1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #ifndef BTRFS_CTREE_H
7  #define BTRFS_CTREE_H
8  
9  #include "linux/cleanup.h"
10  #include <linux/pagemap.h>
11  #include <linux/spinlock.h>
12  #include <linux/rbtree.h>
13  #include <linux/mutex.h>
14  #include <linux/wait.h>
15  #include <linux/list.h>
16  #include <linux/atomic.h>
17  #include <linux/xarray.h>
18  #include <linux/refcount.h>
19  #include <uapi/linux/btrfs_tree.h>
20  #include "locking.h"
21  #include "fs.h"
22  #include "accessors.h"
23  #include "extent-io-tree.h"
24  
25  struct extent_buffer;
26  struct btrfs_block_rsv;
27  struct btrfs_trans_handle;
28  struct btrfs_block_group;
29  
30  /* Read ahead values for struct btrfs_path.reada */
31  enum {
32  	READA_NONE,
33  	READA_BACK,
34  	READA_FORWARD,
35  	/*
36  	 * Similar to READA_FORWARD but unlike it:
37  	 *
38  	 * 1) It will trigger readahead even for leaves that are not close to
39  	 *    each other on disk;
40  	 * 2) It also triggers readahead for nodes;
41  	 * 3) During a search, even when a node or leaf is already in memory, it
42  	 *    will still trigger readahead for other nodes and leaves that follow
43  	 *    it.
44  	 *
45  	 * This is meant to be used only when we know we are iterating over the
46  	 * entire tree or a very large part of it.
47  	 */
48  	READA_FORWARD_ALWAYS,
49  };
50  
51  /*
52   * btrfs_paths remember the path taken from the root down to the leaf.
53   * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54   * to any other levels that are present.
55   *
56   * The slots array records the index of the item or block pointer
57   * used while walking the tree.
58   */
59  struct btrfs_path {
60  	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
61  	int slots[BTRFS_MAX_LEVEL];
62  	/* if there is real range locking, this locks field will change */
63  	u8 locks[BTRFS_MAX_LEVEL];
64  	u8 reada;
65  	/* keep some upper locks as we walk down */
66  	u8 lowest_level;
67  
68  	/*
69  	 * set by btrfs_split_item, tells search_slot to keep all locks
70  	 * and to force calls to keep space in the nodes
71  	 */
72  	unsigned int search_for_split:1;
73  	unsigned int keep_locks:1;
74  	unsigned int skip_locking:1;
75  	unsigned int search_commit_root:1;
76  	unsigned int need_commit_sem:1;
77  	unsigned int skip_release_on_error:1;
78  	/*
79  	 * Indicate that new item (btrfs_search_slot) is extending already
80  	 * existing item and ins_len contains only the data size and not item
81  	 * header (ie. sizeof(struct btrfs_item) is not included).
82  	 */
83  	unsigned int search_for_extension:1;
84  	/* Stop search if any locks need to be taken (for read) */
85  	unsigned int nowait:1;
86  };
87  
88  #define BTRFS_PATH_AUTO_FREE(path_name)					\
89  	struct btrfs_path *path_name __free(btrfs_free_path) = NULL
90  
91  /*
92   * The state of btrfs root
93   */
94  enum {
95  	/*
96  	 * btrfs_record_root_in_trans is a multi-step process, and it can race
97  	 * with the balancing code.   But the race is very small, and only the
98  	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
99  	 * is used to tell us when more checks are required
100  	 */
101  	BTRFS_ROOT_IN_TRANS_SETUP,
102  
103  	/*
104  	 * Set if tree blocks of this root can be shared by other roots.
105  	 * Only subvolume trees and their reloc trees have this bit set.
106  	 * Conflicts with TRACK_DIRTY bit.
107  	 *
108  	 * This affects two things:
109  	 *
110  	 * - How balance works
111  	 *   For shareable roots, we need to use reloc tree and do path
112  	 *   replacement for balance, and need various pre/post hooks for
113  	 *   snapshot creation to handle them.
114  	 *
115  	 *   While for non-shareable trees, we just simply do a tree search
116  	 *   with COW.
117  	 *
118  	 * - How dirty roots are tracked
119  	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
120  	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
121  	 *   don't need to set this manually.
122  	 */
123  	BTRFS_ROOT_SHAREABLE,
124  	BTRFS_ROOT_TRACK_DIRTY,
125  	BTRFS_ROOT_IN_RADIX,
126  	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
127  	BTRFS_ROOT_DEFRAG_RUNNING,
128  	BTRFS_ROOT_FORCE_COW,
129  	BTRFS_ROOT_MULTI_LOG_TASKS,
130  	BTRFS_ROOT_DIRTY,
131  	BTRFS_ROOT_DELETING,
132  
133  	/*
134  	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
135  	 *
136  	 * Set for the subvolume tree owning the reloc tree.
137  	 */
138  	BTRFS_ROOT_DEAD_RELOC_TREE,
139  	/* Mark dead root stored on device whose cleanup needs to be resumed */
140  	BTRFS_ROOT_DEAD_TREE,
141  	/* The root has a log tree. Used for subvolume roots and the tree root. */
142  	BTRFS_ROOT_HAS_LOG_TREE,
143  	/* Qgroup flushing is in progress */
144  	BTRFS_ROOT_QGROUP_FLUSHING,
145  	/* We started the orphan cleanup for this root. */
146  	BTRFS_ROOT_ORPHAN_CLEANUP,
147  	/* This root has a drop operation that was started previously. */
148  	BTRFS_ROOT_UNFINISHED_DROP,
149  	/* This reloc root needs to have its buffers lockdep class reset. */
150  	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
151  };
152  
153  /*
154   * Record swapped tree blocks of a subvolume tree for delayed subtree trace
155   * code. For detail check comment in fs/btrfs/qgroup.c.
156   */
157  struct btrfs_qgroup_swapped_blocks {
158  	spinlock_t lock;
159  	/* RM_EMPTY_ROOT() of above blocks[] */
160  	bool swapped;
161  	struct rb_root blocks[BTRFS_MAX_LEVEL];
162  };
163  
164  /*
165   * in ram representation of the tree.  extent_root is used for all allocations
166   * and for the extent tree extent_root root.
167   */
168  struct btrfs_root {
169  	struct rb_node rb_node;
170  
171  	struct extent_buffer *node;
172  
173  	struct extent_buffer *commit_root;
174  	struct btrfs_root *log_root;
175  	struct btrfs_root *reloc_root;
176  
177  	unsigned long state;
178  	struct btrfs_root_item root_item;
179  	struct btrfs_key root_key;
180  	struct btrfs_fs_info *fs_info;
181  	struct extent_io_tree dirty_log_pages;
182  
183  	struct mutex objectid_mutex;
184  
185  	spinlock_t accounting_lock;
186  	struct btrfs_block_rsv *block_rsv;
187  
188  	struct mutex log_mutex;
189  	wait_queue_head_t log_writer_wait;
190  	wait_queue_head_t log_commit_wait[2];
191  	struct list_head log_ctxs[2];
192  	/* Used only for log trees of subvolumes, not for the log root tree */
193  	atomic_t log_writers;
194  	atomic_t log_commit[2];
195  	/* Used only for log trees of subvolumes, not for the log root tree */
196  	atomic_t log_batch;
197  	/*
198  	 * Protected by the 'log_mutex' lock but can be read without holding
199  	 * that lock to avoid unnecessary lock contention, in which case it
200  	 * should be read using btrfs_get_root_log_transid() except if it's a
201  	 * log tree in which case it can be directly accessed. Updates to this
202  	 * field should always use btrfs_set_root_log_transid(), except for log
203  	 * trees where the field can be updated directly.
204  	 */
205  	int log_transid;
206  	/* No matter the commit succeeds or not*/
207  	int log_transid_committed;
208  	/*
209  	 * Just be updated when the commit succeeds. Use
210  	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
211  	 * to access this field.
212  	 */
213  	int last_log_commit;
214  	pid_t log_start_pid;
215  
216  	u64 last_trans;
217  
218  	u64 free_objectid;
219  
220  	struct btrfs_key defrag_progress;
221  	struct btrfs_key defrag_max;
222  
223  	/* The dirty list is only used by non-shareable roots */
224  	struct list_head dirty_list;
225  
226  	struct list_head root_list;
227  
228  	/*
229  	 * Xarray that keeps track of in-memory inodes, protected by the lock
230  	 * @inode_lock.
231  	 */
232  	struct xarray inodes;
233  
234  	/*
235  	 * Xarray that keeps track of delayed nodes of every inode, protected
236  	 * by @inode_lock.
237  	 */
238  	struct xarray delayed_nodes;
239  	/*
240  	 * right now this just gets used so that a root has its own devid
241  	 * for stat.  It may be used for more later
242  	 */
243  	dev_t anon_dev;
244  
245  	spinlock_t root_item_lock;
246  	refcount_t refs;
247  
248  	struct mutex delalloc_mutex;
249  	spinlock_t delalloc_lock;
250  	/*
251  	 * all of the inodes that have delalloc bytes.  It is possible for
252  	 * this list to be empty even when there is still dirty data=ordered
253  	 * extents waiting to finish IO.
254  	 */
255  	struct list_head delalloc_inodes;
256  	struct list_head delalloc_root;
257  	u64 nr_delalloc_inodes;
258  
259  	struct mutex ordered_extent_mutex;
260  	/*
261  	 * this is used by the balancing code to wait for all the pending
262  	 * ordered extents
263  	 */
264  	spinlock_t ordered_extent_lock;
265  
266  	/*
267  	 * all of the data=ordered extents pending writeback
268  	 * these can span multiple transactions and basically include
269  	 * every dirty data page that isn't from nodatacow
270  	 */
271  	struct list_head ordered_extents;
272  	struct list_head ordered_root;
273  	u64 nr_ordered_extents;
274  
275  	/*
276  	 * Not empty if this subvolume root has gone through tree block swap
277  	 * (relocation)
278  	 *
279  	 * Will be used by reloc_control::dirty_subvol_roots.
280  	 */
281  	struct list_head reloc_dirty_list;
282  
283  	/*
284  	 * Number of currently running SEND ioctls to prevent
285  	 * manipulation with the read-only status via SUBVOL_SETFLAGS
286  	 */
287  	int send_in_progress;
288  	/*
289  	 * Number of currently running deduplication operations that have a
290  	 * destination inode belonging to this root. Protected by the lock
291  	 * root_item_lock.
292  	 */
293  	int dedupe_in_progress;
294  	/* For exclusion of snapshot creation and nocow writes */
295  	struct btrfs_drew_lock snapshot_lock;
296  
297  	atomic_t snapshot_force_cow;
298  
299  	/* For qgroup metadata reserved space */
300  	spinlock_t qgroup_meta_rsv_lock;
301  	u64 qgroup_meta_rsv_pertrans;
302  	u64 qgroup_meta_rsv_prealloc;
303  	wait_queue_head_t qgroup_flush_wait;
304  
305  	/* Number of active swapfiles */
306  	atomic_t nr_swapfiles;
307  
308  	/* Record pairs of swapped blocks for qgroup */
309  	struct btrfs_qgroup_swapped_blocks swapped_blocks;
310  
311  	/* Used only by log trees, when logging csum items */
312  	struct extent_io_tree log_csum_range;
313  
314  	/* Used in simple quotas, track root during relocation. */
315  	u64 relocation_src_root;
316  
317  #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
318  	u64 alloc_bytenr;
319  #endif
320  
321  #ifdef CONFIG_BTRFS_DEBUG
322  	struct list_head leak_list;
323  #endif
324  };
325  
btrfs_root_readonly(const struct btrfs_root * root)326  static inline bool btrfs_root_readonly(const struct btrfs_root *root)
327  {
328  	/* Byte-swap the constant at compile time, root_item::flags is LE */
329  	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
330  }
331  
btrfs_root_dead(const struct btrfs_root * root)332  static inline bool btrfs_root_dead(const struct btrfs_root *root)
333  {
334  	/* Byte-swap the constant at compile time, root_item::flags is LE */
335  	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
336  }
337  
btrfs_root_id(const struct btrfs_root * root)338  static inline u64 btrfs_root_id(const struct btrfs_root *root)
339  {
340  	return root->root_key.objectid;
341  }
342  
btrfs_get_root_log_transid(const struct btrfs_root * root)343  static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
344  {
345  	return READ_ONCE(root->log_transid);
346  }
347  
btrfs_set_root_log_transid(struct btrfs_root * root,int log_transid)348  static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
349  {
350  	WRITE_ONCE(root->log_transid, log_transid);
351  }
352  
btrfs_get_root_last_log_commit(const struct btrfs_root * root)353  static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
354  {
355  	return READ_ONCE(root->last_log_commit);
356  }
357  
btrfs_set_root_last_log_commit(struct btrfs_root * root,int commit_id)358  static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
359  {
360  	WRITE_ONCE(root->last_log_commit, commit_id);
361  }
362  
btrfs_get_root_last_trans(const struct btrfs_root * root)363  static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root)
364  {
365  	return READ_ONCE(root->last_trans);
366  }
367  
btrfs_set_root_last_trans(struct btrfs_root * root,u64 transid)368  static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid)
369  {
370  	WRITE_ONCE(root->last_trans, transid);
371  }
372  
373  /*
374   * Structure that conveys information about an extent that is going to replace
375   * all the extents in a file range.
376   */
377  struct btrfs_replace_extent_info {
378  	u64 disk_offset;
379  	u64 disk_len;
380  	u64 data_offset;
381  	u64 data_len;
382  	u64 file_offset;
383  	/* Pointer to a file extent item of type regular or prealloc. */
384  	char *extent_buf;
385  	/*
386  	 * Set to true when attempting to replace a file range with a new extent
387  	 * described by this structure, set to false when attempting to clone an
388  	 * existing extent into a file range.
389  	 */
390  	bool is_new_extent;
391  	/* Indicate if we should update the inode's mtime and ctime. */
392  	bool update_times;
393  	/* Meaningful only if is_new_extent is true. */
394  	int qgroup_reserved;
395  	/*
396  	 * Meaningful only if is_new_extent is true.
397  	 * Used to track how many extent items we have already inserted in a
398  	 * subvolume tree that refer to the extent described by this structure,
399  	 * so that we know when to create a new delayed ref or update an existing
400  	 * one.
401  	 */
402  	int insertions;
403  };
404  
405  /* Arguments for btrfs_drop_extents() */
406  struct btrfs_drop_extents_args {
407  	/* Input parameters */
408  
409  	/*
410  	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
411  	 * If 'replace_extent' is true, this must not be NULL. Also the path
412  	 * is always released except if 'replace_extent' is true and
413  	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
414  	 * the path is kept locked.
415  	 */
416  	struct btrfs_path *path;
417  	/* Start offset of the range to drop extents from */
418  	u64 start;
419  	/* End (exclusive, last byte + 1) of the range to drop extents from */
420  	u64 end;
421  	/* If true drop all the extent maps in the range */
422  	bool drop_cache;
423  	/*
424  	 * If true it means we want to insert a new extent after dropping all
425  	 * the extents in the range. If this is true, the 'extent_item_size'
426  	 * parameter must be set as well and the 'extent_inserted' field will
427  	 * be set to true by btrfs_drop_extents() if it could insert the new
428  	 * extent.
429  	 * Note: when this is set to true the path must not be NULL.
430  	 */
431  	bool replace_extent;
432  	/*
433  	 * Used if 'replace_extent' is true. Size of the file extent item to
434  	 * insert after dropping all existing extents in the range
435  	 */
436  	u32 extent_item_size;
437  
438  	/* Output parameters */
439  
440  	/*
441  	 * Set to the minimum between the input parameter 'end' and the end
442  	 * (exclusive, last byte + 1) of the last dropped extent. This is always
443  	 * set even if btrfs_drop_extents() returns an error.
444  	 */
445  	u64 drop_end;
446  	/*
447  	 * The number of allocated bytes found in the range. This can be smaller
448  	 * than the range's length when there are holes in the range.
449  	 */
450  	u64 bytes_found;
451  	/*
452  	 * Only set if 'replace_extent' is true. Set to true if we were able
453  	 * to insert a replacement extent after dropping all extents in the
454  	 * range, otherwise set to false by btrfs_drop_extents().
455  	 * Also, if btrfs_drop_extents() has set this to true it means it
456  	 * returned with the path locked, otherwise if it has set this to
457  	 * false it has returned with the path released.
458  	 */
459  	bool extent_inserted;
460  };
461  
462  struct btrfs_file_private {
463  	void *filldir_buf;
464  	u64 last_index;
465  	struct extent_state *llseek_cached_state;
466  	/* Task that allocated this structure. */
467  	struct task_struct *owner_task;
468  };
469  
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)470  static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
471  {
472  	return info->nodesize - sizeof(struct btrfs_header);
473  }
474  
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)475  static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
476  {
477  	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
478  }
479  
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)480  static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
481  {
482  	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
483  }
484  
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)485  static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
486  {
487  	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
488  }
489  
490  #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
491  				((bytes) >> (fs_info)->sectorsize_bits)
492  
btrfs_alloc_write_mask(struct address_space * mapping)493  static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
494  {
495  	return mapping_gfp_constraint(mapping, ~__GFP_FS);
496  }
497  
498  void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end);
499  int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
500  			 u64 num_bytes, u64 *actual_bytes);
501  int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
502  
503  /* ctree.c */
504  int __init btrfs_ctree_init(void);
505  void __cold btrfs_ctree_exit(void);
506  
507  int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
508  		     const struct btrfs_key *key, int *slot);
509  
510  int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
511  
512  #ifdef __LITTLE_ENDIAN
513  
514  /*
515   * Compare two keys, on little-endian the disk order is same as CPU order and
516   * we can avoid the conversion.
517   */
btrfs_comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)518  static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
519  				  const struct btrfs_key *k2)
520  {
521  	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
522  
523  	return btrfs_comp_cpu_keys(k1, k2);
524  }
525  
526  #else
527  
528  /* Compare two keys in a memcmp fashion. */
btrfs_comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)529  static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
530  				  const struct btrfs_key *k2)
531  {
532  	struct btrfs_key k1;
533  
534  	btrfs_disk_key_to_cpu(&k1, disk);
535  
536  	return btrfs_comp_cpu_keys(&k1, k2);
537  }
538  
539  #endif
540  
541  int btrfs_previous_item(struct btrfs_root *root,
542  			struct btrfs_path *path, u64 min_objectid,
543  			int type);
544  int btrfs_previous_extent_item(struct btrfs_root *root,
545  			struct btrfs_path *path, u64 min_objectid);
546  void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
547  			     const struct btrfs_path *path,
548  			     const struct btrfs_key *new_key);
549  struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
550  int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
551  			struct btrfs_key *key, int lowest_level,
552  			u64 min_trans);
553  int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
554  			 struct btrfs_path *path,
555  			 u64 min_trans);
556  struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
557  					   int slot);
558  
559  int btrfs_cow_block(struct btrfs_trans_handle *trans,
560  		    struct btrfs_root *root, struct extent_buffer *buf,
561  		    struct extent_buffer *parent, int parent_slot,
562  		    struct extent_buffer **cow_ret,
563  		    enum btrfs_lock_nesting nest);
564  int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
565  			  struct btrfs_root *root,
566  			  struct extent_buffer *buf,
567  			  struct extent_buffer *parent, int parent_slot,
568  			  struct extent_buffer **cow_ret,
569  			  u64 search_start, u64 empty_size,
570  			  enum btrfs_lock_nesting nest);
571  int btrfs_copy_root(struct btrfs_trans_handle *trans,
572  		      struct btrfs_root *root,
573  		      struct extent_buffer *buf,
574  		      struct extent_buffer **cow_ret, u64 new_root_objectid);
575  bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
576  			       struct btrfs_root *root,
577  			       struct extent_buffer *buf);
578  int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
579  		  struct btrfs_path *path, int level, int slot);
580  void btrfs_extend_item(struct btrfs_trans_handle *trans,
581  		       const struct btrfs_path *path, u32 data_size);
582  void btrfs_truncate_item(struct btrfs_trans_handle *trans,
583  			 const struct btrfs_path *path, u32 new_size, int from_end);
584  int btrfs_split_item(struct btrfs_trans_handle *trans,
585  		     struct btrfs_root *root,
586  		     struct btrfs_path *path,
587  		     const struct btrfs_key *new_key,
588  		     unsigned long split_offset);
589  int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
590  			 struct btrfs_root *root,
591  			 struct btrfs_path *path,
592  			 const struct btrfs_key *new_key);
593  int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
594  		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
595  int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
596  		      const struct btrfs_key *key, struct btrfs_path *p,
597  		      int ins_len, int cow);
598  int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
599  			  struct btrfs_path *p, u64 time_seq);
600  int btrfs_search_slot_for_read(struct btrfs_root *root,
601  			       const struct btrfs_key *key,
602  			       struct btrfs_path *p, int find_higher,
603  			       int return_any);
604  void btrfs_release_path(struct btrfs_path *p);
605  struct btrfs_path *btrfs_alloc_path(void);
606  void btrfs_free_path(struct btrfs_path *p);
607  DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T))
608  
609  int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
610  		   struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)611  static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
612  				 struct btrfs_root *root,
613  				 struct btrfs_path *path)
614  {
615  	return btrfs_del_items(trans, root, path, path->slots[0], 1);
616  }
617  
618  /*
619   * Describes a batch of items to insert in a btree. This is used by
620   * btrfs_insert_empty_items().
621   */
622  struct btrfs_item_batch {
623  	/*
624  	 * Pointer to an array containing the keys of the items to insert (in
625  	 * sorted order).
626  	 */
627  	const struct btrfs_key *keys;
628  	/* Pointer to an array containing the data size for each item to insert. */
629  	const u32 *data_sizes;
630  	/*
631  	 * The sum of data sizes for all items. The caller can compute this while
632  	 * setting up the data_sizes array, so it ends up being more efficient
633  	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
634  	 * doing it, as it would avoid an extra loop over a potentially large
635  	 * array, and in the case of setup_item_for_insert(), we would be doing
636  	 * it while holding a write lock on a leaf and often on upper level nodes
637  	 * too, unnecessarily increasing the size of a critical section.
638  	 */
639  	u32 total_data_size;
640  	/* Size of the keys and data_sizes arrays (number of items in the batch). */
641  	int nr;
642  };
643  
644  void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
645  				 struct btrfs_root *root,
646  				 struct btrfs_path *path,
647  				 const struct btrfs_key *key,
648  				 u32 data_size);
649  int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
650  		      const struct btrfs_key *key, void *data, u32 data_size);
651  int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
652  			     struct btrfs_root *root,
653  			     struct btrfs_path *path,
654  			     const struct btrfs_item_batch *batch);
655  
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)656  static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
657  					  struct btrfs_root *root,
658  					  struct btrfs_path *path,
659  					  const struct btrfs_key *key,
660  					  u32 data_size)
661  {
662  	struct btrfs_item_batch batch;
663  
664  	batch.keys = key;
665  	batch.data_sizes = &data_size;
666  	batch.total_data_size = data_size;
667  	batch.nr = 1;
668  
669  	return btrfs_insert_empty_items(trans, root, path, &batch);
670  }
671  
672  int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
673  			u64 time_seq);
674  
675  int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
676  			   struct btrfs_path *path);
677  
678  int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
679  			      struct btrfs_path *path);
680  
681  /*
682   * Search in @root for a given @key, and store the slot found in @found_key.
683   *
684   * @root:	The root node of the tree.
685   * @key:	The key we are looking for.
686   * @found_key:	Will hold the found item.
687   * @path:	Holds the current slot/leaf.
688   * @iter_ret:	Contains the value returned from btrfs_search_slot or
689   * 		btrfs_get_next_valid_item, whichever was executed last.
690   *
691   * The @iter_ret is an output variable that will contain the return value of
692   * btrfs_search_slot, if it encountered an error, or the value returned from
693   * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
694   * slot was found, 1 if there were no more leaves, and <0 if there was an error.
695   *
696   * It's recommended to use a separate variable for iter_ret and then use it to
697   * set the function return value so there's no confusion of the 0/1/errno
698   * values stemming from btrfs_search_slot.
699   */
700  #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
701  	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
702  		(iter_ret) >= 0 &&						\
703  		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
704  		(path)->slots[0]++						\
705  	)
706  
707  int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
708  
709  /*
710   * Search the tree again to find a leaf with greater keys.
711   *
712   * Returns 0 if it found something or 1 if there are no greater leaves.
713   * Returns < 0 on error.
714   */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)715  static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
716  {
717  	return btrfs_next_old_leaf(root, path, 0);
718  }
719  
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)720  static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
721  {
722  	return btrfs_next_old_item(root, p, 0);
723  }
724  int btrfs_leaf_free_space(const struct extent_buffer *leaf);
725  
is_fstree(u64 rootid)726  static inline int is_fstree(u64 rootid)
727  {
728  	if (rootid == BTRFS_FS_TREE_OBJECTID ||
729  	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
730  	      !btrfs_qgroup_level(rootid)))
731  		return 1;
732  	return 0;
733  }
734  
btrfs_is_data_reloc_root(const struct btrfs_root * root)735  static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
736  {
737  	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
738  }
739  
740  u16 btrfs_csum_type_size(u16 type);
741  int btrfs_super_csum_size(const struct btrfs_super_block *s);
742  const char *btrfs_super_csum_name(u16 csum_type);
743  const char *btrfs_super_csum_driver(u16 csum_type);
744  size_t __attribute_const__ btrfs_get_num_csums(void);
745  
746  /*
747   * We use page status Private2 to indicate there is an ordered extent with
748   * unfinished IO.
749   *
750   * Rename the Private2 accessors to Ordered, to improve readability.
751   */
752  #define PageOrdered(page)		PagePrivate2(page)
753  #define SetPageOrdered(page)		SetPagePrivate2(page)
754  #define ClearPageOrdered(page)		ClearPagePrivate2(page)
755  #define folio_test_ordered(folio)	folio_test_private_2(folio)
756  #define folio_set_ordered(folio)	folio_set_private_2(folio)
757  #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
758  
759  #endif
760