enabled features are enabled in XCR0, but
155 		 * usage requires also that the corresponding bits in XFD
156 		 * are cleared.  If the bits are set then using a related
157 		 * instruction will raise #NM. This allows to do the
158 		 * allocation of the larger FPU buffer lazy from #NM or if
159 		 * the task has no permission to kill it which would happen
160 		 * via #UD if the feature is disabled in XCR0.
161 		 *
162 		 * XFD state is following the same life time rules as
163 		 * XSTATE and to restore state correctly XFD has to be
164 		 * updated before XRSTORS otherwise the component would
165 		 * stay in or go into init state even if the bits are set
166 		 * in fpstate::regs::xsave::xfeatures.
167 		 */
168 		xfd_update_state(fpstate);
169 
170 		/*
171 		 * Restoring state always needs to modify all features
172 		 * which are in @mask even if the current task cannot use
173 		 * extended features.
174 		 *
175 		 * So fpstate->xfeatures cannot be used here, because then
176 		 * a feature for which the task has no permission but was
177 		 * used by the previous task would not go into init state.
178 		 */
179 		mask = fpu_kernel_cfg.max_features & mask;
180 
181 		os_xrstor(fpstate, mask);
182 	} else {
183 		if (use_fxsr())
184 			fxrstor(&fpstate->regs.fxsave);
185 		else
186 			frstor(&fpstate->regs.fsave);
187 	}
188 }
189 
fpu_reset_from_exception_fixup(void)190 void fpu_reset_from_exception_fixup(void)
191 {
192 	restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
193 }
194 
195 #if IS_ENABLED(CONFIG_KVM)
196 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
197 
fpu_init_guest_permissions(struct fpu_guest * gfpu)198 static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
199 {
200 	struct fpu_state_perm *fpuperm;
201 	u64 perm;
202 
203 	if (!IS_ENABLED(CONFIG_X86_64))
204 		return;
205 
206 	spin_lock_irq(&current->sighand->siglock);
207 	fpuperm = &current->group_leader->thread.fpu.guest_perm;
208 	perm = fpuperm->__state_perm;
209 
210 	/* First fpstate allocation locks down permissions. */
211 	WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
212 
213 	spin_unlock_irq(&current->sighand->siglock);
214 
215 	gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
216 }
217 
fpu_alloc_guest_fpstate(struct fpu_guest * gfpu)218 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
219 {
220 	struct fpstate *fpstate;
221 	unsigned int size;
222 
223 	size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
224 	fpstate = vzalloc(size);
225 	if (!fpstate)
226 		return false;
227 
228 	/* Leave xfd to 0 (the reset value defined by spec) */
229 	__fpstate_reset(fpstate, 0);
230 	fpstate_init_user(fpstate);
231 	fpstate->is_valloc	= true;
232 	fpstate->is_guest	= true;
233 
234 	gfpu->fpstate		= fpstate;
235 	gfpu->xfeatures		= fpu_user_cfg.default_features;
236 	gfpu->perm		= fpu_user_cfg.default_features;
237 
238 	/*
239 	 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
240 	 * to userspace, even when XSAVE is unsupported, so that restoring FPU
241 	 * state on a different CPU that does support XSAVE can cleanly load
242 	 * the incoming state using its natural XSAVE.  In other words, KVM's
243 	 * uABI size may be larger than this host's default size.  Conversely,
244 	 * the default size should never be larger than KVM's base uABI size;
245 	 * all features that can expand the uABI size must be opt-in.
246 	 */
247 	gfpu->uabi_size		= sizeof(struct kvm_xsave);
248 	if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
249 		gfpu->uabi_size = fpu_user_cfg.default_size;
250 
251 	fpu_init_guest_permissions(gfpu);
252 
253 	return true;
254 }
255 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
256 
fpu_free_guest_fpstate(struct fpu_guest * gfpu)257 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
258 {
259 	struct fpstate *fps = gfpu->fpstate;
260 
261 	if (!fps)
262 		return;
263 
264 	if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
265 		return;
266 
267 	gfpu->fpstate = NULL;
268 	vfree(fps);
269 }
270 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
271 
272 /*
273   * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
274   * @guest_fpu:         Pointer to the guest FPU container
275   * @xfeatures:         Features requested by guest CPUID
276   *
277   * Enable all dynamic xfeatures according to guest perm and requested CPUID.
278   *
279   * Return: 0 on success, error code otherwise
280   */
fpu_enable_guest_xfd_features(struct fpu_guest * guest_fpu,u64 xfeatures)281 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
282 {
283 	lockdep_assert_preemption_enabled();
284 
285 	/* Nothing to do if all requested features are already enabled. */
286 	xfeatures &= ~guest_fpu->xfeatures;
287 	if (!xfeatures)
288 		return 0;
289 
290 	return __xfd_enable_feature(xfeatures, guest_fpu);
291 }
292 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
293 
294 #ifdef CONFIG_X86_64
fpu_update_guest_xfd(struct fpu_guest * guest_fpu,u64 xfd)295 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
296 {
297 	fpregs_lock();
298 	guest_fpu->fpstate->xfd = xfd;
299 	if (guest_fpu->fpstate->in_use)
300 		xfd_update_state(guest_fpu->fpstate);
301 	fpregs_unlock();
302 }
303 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
304 
305 /**
306  * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
307  *
308  * Must be invoked from KVM after a VMEXIT before enabling interrupts when
309  * XFD write emulation is disabled. This is required because the guest can
310  * freely modify XFD and the state at VMEXIT is not guaranteed to be the
311  * same as the state on VMENTER. So software state has to be updated before
312  * any operation which depends on it can take place.
313  *
314  * Note: It can be invoked unconditionally even when write emulation is
315  * enabled for the price of a then pointless MSR read.
316  */
fpu_sync_guest_vmexit_xfd_state(void)317 void fpu_sync_guest_vmexit_xfd_state(void)
318 {
319 	struct fpstate *fps = current->thread.fpu.fpstate;
320 
321 	lockdep_assert_irqs_disabled();
322 	if (fpu_state_size_dynamic()) {
323 		rdmsrl(MSR_IA32_XFD, fps->xfd);
324 		__this_cpu_write(xfd_state, fps->xfd);
325 	}
326 }
327 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
328 #endif /* CONFIG_X86_64 */
329 
fpu_swap_kvm_fpstate(struct fpu_guest * guest_fpu,bool enter_guest)330 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
331 {
332 	struct fpstate *guest_fps = guest_fpu->fpstate;
333 	struct fpu *fpu = &current->thread.fpu;
334 	struct fpstate *cur_fps = fpu->fpstate;
335 
336 	fpregs_lock();
337 	if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
338 		save_fpregs_to_fpstate(fpu);
339 
340 	/* Swap fpstate */
341 	if (enter_guest) {
342 		fpu->__task_fpstate = cur_fps;
343 		fpu->fpstate = guest_fps;
344 		guest_fps->in_use = true;
345 	} else {
346 		guest_fps->in_use = false;
347 		fpu->fpstate = fpu->__task_fpstate;
348 		fpu->__task_fpstate = NULL;
349 	}
350 
351 	cur_fps = fpu->fpstate;
352 
353 	if (!cur_fps->is_confidential) {
354 		/* Includes XFD update */
355 		restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
356 	} else {
357 		/*
358 		 * XSTATE is restored by firmware from encrypted
359 		 * memory. Make sure XFD state is correct while
360 		 * running with guest fpstate
361 		 */
362 		xfd_update_state(cur_fps);
363 	}
364 
365 	fpregs_mark_activate();
366 	fpregs_unlock();
367 	return 0;
368 }
369 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
370 
fpu_copy_guest_fpstate_to_uabi(struct fpu_guest * gfpu,void * buf,unsigned int size,u64 xfeatures,u32 pkru)371 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
372 				    unsigned int size, u64 xfeatures, u32 pkru)
373 {
374 	struct fpstate *kstate = gfpu->fpstate;
375 	union fpregs_state *ustate = buf;
376 	struct membuf mb = { .p = buf, .left = size };
377 
378 	if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
379 		__copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
380 					  XSTATE_COPY_XSAVE);
381 	} else {
382 		memcpy(&ustate->fxsave, &kstate->regs.fxsave,
383 		       sizeof(ustate->fxsave));
384 		/* Make it restorable on a XSAVE enabled host */
385 		ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
386 	}
387 }
388 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
389 
fpu_copy_uabi_to_guest_fpstate(struct fpu_guest * gfpu,const void * buf,u64 xcr0,u32 * vpkru)390 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
391 				   u64 xcr0, u32 *vpkru)
392 {
393 	struct fpstate *kstate = gfpu->fpstate;
394 	const union fpregs_state *ustate = buf;
395 
396 	if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
397 		if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
398 			return -EINVAL;
399 		if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
400 			return -EINVAL;
401 		memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
402 		return 0;
403 	}
404 
405 	if (ustate->xsave.header.xfeatures & ~xcr0)
406 		return -EINVAL;
407 
408 	/*
409 	 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set
410 	 * in the header.  KVM's odd ABI is to leave PKRU untouched in this
411 	 * case (all other components are eventually re-initialized).
412 	 */
413 	if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
414 		vpkru = NULL;
415 
416 	return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
417 }
418 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
419 #endif /* CONFIG_KVM */
420 
kernel_fpu_begin_mask(unsigned int kfpu_mask)421 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
422 {
423 	preempt_disable();
424 
425 	WARN_ON_FPU(!irq_fpu_usable());
426 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
427 
428 	this_cpu_write(in_kernel_fpu, true);
429 
430 	if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
431 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
432 		set_thread_flag(TIF_NEED_FPU_LOAD);
433 		save_fpregs_to_fpstate(&current->thread.fpu);
434 	}
435 	__cpu_invalidate_fpregs_state();
436 
437 	/* Put sane initial values into the control registers. */
438 	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
439 		ldmxcsr(MXCSR_DEFAULT);
440 
441 	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
442 		asm volatile ("fninit");
443 }
444 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
445 
kernel_fpu_end(void)446 void kernel_fpu_end(void)
447 {
448 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
449 
450 	this_cpu_write(in_kernel_fpu, false);
451 	preempt_enable();
452 }
453 EXPORT_SYMBOL_GPL(kernel_fpu_end);
454 
455 /*
456  * Sync the FPU register state to current's memory register state when the
457  * current task owns the FPU. The hardware register state is preserved.
458  */
fpu_sync_fpstate(struct fpu * fpu)459 void fpu_sync_fpstate(struct fpu *fpu)
460 {
461 	WARN_ON_FPU(fpu != &current->thread.fpu);
462 
463 	fpregs_lock();
464 	trace_x86_fpu_before_save(fpu);
465 
466 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
467 		save_fpregs_to_fpstate(fpu);
468 
469 	trace_x86_fpu_after_save(fpu);
470 	fpregs_unlock();
471 }
472 
init_fpstate_copy_size(void)473 static inline unsigned int init_fpstate_copy_size(void)
474 {
475 	if (!use_xsave())
476 		return fpu_kernel_cfg.default_size;
477 
478 	/* XSAVE(S) just needs the legacy and the xstate header part */
479 	return sizeof(init_fpstate.regs.xsave);
480 }
481 
fpstate_init_fxstate(struct fpstate * fpstate)482 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
483 {
484 	fpstate->regs.fxsave.cwd = 0x37f;
485 	fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
486 }
487 
488 /*
489  * Legacy x87 fpstate state init:
490  */
fpstate_init_fstate(struct fpstate * fpstate)491 static inline void fpstate_init_fstate(struct fpstate *fpstate)
492 {
493 	fpstate->regs.fsave.cwd = 0xffff037fu;
494 	fpstate->regs.fsave.swd = 0xffff0000u;
495 	fpstate->regs.fsave.twd = 0xffffffffu;
496 	fpstate->regs.fsave.fos = 0xffff0000u;
497 }
498 
499 /*
500  * Used in two places:
501  * 1) Early boot to setup init_fpstate for non XSAVE systems
502  * 2) fpu_init_fpstate_user() which is invoked from KVM
503  */
fpstate_init_user(struct fpstate * fpstate)504 void fpstate_init_user(struct fpstate *fpstate)
505 {
506 	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
507 		fpstate_init_soft(&fpstate->regs.soft);
508 		return;
509 	}
510 
511 	xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
512 
513 	if (cpu_feature_enabled(X86_FEATURE_FXSR))
514 		fpstate_init_fxstate(fpstate);
515 	else
516 		fpstate_init_fstate(fpstate);
517 }
518 
__fpstate_reset(struct fpstate * fpstate,u64 xfd)519 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
520 {
521 	/* Initialize sizes and feature masks */
522 	fpstate->size		= fpu_kernel_cfg.default_size;
523 	fpstate->user_size	= fpu_user_cfg.default_size;
524 	fpstate->xfeatures	= fpu_kernel_cfg.default_features;
525 	fpstate->user_xfeatures	= fpu_user_cfg.default_features;
526 	fpstate->xfd		= xfd;
527 }
528 
fpstate_reset(struct fpu * fpu)529 void fpstate_reset(struct fpu *fpu)
530 {
531 	/* Set the fpstate pointer to the default fpstate */
532 	fpu->fpstate = &fpu->__fpstate;
533 	__fpstate_reset(fpu->fpstate, init_fpstate.xfd);
534 
535 	/* Initialize the permission related info in fpu */
536 	fpu->perm.__state_perm		= fpu_kernel_cfg.default_features;
537 	fpu->perm.__state_size		= fpu_kernel_cfg.default_size;
538 	fpu->perm.__user_state_size	= fpu_user_cfg.default_size;
539 	/* Same defaults for guests */
540 	fpu->guest_perm = fpu->perm;
541 }
542 
fpu_inherit_perms(struct fpu * dst_fpu)543 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
544 {
545 	if (fpu_state_size_dynamic()) {
546 		struct fpu *src_fpu = &current->group_leader->thread.fpu;
547 
548 		spin_lock_irq(&current->sighand->siglock);
549 		/* Fork also inherits the permissions of the parent */
550 		dst_fpu->perm = src_fpu->perm;
551 		dst_fpu->guest_perm = src_fpu->guest_perm;
552 		spin_unlock_irq(&current->sighand->siglock);
553 	}
554 }
555 
556 /* A passed ssp of zero will not cause any update */
update_fpu_shstk(struct task_struct * dst,unsigned long ssp)557 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
558 {
559 #ifdef CONFIG_X86_USER_SHADOW_STACK
560 	struct cet_user_state *xstate;
561 
562 	/* If ssp update is not needed. */
563 	if (!ssp)
564 		return 0;
565 
566 	xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave,
567 				XFEATURE_CET_USER);
568 
569 	/*
570 	 * If there is a non-zero ssp, then 'dst' must be configured with a shadow
571 	 * stack and the fpu state should be up to date since it was just copied
572 	 * from the parent in fpu_clone(). So there must be a valid non-init CET
573 	 * state location in the buffer.
574 	 */
575 	if (WARN_ON_ONCE(!xstate))
576 		return 1;
577 
578 	xstate->user_ssp = (u64)ssp;
579 #endif
580 	return 0;
581 }
582 
583 /* Clone current's FPU state on fork */
fpu_clone(struct task_struct * dst,unsigned long clone_flags,bool minimal,unsigned long ssp)584 int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
585 	      unsigned long ssp)
586 {
587 	struct fpu *src_fpu = &current->thread.fpu;
588 	struct fpu *dst_fpu = &dst->thread.fpu;
589 
590 	/* The new task's FPU state cannot be valid in the hardware. */
591 	dst_fpu->last_cpu = -1;
592 
593 	fpstate_reset(dst_fpu);
594 
595 	if (!cpu_feature_enabled(X86_FEATURE_FPU))
596 		return 0;
597 
598 	/*
599 	 * Enforce reload for user space tasks and prevent kernel threads
600 	 * from trying to save the FPU registers on context switch.
601 	 */
602 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
603 
604 	/*
605 	 * No FPU state inheritance for kernel threads and IO
606 	 * worker threads.
607 	 */
608 	if (minimal) {
609 		/* Clear out the minimal state */
610 		memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
611 		       init_fpstate_copy_size());
612 		return 0;
613 	}
614 
615 	/*
616 	 * If a new feature is added, ensure all dynamic features are
617 	 * caller-saved from here!
618 	 */
619 	BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
620 
621 	/*
622 	 * Save the default portion of the current FPU state into the
623 	 * clone. Assume all dynamic features to be defined as caller-
624 	 * saved, which enables skipping both the expansion of fpstate
625 	 * and the copying of any dynamic state.
626 	 *
627 	 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
628 	 * copying is not valid when current uses non-default states.
629 	 */
630 	fpregs_lock();
631 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
632 		fpregs_restore_userregs();
633 	save_fpregs_to_fpstate(dst_fpu);
634 	fpregs_unlock();
635 	if (!(clone_flags & CLONE_THREAD))
636 		fpu_inherit_perms(dst_fpu);
637 
638 	/*
639 	 * Children never inherit PASID state.
640 	 * Force it to have its init value:
641 	 */
642 	if (use_xsave())
643 		dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
644 
645 	/*
646 	 * Update shadow stack pointer, in case it changed during clone.
647 	 */
648 	if (update_fpu_shstk(dst, ssp))
649 		return 1;
650 
651 	trace_x86_fpu_copy_src(src_fpu);
652 	trace_x86_fpu_copy_dst(dst_fpu);
653 
654 	return 0;
655 }
656 
657 /*
658  * Whitelist the FPU register state embedded into task_struct for hardened
659  * usercopy.
660  */
fpu_thread_struct_whitelist(unsigned long * offset,unsigned long * size)661 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
662 {
663 	*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
664 	*size = fpu_kernel_cfg.default_size;
665 }
666 
667 /*
668  * Drops current FPU state: deactivates the fpregs and
669  * the fpstate. NOTE: it still leaves previous contents
670  * in the fpregs in the eager-FPU case.
671  *
672  * This function can be used in cases where we know that
673  * a state-restore is coming: either an explicit one,
674  * or a reschedule.
675  */
fpu__drop(struct fpu * fpu)676 void fpu__drop(struct fpu *fpu)
677 {
678 	preempt_disable();
679 
680 	if (fpu == &current->thread.fpu) {
681 		/* Ignore delayed exceptions from user space */
682 		asm volatile("1: fwait\n"
683 			     "2:\n"
684 			     _ASM_EXTABLE(1b, 2b));
685 		fpregs_deactivate(fpu);
686 	}
687 
688 	trace_x86_fpu_dropped(fpu);
689 
690 	preempt_enable();
691 }
692 
693 /*
694  * Clear FPU registers by setting them up from the init fpstate.
695  * Caller must do fpregs_[un]lock() around it.
696  */
restore_fpregs_from_init_fpstate(u64 features_mask)697 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
698 {
699 	if (use_xsave())
700 		os_xrstor(&init_fpstate, features_mask);
701 	else if (use_fxsr())
702 		fxrstor(&init_fpstate.regs.fxsave);
703 	else
704 		frstor(&init_fpstate.regs.fsave);
705 
706 	pkru_write_default();
707 }
708 
709 /*
710  * Reset current->fpu memory state to the init values.
711  */
fpu_reset_fpregs(void)712 static void fpu_reset_fpregs(void)
713 {
714 	struct fpu *fpu = &current->thread.fpu;
715 
716 	fpregs_lock();
717 	__fpu_invalidate_fpregs_state(fpu);
718 	/*
719 	 * This does not change the actual hardware registers. It just
720 	 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
721 	 * subsequent return to usermode will reload the registers from the
722 	 * task's memory image.
723 	 *
724 	 * Do not use fpstate_init() here. Just copy init_fpstate which has
725 	 * the correct content already except for PKRU.
726 	 *
727 	 * PKRU handling does not rely on the xstate when restoring for
728 	 * user space as PKRU is eagerly written in switch_to() and
729 	 * flush_thread().
730 	 */
731 	memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
732 	set_thread_flag(TIF_NEED_FPU_LOAD);
733 	fpregs_unlock();
734 }
735 
736 /*
737  * Reset current's user FPU states to the init states.  current's
738  * supervisor states, if any, are not modified by this function.  The
739  * caller guarantees that the XSTATE header in memory is intact.
740  */
fpu__clear_user_states(struct fpu * fpu)741 void fpu__clear_user_states(struct fpu *fpu)
742 {
743 	WARN_ON_FPU(fpu != &current->thread.fpu);
744 
745 	fpregs_lock();
746 	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
747 		fpu_reset_fpregs();
748 		fpregs_unlock();
749 		return;
750 	}
751 
752 	/*
753 	 * Ensure that current's supervisor states are loaded into their
754 	 * corresponding registers.
755 	 */
756 	if (xfeatures_mask_supervisor() &&
757 	    !fpregs_state_valid(fpu, smp_processor_id()))
758 		os_xrstor_supervisor(fpu->fpstate);
759 
760 	/* Reset user states in registers. */
761 	restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
762 
763 	/*
764 	 * Now all FPU registers have their desired values.  Inform the FPU
765 	 * state machine that current's FPU registers are in the hardware
766 	 * registers. The memory image does not need to be updated because
767 	 * any operation relying on it has to save the registers first when
768 	 * current's FPU is marked active.
769 	 */
770 	fpregs_mark_activate();
771 	fpregs_unlock();
772 }
773 
fpu_flush_thread(void)774 void fpu_flush_thread(void)
775 {
776 	fpstate_reset(&current->thread.fpu);
777 	fpu_reset_fpregs();
778 }
779 /*
780  * Load FPU context before returning to userspace.
781  */
switch_fpu_return(void)782 void switch_fpu_return(void)
783 {
784 	if (!static_cpu_has(X86_FEATURE_FPU))
785 		return;
786 
787 	fpregs_restore_userregs();
788 }
789 EXPORT_SYMBOL_GPL(switch_fpu_return);
790 
fpregs_lock_and_load(void)791 void fpregs_lock_and_load(void)
792 {
793 	/*
794 	 * fpregs_lock() only disables preemption (mostly). So modifying state
795 	 * in an interrupt could screw up some in progress fpregs operation.
796 	 * Warn about it.
797 	 */
798 	WARN_ON_ONCE(!irq_fpu_usable());
799 	WARN_ON_ONCE(current->flags & PF_KTHREAD);
800 
801 	fpregs_lock();
802 
803 	fpregs_assert_state_consistent();
804 
805 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
806 		fpregs_restore_userregs();
807 }
808 
809 #ifdef CONFIG_X86_DEBUG_FPU
810 /*
811  * If current FPU state according to its tracking (loaded FPU context on this
812  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
813  * loaded on return to userland.
814  */
fpregs_assert_state_consistent(void)815 void fpregs_assert_state_consistent(void)
816 {
817 	struct fpu *fpu = &current->thread.fpu;
818 
819 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
820 		return;
821 
822 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
823 }
824 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
825 #endif
826 
fpregs_mark_activate(void)827 void fpregs_mark_activate(void)
828 {
829 	struct fpu *fpu = &current->thread.fpu;
830 
831 	fpregs_activate(fpu);
832 	fpu->last_cpu = smp_processor_id();
833 	clear_thread_flag(TIF_NEED_FPU_LOAD);
834 }
835 
836 /*
837  * x87 math exception handling:
838  */
839 
fpu__exception_code(struct fpu * fpu,int trap_nr)840 int fpu__exception_code(struct fpu *fpu, int trap_nr)
841 {
842 	int err;
843 
844 	if (trap_nr == X86_TRAP_MF) {
845 		unsigned short cwd, swd;
846 		/*
847 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
848 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
849 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
850 		 * fault bit.  We should only be taking one exception at a time,
851 		 * so if this combination doesn't produce any single exception,
852 		 * then we have a bad program that isn't synchronizing its FPU usage
853 		 * and it will suffer the consequences since we won't be able to
854 		 * fully reproduce the context of the exception.
855 		 */
856 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
857 			cwd = fpu->fpstate->regs.fxsave.cwd;
858 			swd = fpu->fpstate->regs.fxsave.swd;
859 		} else {
860 			cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
861 			swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
862 		}
863 
864 		err = swd & ~cwd;
865 	} else {
866 		/*
867 		 * The SIMD FPU exceptions are handled a little differently, as there
868 		 * is only a single status/control register.  Thus, to determine which
869 		 * unmasked exception was caught we must mask the exception mask bits
870 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
871 		 */
872 		unsigned short mxcsr = MXCSR_DEFAULT;
873 
874 		if (boot_cpu_has(X86_FEATURE_XMM))
875 			mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
876 
877 		err = ~(mxcsr >> 7) & mxcsr;
878 	}
879 
880 	if (err & 0x001) {	/* Invalid op */
881 		/*
882 		 * swd & 0x240 == 0x040: Stack Underflow
883 		 * swd & 0x240 == 0x240: Stack Overflow
884 		 * User must clear the SF bit (0x40) if set
885 		 */
886 		return FPE_FLTINV;
887 	} else if (err & 0x004) { /* Divide by Zero */
888 		return FPE_FLTDIV;
889 	} else if (err & 0x008) { /* Overflow */
890 		return FPE_FLTOVF;
891 	} else if (err & 0x012) { /* Denormal, Underflow */
892 		return FPE_FLTUND;
893 	} else if (err & 0x020) { /* Precision */
894 		return FPE_FLTRES;
895 	}
896 
897 	/*
898 	 * If we're using IRQ 13, or supposedly even some trap
899 	 * X86_TRAP_MF implementations, it's possible
900 	 * we get a spurious trap, which is not an error.
901 	 */
902 	return 0;
903 }
904 
905 /*
906  * Initialize register state that may prevent from entering low-power idle.
907  * This function will be invoked from the cpuidle driver only when needed.
908  */
fpu_idle_fpregs(void)909 noinstr void fpu_idle_fpregs(void)
910 {
911 	/* Note: AMX_TILE being enabled implies XGETBV1 support */
912 	if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
913 	    (xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
914 		tile_release();
915 		__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
916 	}
917 }
918