1  // SPDX-License-Identifier: GPL-2.0-or-later
2  //
3  // core.c  --  Voltage/Current Regulator framework.
4  //
5  // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6  // Copyright 2008 SlimLogic Ltd.
7  //
8  // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9  
10  #include <linux/kernel.h>
11  #include <linux/init.h>
12  #include <linux/debugfs.h>
13  #include <linux/device.h>
14  #include <linux/slab.h>
15  #include <linux/async.h>
16  #include <linux/err.h>
17  #include <linux/mutex.h>
18  #include <linux/suspend.h>
19  #include <linux/delay.h>
20  #include <linux/gpio/consumer.h>
21  #include <linux/of.h>
22  #include <linux/reboot.h>
23  #include <linux/regmap.h>
24  #include <linux/regulator/of_regulator.h>
25  #include <linux/regulator/consumer.h>
26  #include <linux/regulator/coupler.h>
27  #include <linux/regulator/driver.h>
28  #include <linux/regulator/machine.h>
29  #include <linux/module.h>
30  
31  #define CREATE_TRACE_POINTS
32  #include <trace/events/regulator.h>
33  
34  #include "dummy.h"
35  #include "internal.h"
36  #include "regnl.h"
37  
38  static DEFINE_WW_CLASS(regulator_ww_class);
39  static DEFINE_MUTEX(regulator_nesting_mutex);
40  static DEFINE_MUTEX(regulator_list_mutex);
41  static LIST_HEAD(regulator_map_list);
42  static LIST_HEAD(regulator_ena_gpio_list);
43  static LIST_HEAD(regulator_supply_alias_list);
44  static LIST_HEAD(regulator_coupler_list);
45  static bool has_full_constraints;
46  
47  static struct dentry *debugfs_root;
48  
49  /*
50   * struct regulator_map
51   *
52   * Used to provide symbolic supply names to devices.
53   */
54  struct regulator_map {
55  	struct list_head list;
56  	const char *dev_name;   /* The dev_name() for the consumer */
57  	const char *supply;
58  	struct regulator_dev *regulator;
59  };
60  
61  /*
62   * struct regulator_enable_gpio
63   *
64   * Management for shared enable GPIO pin
65   */
66  struct regulator_enable_gpio {
67  	struct list_head list;
68  	struct gpio_desc *gpiod;
69  	u32 enable_count;	/* a number of enabled shared GPIO */
70  	u32 request_count;	/* a number of requested shared GPIO */
71  };
72  
73  /*
74   * struct regulator_supply_alias
75   *
76   * Used to map lookups for a supply onto an alternative device.
77   */
78  struct regulator_supply_alias {
79  	struct list_head list;
80  	struct device *src_dev;
81  	const char *src_supply;
82  	struct device *alias_dev;
83  	const char *alias_supply;
84  };
85  
86  static int _regulator_is_enabled(struct regulator_dev *rdev);
87  static int _regulator_disable(struct regulator *regulator);
88  static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89  static int _regulator_get_current_limit(struct regulator_dev *rdev);
90  static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91  static int _notifier_call_chain(struct regulator_dev *rdev,
92  				  unsigned long event, void *data);
93  static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94  				     int min_uV, int max_uV);
95  static int regulator_balance_voltage(struct regulator_dev *rdev,
96  				     suspend_state_t state);
97  static struct regulator *create_regulator(struct regulator_dev *rdev,
98  					  struct device *dev,
99  					  const char *supply_name);
100  static void destroy_regulator(struct regulator *regulator);
101  static void _regulator_put(struct regulator *regulator);
102  
rdev_get_name(struct regulator_dev * rdev)103  const char *rdev_get_name(struct regulator_dev *rdev)
104  {
105  	if (rdev->constraints && rdev->constraints->name)
106  		return rdev->constraints->name;
107  	else if (rdev->desc->name)
108  		return rdev->desc->name;
109  	else
110  		return "";
111  }
112  EXPORT_SYMBOL_GPL(rdev_get_name);
113  
have_full_constraints(void)114  static bool have_full_constraints(void)
115  {
116  	return has_full_constraints || of_have_populated_dt();
117  }
118  
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)119  static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120  {
121  	if (!rdev->constraints) {
122  		rdev_err(rdev, "no constraints\n");
123  		return false;
124  	}
125  
126  	if (rdev->constraints->valid_ops_mask & ops)
127  		return true;
128  
129  	return false;
130  }
131  
132  /**
133   * regulator_lock_nested - lock a single regulator
134   * @rdev:		regulator source
135   * @ww_ctx:		w/w mutex acquire context
136   *
137   * This function can be called many times by one task on
138   * a single regulator and its mutex will be locked only
139   * once. If a task, which is calling this function is other
140   * than the one, which initially locked the mutex, it will
141   * wait on mutex.
142   *
143   * Return: 0 on success or a negative error number on failure.
144   */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)145  static inline int regulator_lock_nested(struct regulator_dev *rdev,
146  					struct ww_acquire_ctx *ww_ctx)
147  {
148  	bool lock = false;
149  	int ret = 0;
150  
151  	mutex_lock(&regulator_nesting_mutex);
152  
153  	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154  		if (rdev->mutex_owner == current)
155  			rdev->ref_cnt++;
156  		else
157  			lock = true;
158  
159  		if (lock) {
160  			mutex_unlock(&regulator_nesting_mutex);
161  			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162  			mutex_lock(&regulator_nesting_mutex);
163  		}
164  	} else {
165  		lock = true;
166  	}
167  
168  	if (lock && ret != -EDEADLK) {
169  		rdev->ref_cnt++;
170  		rdev->mutex_owner = current;
171  	}
172  
173  	mutex_unlock(&regulator_nesting_mutex);
174  
175  	return ret;
176  }
177  
178  /**
179   * regulator_lock - lock a single regulator
180   * @rdev:		regulator source
181   *
182   * This function can be called many times by one task on
183   * a single regulator and its mutex will be locked only
184   * once. If a task, which is calling this function is other
185   * than the one, which initially locked the mutex, it will
186   * wait on mutex.
187   */
regulator_lock(struct regulator_dev * rdev)188  static void regulator_lock(struct regulator_dev *rdev)
189  {
190  	regulator_lock_nested(rdev, NULL);
191  }
192  
193  /**
194   * regulator_unlock - unlock a single regulator
195   * @rdev:		regulator_source
196   *
197   * This function unlocks the mutex when the
198   * reference counter reaches 0.
199   */
regulator_unlock(struct regulator_dev * rdev)200  static void regulator_unlock(struct regulator_dev *rdev)
201  {
202  	mutex_lock(&regulator_nesting_mutex);
203  
204  	if (--rdev->ref_cnt == 0) {
205  		rdev->mutex_owner = NULL;
206  		ww_mutex_unlock(&rdev->mutex);
207  	}
208  
209  	WARN_ON_ONCE(rdev->ref_cnt < 0);
210  
211  	mutex_unlock(&regulator_nesting_mutex);
212  }
213  
214  /**
215   * regulator_lock_two - lock two regulators
216   * @rdev1:		first regulator
217   * @rdev2:		second regulator
218   * @ww_ctx:		w/w mutex acquire context
219   *
220   * Locks both rdevs using the regulator_ww_class.
221   */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)222  static void regulator_lock_two(struct regulator_dev *rdev1,
223  			       struct regulator_dev *rdev2,
224  			       struct ww_acquire_ctx *ww_ctx)
225  {
226  	struct regulator_dev *held, *contended;
227  	int ret;
228  
229  	ww_acquire_init(ww_ctx, &regulator_ww_class);
230  
231  	/* Try to just grab both of them */
232  	ret = regulator_lock_nested(rdev1, ww_ctx);
233  	WARN_ON(ret);
234  	ret = regulator_lock_nested(rdev2, ww_ctx);
235  	if (ret != -EDEADLOCK) {
236  		WARN_ON(ret);
237  		goto exit;
238  	}
239  
240  	held = rdev1;
241  	contended = rdev2;
242  	while (true) {
243  		regulator_unlock(held);
244  
245  		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246  		contended->ref_cnt++;
247  		contended->mutex_owner = current;
248  		swap(held, contended);
249  		ret = regulator_lock_nested(contended, ww_ctx);
250  
251  		if (ret != -EDEADLOCK) {
252  			WARN_ON(ret);
253  			break;
254  		}
255  	}
256  
257  exit:
258  	ww_acquire_done(ww_ctx);
259  }
260  
261  /**
262   * regulator_unlock_two - unlock two regulators
263   * @rdev1:		first regulator
264   * @rdev2:		second regulator
265   * @ww_ctx:		w/w mutex acquire context
266   *
267   * The inverse of regulator_lock_two().
268   */
269  
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)270  static void regulator_unlock_two(struct regulator_dev *rdev1,
271  				 struct regulator_dev *rdev2,
272  				 struct ww_acquire_ctx *ww_ctx)
273  {
274  	regulator_unlock(rdev2);
275  	regulator_unlock(rdev1);
276  	ww_acquire_fini(ww_ctx);
277  }
278  
regulator_supply_is_couple(struct regulator_dev * rdev)279  static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280  {
281  	struct regulator_dev *c_rdev;
282  	int i;
283  
284  	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285  		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286  
287  		if (rdev->supply->rdev == c_rdev)
288  			return true;
289  	}
290  
291  	return false;
292  }
293  
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)294  static void regulator_unlock_recursive(struct regulator_dev *rdev,
295  				       unsigned int n_coupled)
296  {
297  	struct regulator_dev *c_rdev, *supply_rdev;
298  	int i, supply_n_coupled;
299  
300  	for (i = n_coupled; i > 0; i--) {
301  		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302  
303  		if (!c_rdev)
304  			continue;
305  
306  		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307  			supply_rdev = c_rdev->supply->rdev;
308  			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309  
310  			regulator_unlock_recursive(supply_rdev,
311  						   supply_n_coupled);
312  		}
313  
314  		regulator_unlock(c_rdev);
315  	}
316  }
317  
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)318  static int regulator_lock_recursive(struct regulator_dev *rdev,
319  				    struct regulator_dev **new_contended_rdev,
320  				    struct regulator_dev **old_contended_rdev,
321  				    struct ww_acquire_ctx *ww_ctx)
322  {
323  	struct regulator_dev *c_rdev;
324  	int i, err;
325  
326  	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327  		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328  
329  		if (!c_rdev)
330  			continue;
331  
332  		if (c_rdev != *old_contended_rdev) {
333  			err = regulator_lock_nested(c_rdev, ww_ctx);
334  			if (err) {
335  				if (err == -EDEADLK) {
336  					*new_contended_rdev = c_rdev;
337  					goto err_unlock;
338  				}
339  
340  				/* shouldn't happen */
341  				WARN_ON_ONCE(err != -EALREADY);
342  			}
343  		} else {
344  			*old_contended_rdev = NULL;
345  		}
346  
347  		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348  			err = regulator_lock_recursive(c_rdev->supply->rdev,
349  						       new_contended_rdev,
350  						       old_contended_rdev,
351  						       ww_ctx);
352  			if (err) {
353  				regulator_unlock(c_rdev);
354  				goto err_unlock;
355  			}
356  		}
357  	}
358  
359  	return 0;
360  
361  err_unlock:
362  	regulator_unlock_recursive(rdev, i);
363  
364  	return err;
365  }
366  
367  /**
368   * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369   *				regulators
370   * @rdev:			regulator source
371   * @ww_ctx:			w/w mutex acquire context
372   *
373   * Unlock all regulators related with rdev by coupling or supplying.
374   */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)375  static void regulator_unlock_dependent(struct regulator_dev *rdev,
376  				       struct ww_acquire_ctx *ww_ctx)
377  {
378  	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379  	ww_acquire_fini(ww_ctx);
380  }
381  
382  /**
383   * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384   * @rdev:			regulator source
385   * @ww_ctx:			w/w mutex acquire context
386   *
387   * This function as a wrapper on regulator_lock_recursive(), which locks
388   * all regulators related with rdev by coupling or supplying.
389   */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)390  static void regulator_lock_dependent(struct regulator_dev *rdev,
391  				     struct ww_acquire_ctx *ww_ctx)
392  {
393  	struct regulator_dev *new_contended_rdev = NULL;
394  	struct regulator_dev *old_contended_rdev = NULL;
395  	int err;
396  
397  	mutex_lock(&regulator_list_mutex);
398  
399  	ww_acquire_init(ww_ctx, &regulator_ww_class);
400  
401  	do {
402  		if (new_contended_rdev) {
403  			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404  			old_contended_rdev = new_contended_rdev;
405  			old_contended_rdev->ref_cnt++;
406  			old_contended_rdev->mutex_owner = current;
407  		}
408  
409  		err = regulator_lock_recursive(rdev,
410  					       &new_contended_rdev,
411  					       &old_contended_rdev,
412  					       ww_ctx);
413  
414  		if (old_contended_rdev)
415  			regulator_unlock(old_contended_rdev);
416  
417  	} while (err == -EDEADLK);
418  
419  	ww_acquire_done(ww_ctx);
420  
421  	mutex_unlock(&regulator_list_mutex);
422  }
423  
424  /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)425  int regulator_check_voltage(struct regulator_dev *rdev,
426  			    int *min_uV, int *max_uV)
427  {
428  	BUG_ON(*min_uV > *max_uV);
429  
430  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431  		rdev_err(rdev, "voltage operation not allowed\n");
432  		return -EPERM;
433  	}
434  
435  	if (*max_uV > rdev->constraints->max_uV)
436  		*max_uV = rdev->constraints->max_uV;
437  	if (*min_uV < rdev->constraints->min_uV)
438  		*min_uV = rdev->constraints->min_uV;
439  
440  	if (*min_uV > *max_uV) {
441  		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442  			 *min_uV, *max_uV);
443  		return -EINVAL;
444  	}
445  
446  	return 0;
447  }
448  
449  /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)450  static int regulator_check_states(suspend_state_t state)
451  {
452  	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453  }
454  
455  /* Make sure we select a voltage that suits the needs of all
456   * regulator consumers
457   */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)458  int regulator_check_consumers(struct regulator_dev *rdev,
459  			      int *min_uV, int *max_uV,
460  			      suspend_state_t state)
461  {
462  	struct regulator *regulator;
463  	struct regulator_voltage *voltage;
464  
465  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
466  		voltage = &regulator->voltage[state];
467  		/*
468  		 * Assume consumers that didn't say anything are OK
469  		 * with anything in the constraint range.
470  		 */
471  		if (!voltage->min_uV && !voltage->max_uV)
472  			continue;
473  
474  		if (*max_uV > voltage->max_uV)
475  			*max_uV = voltage->max_uV;
476  		if (*min_uV < voltage->min_uV)
477  			*min_uV = voltage->min_uV;
478  	}
479  
480  	if (*min_uV > *max_uV) {
481  		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482  			*min_uV, *max_uV);
483  		return -EINVAL;
484  	}
485  
486  	return 0;
487  }
488  
489  /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)490  static int regulator_check_current_limit(struct regulator_dev *rdev,
491  					int *min_uA, int *max_uA)
492  {
493  	BUG_ON(*min_uA > *max_uA);
494  
495  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496  		rdev_err(rdev, "current operation not allowed\n");
497  		return -EPERM;
498  	}
499  
500  	if (*max_uA > rdev->constraints->max_uA)
501  		*max_uA = rdev->constraints->max_uA;
502  	if (*min_uA < rdev->constraints->min_uA)
503  		*min_uA = rdev->constraints->min_uA;
504  
505  	if (*min_uA > *max_uA) {
506  		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
507  			 *min_uA, *max_uA);
508  		return -EINVAL;
509  	}
510  
511  	return 0;
512  }
513  
514  /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)515  static int regulator_mode_constrain(struct regulator_dev *rdev,
516  				    unsigned int *mode)
517  {
518  	switch (*mode) {
519  	case REGULATOR_MODE_FAST:
520  	case REGULATOR_MODE_NORMAL:
521  	case REGULATOR_MODE_IDLE:
522  	case REGULATOR_MODE_STANDBY:
523  		break;
524  	default:
525  		rdev_err(rdev, "invalid mode %x specified\n", *mode);
526  		return -EINVAL;
527  	}
528  
529  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
530  		rdev_err(rdev, "mode operation not allowed\n");
531  		return -EPERM;
532  	}
533  
534  	/* The modes are bitmasks, the most power hungry modes having
535  	 * the lowest values. If the requested mode isn't supported
536  	 * try higher modes.
537  	 */
538  	while (*mode) {
539  		if (rdev->constraints->valid_modes_mask & *mode)
540  			return 0;
541  		*mode /= 2;
542  	}
543  
544  	return -EINVAL;
545  }
546  
547  static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)548  regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
549  {
550  	if (rdev->constraints == NULL)
551  		return NULL;
552  
553  	switch (state) {
554  	case PM_SUSPEND_STANDBY:
555  		return &rdev->constraints->state_standby;
556  	case PM_SUSPEND_MEM:
557  		return &rdev->constraints->state_mem;
558  	case PM_SUSPEND_MAX:
559  		return &rdev->constraints->state_disk;
560  	default:
561  		return NULL;
562  	}
563  }
564  
565  static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)566  regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
567  {
568  	const struct regulator_state *rstate;
569  
570  	rstate = regulator_get_suspend_state(rdev, state);
571  	if (rstate == NULL)
572  		return NULL;
573  
574  	/* If we have no suspend mode configuration don't set anything;
575  	 * only warn if the driver implements set_suspend_voltage or
576  	 * set_suspend_mode callback.
577  	 */
578  	if (rstate->enabled != ENABLE_IN_SUSPEND &&
579  	    rstate->enabled != DISABLE_IN_SUSPEND) {
580  		if (rdev->desc->ops->set_suspend_voltage ||
581  		    rdev->desc->ops->set_suspend_mode)
582  			rdev_warn(rdev, "No configuration\n");
583  		return NULL;
584  	}
585  
586  	return rstate;
587  }
588  
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)589  static ssize_t microvolts_show(struct device *dev,
590  			       struct device_attribute *attr, char *buf)
591  {
592  	struct regulator_dev *rdev = dev_get_drvdata(dev);
593  	int uV;
594  
595  	regulator_lock(rdev);
596  	uV = regulator_get_voltage_rdev(rdev);
597  	regulator_unlock(rdev);
598  
599  	if (uV < 0)
600  		return uV;
601  	return sprintf(buf, "%d\n", uV);
602  }
603  static DEVICE_ATTR_RO(microvolts);
604  
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)605  static ssize_t microamps_show(struct device *dev,
606  			      struct device_attribute *attr, char *buf)
607  {
608  	struct regulator_dev *rdev = dev_get_drvdata(dev);
609  
610  	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
611  }
612  static DEVICE_ATTR_RO(microamps);
613  
name_show(struct device * dev,struct device_attribute * attr,char * buf)614  static ssize_t name_show(struct device *dev, struct device_attribute *attr,
615  			 char *buf)
616  {
617  	struct regulator_dev *rdev = dev_get_drvdata(dev);
618  
619  	return sprintf(buf, "%s\n", rdev_get_name(rdev));
620  }
621  static DEVICE_ATTR_RO(name);
622  
regulator_opmode_to_str(int mode)623  static const char *regulator_opmode_to_str(int mode)
624  {
625  	switch (mode) {
626  	case REGULATOR_MODE_FAST:
627  		return "fast";
628  	case REGULATOR_MODE_NORMAL:
629  		return "normal";
630  	case REGULATOR_MODE_IDLE:
631  		return "idle";
632  	case REGULATOR_MODE_STANDBY:
633  		return "standby";
634  	}
635  	return "unknown";
636  }
637  
regulator_print_opmode(char * buf,int mode)638  static ssize_t regulator_print_opmode(char *buf, int mode)
639  {
640  	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
641  }
642  
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)643  static ssize_t opmode_show(struct device *dev,
644  			   struct device_attribute *attr, char *buf)
645  {
646  	struct regulator_dev *rdev = dev_get_drvdata(dev);
647  
648  	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
649  }
650  static DEVICE_ATTR_RO(opmode);
651  
regulator_print_state(char * buf,int state)652  static ssize_t regulator_print_state(char *buf, int state)
653  {
654  	if (state > 0)
655  		return sprintf(buf, "enabled\n");
656  	else if (state == 0)
657  		return sprintf(buf, "disabled\n");
658  	else
659  		return sprintf(buf, "unknown\n");
660  }
661  
state_show(struct device * dev,struct device_attribute * attr,char * buf)662  static ssize_t state_show(struct device *dev,
663  			  struct device_attribute *attr, char *buf)
664  {
665  	struct regulator_dev *rdev = dev_get_drvdata(dev);
666  	ssize_t ret;
667  
668  	regulator_lock(rdev);
669  	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
670  	regulator_unlock(rdev);
671  
672  	return ret;
673  }
674  static DEVICE_ATTR_RO(state);
675  
status_show(struct device * dev,struct device_attribute * attr,char * buf)676  static ssize_t status_show(struct device *dev,
677  			   struct device_attribute *attr, char *buf)
678  {
679  	struct regulator_dev *rdev = dev_get_drvdata(dev);
680  	int status;
681  	char *label;
682  
683  	status = rdev->desc->ops->get_status(rdev);
684  	if (status < 0)
685  		return status;
686  
687  	switch (status) {
688  	case REGULATOR_STATUS_OFF:
689  		label = "off";
690  		break;
691  	case REGULATOR_STATUS_ON:
692  		label = "on";
693  		break;
694  	case REGULATOR_STATUS_ERROR:
695  		label = "error";
696  		break;
697  	case REGULATOR_STATUS_FAST:
698  		label = "fast";
699  		break;
700  	case REGULATOR_STATUS_NORMAL:
701  		label = "normal";
702  		break;
703  	case REGULATOR_STATUS_IDLE:
704  		label = "idle";
705  		break;
706  	case REGULATOR_STATUS_STANDBY:
707  		label = "standby";
708  		break;
709  	case REGULATOR_STATUS_BYPASS:
710  		label = "bypass";
711  		break;
712  	case REGULATOR_STATUS_UNDEFINED:
713  		label = "undefined";
714  		break;
715  	default:
716  		return -ERANGE;
717  	}
718  
719  	return sprintf(buf, "%s\n", label);
720  }
721  static DEVICE_ATTR_RO(status);
722  
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)723  static ssize_t min_microamps_show(struct device *dev,
724  				  struct device_attribute *attr, char *buf)
725  {
726  	struct regulator_dev *rdev = dev_get_drvdata(dev);
727  
728  	if (!rdev->constraints)
729  		return sprintf(buf, "constraint not defined\n");
730  
731  	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
732  }
733  static DEVICE_ATTR_RO(min_microamps);
734  
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)735  static ssize_t max_microamps_show(struct device *dev,
736  				  struct device_attribute *attr, char *buf)
737  {
738  	struct regulator_dev *rdev = dev_get_drvdata(dev);
739  
740  	if (!rdev->constraints)
741  		return sprintf(buf, "constraint not defined\n");
742  
743  	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
744  }
745  static DEVICE_ATTR_RO(max_microamps);
746  
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)747  static ssize_t min_microvolts_show(struct device *dev,
748  				   struct device_attribute *attr, char *buf)
749  {
750  	struct regulator_dev *rdev = dev_get_drvdata(dev);
751  
752  	if (!rdev->constraints)
753  		return sprintf(buf, "constraint not defined\n");
754  
755  	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
756  }
757  static DEVICE_ATTR_RO(min_microvolts);
758  
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)759  static ssize_t max_microvolts_show(struct device *dev,
760  				   struct device_attribute *attr, char *buf)
761  {
762  	struct regulator_dev *rdev = dev_get_drvdata(dev);
763  
764  	if (!rdev->constraints)
765  		return sprintf(buf, "constraint not defined\n");
766  
767  	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
768  }
769  static DEVICE_ATTR_RO(max_microvolts);
770  
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)771  static ssize_t requested_microamps_show(struct device *dev,
772  					struct device_attribute *attr, char *buf)
773  {
774  	struct regulator_dev *rdev = dev_get_drvdata(dev);
775  	struct regulator *regulator;
776  	int uA = 0;
777  
778  	regulator_lock(rdev);
779  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
780  		if (regulator->enable_count)
781  			uA += regulator->uA_load;
782  	}
783  	regulator_unlock(rdev);
784  	return sprintf(buf, "%d\n", uA);
785  }
786  static DEVICE_ATTR_RO(requested_microamps);
787  
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)788  static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
789  			      char *buf)
790  {
791  	struct regulator_dev *rdev = dev_get_drvdata(dev);
792  	return sprintf(buf, "%d\n", rdev->use_count);
793  }
794  static DEVICE_ATTR_RO(num_users);
795  
type_show(struct device * dev,struct device_attribute * attr,char * buf)796  static ssize_t type_show(struct device *dev, struct device_attribute *attr,
797  			 char *buf)
798  {
799  	struct regulator_dev *rdev = dev_get_drvdata(dev);
800  
801  	switch (rdev->desc->type) {
802  	case REGULATOR_VOLTAGE:
803  		return sprintf(buf, "voltage\n");
804  	case REGULATOR_CURRENT:
805  		return sprintf(buf, "current\n");
806  	}
807  	return sprintf(buf, "unknown\n");
808  }
809  static DEVICE_ATTR_RO(type);
810  
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)811  static ssize_t suspend_mem_microvolts_show(struct device *dev,
812  					   struct device_attribute *attr, char *buf)
813  {
814  	struct regulator_dev *rdev = dev_get_drvdata(dev);
815  
816  	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
817  }
818  static DEVICE_ATTR_RO(suspend_mem_microvolts);
819  
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)820  static ssize_t suspend_disk_microvolts_show(struct device *dev,
821  					    struct device_attribute *attr, char *buf)
822  {
823  	struct regulator_dev *rdev = dev_get_drvdata(dev);
824  
825  	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
826  }
827  static DEVICE_ATTR_RO(suspend_disk_microvolts);
828  
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)829  static ssize_t suspend_standby_microvolts_show(struct device *dev,
830  					       struct device_attribute *attr, char *buf)
831  {
832  	struct regulator_dev *rdev = dev_get_drvdata(dev);
833  
834  	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
835  }
836  static DEVICE_ATTR_RO(suspend_standby_microvolts);
837  
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)838  static ssize_t suspend_mem_mode_show(struct device *dev,
839  				     struct device_attribute *attr, char *buf)
840  {
841  	struct regulator_dev *rdev = dev_get_drvdata(dev);
842  
843  	return regulator_print_opmode(buf,
844  		rdev->constraints->state_mem.mode);
845  }
846  static DEVICE_ATTR_RO(suspend_mem_mode);
847  
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)848  static ssize_t suspend_disk_mode_show(struct device *dev,
849  				      struct device_attribute *attr, char *buf)
850  {
851  	struct regulator_dev *rdev = dev_get_drvdata(dev);
852  
853  	return regulator_print_opmode(buf,
854  		rdev->constraints->state_disk.mode);
855  }
856  static DEVICE_ATTR_RO(suspend_disk_mode);
857  
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)858  static ssize_t suspend_standby_mode_show(struct device *dev,
859  					 struct device_attribute *attr, char *buf)
860  {
861  	struct regulator_dev *rdev = dev_get_drvdata(dev);
862  
863  	return regulator_print_opmode(buf,
864  		rdev->constraints->state_standby.mode);
865  }
866  static DEVICE_ATTR_RO(suspend_standby_mode);
867  
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)868  static ssize_t suspend_mem_state_show(struct device *dev,
869  				      struct device_attribute *attr, char *buf)
870  {
871  	struct regulator_dev *rdev = dev_get_drvdata(dev);
872  
873  	return regulator_print_state(buf,
874  			rdev->constraints->state_mem.enabled);
875  }
876  static DEVICE_ATTR_RO(suspend_mem_state);
877  
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)878  static ssize_t suspend_disk_state_show(struct device *dev,
879  				       struct device_attribute *attr, char *buf)
880  {
881  	struct regulator_dev *rdev = dev_get_drvdata(dev);
882  
883  	return regulator_print_state(buf,
884  			rdev->constraints->state_disk.enabled);
885  }
886  static DEVICE_ATTR_RO(suspend_disk_state);
887  
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)888  static ssize_t suspend_standby_state_show(struct device *dev,
889  					  struct device_attribute *attr, char *buf)
890  {
891  	struct regulator_dev *rdev = dev_get_drvdata(dev);
892  
893  	return regulator_print_state(buf,
894  			rdev->constraints->state_standby.enabled);
895  }
896  static DEVICE_ATTR_RO(suspend_standby_state);
897  
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)898  static ssize_t bypass_show(struct device *dev,
899  			   struct device_attribute *attr, char *buf)
900  {
901  	struct regulator_dev *rdev = dev_get_drvdata(dev);
902  	const char *report;
903  	bool bypass;
904  	int ret;
905  
906  	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
907  
908  	if (ret != 0)
909  		report = "unknown";
910  	else if (bypass)
911  		report = "enabled";
912  	else
913  		report = "disabled";
914  
915  	return sprintf(buf, "%s\n", report);
916  }
917  static DEVICE_ATTR_RO(bypass);
918  
919  #define REGULATOR_ERROR_ATTR(name, bit)							\
920  	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
921  				   char *buf)						\
922  	{										\
923  		int ret;								\
924  		unsigned int flags;							\
925  		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
926  		ret = _regulator_get_error_flags(rdev, &flags);				\
927  		if (ret)								\
928  			return ret;							\
929  		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
930  	}										\
931  	static DEVICE_ATTR_RO(name)
932  
933  REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
934  REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
935  REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
936  REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
937  REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
938  REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
939  REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
940  REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
941  REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
942  
943  /* Calculate the new optimum regulator operating mode based on the new total
944   * consumer load. All locks held by caller
945   */
drms_uA_update(struct regulator_dev * rdev)946  static int drms_uA_update(struct regulator_dev *rdev)
947  {
948  	struct regulator *sibling;
949  	int current_uA = 0, output_uV, input_uV, err;
950  	unsigned int mode;
951  
952  	/*
953  	 * first check to see if we can set modes at all, otherwise just
954  	 * tell the consumer everything is OK.
955  	 */
956  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
957  		rdev_dbg(rdev, "DRMS operation not allowed\n");
958  		return 0;
959  	}
960  
961  	if (!rdev->desc->ops->get_optimum_mode &&
962  	    !rdev->desc->ops->set_load)
963  		return 0;
964  
965  	if (!rdev->desc->ops->set_mode &&
966  	    !rdev->desc->ops->set_load)
967  		return -EINVAL;
968  
969  	/* calc total requested load */
970  	list_for_each_entry(sibling, &rdev->consumer_list, list) {
971  		if (sibling->enable_count)
972  			current_uA += sibling->uA_load;
973  	}
974  
975  	current_uA += rdev->constraints->system_load;
976  
977  	if (rdev->desc->ops->set_load) {
978  		/* set the optimum mode for our new total regulator load */
979  		err = rdev->desc->ops->set_load(rdev, current_uA);
980  		if (err < 0)
981  			rdev_err(rdev, "failed to set load %d: %pe\n",
982  				 current_uA, ERR_PTR(err));
983  	} else {
984  		/*
985  		 * Unfortunately in some cases the constraints->valid_ops has
986  		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
987  		 * That's not really legit but we won't consider it a fatal
988  		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
989  		 * wasn't set.
990  		 */
991  		if (!rdev->constraints->valid_modes_mask) {
992  			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
993  			return 0;
994  		}
995  
996  		/* get output voltage */
997  		output_uV = regulator_get_voltage_rdev(rdev);
998  
999  		/*
1000  		 * Don't return an error; if regulator driver cares about
1001  		 * output_uV then it's up to the driver to validate.
1002  		 */
1003  		if (output_uV <= 0)
1004  			rdev_dbg(rdev, "invalid output voltage found\n");
1005  
1006  		/* get input voltage */
1007  		input_uV = 0;
1008  		if (rdev->supply)
1009  			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1010  		if (input_uV <= 0)
1011  			input_uV = rdev->constraints->input_uV;
1012  
1013  		/*
1014  		 * Don't return an error; if regulator driver cares about
1015  		 * input_uV then it's up to the driver to validate.
1016  		 */
1017  		if (input_uV <= 0)
1018  			rdev_dbg(rdev, "invalid input voltage found\n");
1019  
1020  		/* now get the optimum mode for our new total regulator load */
1021  		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1022  							 output_uV, current_uA);
1023  
1024  		/* check the new mode is allowed */
1025  		err = regulator_mode_constrain(rdev, &mode);
1026  		if (err < 0) {
1027  			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1028  				 current_uA, input_uV, output_uV, ERR_PTR(err));
1029  			return err;
1030  		}
1031  
1032  		err = rdev->desc->ops->set_mode(rdev, mode);
1033  		if (err < 0)
1034  			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1035  				 mode, ERR_PTR(err));
1036  	}
1037  
1038  	return err;
1039  }
1040  
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1041  static int __suspend_set_state(struct regulator_dev *rdev,
1042  			       const struct regulator_state *rstate)
1043  {
1044  	int ret = 0;
1045  
1046  	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1047  		rdev->desc->ops->set_suspend_enable)
1048  		ret = rdev->desc->ops->set_suspend_enable(rdev);
1049  	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1050  		rdev->desc->ops->set_suspend_disable)
1051  		ret = rdev->desc->ops->set_suspend_disable(rdev);
1052  	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1053  		ret = 0;
1054  
1055  	if (ret < 0) {
1056  		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1057  		return ret;
1058  	}
1059  
1060  	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1061  		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1062  		if (ret < 0) {
1063  			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1064  			return ret;
1065  		}
1066  	}
1067  
1068  	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1069  		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1070  		if (ret < 0) {
1071  			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1072  			return ret;
1073  		}
1074  	}
1075  
1076  	return ret;
1077  }
1078  
suspend_set_initial_state(struct regulator_dev * rdev)1079  static int suspend_set_initial_state(struct regulator_dev *rdev)
1080  {
1081  	const struct regulator_state *rstate;
1082  
1083  	rstate = regulator_get_suspend_state_check(rdev,
1084  			rdev->constraints->initial_state);
1085  	if (!rstate)
1086  		return 0;
1087  
1088  	return __suspend_set_state(rdev, rstate);
1089  }
1090  
1091  #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1092  static void print_constraints_debug(struct regulator_dev *rdev)
1093  {
1094  	struct regulation_constraints *constraints = rdev->constraints;
1095  	char buf[160] = "";
1096  	size_t len = sizeof(buf) - 1;
1097  	int count = 0;
1098  	int ret;
1099  
1100  	if (constraints->min_uV && constraints->max_uV) {
1101  		if (constraints->min_uV == constraints->max_uV)
1102  			count += scnprintf(buf + count, len - count, "%d mV ",
1103  					   constraints->min_uV / 1000);
1104  		else
1105  			count += scnprintf(buf + count, len - count,
1106  					   "%d <--> %d mV ",
1107  					   constraints->min_uV / 1000,
1108  					   constraints->max_uV / 1000);
1109  	}
1110  
1111  	if (!constraints->min_uV ||
1112  	    constraints->min_uV != constraints->max_uV) {
1113  		ret = regulator_get_voltage_rdev(rdev);
1114  		if (ret > 0)
1115  			count += scnprintf(buf + count, len - count,
1116  					   "at %d mV ", ret / 1000);
1117  	}
1118  
1119  	if (constraints->uV_offset)
1120  		count += scnprintf(buf + count, len - count, "%dmV offset ",
1121  				   constraints->uV_offset / 1000);
1122  
1123  	if (constraints->min_uA && constraints->max_uA) {
1124  		if (constraints->min_uA == constraints->max_uA)
1125  			count += scnprintf(buf + count, len - count, "%d mA ",
1126  					   constraints->min_uA / 1000);
1127  		else
1128  			count += scnprintf(buf + count, len - count,
1129  					   "%d <--> %d mA ",
1130  					   constraints->min_uA / 1000,
1131  					   constraints->max_uA / 1000);
1132  	}
1133  
1134  	if (!constraints->min_uA ||
1135  	    constraints->min_uA != constraints->max_uA) {
1136  		ret = _regulator_get_current_limit(rdev);
1137  		if (ret > 0)
1138  			count += scnprintf(buf + count, len - count,
1139  					   "at %d mA ", ret / 1000);
1140  	}
1141  
1142  	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1143  		count += scnprintf(buf + count, len - count, "fast ");
1144  	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1145  		count += scnprintf(buf + count, len - count, "normal ");
1146  	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1147  		count += scnprintf(buf + count, len - count, "idle ");
1148  	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1149  		count += scnprintf(buf + count, len - count, "standby ");
1150  
1151  	if (!count)
1152  		count = scnprintf(buf, len, "no parameters");
1153  	else
1154  		--count;
1155  
1156  	count += scnprintf(buf + count, len - count, ", %s",
1157  		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1158  
1159  	rdev_dbg(rdev, "%s\n", buf);
1160  }
1161  #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1162  static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1163  #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1164  
print_constraints(struct regulator_dev * rdev)1165  static void print_constraints(struct regulator_dev *rdev)
1166  {
1167  	struct regulation_constraints *constraints = rdev->constraints;
1168  
1169  	print_constraints_debug(rdev);
1170  
1171  	if ((constraints->min_uV != constraints->max_uV) &&
1172  	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1173  		rdev_warn(rdev,
1174  			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1175  }
1176  
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1177  static int machine_constraints_voltage(struct regulator_dev *rdev,
1178  	struct regulation_constraints *constraints)
1179  {
1180  	const struct regulator_ops *ops = rdev->desc->ops;
1181  	int ret;
1182  
1183  	/* do we need to apply the constraint voltage */
1184  	if (rdev->constraints->apply_uV &&
1185  	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1186  		int target_min, target_max;
1187  		int current_uV = regulator_get_voltage_rdev(rdev);
1188  
1189  		if (current_uV == -ENOTRECOVERABLE) {
1190  			/* This regulator can't be read and must be initialized */
1191  			rdev_info(rdev, "Setting %d-%duV\n",
1192  				  rdev->constraints->min_uV,
1193  				  rdev->constraints->max_uV);
1194  			_regulator_do_set_voltage(rdev,
1195  						  rdev->constraints->min_uV,
1196  						  rdev->constraints->max_uV);
1197  			current_uV = regulator_get_voltage_rdev(rdev);
1198  		}
1199  
1200  		if (current_uV < 0) {
1201  			if (current_uV != -EPROBE_DEFER)
1202  				rdev_err(rdev,
1203  					 "failed to get the current voltage: %pe\n",
1204  					 ERR_PTR(current_uV));
1205  			return current_uV;
1206  		}
1207  
1208  		/*
1209  		 * If we're below the minimum voltage move up to the
1210  		 * minimum voltage, if we're above the maximum voltage
1211  		 * then move down to the maximum.
1212  		 */
1213  		target_min = current_uV;
1214  		target_max = current_uV;
1215  
1216  		if (current_uV < rdev->constraints->min_uV) {
1217  			target_min = rdev->constraints->min_uV;
1218  			target_max = rdev->constraints->min_uV;
1219  		}
1220  
1221  		if (current_uV > rdev->constraints->max_uV) {
1222  			target_min = rdev->constraints->max_uV;
1223  			target_max = rdev->constraints->max_uV;
1224  		}
1225  
1226  		if (target_min != current_uV || target_max != current_uV) {
1227  			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1228  				  current_uV, target_min, target_max);
1229  			ret = _regulator_do_set_voltage(
1230  				rdev, target_min, target_max);
1231  			if (ret < 0) {
1232  				rdev_err(rdev,
1233  					"failed to apply %d-%duV constraint: %pe\n",
1234  					target_min, target_max, ERR_PTR(ret));
1235  				return ret;
1236  			}
1237  		}
1238  	}
1239  
1240  	/* constrain machine-level voltage specs to fit
1241  	 * the actual range supported by this regulator.
1242  	 */
1243  	if (ops->list_voltage && rdev->desc->n_voltages) {
1244  		int	count = rdev->desc->n_voltages;
1245  		int	i;
1246  		int	min_uV = INT_MAX;
1247  		int	max_uV = INT_MIN;
1248  		int	cmin = constraints->min_uV;
1249  		int	cmax = constraints->max_uV;
1250  
1251  		/* it's safe to autoconfigure fixed-voltage supplies
1252  		 * and the constraints are used by list_voltage.
1253  		 */
1254  		if (count == 1 && !cmin) {
1255  			cmin = 1;
1256  			cmax = INT_MAX;
1257  			constraints->min_uV = cmin;
1258  			constraints->max_uV = cmax;
1259  		}
1260  
1261  		/* voltage constraints are optional */
1262  		if ((cmin == 0) && (cmax == 0))
1263  			return 0;
1264  
1265  		/* else require explicit machine-level constraints */
1266  		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1267  			rdev_err(rdev, "invalid voltage constraints\n");
1268  			return -EINVAL;
1269  		}
1270  
1271  		/* no need to loop voltages if range is continuous */
1272  		if (rdev->desc->continuous_voltage_range)
1273  			return 0;
1274  
1275  		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1276  		for (i = 0; i < count; i++) {
1277  			int	value;
1278  
1279  			value = ops->list_voltage(rdev, i);
1280  			if (value <= 0)
1281  				continue;
1282  
1283  			/* maybe adjust [min_uV..max_uV] */
1284  			if (value >= cmin && value < min_uV)
1285  				min_uV = value;
1286  			if (value <= cmax && value > max_uV)
1287  				max_uV = value;
1288  		}
1289  
1290  		/* final: [min_uV..max_uV] valid iff constraints valid */
1291  		if (max_uV < min_uV) {
1292  			rdev_err(rdev,
1293  				 "unsupportable voltage constraints %u-%uuV\n",
1294  				 min_uV, max_uV);
1295  			return -EINVAL;
1296  		}
1297  
1298  		/* use regulator's subset of machine constraints */
1299  		if (constraints->min_uV < min_uV) {
1300  			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1301  				 constraints->min_uV, min_uV);
1302  			constraints->min_uV = min_uV;
1303  		}
1304  		if (constraints->max_uV > max_uV) {
1305  			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1306  				 constraints->max_uV, max_uV);
1307  			constraints->max_uV = max_uV;
1308  		}
1309  	}
1310  
1311  	return 0;
1312  }
1313  
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1314  static int machine_constraints_current(struct regulator_dev *rdev,
1315  	struct regulation_constraints *constraints)
1316  {
1317  	const struct regulator_ops *ops = rdev->desc->ops;
1318  	int ret;
1319  
1320  	if (!constraints->min_uA && !constraints->max_uA)
1321  		return 0;
1322  
1323  	if (constraints->min_uA > constraints->max_uA) {
1324  		rdev_err(rdev, "Invalid current constraints\n");
1325  		return -EINVAL;
1326  	}
1327  
1328  	if (!ops->set_current_limit || !ops->get_current_limit) {
1329  		rdev_warn(rdev, "Operation of current configuration missing\n");
1330  		return 0;
1331  	}
1332  
1333  	/* Set regulator current in constraints range */
1334  	ret = ops->set_current_limit(rdev, constraints->min_uA,
1335  			constraints->max_uA);
1336  	if (ret < 0) {
1337  		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1338  		return ret;
1339  	}
1340  
1341  	return 0;
1342  }
1343  
1344  static int _regulator_do_enable(struct regulator_dev *rdev);
1345  
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1346  static int notif_set_limit(struct regulator_dev *rdev,
1347  			   int (*set)(struct regulator_dev *, int, int, bool),
1348  			   int limit, int severity)
1349  {
1350  	bool enable;
1351  
1352  	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1353  		enable = false;
1354  		limit = 0;
1355  	} else {
1356  		enable = true;
1357  	}
1358  
1359  	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1360  		limit = 0;
1361  
1362  	return set(rdev, limit, severity, enable);
1363  }
1364  
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1365  static int handle_notify_limits(struct regulator_dev *rdev,
1366  			int (*set)(struct regulator_dev *, int, int, bool),
1367  			struct notification_limit *limits)
1368  {
1369  	int ret = 0;
1370  
1371  	if (!set)
1372  		return -EOPNOTSUPP;
1373  
1374  	if (limits->prot)
1375  		ret = notif_set_limit(rdev, set, limits->prot,
1376  				      REGULATOR_SEVERITY_PROT);
1377  	if (ret)
1378  		return ret;
1379  
1380  	if (limits->err)
1381  		ret = notif_set_limit(rdev, set, limits->err,
1382  				      REGULATOR_SEVERITY_ERR);
1383  	if (ret)
1384  		return ret;
1385  
1386  	if (limits->warn)
1387  		ret = notif_set_limit(rdev, set, limits->warn,
1388  				      REGULATOR_SEVERITY_WARN);
1389  
1390  	return ret;
1391  }
1392  /**
1393   * set_machine_constraints - sets regulator constraints
1394   * @rdev: regulator source
1395   *
1396   * Allows platform initialisation code to define and constrain
1397   * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1398   * Constraints *must* be set by platform code in order for some
1399   * regulator operations to proceed i.e. set_voltage, set_current_limit,
1400   * set_mode.
1401   *
1402   * Return: 0 on success or a negative error number on failure.
1403   */
set_machine_constraints(struct regulator_dev * rdev)1404  static int set_machine_constraints(struct regulator_dev *rdev)
1405  {
1406  	int ret = 0;
1407  	const struct regulator_ops *ops = rdev->desc->ops;
1408  
1409  	ret = machine_constraints_voltage(rdev, rdev->constraints);
1410  	if (ret != 0)
1411  		return ret;
1412  
1413  	ret = machine_constraints_current(rdev, rdev->constraints);
1414  	if (ret != 0)
1415  		return ret;
1416  
1417  	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1418  		ret = ops->set_input_current_limit(rdev,
1419  						   rdev->constraints->ilim_uA);
1420  		if (ret < 0) {
1421  			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1422  			return ret;
1423  		}
1424  	}
1425  
1426  	/* do we need to setup our suspend state */
1427  	if (rdev->constraints->initial_state) {
1428  		ret = suspend_set_initial_state(rdev);
1429  		if (ret < 0) {
1430  			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1431  			return ret;
1432  		}
1433  	}
1434  
1435  	if (rdev->constraints->initial_mode) {
1436  		if (!ops->set_mode) {
1437  			rdev_err(rdev, "no set_mode operation\n");
1438  			return -EINVAL;
1439  		}
1440  
1441  		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1442  		if (ret < 0) {
1443  			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1444  			return ret;
1445  		}
1446  	} else if (rdev->constraints->system_load) {
1447  		/*
1448  		 * We'll only apply the initial system load if an
1449  		 * initial mode wasn't specified.
1450  		 */
1451  		drms_uA_update(rdev);
1452  	}
1453  
1454  	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1455  		&& ops->set_ramp_delay) {
1456  		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1457  		if (ret < 0) {
1458  			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1459  			return ret;
1460  		}
1461  	}
1462  
1463  	if (rdev->constraints->pull_down && ops->set_pull_down) {
1464  		ret = ops->set_pull_down(rdev);
1465  		if (ret < 0) {
1466  			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1467  			return ret;
1468  		}
1469  	}
1470  
1471  	if (rdev->constraints->soft_start && ops->set_soft_start) {
1472  		ret = ops->set_soft_start(rdev);
1473  		if (ret < 0) {
1474  			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1475  			return ret;
1476  		}
1477  	}
1478  
1479  	/*
1480  	 * Existing logic does not warn if over_current_protection is given as
1481  	 * a constraint but driver does not support that. I think we should
1482  	 * warn about this type of issues as it is possible someone changes
1483  	 * PMIC on board to another type - and the another PMIC's driver does
1484  	 * not support setting protection. Board composer may happily believe
1485  	 * the DT limits are respected - especially if the new PMIC HW also
1486  	 * supports protection but the driver does not. I won't change the logic
1487  	 * without hearing more experienced opinion on this though.
1488  	 *
1489  	 * If warning is seen as a good idea then we can merge handling the
1490  	 * over-curret protection and detection and get rid of this special
1491  	 * handling.
1492  	 */
1493  	if (rdev->constraints->over_current_protection
1494  		&& ops->set_over_current_protection) {
1495  		int lim = rdev->constraints->over_curr_limits.prot;
1496  
1497  		ret = ops->set_over_current_protection(rdev, lim,
1498  						       REGULATOR_SEVERITY_PROT,
1499  						       true);
1500  		if (ret < 0) {
1501  			rdev_err(rdev, "failed to set over current protection: %pe\n",
1502  				 ERR_PTR(ret));
1503  			return ret;
1504  		}
1505  	}
1506  
1507  	if (rdev->constraints->over_current_detection)
1508  		ret = handle_notify_limits(rdev,
1509  					   ops->set_over_current_protection,
1510  					   &rdev->constraints->over_curr_limits);
1511  	if (ret) {
1512  		if (ret != -EOPNOTSUPP) {
1513  			rdev_err(rdev, "failed to set over current limits: %pe\n",
1514  				 ERR_PTR(ret));
1515  			return ret;
1516  		}
1517  		rdev_warn(rdev,
1518  			  "IC does not support requested over-current limits\n");
1519  	}
1520  
1521  	if (rdev->constraints->over_voltage_detection)
1522  		ret = handle_notify_limits(rdev,
1523  					   ops->set_over_voltage_protection,
1524  					   &rdev->constraints->over_voltage_limits);
1525  	if (ret) {
1526  		if (ret != -EOPNOTSUPP) {
1527  			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1528  				 ERR_PTR(ret));
1529  			return ret;
1530  		}
1531  		rdev_warn(rdev,
1532  			  "IC does not support requested over voltage limits\n");
1533  	}
1534  
1535  	if (rdev->constraints->under_voltage_detection)
1536  		ret = handle_notify_limits(rdev,
1537  					   ops->set_under_voltage_protection,
1538  					   &rdev->constraints->under_voltage_limits);
1539  	if (ret) {
1540  		if (ret != -EOPNOTSUPP) {
1541  			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1542  				 ERR_PTR(ret));
1543  			return ret;
1544  		}
1545  		rdev_warn(rdev,
1546  			  "IC does not support requested under voltage limits\n");
1547  	}
1548  
1549  	if (rdev->constraints->over_temp_detection)
1550  		ret = handle_notify_limits(rdev,
1551  					   ops->set_thermal_protection,
1552  					   &rdev->constraints->temp_limits);
1553  	if (ret) {
1554  		if (ret != -EOPNOTSUPP) {
1555  			rdev_err(rdev, "failed to set temperature limits %pe\n",
1556  				 ERR_PTR(ret));
1557  			return ret;
1558  		}
1559  		rdev_warn(rdev,
1560  			  "IC does not support requested temperature limits\n");
1561  	}
1562  
1563  	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1564  		bool ad_state = (rdev->constraints->active_discharge ==
1565  			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1566  
1567  		ret = ops->set_active_discharge(rdev, ad_state);
1568  		if (ret < 0) {
1569  			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1570  			return ret;
1571  		}
1572  	}
1573  
1574  	/*
1575  	 * If there is no mechanism for controlling the regulator then
1576  	 * flag it as always_on so we don't end up duplicating checks
1577  	 * for this so much.  Note that we could control the state of
1578  	 * a supply to control the output on a regulator that has no
1579  	 * direct control.
1580  	 */
1581  	if (!rdev->ena_pin && !ops->enable) {
1582  		if (rdev->supply_name && !rdev->supply)
1583  			return -EPROBE_DEFER;
1584  
1585  		if (rdev->supply)
1586  			rdev->constraints->always_on =
1587  				rdev->supply->rdev->constraints->always_on;
1588  		else
1589  			rdev->constraints->always_on = true;
1590  	}
1591  
1592  	/* If the constraints say the regulator should be on at this point
1593  	 * and we have control then make sure it is enabled.
1594  	 */
1595  	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1596  		/* If we want to enable this regulator, make sure that we know
1597  		 * the supplying regulator.
1598  		 */
1599  		if (rdev->supply_name && !rdev->supply)
1600  			return -EPROBE_DEFER;
1601  
1602  		/* If supplying regulator has already been enabled,
1603  		 * it's not intended to have use_count increment
1604  		 * when rdev is only boot-on.
1605  		 */
1606  		if (rdev->supply &&
1607  		    (rdev->constraints->always_on ||
1608  		     !regulator_is_enabled(rdev->supply))) {
1609  			ret = regulator_enable(rdev->supply);
1610  			if (ret < 0) {
1611  				_regulator_put(rdev->supply);
1612  				rdev->supply = NULL;
1613  				return ret;
1614  			}
1615  		}
1616  
1617  		ret = _regulator_do_enable(rdev);
1618  		if (ret < 0 && ret != -EINVAL) {
1619  			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1620  			return ret;
1621  		}
1622  
1623  		if (rdev->constraints->always_on)
1624  			rdev->use_count++;
1625  	} else if (rdev->desc->off_on_delay) {
1626  		rdev->last_off = ktime_get();
1627  	}
1628  
1629  	print_constraints(rdev);
1630  	return 0;
1631  }
1632  
1633  /**
1634   * set_supply - set regulator supply regulator
1635   * @rdev: regulator (locked)
1636   * @supply_rdev: supply regulator (locked))
1637   *
1638   * Called by platform initialisation code to set the supply regulator for this
1639   * regulator. This ensures that a regulators supply will also be enabled by the
1640   * core if it's child is enabled.
1641   *
1642   * Return: 0 on success or a negative error number on failure.
1643   */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1644  static int set_supply(struct regulator_dev *rdev,
1645  		      struct regulator_dev *supply_rdev)
1646  {
1647  	int err;
1648  
1649  	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1650  
1651  	if (!try_module_get(supply_rdev->owner))
1652  		return -ENODEV;
1653  
1654  	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1655  	if (rdev->supply == NULL) {
1656  		module_put(supply_rdev->owner);
1657  		err = -ENOMEM;
1658  		return err;
1659  	}
1660  	supply_rdev->open_count++;
1661  
1662  	return 0;
1663  }
1664  
1665  /**
1666   * set_consumer_device_supply - Bind a regulator to a symbolic supply
1667   * @rdev:         regulator source
1668   * @consumer_dev_name: dev_name() string for device supply applies to
1669   * @supply:       symbolic name for supply
1670   *
1671   * Allows platform initialisation code to map physical regulator
1672   * sources to symbolic names for supplies for use by devices.  Devices
1673   * should use these symbolic names to request regulators, avoiding the
1674   * need to provide board-specific regulator names as platform data.
1675   *
1676   * Return: 0 on success or a negative error number on failure.
1677   */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1678  static int set_consumer_device_supply(struct regulator_dev *rdev,
1679  				      const char *consumer_dev_name,
1680  				      const char *supply)
1681  {
1682  	struct regulator_map *node, *new_node;
1683  	int has_dev;
1684  
1685  	if (supply == NULL)
1686  		return -EINVAL;
1687  
1688  	if (consumer_dev_name != NULL)
1689  		has_dev = 1;
1690  	else
1691  		has_dev = 0;
1692  
1693  	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1694  	if (new_node == NULL)
1695  		return -ENOMEM;
1696  
1697  	new_node->regulator = rdev;
1698  	new_node->supply = supply;
1699  
1700  	if (has_dev) {
1701  		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1702  		if (new_node->dev_name == NULL) {
1703  			kfree(new_node);
1704  			return -ENOMEM;
1705  		}
1706  	}
1707  
1708  	mutex_lock(&regulator_list_mutex);
1709  	list_for_each_entry(node, &regulator_map_list, list) {
1710  		if (node->dev_name && consumer_dev_name) {
1711  			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1712  				continue;
1713  		} else if (node->dev_name || consumer_dev_name) {
1714  			continue;
1715  		}
1716  
1717  		if (strcmp(node->supply, supply) != 0)
1718  			continue;
1719  
1720  		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1721  			 consumer_dev_name,
1722  			 dev_name(&node->regulator->dev),
1723  			 node->regulator->desc->name,
1724  			 supply,
1725  			 dev_name(&rdev->dev), rdev_get_name(rdev));
1726  		goto fail;
1727  	}
1728  
1729  	list_add(&new_node->list, &regulator_map_list);
1730  	mutex_unlock(&regulator_list_mutex);
1731  
1732  	return 0;
1733  
1734  fail:
1735  	mutex_unlock(&regulator_list_mutex);
1736  	kfree(new_node->dev_name);
1737  	kfree(new_node);
1738  	return -EBUSY;
1739  }
1740  
unset_regulator_supplies(struct regulator_dev * rdev)1741  static void unset_regulator_supplies(struct regulator_dev *rdev)
1742  {
1743  	struct regulator_map *node, *n;
1744  
1745  	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1746  		if (rdev == node->regulator) {
1747  			list_del(&node->list);
1748  			kfree(node->dev_name);
1749  			kfree(node);
1750  		}
1751  	}
1752  }
1753  
1754  #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1755  static ssize_t constraint_flags_read_file(struct file *file,
1756  					  char __user *user_buf,
1757  					  size_t count, loff_t *ppos)
1758  {
1759  	const struct regulator *regulator = file->private_data;
1760  	const struct regulation_constraints *c = regulator->rdev->constraints;
1761  	char *buf;
1762  	ssize_t ret;
1763  
1764  	if (!c)
1765  		return 0;
1766  
1767  	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1768  	if (!buf)
1769  		return -ENOMEM;
1770  
1771  	ret = snprintf(buf, PAGE_SIZE,
1772  			"always_on: %u\n"
1773  			"boot_on: %u\n"
1774  			"apply_uV: %u\n"
1775  			"ramp_disable: %u\n"
1776  			"soft_start: %u\n"
1777  			"pull_down: %u\n"
1778  			"over_current_protection: %u\n",
1779  			c->always_on,
1780  			c->boot_on,
1781  			c->apply_uV,
1782  			c->ramp_disable,
1783  			c->soft_start,
1784  			c->pull_down,
1785  			c->over_current_protection);
1786  
1787  	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1788  	kfree(buf);
1789  
1790  	return ret;
1791  }
1792  
1793  #endif
1794  
1795  static const struct file_operations constraint_flags_fops = {
1796  #ifdef CONFIG_DEBUG_FS
1797  	.open = simple_open,
1798  	.read = constraint_flags_read_file,
1799  	.llseek = default_llseek,
1800  #endif
1801  };
1802  
1803  #define REG_STR_SIZE	64
1804  
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1805  static struct regulator *create_regulator(struct regulator_dev *rdev,
1806  					  struct device *dev,
1807  					  const char *supply_name)
1808  {
1809  	struct regulator *regulator;
1810  	int err = 0;
1811  
1812  	lockdep_assert_held_once(&rdev->mutex.base);
1813  
1814  	if (dev) {
1815  		char buf[REG_STR_SIZE];
1816  		int size;
1817  
1818  		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1819  				dev->kobj.name, supply_name);
1820  		if (size >= REG_STR_SIZE)
1821  			return NULL;
1822  
1823  		supply_name = kstrdup(buf, GFP_KERNEL);
1824  		if (supply_name == NULL)
1825  			return NULL;
1826  	} else {
1827  		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1828  		if (supply_name == NULL)
1829  			return NULL;
1830  	}
1831  
1832  	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1833  	if (regulator == NULL) {
1834  		kfree_const(supply_name);
1835  		return NULL;
1836  	}
1837  
1838  	regulator->rdev = rdev;
1839  	regulator->supply_name = supply_name;
1840  
1841  	list_add(&regulator->list, &rdev->consumer_list);
1842  
1843  	if (dev) {
1844  		regulator->dev = dev;
1845  
1846  		/* Add a link to the device sysfs entry */
1847  		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1848  					       supply_name);
1849  		if (err) {
1850  			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1851  				  dev->kobj.name, ERR_PTR(err));
1852  			/* non-fatal */
1853  		}
1854  	}
1855  
1856  	if (err != -EEXIST) {
1857  		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1858  		if (IS_ERR(regulator->debugfs)) {
1859  			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1860  			regulator->debugfs = NULL;
1861  		}
1862  	}
1863  
1864  	if (regulator->debugfs) {
1865  		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1866  				   &regulator->uA_load);
1867  		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1868  				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1869  		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1870  				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1871  		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1872  				    regulator, &constraint_flags_fops);
1873  	}
1874  
1875  	/*
1876  	 * Check now if the regulator is an always on regulator - if
1877  	 * it is then we don't need to do nearly so much work for
1878  	 * enable/disable calls.
1879  	 */
1880  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1881  	    _regulator_is_enabled(rdev))
1882  		regulator->always_on = true;
1883  
1884  	return regulator;
1885  }
1886  
_regulator_get_enable_time(struct regulator_dev * rdev)1887  static int _regulator_get_enable_time(struct regulator_dev *rdev)
1888  {
1889  	if (rdev->constraints && rdev->constraints->enable_time)
1890  		return rdev->constraints->enable_time;
1891  	if (rdev->desc->ops->enable_time)
1892  		return rdev->desc->ops->enable_time(rdev);
1893  	return rdev->desc->enable_time;
1894  }
1895  
regulator_find_supply_alias(struct device * dev,const char * supply)1896  static struct regulator_supply_alias *regulator_find_supply_alias(
1897  		struct device *dev, const char *supply)
1898  {
1899  	struct regulator_supply_alias *map;
1900  
1901  	list_for_each_entry(map, &regulator_supply_alias_list, list)
1902  		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1903  			return map;
1904  
1905  	return NULL;
1906  }
1907  
regulator_supply_alias(struct device ** dev,const char ** supply)1908  static void regulator_supply_alias(struct device **dev, const char **supply)
1909  {
1910  	struct regulator_supply_alias *map;
1911  
1912  	map = regulator_find_supply_alias(*dev, *supply);
1913  	if (map) {
1914  		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1915  				*supply, map->alias_supply,
1916  				dev_name(map->alias_dev));
1917  		*dev = map->alias_dev;
1918  		*supply = map->alias_supply;
1919  	}
1920  }
1921  
regulator_match(struct device * dev,const void * data)1922  static int regulator_match(struct device *dev, const void *data)
1923  {
1924  	struct regulator_dev *r = dev_to_rdev(dev);
1925  
1926  	return strcmp(rdev_get_name(r), data) == 0;
1927  }
1928  
regulator_lookup_by_name(const char * name)1929  static struct regulator_dev *regulator_lookup_by_name(const char *name)
1930  {
1931  	struct device *dev;
1932  
1933  	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1934  
1935  	return dev ? dev_to_rdev(dev) : NULL;
1936  }
1937  
1938  /**
1939   * regulator_dev_lookup - lookup a regulator device.
1940   * @dev: device for regulator "consumer".
1941   * @supply: Supply name or regulator ID.
1942   *
1943   * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1944   *
1945   * If successful, returns a struct regulator_dev that corresponds to the name
1946   * @supply and with the embedded struct device refcount incremented by one.
1947   * The refcount must be dropped by calling put_device().
1948   * On failure one of the following ERR_PTR() encoded values is returned:
1949   * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1950   * in the future.
1951   */
regulator_dev_lookup(struct device * dev,const char * supply)1952  static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1953  						  const char *supply)
1954  {
1955  	struct regulator_dev *r = NULL;
1956  	struct regulator_map *map;
1957  	const char *devname = NULL;
1958  
1959  	regulator_supply_alias(&dev, &supply);
1960  
1961  	/* first do a dt based lookup */
1962  	if (dev && dev->of_node) {
1963  		r = of_regulator_dev_lookup(dev, supply);
1964  		if (!IS_ERR(r))
1965  			return r;
1966  		if (PTR_ERR(r) == -EPROBE_DEFER)
1967  			return r;
1968  
1969  		if (PTR_ERR(r) == -ENODEV)
1970  			r = NULL;
1971  	}
1972  
1973  	/* if not found, try doing it non-dt way */
1974  	if (dev)
1975  		devname = dev_name(dev);
1976  
1977  	mutex_lock(&regulator_list_mutex);
1978  	list_for_each_entry(map, &regulator_map_list, list) {
1979  		/* If the mapping has a device set up it must match */
1980  		if (map->dev_name &&
1981  		    (!devname || strcmp(map->dev_name, devname)))
1982  			continue;
1983  
1984  		if (strcmp(map->supply, supply) == 0 &&
1985  		    get_device(&map->regulator->dev)) {
1986  			r = map->regulator;
1987  			break;
1988  		}
1989  	}
1990  	mutex_unlock(&regulator_list_mutex);
1991  
1992  	if (r)
1993  		return r;
1994  
1995  	r = regulator_lookup_by_name(supply);
1996  	if (r)
1997  		return r;
1998  
1999  	return ERR_PTR(-ENODEV);
2000  }
2001  
regulator_resolve_supply(struct regulator_dev * rdev)2002  static int regulator_resolve_supply(struct regulator_dev *rdev)
2003  {
2004  	struct regulator_dev *r;
2005  	struct device *dev = rdev->dev.parent;
2006  	struct ww_acquire_ctx ww_ctx;
2007  	int ret = 0;
2008  
2009  	/* No supply to resolve? */
2010  	if (!rdev->supply_name)
2011  		return 0;
2012  
2013  	/* Supply already resolved? (fast-path without locking contention) */
2014  	if (rdev->supply)
2015  		return 0;
2016  
2017  	r = regulator_dev_lookup(dev, rdev->supply_name);
2018  	if (IS_ERR(r)) {
2019  		ret = PTR_ERR(r);
2020  
2021  		/* Did the lookup explicitly defer for us? */
2022  		if (ret == -EPROBE_DEFER)
2023  			goto out;
2024  
2025  		if (have_full_constraints()) {
2026  			r = dummy_regulator_rdev;
2027  			get_device(&r->dev);
2028  		} else {
2029  			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2030  				rdev->supply_name, rdev->desc->name);
2031  			ret = -EPROBE_DEFER;
2032  			goto out;
2033  		}
2034  	}
2035  
2036  	if (r == rdev) {
2037  		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2038  			rdev->desc->name, rdev->supply_name);
2039  		if (!have_full_constraints()) {
2040  			ret = -EINVAL;
2041  			goto out;
2042  		}
2043  		r = dummy_regulator_rdev;
2044  		get_device(&r->dev);
2045  	}
2046  
2047  	/*
2048  	 * If the supply's parent device is not the same as the
2049  	 * regulator's parent device, then ensure the parent device
2050  	 * is bound before we resolve the supply, in case the parent
2051  	 * device get probe deferred and unregisters the supply.
2052  	 */
2053  	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2054  		if (!device_is_bound(r->dev.parent)) {
2055  			put_device(&r->dev);
2056  			ret = -EPROBE_DEFER;
2057  			goto out;
2058  		}
2059  	}
2060  
2061  	/* Recursively resolve the supply of the supply */
2062  	ret = regulator_resolve_supply(r);
2063  	if (ret < 0) {
2064  		put_device(&r->dev);
2065  		goto out;
2066  	}
2067  
2068  	/*
2069  	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2070  	 * between rdev->supply null check and setting rdev->supply in
2071  	 * set_supply() from concurrent tasks.
2072  	 */
2073  	regulator_lock_two(rdev, r, &ww_ctx);
2074  
2075  	/* Supply just resolved by a concurrent task? */
2076  	if (rdev->supply) {
2077  		regulator_unlock_two(rdev, r, &ww_ctx);
2078  		put_device(&r->dev);
2079  		goto out;
2080  	}
2081  
2082  	ret = set_supply(rdev, r);
2083  	if (ret < 0) {
2084  		regulator_unlock_two(rdev, r, &ww_ctx);
2085  		put_device(&r->dev);
2086  		goto out;
2087  	}
2088  
2089  	regulator_unlock_two(rdev, r, &ww_ctx);
2090  
2091  	/*
2092  	 * In set_machine_constraints() we may have turned this regulator on
2093  	 * but we couldn't propagate to the supply if it hadn't been resolved
2094  	 * yet.  Do it now.
2095  	 */
2096  	if (rdev->use_count) {
2097  		ret = regulator_enable(rdev->supply);
2098  		if (ret < 0) {
2099  			_regulator_put(rdev->supply);
2100  			rdev->supply = NULL;
2101  			goto out;
2102  		}
2103  	}
2104  
2105  out:
2106  	return ret;
2107  }
2108  
2109  /* common pre-checks for regulator requests */
_regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2110  int _regulator_get_common_check(struct device *dev, const char *id,
2111  				enum regulator_get_type get_type)
2112  {
2113  	if (get_type >= MAX_GET_TYPE) {
2114  		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2115  		return -EINVAL;
2116  	}
2117  
2118  	if (id == NULL) {
2119  		dev_err(dev, "regulator request with no identifier\n");
2120  		return -EINVAL;
2121  	}
2122  
2123  	return 0;
2124  }
2125  
2126  /**
2127   * _regulator_get_common - Common code for regulator requests
2128   * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2129   *       Its reference count is expected to have been incremented.
2130   * @dev: device used for dev_printk messages
2131   * @id: Supply name or regulator ID
2132   * @get_type: enum regulator_get_type value corresponding to type of request
2133   *
2134   * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2135   *	    encoded error.
2136   *
2137   * This function should be chained with *regulator_dev_lookup() functions.
2138   */
_regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2139  struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2140  					const char *id, enum regulator_get_type get_type)
2141  {
2142  	struct regulator *regulator;
2143  	struct device_link *link;
2144  	int ret;
2145  
2146  	if (IS_ERR(rdev)) {
2147  		ret = PTR_ERR(rdev);
2148  
2149  		/*
2150  		 * If regulator_dev_lookup() fails with error other
2151  		 * than -ENODEV our job here is done, we simply return it.
2152  		 */
2153  		if (ret != -ENODEV)
2154  			return ERR_PTR(ret);
2155  
2156  		if (!have_full_constraints()) {
2157  			dev_warn(dev,
2158  				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2159  			return ERR_PTR(-ENODEV);
2160  		}
2161  
2162  		switch (get_type) {
2163  		case NORMAL_GET:
2164  			/*
2165  			 * Assume that a regulator is physically present and
2166  			 * enabled, even if it isn't hooked up, and just
2167  			 * provide a dummy.
2168  			 */
2169  			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2170  			rdev = dummy_regulator_rdev;
2171  			get_device(&rdev->dev);
2172  			break;
2173  
2174  		case EXCLUSIVE_GET:
2175  			dev_warn(dev,
2176  				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2177  			fallthrough;
2178  
2179  		default:
2180  			return ERR_PTR(-ENODEV);
2181  		}
2182  	}
2183  
2184  	if (rdev->exclusive) {
2185  		regulator = ERR_PTR(-EPERM);
2186  		put_device(&rdev->dev);
2187  		return regulator;
2188  	}
2189  
2190  	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2191  		regulator = ERR_PTR(-EBUSY);
2192  		put_device(&rdev->dev);
2193  		return regulator;
2194  	}
2195  
2196  	mutex_lock(&regulator_list_mutex);
2197  	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2198  	mutex_unlock(&regulator_list_mutex);
2199  
2200  	if (ret != 0) {
2201  		regulator = ERR_PTR(-EPROBE_DEFER);
2202  		put_device(&rdev->dev);
2203  		return regulator;
2204  	}
2205  
2206  	ret = regulator_resolve_supply(rdev);
2207  	if (ret < 0) {
2208  		regulator = ERR_PTR(ret);
2209  		put_device(&rdev->dev);
2210  		return regulator;
2211  	}
2212  
2213  	if (!try_module_get(rdev->owner)) {
2214  		regulator = ERR_PTR(-EPROBE_DEFER);
2215  		put_device(&rdev->dev);
2216  		return regulator;
2217  	}
2218  
2219  	regulator_lock(rdev);
2220  	regulator = create_regulator(rdev, dev, id);
2221  	regulator_unlock(rdev);
2222  	if (regulator == NULL) {
2223  		regulator = ERR_PTR(-ENOMEM);
2224  		module_put(rdev->owner);
2225  		put_device(&rdev->dev);
2226  		return regulator;
2227  	}
2228  
2229  	rdev->open_count++;
2230  	if (get_type == EXCLUSIVE_GET) {
2231  		rdev->exclusive = 1;
2232  
2233  		ret = _regulator_is_enabled(rdev);
2234  		if (ret > 0) {
2235  			rdev->use_count = 1;
2236  			regulator->enable_count = 1;
2237  
2238  			/* Propagate the regulator state to its supply */
2239  			if (rdev->supply) {
2240  				ret = regulator_enable(rdev->supply);
2241  				if (ret < 0) {
2242  					destroy_regulator(regulator);
2243  					module_put(rdev->owner);
2244  					put_device(&rdev->dev);
2245  					return ERR_PTR(ret);
2246  				}
2247  			}
2248  		} else {
2249  			rdev->use_count = 0;
2250  			regulator->enable_count = 0;
2251  		}
2252  	}
2253  
2254  	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2255  	if (!IS_ERR_OR_NULL(link))
2256  		regulator->device_link = true;
2257  
2258  	return regulator;
2259  }
2260  
2261  /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2262  struct regulator *_regulator_get(struct device *dev, const char *id,
2263  				 enum regulator_get_type get_type)
2264  {
2265  	struct regulator_dev *rdev;
2266  	int ret;
2267  
2268  	ret = _regulator_get_common_check(dev, id, get_type);
2269  	if (ret)
2270  		return ERR_PTR(ret);
2271  
2272  	rdev = regulator_dev_lookup(dev, id);
2273  	return _regulator_get_common(rdev, dev, id, get_type);
2274  }
2275  
2276  /**
2277   * regulator_get - lookup and obtain a reference to a regulator.
2278   * @dev: device for regulator "consumer"
2279   * @id: Supply name or regulator ID.
2280   *
2281   * Use of supply names configured via set_consumer_device_supply() is
2282   * strongly encouraged.  It is recommended that the supply name used
2283   * should match the name used for the supply and/or the relevant
2284   * device pins in the datasheet.
2285   *
2286   * Return: Pointer to a &struct regulator corresponding to the regulator
2287   *	   producer, or an ERR_PTR() encoded negative error number.
2288   */
regulator_get(struct device * dev,const char * id)2289  struct regulator *regulator_get(struct device *dev, const char *id)
2290  {
2291  	return _regulator_get(dev, id, NORMAL_GET);
2292  }
2293  EXPORT_SYMBOL_GPL(regulator_get);
2294  
2295  /**
2296   * regulator_get_exclusive - obtain exclusive access to a regulator.
2297   * @dev: device for regulator "consumer"
2298   * @id: Supply name or regulator ID.
2299   *
2300   * Other consumers will be unable to obtain this regulator while this
2301   * reference is held and the use count for the regulator will be
2302   * initialised to reflect the current state of the regulator.
2303   *
2304   * This is intended for use by consumers which cannot tolerate shared
2305   * use of the regulator such as those which need to force the
2306   * regulator off for correct operation of the hardware they are
2307   * controlling.
2308   *
2309   * Use of supply names configured via set_consumer_device_supply() is
2310   * strongly encouraged.  It is recommended that the supply name used
2311   * should match the name used for the supply and/or the relevant
2312   * device pins in the datasheet.
2313   *
2314   * Return: Pointer to a &struct regulator corresponding to the regulator
2315   *	   producer, or an ERR_PTR() encoded negative error number.
2316   */
regulator_get_exclusive(struct device * dev,const char * id)2317  struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2318  {
2319  	return _regulator_get(dev, id, EXCLUSIVE_GET);
2320  }
2321  EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2322  
2323  /**
2324   * regulator_get_optional - obtain optional access to a regulator.
2325   * @dev: device for regulator "consumer"
2326   * @id: Supply name or regulator ID.
2327   *
2328   * This is intended for use by consumers for devices which can have
2329   * some supplies unconnected in normal use, such as some MMC devices.
2330   * It can allow the regulator core to provide stub supplies for other
2331   * supplies requested using normal regulator_get() calls without
2332   * disrupting the operation of drivers that can handle absent
2333   * supplies.
2334   *
2335   * Use of supply names configured via set_consumer_device_supply() is
2336   * strongly encouraged.  It is recommended that the supply name used
2337   * should match the name used for the supply and/or the relevant
2338   * device pins in the datasheet.
2339   *
2340   * Return: Pointer to a &struct regulator corresponding to the regulator
2341   *	   producer, or an ERR_PTR() encoded negative error number.
2342   */
regulator_get_optional(struct device * dev,const char * id)2343  struct regulator *regulator_get_optional(struct device *dev, const char *id)
2344  {
2345  	return _regulator_get(dev, id, OPTIONAL_GET);
2346  }
2347  EXPORT_SYMBOL_GPL(regulator_get_optional);
2348  
destroy_regulator(struct regulator * regulator)2349  static void destroy_regulator(struct regulator *regulator)
2350  {
2351  	struct regulator_dev *rdev = regulator->rdev;
2352  
2353  	debugfs_remove_recursive(regulator->debugfs);
2354  
2355  	if (regulator->dev) {
2356  		if (regulator->device_link)
2357  			device_link_remove(regulator->dev, &rdev->dev);
2358  
2359  		/* remove any sysfs entries */
2360  		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2361  	}
2362  
2363  	regulator_lock(rdev);
2364  	list_del(&regulator->list);
2365  
2366  	rdev->open_count--;
2367  	rdev->exclusive = 0;
2368  	regulator_unlock(rdev);
2369  
2370  	kfree_const(regulator->supply_name);
2371  	kfree(regulator);
2372  }
2373  
2374  /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2375  static void _regulator_put(struct regulator *regulator)
2376  {
2377  	struct regulator_dev *rdev;
2378  
2379  	if (IS_ERR_OR_NULL(regulator))
2380  		return;
2381  
2382  	lockdep_assert_held_once(&regulator_list_mutex);
2383  
2384  	/* Docs say you must disable before calling regulator_put() */
2385  	WARN_ON(regulator->enable_count);
2386  
2387  	rdev = regulator->rdev;
2388  
2389  	destroy_regulator(regulator);
2390  
2391  	module_put(rdev->owner);
2392  	put_device(&rdev->dev);
2393  }
2394  
2395  /**
2396   * regulator_put - "free" the regulator source
2397   * @regulator: regulator source
2398   *
2399   * Note: drivers must ensure that all regulator_enable calls made on this
2400   * regulator source are balanced by regulator_disable calls prior to calling
2401   * this function.
2402   */
regulator_put(struct regulator * regulator)2403  void regulator_put(struct regulator *regulator)
2404  {
2405  	mutex_lock(&regulator_list_mutex);
2406  	_regulator_put(regulator);
2407  	mutex_unlock(&regulator_list_mutex);
2408  }
2409  EXPORT_SYMBOL_GPL(regulator_put);
2410  
2411  /**
2412   * regulator_register_supply_alias - Provide device alias for supply lookup
2413   *
2414   * @dev: device that will be given as the regulator "consumer"
2415   * @id: Supply name or regulator ID
2416   * @alias_dev: device that should be used to lookup the supply
2417   * @alias_id: Supply name or regulator ID that should be used to lookup the
2418   * supply
2419   *
2420   * All lookups for id on dev will instead be conducted for alias_id on
2421   * alias_dev.
2422   *
2423   * Return: 0 on success or a negative error number on failure.
2424   */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2425  int regulator_register_supply_alias(struct device *dev, const char *id,
2426  				    struct device *alias_dev,
2427  				    const char *alias_id)
2428  {
2429  	struct regulator_supply_alias *map;
2430  
2431  	map = regulator_find_supply_alias(dev, id);
2432  	if (map)
2433  		return -EEXIST;
2434  
2435  	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2436  	if (!map)
2437  		return -ENOMEM;
2438  
2439  	map->src_dev = dev;
2440  	map->src_supply = id;
2441  	map->alias_dev = alias_dev;
2442  	map->alias_supply = alias_id;
2443  
2444  	list_add(&map->list, &regulator_supply_alias_list);
2445  
2446  	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2447  		id, dev_name(dev), alias_id, dev_name(alias_dev));
2448  
2449  	return 0;
2450  }
2451  EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2452  
2453  /**
2454   * regulator_unregister_supply_alias - Remove device alias
2455   *
2456   * @dev: device that will be given as the regulator "consumer"
2457   * @id: Supply name or regulator ID
2458   *
2459   * Remove a lookup alias if one exists for id on dev.
2460   */
regulator_unregister_supply_alias(struct device * dev,const char * id)2461  void regulator_unregister_supply_alias(struct device *dev, const char *id)
2462  {
2463  	struct regulator_supply_alias *map;
2464  
2465  	map = regulator_find_supply_alias(dev, id);
2466  	if (map) {
2467  		list_del(&map->list);
2468  		kfree(map);
2469  	}
2470  }
2471  EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2472  
2473  /**
2474   * regulator_bulk_register_supply_alias - register multiple aliases
2475   *
2476   * @dev: device that will be given as the regulator "consumer"
2477   * @id: List of supply names or regulator IDs
2478   * @alias_dev: device that should be used to lookup the supply
2479   * @alias_id: List of supply names or regulator IDs that should be used to
2480   * lookup the supply
2481   * @num_id: Number of aliases to register
2482   *
2483   * This helper function allows drivers to register several supply
2484   * aliases in one operation.  If any of the aliases cannot be
2485   * registered any aliases that were registered will be removed
2486   * before returning to the caller.
2487   *
2488   * Return: 0 on success or a negative error number on failure.
2489   */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2490  int regulator_bulk_register_supply_alias(struct device *dev,
2491  					 const char *const *id,
2492  					 struct device *alias_dev,
2493  					 const char *const *alias_id,
2494  					 int num_id)
2495  {
2496  	int i;
2497  	int ret;
2498  
2499  	for (i = 0; i < num_id; ++i) {
2500  		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2501  						      alias_id[i]);
2502  		if (ret < 0)
2503  			goto err;
2504  	}
2505  
2506  	return 0;
2507  
2508  err:
2509  	dev_err(dev,
2510  		"Failed to create supply alias %s,%s -> %s,%s\n",
2511  		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2512  
2513  	while (--i >= 0)
2514  		regulator_unregister_supply_alias(dev, id[i]);
2515  
2516  	return ret;
2517  }
2518  EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2519  
2520  /**
2521   * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2522   *
2523   * @dev: device that will be given as the regulator "consumer"
2524   * @id: List of supply names or regulator IDs
2525   * @num_id: Number of aliases to unregister
2526   *
2527   * This helper function allows drivers to unregister several supply
2528   * aliases in one operation.
2529   */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2530  void regulator_bulk_unregister_supply_alias(struct device *dev,
2531  					    const char *const *id,
2532  					    int num_id)
2533  {
2534  	int i;
2535  
2536  	for (i = 0; i < num_id; ++i)
2537  		regulator_unregister_supply_alias(dev, id[i]);
2538  }
2539  EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2540  
2541  
2542  /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2543  static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2544  				const struct regulator_config *config)
2545  {
2546  	struct regulator_enable_gpio *pin, *new_pin;
2547  	struct gpio_desc *gpiod;
2548  
2549  	gpiod = config->ena_gpiod;
2550  	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2551  
2552  	mutex_lock(&regulator_list_mutex);
2553  
2554  	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2555  		if (pin->gpiod == gpiod) {
2556  			rdev_dbg(rdev, "GPIO is already used\n");
2557  			goto update_ena_gpio_to_rdev;
2558  		}
2559  	}
2560  
2561  	if (new_pin == NULL) {
2562  		mutex_unlock(&regulator_list_mutex);
2563  		return -ENOMEM;
2564  	}
2565  
2566  	pin = new_pin;
2567  	new_pin = NULL;
2568  
2569  	pin->gpiod = gpiod;
2570  	list_add(&pin->list, &regulator_ena_gpio_list);
2571  
2572  update_ena_gpio_to_rdev:
2573  	pin->request_count++;
2574  	rdev->ena_pin = pin;
2575  
2576  	mutex_unlock(&regulator_list_mutex);
2577  	kfree(new_pin);
2578  
2579  	return 0;
2580  }
2581  
regulator_ena_gpio_free(struct regulator_dev * rdev)2582  static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2583  {
2584  	struct regulator_enable_gpio *pin, *n;
2585  
2586  	if (!rdev->ena_pin)
2587  		return;
2588  
2589  	/* Free the GPIO only in case of no use */
2590  	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2591  		if (pin != rdev->ena_pin)
2592  			continue;
2593  
2594  		if (--pin->request_count)
2595  			break;
2596  
2597  		gpiod_put(pin->gpiod);
2598  		list_del(&pin->list);
2599  		kfree(pin);
2600  		break;
2601  	}
2602  
2603  	rdev->ena_pin = NULL;
2604  }
2605  
2606  /**
2607   * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2608   * @rdev: regulator_dev structure
2609   * @enable: enable GPIO at initial use?
2610   *
2611   * GPIO is enabled in case of initial use. (enable_count is 0)
2612   * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2613   *
2614   * Return: 0 on success or a negative error number on failure.
2615   */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2616  static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2617  {
2618  	struct regulator_enable_gpio *pin = rdev->ena_pin;
2619  
2620  	if (!pin)
2621  		return -EINVAL;
2622  
2623  	if (enable) {
2624  		/* Enable GPIO at initial use */
2625  		if (pin->enable_count == 0)
2626  			gpiod_set_value_cansleep(pin->gpiod, 1);
2627  
2628  		pin->enable_count++;
2629  	} else {
2630  		if (pin->enable_count > 1) {
2631  			pin->enable_count--;
2632  			return 0;
2633  		}
2634  
2635  		/* Disable GPIO if not used */
2636  		if (pin->enable_count <= 1) {
2637  			gpiod_set_value_cansleep(pin->gpiod, 0);
2638  			pin->enable_count = 0;
2639  		}
2640  	}
2641  
2642  	return 0;
2643  }
2644  
2645  /**
2646   * _regulator_delay_helper - a delay helper function
2647   * @delay: time to delay in microseconds
2648   *
2649   * Delay for the requested amount of time as per the guidelines in:
2650   *
2651   *     Documentation/timers/timers-howto.rst
2652   *
2653   * The assumption here is that these regulator operations will never used in
2654   * atomic context and therefore sleeping functions can be used.
2655   */
_regulator_delay_helper(unsigned int delay)2656  static void _regulator_delay_helper(unsigned int delay)
2657  {
2658  	unsigned int ms = delay / 1000;
2659  	unsigned int us = delay % 1000;
2660  
2661  	if (ms > 0) {
2662  		/*
2663  		 * For small enough values, handle super-millisecond
2664  		 * delays in the usleep_range() call below.
2665  		 */
2666  		if (ms < 20)
2667  			us += ms * 1000;
2668  		else
2669  			msleep(ms);
2670  	}
2671  
2672  	/*
2673  	 * Give the scheduler some room to coalesce with any other
2674  	 * wakeup sources. For delays shorter than 10 us, don't even
2675  	 * bother setting up high-resolution timers and just busy-
2676  	 * loop.
2677  	 */
2678  	if (us >= 10)
2679  		usleep_range(us, us + 100);
2680  	else
2681  		udelay(us);
2682  }
2683  
2684  /**
2685   * _regulator_check_status_enabled - check if regulator status can be
2686   *				     interpreted as "regulator is enabled"
2687   * @rdev: the regulator device to check
2688   *
2689   * Return:
2690   * * 1			- if status shows regulator is in enabled state
2691   * * 0			- if not enabled state
2692   * * Error Value	- as received from ops->get_status()
2693   */
_regulator_check_status_enabled(struct regulator_dev * rdev)2694  static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2695  {
2696  	int ret = rdev->desc->ops->get_status(rdev);
2697  
2698  	if (ret < 0) {
2699  		rdev_info(rdev, "get_status returned error: %d\n", ret);
2700  		return ret;
2701  	}
2702  
2703  	switch (ret) {
2704  	case REGULATOR_STATUS_OFF:
2705  	case REGULATOR_STATUS_ERROR:
2706  	case REGULATOR_STATUS_UNDEFINED:
2707  		return 0;
2708  	default:
2709  		return 1;
2710  	}
2711  }
2712  
_regulator_do_enable(struct regulator_dev * rdev)2713  static int _regulator_do_enable(struct regulator_dev *rdev)
2714  {
2715  	int ret, delay;
2716  
2717  	/* Query before enabling in case configuration dependent.  */
2718  	ret = _regulator_get_enable_time(rdev);
2719  	if (ret >= 0) {
2720  		delay = ret;
2721  	} else {
2722  		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2723  		delay = 0;
2724  	}
2725  
2726  	trace_regulator_enable(rdev_get_name(rdev));
2727  
2728  	if (rdev->desc->off_on_delay) {
2729  		/* if needed, keep a distance of off_on_delay from last time
2730  		 * this regulator was disabled.
2731  		 */
2732  		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2733  		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2734  
2735  		if (remaining > 0)
2736  			_regulator_delay_helper(remaining);
2737  	}
2738  
2739  	if (rdev->ena_pin) {
2740  		if (!rdev->ena_gpio_state) {
2741  			ret = regulator_ena_gpio_ctrl(rdev, true);
2742  			if (ret < 0)
2743  				return ret;
2744  			rdev->ena_gpio_state = 1;
2745  		}
2746  	} else if (rdev->desc->ops->enable) {
2747  		ret = rdev->desc->ops->enable(rdev);
2748  		if (ret < 0)
2749  			return ret;
2750  	} else {
2751  		return -EINVAL;
2752  	}
2753  
2754  	/* Allow the regulator to ramp; it would be useful to extend
2755  	 * this for bulk operations so that the regulators can ramp
2756  	 * together.
2757  	 */
2758  	trace_regulator_enable_delay(rdev_get_name(rdev));
2759  
2760  	/* If poll_enabled_time is set, poll upto the delay calculated
2761  	 * above, delaying poll_enabled_time uS to check if the regulator
2762  	 * actually got enabled.
2763  	 * If the regulator isn't enabled after our delay helper has expired,
2764  	 * return -ETIMEDOUT.
2765  	 */
2766  	if (rdev->desc->poll_enabled_time) {
2767  		int time_remaining = delay;
2768  
2769  		while (time_remaining > 0) {
2770  			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2771  
2772  			if (rdev->desc->ops->get_status) {
2773  				ret = _regulator_check_status_enabled(rdev);
2774  				if (ret < 0)
2775  					return ret;
2776  				else if (ret)
2777  					break;
2778  			} else if (rdev->desc->ops->is_enabled(rdev))
2779  				break;
2780  
2781  			time_remaining -= rdev->desc->poll_enabled_time;
2782  		}
2783  
2784  		if (time_remaining <= 0) {
2785  			rdev_err(rdev, "Enabled check timed out\n");
2786  			return -ETIMEDOUT;
2787  		}
2788  	} else {
2789  		_regulator_delay_helper(delay);
2790  	}
2791  
2792  	trace_regulator_enable_complete(rdev_get_name(rdev));
2793  
2794  	return 0;
2795  }
2796  
2797  /**
2798   * _regulator_handle_consumer_enable - handle that a consumer enabled
2799   * @regulator: regulator source
2800   *
2801   * Some things on a regulator consumer (like the contribution towards total
2802   * load on the regulator) only have an effect when the consumer wants the
2803   * regulator enabled.  Explained in example with two consumers of the same
2804   * regulator:
2805   *   consumer A: set_load(100);       => total load = 0
2806   *   consumer A: regulator_enable();  => total load = 100
2807   *   consumer B: set_load(1000);      => total load = 100
2808   *   consumer B: regulator_enable();  => total load = 1100
2809   *   consumer A: regulator_disable(); => total_load = 1000
2810   *
2811   * This function (together with _regulator_handle_consumer_disable) is
2812   * responsible for keeping track of the refcount for a given regulator consumer
2813   * and applying / unapplying these things.
2814   *
2815   * Return: 0 on success or negative error number on failure.
2816   */
_regulator_handle_consumer_enable(struct regulator * regulator)2817  static int _regulator_handle_consumer_enable(struct regulator *regulator)
2818  {
2819  	int ret;
2820  	struct regulator_dev *rdev = regulator->rdev;
2821  
2822  	lockdep_assert_held_once(&rdev->mutex.base);
2823  
2824  	regulator->enable_count++;
2825  	if (regulator->uA_load && regulator->enable_count == 1) {
2826  		ret = drms_uA_update(rdev);
2827  		if (ret)
2828  			regulator->enable_count--;
2829  		return ret;
2830  	}
2831  
2832  	return 0;
2833  }
2834  
2835  /**
2836   * _regulator_handle_consumer_disable - handle that a consumer disabled
2837   * @regulator: regulator source
2838   *
2839   * The opposite of _regulator_handle_consumer_enable().
2840   *
2841   * Return: 0 on success or a negative error number on failure.
2842   */
_regulator_handle_consumer_disable(struct regulator * regulator)2843  static int _regulator_handle_consumer_disable(struct regulator *regulator)
2844  {
2845  	struct regulator_dev *rdev = regulator->rdev;
2846  
2847  	lockdep_assert_held_once(&rdev->mutex.base);
2848  
2849  	if (!regulator->enable_count) {
2850  		rdev_err(rdev, "Underflow of regulator enable count\n");
2851  		return -EINVAL;
2852  	}
2853  
2854  	regulator->enable_count--;
2855  	if (regulator->uA_load && regulator->enable_count == 0)
2856  		return drms_uA_update(rdev);
2857  
2858  	return 0;
2859  }
2860  
2861  /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2862  static int _regulator_enable(struct regulator *regulator)
2863  {
2864  	struct regulator_dev *rdev = regulator->rdev;
2865  	int ret;
2866  
2867  	lockdep_assert_held_once(&rdev->mutex.base);
2868  
2869  	if (rdev->use_count == 0 && rdev->supply) {
2870  		ret = _regulator_enable(rdev->supply);
2871  		if (ret < 0)
2872  			return ret;
2873  	}
2874  
2875  	/* balance only if there are regulators coupled */
2876  	if (rdev->coupling_desc.n_coupled > 1) {
2877  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2878  		if (ret < 0)
2879  			goto err_disable_supply;
2880  	}
2881  
2882  	ret = _regulator_handle_consumer_enable(regulator);
2883  	if (ret < 0)
2884  		goto err_disable_supply;
2885  
2886  	if (rdev->use_count == 0) {
2887  		/*
2888  		 * The regulator may already be enabled if it's not switchable
2889  		 * or was left on
2890  		 */
2891  		ret = _regulator_is_enabled(rdev);
2892  		if (ret == -EINVAL || ret == 0) {
2893  			if (!regulator_ops_is_valid(rdev,
2894  					REGULATOR_CHANGE_STATUS)) {
2895  				ret = -EPERM;
2896  				goto err_consumer_disable;
2897  			}
2898  
2899  			ret = _regulator_do_enable(rdev);
2900  			if (ret < 0)
2901  				goto err_consumer_disable;
2902  
2903  			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2904  					     NULL);
2905  		} else if (ret < 0) {
2906  			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2907  			goto err_consumer_disable;
2908  		}
2909  		/* Fallthrough on positive return values - already enabled */
2910  	}
2911  
2912  	if (regulator->enable_count == 1)
2913  		rdev->use_count++;
2914  
2915  	return 0;
2916  
2917  err_consumer_disable:
2918  	_regulator_handle_consumer_disable(regulator);
2919  
2920  err_disable_supply:
2921  	if (rdev->use_count == 0 && rdev->supply)
2922  		_regulator_disable(rdev->supply);
2923  
2924  	return ret;
2925  }
2926  
2927  /**
2928   * regulator_enable - enable regulator output
2929   * @regulator: regulator source
2930   *
2931   * Request that the regulator be enabled with the regulator output at
2932   * the predefined voltage or current value.  Calls to regulator_enable()
2933   * must be balanced with calls to regulator_disable().
2934   *
2935   * NOTE: the output value can be set by other drivers, boot loader or may be
2936   * hardwired in the regulator.
2937   *
2938   * Return: 0 on success or a negative error number on failure.
2939   */
regulator_enable(struct regulator * regulator)2940  int regulator_enable(struct regulator *regulator)
2941  {
2942  	struct regulator_dev *rdev = regulator->rdev;
2943  	struct ww_acquire_ctx ww_ctx;
2944  	int ret;
2945  
2946  	regulator_lock_dependent(rdev, &ww_ctx);
2947  	ret = _regulator_enable(regulator);
2948  	regulator_unlock_dependent(rdev, &ww_ctx);
2949  
2950  	return ret;
2951  }
2952  EXPORT_SYMBOL_GPL(regulator_enable);
2953  
_regulator_do_disable(struct regulator_dev * rdev)2954  static int _regulator_do_disable(struct regulator_dev *rdev)
2955  {
2956  	int ret;
2957  
2958  	trace_regulator_disable(rdev_get_name(rdev));
2959  
2960  	if (rdev->ena_pin) {
2961  		if (rdev->ena_gpio_state) {
2962  			ret = regulator_ena_gpio_ctrl(rdev, false);
2963  			if (ret < 0)
2964  				return ret;
2965  			rdev->ena_gpio_state = 0;
2966  		}
2967  
2968  	} else if (rdev->desc->ops->disable) {
2969  		ret = rdev->desc->ops->disable(rdev);
2970  		if (ret != 0)
2971  			return ret;
2972  	}
2973  
2974  	if (rdev->desc->off_on_delay)
2975  		rdev->last_off = ktime_get_boottime();
2976  
2977  	trace_regulator_disable_complete(rdev_get_name(rdev));
2978  
2979  	return 0;
2980  }
2981  
2982  /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2983  static int _regulator_disable(struct regulator *regulator)
2984  {
2985  	struct regulator_dev *rdev = regulator->rdev;
2986  	int ret = 0;
2987  
2988  	lockdep_assert_held_once(&rdev->mutex.base);
2989  
2990  	if (WARN(regulator->enable_count == 0,
2991  		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2992  		return -EIO;
2993  
2994  	if (regulator->enable_count == 1) {
2995  	/* disabling last enable_count from this regulator */
2996  		/* are we the last user and permitted to disable ? */
2997  		if (rdev->use_count == 1 &&
2998  		    (rdev->constraints && !rdev->constraints->always_on)) {
2999  
3000  			/* we are last user */
3001  			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3002  				ret = _notifier_call_chain(rdev,
3003  							   REGULATOR_EVENT_PRE_DISABLE,
3004  							   NULL);
3005  				if (ret & NOTIFY_STOP_MASK)
3006  					return -EINVAL;
3007  
3008  				ret = _regulator_do_disable(rdev);
3009  				if (ret < 0) {
3010  					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3011  					_notifier_call_chain(rdev,
3012  							REGULATOR_EVENT_ABORT_DISABLE,
3013  							NULL);
3014  					return ret;
3015  				}
3016  				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3017  						NULL);
3018  			}
3019  
3020  			rdev->use_count = 0;
3021  		} else if (rdev->use_count > 1) {
3022  			rdev->use_count--;
3023  		}
3024  	}
3025  
3026  	if (ret == 0)
3027  		ret = _regulator_handle_consumer_disable(regulator);
3028  
3029  	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3030  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3031  
3032  	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3033  		ret = _regulator_disable(rdev->supply);
3034  
3035  	return ret;
3036  }
3037  
3038  /**
3039   * regulator_disable - disable regulator output
3040   * @regulator: regulator source
3041   *
3042   * Disable the regulator output voltage or current.  Calls to
3043   * regulator_enable() must be balanced with calls to
3044   * regulator_disable().
3045   *
3046   * NOTE: this will only disable the regulator output if no other consumer
3047   * devices have it enabled, the regulator device supports disabling and
3048   * machine constraints permit this operation.
3049   *
3050   * Return: 0 on success or a negative error number on failure.
3051   */
regulator_disable(struct regulator * regulator)3052  int regulator_disable(struct regulator *regulator)
3053  {
3054  	struct regulator_dev *rdev = regulator->rdev;
3055  	struct ww_acquire_ctx ww_ctx;
3056  	int ret;
3057  
3058  	regulator_lock_dependent(rdev, &ww_ctx);
3059  	ret = _regulator_disable(regulator);
3060  	regulator_unlock_dependent(rdev, &ww_ctx);
3061  
3062  	return ret;
3063  }
3064  EXPORT_SYMBOL_GPL(regulator_disable);
3065  
3066  /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3067  static int _regulator_force_disable(struct regulator_dev *rdev)
3068  {
3069  	int ret = 0;
3070  
3071  	lockdep_assert_held_once(&rdev->mutex.base);
3072  
3073  	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3074  			REGULATOR_EVENT_PRE_DISABLE, NULL);
3075  	if (ret & NOTIFY_STOP_MASK)
3076  		return -EINVAL;
3077  
3078  	ret = _regulator_do_disable(rdev);
3079  	if (ret < 0) {
3080  		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3081  		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3082  				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3083  		return ret;
3084  	}
3085  
3086  	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3087  			REGULATOR_EVENT_DISABLE, NULL);
3088  
3089  	return 0;
3090  }
3091  
3092  /**
3093   * regulator_force_disable - force disable regulator output
3094   * @regulator: regulator source
3095   *
3096   * Forcibly disable the regulator output voltage or current.
3097   * NOTE: this *will* disable the regulator output even if other consumer
3098   * devices have it enabled. This should be used for situations when device
3099   * damage will likely occur if the regulator is not disabled (e.g. over temp).
3100   *
3101   * Return: 0 on success or a negative error number on failure.
3102   */
regulator_force_disable(struct regulator * regulator)3103  int regulator_force_disable(struct regulator *regulator)
3104  {
3105  	struct regulator_dev *rdev = regulator->rdev;
3106  	struct ww_acquire_ctx ww_ctx;
3107  	int ret;
3108  
3109  	regulator_lock_dependent(rdev, &ww_ctx);
3110  
3111  	ret = _regulator_force_disable(regulator->rdev);
3112  
3113  	if (rdev->coupling_desc.n_coupled > 1)
3114  		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3115  
3116  	if (regulator->uA_load) {
3117  		regulator->uA_load = 0;
3118  		ret = drms_uA_update(rdev);
3119  	}
3120  
3121  	if (rdev->use_count != 0 && rdev->supply)
3122  		_regulator_disable(rdev->supply);
3123  
3124  	regulator_unlock_dependent(rdev, &ww_ctx);
3125  
3126  	return ret;
3127  }
3128  EXPORT_SYMBOL_GPL(regulator_force_disable);
3129  
regulator_disable_work(struct work_struct * work)3130  static void regulator_disable_work(struct work_struct *work)
3131  {
3132  	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3133  						  disable_work.work);
3134  	struct ww_acquire_ctx ww_ctx;
3135  	int count, i, ret;
3136  	struct regulator *regulator;
3137  	int total_count = 0;
3138  
3139  	regulator_lock_dependent(rdev, &ww_ctx);
3140  
3141  	/*
3142  	 * Workqueue functions queue the new work instance while the previous
3143  	 * work instance is being processed. Cancel the queued work instance
3144  	 * as the work instance under processing does the job of the queued
3145  	 * work instance.
3146  	 */
3147  	cancel_delayed_work(&rdev->disable_work);
3148  
3149  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3150  		count = regulator->deferred_disables;
3151  
3152  		if (!count)
3153  			continue;
3154  
3155  		total_count += count;
3156  		regulator->deferred_disables = 0;
3157  
3158  		for (i = 0; i < count; i++) {
3159  			ret = _regulator_disable(regulator);
3160  			if (ret != 0)
3161  				rdev_err(rdev, "Deferred disable failed: %pe\n",
3162  					 ERR_PTR(ret));
3163  		}
3164  	}
3165  	WARN_ON(!total_count);
3166  
3167  	if (rdev->coupling_desc.n_coupled > 1)
3168  		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3169  
3170  	regulator_unlock_dependent(rdev, &ww_ctx);
3171  }
3172  
3173  /**
3174   * regulator_disable_deferred - disable regulator output with delay
3175   * @regulator: regulator source
3176   * @ms: milliseconds until the regulator is disabled
3177   *
3178   * Execute regulator_disable() on the regulator after a delay.  This
3179   * is intended for use with devices that require some time to quiesce.
3180   *
3181   * NOTE: this will only disable the regulator output if no other consumer
3182   * devices have it enabled, the regulator device supports disabling and
3183   * machine constraints permit this operation.
3184   *
3185   * Return: 0 on success or a negative error number on failure.
3186   */
regulator_disable_deferred(struct regulator * regulator,int ms)3187  int regulator_disable_deferred(struct regulator *regulator, int ms)
3188  {
3189  	struct regulator_dev *rdev = regulator->rdev;
3190  
3191  	if (!ms)
3192  		return regulator_disable(regulator);
3193  
3194  	regulator_lock(rdev);
3195  	regulator->deferred_disables++;
3196  	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3197  			 msecs_to_jiffies(ms));
3198  	regulator_unlock(rdev);
3199  
3200  	return 0;
3201  }
3202  EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3203  
_regulator_is_enabled(struct regulator_dev * rdev)3204  static int _regulator_is_enabled(struct regulator_dev *rdev)
3205  {
3206  	/* A GPIO control always takes precedence */
3207  	if (rdev->ena_pin)
3208  		return rdev->ena_gpio_state;
3209  
3210  	/* If we don't know then assume that the regulator is always on */
3211  	if (!rdev->desc->ops->is_enabled)
3212  		return 1;
3213  
3214  	return rdev->desc->ops->is_enabled(rdev);
3215  }
3216  
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3217  static int _regulator_list_voltage(struct regulator_dev *rdev,
3218  				   unsigned selector, int lock)
3219  {
3220  	const struct regulator_ops *ops = rdev->desc->ops;
3221  	int ret;
3222  
3223  	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3224  		return rdev->desc->fixed_uV;
3225  
3226  	if (ops->list_voltage) {
3227  		if (selector >= rdev->desc->n_voltages)
3228  			return -EINVAL;
3229  		if (selector < rdev->desc->linear_min_sel)
3230  			return 0;
3231  		if (lock)
3232  			regulator_lock(rdev);
3233  		ret = ops->list_voltage(rdev, selector);
3234  		if (lock)
3235  			regulator_unlock(rdev);
3236  	} else if (rdev->is_switch && rdev->supply) {
3237  		ret = _regulator_list_voltage(rdev->supply->rdev,
3238  					      selector, lock);
3239  	} else {
3240  		return -EINVAL;
3241  	}
3242  
3243  	if (ret > 0) {
3244  		if (ret < rdev->constraints->min_uV)
3245  			ret = 0;
3246  		else if (ret > rdev->constraints->max_uV)
3247  			ret = 0;
3248  	}
3249  
3250  	return ret;
3251  }
3252  
3253  /**
3254   * regulator_is_enabled - is the regulator output enabled
3255   * @regulator: regulator source
3256   *
3257   * Note that the device backing this regulator handle can have multiple
3258   * users, so it might be enabled even if regulator_enable() was never
3259   * called for this particular source.
3260   *
3261   * Return: Positive if the regulator driver backing the source/client
3262   *	   has requested that the device be enabled, zero if it hasn't,
3263   *	   else a negative error number.
3264   */
regulator_is_enabled(struct regulator * regulator)3265  int regulator_is_enabled(struct regulator *regulator)
3266  {
3267  	int ret;
3268  
3269  	if (regulator->always_on)
3270  		return 1;
3271  
3272  	regulator_lock(regulator->rdev);
3273  	ret = _regulator_is_enabled(regulator->rdev);
3274  	regulator_unlock(regulator->rdev);
3275  
3276  	return ret;
3277  }
3278  EXPORT_SYMBOL_GPL(regulator_is_enabled);
3279  
3280  /**
3281   * regulator_count_voltages - count regulator_list_voltage() selectors
3282   * @regulator: regulator source
3283   *
3284   * Return: Number of selectors for @regulator, or negative error number.
3285   *
3286   * Selectors are numbered starting at zero, and typically correspond to
3287   * bitfields in hardware registers.
3288   */
regulator_count_voltages(struct regulator * regulator)3289  int regulator_count_voltages(struct regulator *regulator)
3290  {
3291  	struct regulator_dev	*rdev = regulator->rdev;
3292  
3293  	if (rdev->desc->n_voltages)
3294  		return rdev->desc->n_voltages;
3295  
3296  	if (!rdev->is_switch || !rdev->supply)
3297  		return -EINVAL;
3298  
3299  	return regulator_count_voltages(rdev->supply);
3300  }
3301  EXPORT_SYMBOL_GPL(regulator_count_voltages);
3302  
3303  /**
3304   * regulator_list_voltage - enumerate supported voltages
3305   * @regulator: regulator source
3306   * @selector: identify voltage to list
3307   * Context: can sleep
3308   *
3309   * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3310   *	   0 if @selector can't be used on this system, or a negative error
3311   *	   number on failure.
3312   */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3313  int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3314  {
3315  	return _regulator_list_voltage(regulator->rdev, selector, 1);
3316  }
3317  EXPORT_SYMBOL_GPL(regulator_list_voltage);
3318  
3319  /**
3320   * regulator_get_regmap - get the regulator's register map
3321   * @regulator: regulator source
3322   *
3323   * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3324   *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3325   */
regulator_get_regmap(struct regulator * regulator)3326  struct regmap *regulator_get_regmap(struct regulator *regulator)
3327  {
3328  	struct regmap *map = regulator->rdev->regmap;
3329  
3330  	return map ? map : ERR_PTR(-EOPNOTSUPP);
3331  }
3332  EXPORT_SYMBOL_GPL(regulator_get_regmap);
3333  
3334  /**
3335   * regulator_get_hardware_vsel_register - get the HW voltage selector register
3336   * @regulator: regulator source
3337   * @vsel_reg: voltage selector register, output parameter
3338   * @vsel_mask: mask for voltage selector bitfield, output parameter
3339   *
3340   * Returns the hardware register offset and bitmask used for setting the
3341   * regulator voltage. This might be useful when configuring voltage-scaling
3342   * hardware or firmware that can make I2C requests behind the kernel's back,
3343   * for example.
3344   *
3345   * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3346   *         voltage selectors.
3347   *
3348   * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3349   * and 0 is returned, otherwise a negative error number is returned.
3350   */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3351  int regulator_get_hardware_vsel_register(struct regulator *regulator,
3352  					 unsigned *vsel_reg,
3353  					 unsigned *vsel_mask)
3354  {
3355  	struct regulator_dev *rdev = regulator->rdev;
3356  	const struct regulator_ops *ops = rdev->desc->ops;
3357  
3358  	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3359  		return -EOPNOTSUPP;
3360  
3361  	*vsel_reg = rdev->desc->vsel_reg;
3362  	*vsel_mask = rdev->desc->vsel_mask;
3363  
3364  	return 0;
3365  }
3366  EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3367  
3368  /**
3369   * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3370   * @regulator: regulator source
3371   * @selector: identify voltage to list
3372   *
3373   * Converts the selector to a hardware-specific voltage selector that can be
3374   * directly written to the regulator registers. The address of the voltage
3375   * register can be determined by calling @regulator_get_hardware_vsel_register.
3376   *
3377   * Return: 0 on success, -%EINVAL if the selector is outside the supported
3378   *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3379   *	   selectors.
3380   */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3381  int regulator_list_hardware_vsel(struct regulator *regulator,
3382  				 unsigned selector)
3383  {
3384  	struct regulator_dev *rdev = regulator->rdev;
3385  	const struct regulator_ops *ops = rdev->desc->ops;
3386  
3387  	if (selector >= rdev->desc->n_voltages)
3388  		return -EINVAL;
3389  	if (selector < rdev->desc->linear_min_sel)
3390  		return 0;
3391  	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3392  		return -EOPNOTSUPP;
3393  
3394  	return selector;
3395  }
3396  EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3397  
3398  /**
3399   * regulator_hardware_enable - access the HW for enable/disable regulator
3400   * @regulator: regulator source
3401   * @enable: true for enable, false for disable
3402   *
3403   * Request that the regulator be enabled/disabled with the regulator output at
3404   * the predefined voltage or current value.
3405   *
3406   * Return: 0 on success or a negative error number on failure.
3407   */
regulator_hardware_enable(struct regulator * regulator,bool enable)3408  int regulator_hardware_enable(struct regulator *regulator, bool enable)
3409  {
3410  	struct regulator_dev *rdev = regulator->rdev;
3411  	const struct regulator_ops *ops = rdev->desc->ops;
3412  	int ret = -EOPNOTSUPP;
3413  
3414  	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3415  		return ret;
3416  
3417  	if (enable)
3418  		ret = ops->enable(rdev);
3419  	else
3420  		ret = ops->disable(rdev);
3421  
3422  	return ret;
3423  }
3424  EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3425  
3426  /**
3427   * regulator_get_linear_step - return the voltage step size between VSEL values
3428   * @regulator: regulator source
3429   *
3430   * Return: The voltage step size between VSEL values for linear regulators,
3431   *	   or 0 if the regulator isn't a linear regulator.
3432   */
regulator_get_linear_step(struct regulator * regulator)3433  unsigned int regulator_get_linear_step(struct regulator *regulator)
3434  {
3435  	struct regulator_dev *rdev = regulator->rdev;
3436  
3437  	return rdev->desc->uV_step;
3438  }
3439  EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3440  
3441  /**
3442   * regulator_is_supported_voltage - check if a voltage range can be supported
3443   *
3444   * @regulator: Regulator to check.
3445   * @min_uV: Minimum required voltage in uV.
3446   * @max_uV: Maximum required voltage in uV.
3447   *
3448   * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3449   *	   number if @regulator's voltage can't be changed and voltage readback
3450   *	   failed.
3451   */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3452  int regulator_is_supported_voltage(struct regulator *regulator,
3453  				   int min_uV, int max_uV)
3454  {
3455  	struct regulator_dev *rdev = regulator->rdev;
3456  	int i, voltages, ret;
3457  
3458  	/* If we can't change voltage check the current voltage */
3459  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3460  		ret = regulator_get_voltage(regulator);
3461  		if (ret >= 0)
3462  			return min_uV <= ret && ret <= max_uV;
3463  		else
3464  			return ret;
3465  	}
3466  
3467  	/* Any voltage within constrains range is fine? */
3468  	if (rdev->desc->continuous_voltage_range)
3469  		return min_uV >= rdev->constraints->min_uV &&
3470  				max_uV <= rdev->constraints->max_uV;
3471  
3472  	ret = regulator_count_voltages(regulator);
3473  	if (ret < 0)
3474  		return 0;
3475  	voltages = ret;
3476  
3477  	for (i = 0; i < voltages; i++) {
3478  		ret = regulator_list_voltage(regulator, i);
3479  
3480  		if (ret >= min_uV && ret <= max_uV)
3481  			return 1;
3482  	}
3483  
3484  	return 0;
3485  }
3486  EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3487  
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3488  static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3489  				 int max_uV)
3490  {
3491  	const struct regulator_desc *desc = rdev->desc;
3492  
3493  	if (desc->ops->map_voltage)
3494  		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3495  
3496  	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3497  		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3498  
3499  	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3500  		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3501  
3502  	if (desc->ops->list_voltage ==
3503  		regulator_list_voltage_pickable_linear_range)
3504  		return regulator_map_voltage_pickable_linear_range(rdev,
3505  							min_uV, max_uV);
3506  
3507  	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3508  }
3509  
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3510  static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3511  				       int min_uV, int max_uV,
3512  				       unsigned *selector)
3513  {
3514  	struct pre_voltage_change_data data;
3515  	int ret;
3516  
3517  	data.old_uV = regulator_get_voltage_rdev(rdev);
3518  	data.min_uV = min_uV;
3519  	data.max_uV = max_uV;
3520  	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3521  				   &data);
3522  	if (ret & NOTIFY_STOP_MASK)
3523  		return -EINVAL;
3524  
3525  	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3526  	if (ret >= 0)
3527  		return ret;
3528  
3529  	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3530  			     (void *)data.old_uV);
3531  
3532  	return ret;
3533  }
3534  
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3535  static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3536  					   int uV, unsigned selector)
3537  {
3538  	struct pre_voltage_change_data data;
3539  	int ret;
3540  
3541  	data.old_uV = regulator_get_voltage_rdev(rdev);
3542  	data.min_uV = uV;
3543  	data.max_uV = uV;
3544  	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3545  				   &data);
3546  	if (ret & NOTIFY_STOP_MASK)
3547  		return -EINVAL;
3548  
3549  	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3550  	if (ret >= 0)
3551  		return ret;
3552  
3553  	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3554  			     (void *)data.old_uV);
3555  
3556  	return ret;
3557  }
3558  
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3559  static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3560  					   int uV, int new_selector)
3561  {
3562  	const struct regulator_ops *ops = rdev->desc->ops;
3563  	int diff, old_sel, curr_sel, ret;
3564  
3565  	/* Stepping is only needed if the regulator is enabled. */
3566  	if (!_regulator_is_enabled(rdev))
3567  		goto final_set;
3568  
3569  	if (!ops->get_voltage_sel)
3570  		return -EINVAL;
3571  
3572  	old_sel = ops->get_voltage_sel(rdev);
3573  	if (old_sel < 0)
3574  		return old_sel;
3575  
3576  	diff = new_selector - old_sel;
3577  	if (diff == 0)
3578  		return 0; /* No change needed. */
3579  
3580  	if (diff > 0) {
3581  		/* Stepping up. */
3582  		for (curr_sel = old_sel + rdev->desc->vsel_step;
3583  		     curr_sel < new_selector;
3584  		     curr_sel += rdev->desc->vsel_step) {
3585  			/*
3586  			 * Call the callback directly instead of using
3587  			 * _regulator_call_set_voltage_sel() as we don't
3588  			 * want to notify anyone yet. Same in the branch
3589  			 * below.
3590  			 */
3591  			ret = ops->set_voltage_sel(rdev, curr_sel);
3592  			if (ret)
3593  				goto try_revert;
3594  		}
3595  	} else {
3596  		/* Stepping down. */
3597  		for (curr_sel = old_sel - rdev->desc->vsel_step;
3598  		     curr_sel > new_selector;
3599  		     curr_sel -= rdev->desc->vsel_step) {
3600  			ret = ops->set_voltage_sel(rdev, curr_sel);
3601  			if (ret)
3602  				goto try_revert;
3603  		}
3604  	}
3605  
3606  final_set:
3607  	/* The final selector will trigger the notifiers. */
3608  	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3609  
3610  try_revert:
3611  	/*
3612  	 * At least try to return to the previous voltage if setting a new
3613  	 * one failed.
3614  	 */
3615  	(void)ops->set_voltage_sel(rdev, old_sel);
3616  	return ret;
3617  }
3618  
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3619  static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3620  				       int old_uV, int new_uV)
3621  {
3622  	unsigned int ramp_delay = 0;
3623  
3624  	if (rdev->constraints->ramp_delay)
3625  		ramp_delay = rdev->constraints->ramp_delay;
3626  	else if (rdev->desc->ramp_delay)
3627  		ramp_delay = rdev->desc->ramp_delay;
3628  	else if (rdev->constraints->settling_time)
3629  		return rdev->constraints->settling_time;
3630  	else if (rdev->constraints->settling_time_up &&
3631  		 (new_uV > old_uV))
3632  		return rdev->constraints->settling_time_up;
3633  	else if (rdev->constraints->settling_time_down &&
3634  		 (new_uV < old_uV))
3635  		return rdev->constraints->settling_time_down;
3636  
3637  	if (ramp_delay == 0)
3638  		return 0;
3639  
3640  	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3641  }
3642  
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3643  static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3644  				     int min_uV, int max_uV)
3645  {
3646  	int ret;
3647  	int delay = 0;
3648  	int best_val = 0;
3649  	unsigned int selector;
3650  	int old_selector = -1;
3651  	const struct regulator_ops *ops = rdev->desc->ops;
3652  	int old_uV = regulator_get_voltage_rdev(rdev);
3653  
3654  	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3655  
3656  	min_uV += rdev->constraints->uV_offset;
3657  	max_uV += rdev->constraints->uV_offset;
3658  
3659  	/*
3660  	 * If we can't obtain the old selector there is not enough
3661  	 * info to call set_voltage_time_sel().
3662  	 */
3663  	if (_regulator_is_enabled(rdev) &&
3664  	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3665  		old_selector = ops->get_voltage_sel(rdev);
3666  		if (old_selector < 0)
3667  			return old_selector;
3668  	}
3669  
3670  	if (ops->set_voltage) {
3671  		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3672  						  &selector);
3673  
3674  		if (ret >= 0) {
3675  			if (ops->list_voltage)
3676  				best_val = ops->list_voltage(rdev,
3677  							     selector);
3678  			else
3679  				best_val = regulator_get_voltage_rdev(rdev);
3680  		}
3681  
3682  	} else if (ops->set_voltage_sel) {
3683  		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3684  		if (ret >= 0) {
3685  			best_val = ops->list_voltage(rdev, ret);
3686  			if (min_uV <= best_val && max_uV >= best_val) {
3687  				selector = ret;
3688  				if (old_selector == selector)
3689  					ret = 0;
3690  				else if (rdev->desc->vsel_step)
3691  					ret = _regulator_set_voltage_sel_step(
3692  						rdev, best_val, selector);
3693  				else
3694  					ret = _regulator_call_set_voltage_sel(
3695  						rdev, best_val, selector);
3696  			} else {
3697  				ret = -EINVAL;
3698  			}
3699  		}
3700  	} else {
3701  		ret = -EINVAL;
3702  	}
3703  
3704  	if (ret)
3705  		goto out;
3706  
3707  	if (ops->set_voltage_time_sel) {
3708  		/*
3709  		 * Call set_voltage_time_sel if successfully obtained
3710  		 * old_selector
3711  		 */
3712  		if (old_selector >= 0 && old_selector != selector)
3713  			delay = ops->set_voltage_time_sel(rdev, old_selector,
3714  							  selector);
3715  	} else {
3716  		if (old_uV != best_val) {
3717  			if (ops->set_voltage_time)
3718  				delay = ops->set_voltage_time(rdev, old_uV,
3719  							      best_val);
3720  			else
3721  				delay = _regulator_set_voltage_time(rdev,
3722  								    old_uV,
3723  								    best_val);
3724  		}
3725  	}
3726  
3727  	if (delay < 0) {
3728  		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3729  		delay = 0;
3730  	}
3731  
3732  	/* Insert any necessary delays */
3733  	_regulator_delay_helper(delay);
3734  
3735  	if (best_val >= 0) {
3736  		unsigned long data = best_val;
3737  
3738  		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3739  				     (void *)data);
3740  	}
3741  
3742  out:
3743  	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3744  
3745  	return ret;
3746  }
3747  
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3748  static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3749  				  int min_uV, int max_uV, suspend_state_t state)
3750  {
3751  	struct regulator_state *rstate;
3752  	int uV, sel;
3753  
3754  	rstate = regulator_get_suspend_state(rdev, state);
3755  	if (rstate == NULL)
3756  		return -EINVAL;
3757  
3758  	if (min_uV < rstate->min_uV)
3759  		min_uV = rstate->min_uV;
3760  	if (max_uV > rstate->max_uV)
3761  		max_uV = rstate->max_uV;
3762  
3763  	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3764  	if (sel < 0)
3765  		return sel;
3766  
3767  	uV = rdev->desc->ops->list_voltage(rdev, sel);
3768  	if (uV >= min_uV && uV <= max_uV)
3769  		rstate->uV = uV;
3770  
3771  	return 0;
3772  }
3773  
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3774  static int regulator_set_voltage_unlocked(struct regulator *regulator,
3775  					  int min_uV, int max_uV,
3776  					  suspend_state_t state)
3777  {
3778  	struct regulator_dev *rdev = regulator->rdev;
3779  	struct regulator_voltage *voltage = &regulator->voltage[state];
3780  	int ret = 0;
3781  	int old_min_uV, old_max_uV;
3782  	int current_uV;
3783  
3784  	/* If we're setting the same range as last time the change
3785  	 * should be a noop (some cpufreq implementations use the same
3786  	 * voltage for multiple frequencies, for example).
3787  	 */
3788  	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3789  		goto out;
3790  
3791  	/* If we're trying to set a range that overlaps the current voltage,
3792  	 * return successfully even though the regulator does not support
3793  	 * changing the voltage.
3794  	 */
3795  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3796  		current_uV = regulator_get_voltage_rdev(rdev);
3797  		if (min_uV <= current_uV && current_uV <= max_uV) {
3798  			voltage->min_uV = min_uV;
3799  			voltage->max_uV = max_uV;
3800  			goto out;
3801  		}
3802  	}
3803  
3804  	/* sanity check */
3805  	if (!rdev->desc->ops->set_voltage &&
3806  	    !rdev->desc->ops->set_voltage_sel) {
3807  		ret = -EINVAL;
3808  		goto out;
3809  	}
3810  
3811  	/* constraints check */
3812  	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3813  	if (ret < 0)
3814  		goto out;
3815  
3816  	/* restore original values in case of error */
3817  	old_min_uV = voltage->min_uV;
3818  	old_max_uV = voltage->max_uV;
3819  	voltage->min_uV = min_uV;
3820  	voltage->max_uV = max_uV;
3821  
3822  	/* for not coupled regulators this will just set the voltage */
3823  	ret = regulator_balance_voltage(rdev, state);
3824  	if (ret < 0) {
3825  		voltage->min_uV = old_min_uV;
3826  		voltage->max_uV = old_max_uV;
3827  	}
3828  
3829  out:
3830  	return ret;
3831  }
3832  
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3833  int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3834  			       int max_uV, suspend_state_t state)
3835  {
3836  	int best_supply_uV = 0;
3837  	int supply_change_uV = 0;
3838  	int ret;
3839  
3840  	if (rdev->supply &&
3841  	    regulator_ops_is_valid(rdev->supply->rdev,
3842  				   REGULATOR_CHANGE_VOLTAGE) &&
3843  	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3844  					   rdev->desc->ops->get_voltage_sel))) {
3845  		int current_supply_uV;
3846  		int selector;
3847  
3848  		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3849  		if (selector < 0) {
3850  			ret = selector;
3851  			goto out;
3852  		}
3853  
3854  		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3855  		if (best_supply_uV < 0) {
3856  			ret = best_supply_uV;
3857  			goto out;
3858  		}
3859  
3860  		best_supply_uV += rdev->desc->min_dropout_uV;
3861  
3862  		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3863  		if (current_supply_uV < 0) {
3864  			ret = current_supply_uV;
3865  			goto out;
3866  		}
3867  
3868  		supply_change_uV = best_supply_uV - current_supply_uV;
3869  	}
3870  
3871  	if (supply_change_uV > 0) {
3872  		ret = regulator_set_voltage_unlocked(rdev->supply,
3873  				best_supply_uV, INT_MAX, state);
3874  		if (ret) {
3875  			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3876  				ERR_PTR(ret));
3877  			goto out;
3878  		}
3879  	}
3880  
3881  	if (state == PM_SUSPEND_ON)
3882  		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3883  	else
3884  		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3885  							max_uV, state);
3886  	if (ret < 0)
3887  		goto out;
3888  
3889  	if (supply_change_uV < 0) {
3890  		ret = regulator_set_voltage_unlocked(rdev->supply,
3891  				best_supply_uV, INT_MAX, state);
3892  		if (ret)
3893  			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3894  				 ERR_PTR(ret));
3895  		/* No need to fail here */
3896  		ret = 0;
3897  	}
3898  
3899  out:
3900  	return ret;
3901  }
3902  EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3903  
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3904  static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3905  					int *current_uV, int *min_uV)
3906  {
3907  	struct regulation_constraints *constraints = rdev->constraints;
3908  
3909  	/* Limit voltage change only if necessary */
3910  	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3911  		return 1;
3912  
3913  	if (*current_uV < 0) {
3914  		*current_uV = regulator_get_voltage_rdev(rdev);
3915  
3916  		if (*current_uV < 0)
3917  			return *current_uV;
3918  	}
3919  
3920  	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3921  		return 1;
3922  
3923  	/* Clamp target voltage within the given step */
3924  	if (*current_uV < *min_uV)
3925  		*min_uV = min(*current_uV + constraints->max_uV_step,
3926  			      *min_uV);
3927  	else
3928  		*min_uV = max(*current_uV - constraints->max_uV_step,
3929  			      *min_uV);
3930  
3931  	return 0;
3932  }
3933  
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3934  static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3935  					 int *current_uV,
3936  					 int *min_uV, int *max_uV,
3937  					 suspend_state_t state,
3938  					 int n_coupled)
3939  {
3940  	struct coupling_desc *c_desc = &rdev->coupling_desc;
3941  	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3942  	struct regulation_constraints *constraints = rdev->constraints;
3943  	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3944  	int max_current_uV = 0, min_current_uV = INT_MAX;
3945  	int highest_min_uV = 0, target_uV, possible_uV;
3946  	int i, ret, max_spread;
3947  	bool done;
3948  
3949  	*current_uV = -1;
3950  
3951  	/*
3952  	 * If there are no coupled regulators, simply set the voltage
3953  	 * demanded by consumers.
3954  	 */
3955  	if (n_coupled == 1) {
3956  		/*
3957  		 * If consumers don't provide any demands, set voltage
3958  		 * to min_uV
3959  		 */
3960  		desired_min_uV = constraints->min_uV;
3961  		desired_max_uV = constraints->max_uV;
3962  
3963  		ret = regulator_check_consumers(rdev,
3964  						&desired_min_uV,
3965  						&desired_max_uV, state);
3966  		if (ret < 0)
3967  			return ret;
3968  
3969  		done = true;
3970  
3971  		goto finish;
3972  	}
3973  
3974  	/* Find highest min desired voltage */
3975  	for (i = 0; i < n_coupled; i++) {
3976  		int tmp_min = 0;
3977  		int tmp_max = INT_MAX;
3978  
3979  		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3980  
3981  		ret = regulator_check_consumers(c_rdevs[i],
3982  						&tmp_min,
3983  						&tmp_max, state);
3984  		if (ret < 0)
3985  			return ret;
3986  
3987  		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3988  		if (ret < 0)
3989  			return ret;
3990  
3991  		highest_min_uV = max(highest_min_uV, tmp_min);
3992  
3993  		if (i == 0) {
3994  			desired_min_uV = tmp_min;
3995  			desired_max_uV = tmp_max;
3996  		}
3997  	}
3998  
3999  	max_spread = constraints->max_spread[0];
4000  
4001  	/*
4002  	 * Let target_uV be equal to the desired one if possible.
4003  	 * If not, set it to minimum voltage, allowed by other coupled
4004  	 * regulators.
4005  	 */
4006  	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4007  
4008  	/*
4009  	 * Find min and max voltages, which currently aren't violating
4010  	 * max_spread.
4011  	 */
4012  	for (i = 1; i < n_coupled; i++) {
4013  		int tmp_act;
4014  
4015  		if (!_regulator_is_enabled(c_rdevs[i]))
4016  			continue;
4017  
4018  		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4019  		if (tmp_act < 0)
4020  			return tmp_act;
4021  
4022  		min_current_uV = min(tmp_act, min_current_uV);
4023  		max_current_uV = max(tmp_act, max_current_uV);
4024  	}
4025  
4026  	/* There aren't any other regulators enabled */
4027  	if (max_current_uV == 0) {
4028  		possible_uV = target_uV;
4029  	} else {
4030  		/*
4031  		 * Correct target voltage, so as it currently isn't
4032  		 * violating max_spread
4033  		 */
4034  		possible_uV = max(target_uV, max_current_uV - max_spread);
4035  		possible_uV = min(possible_uV, min_current_uV + max_spread);
4036  	}
4037  
4038  	if (possible_uV > desired_max_uV)
4039  		return -EINVAL;
4040  
4041  	done = (possible_uV == target_uV);
4042  	desired_min_uV = possible_uV;
4043  
4044  finish:
4045  	/* Apply max_uV_step constraint if necessary */
4046  	if (state == PM_SUSPEND_ON) {
4047  		ret = regulator_limit_voltage_step(rdev, current_uV,
4048  						   &desired_min_uV);
4049  		if (ret < 0)
4050  			return ret;
4051  
4052  		if (ret == 0)
4053  			done = false;
4054  	}
4055  
4056  	/* Set current_uV if wasn't done earlier in the code and if necessary */
4057  	if (n_coupled > 1 && *current_uV == -1) {
4058  
4059  		if (_regulator_is_enabled(rdev)) {
4060  			ret = regulator_get_voltage_rdev(rdev);
4061  			if (ret < 0)
4062  				return ret;
4063  
4064  			*current_uV = ret;
4065  		} else {
4066  			*current_uV = desired_min_uV;
4067  		}
4068  	}
4069  
4070  	*min_uV = desired_min_uV;
4071  	*max_uV = desired_max_uV;
4072  
4073  	return done;
4074  }
4075  
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4076  int regulator_do_balance_voltage(struct regulator_dev *rdev,
4077  				 suspend_state_t state, bool skip_coupled)
4078  {
4079  	struct regulator_dev **c_rdevs;
4080  	struct regulator_dev *best_rdev;
4081  	struct coupling_desc *c_desc = &rdev->coupling_desc;
4082  	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4083  	unsigned int delta, best_delta;
4084  	unsigned long c_rdev_done = 0;
4085  	bool best_c_rdev_done;
4086  
4087  	c_rdevs = c_desc->coupled_rdevs;
4088  	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4089  
4090  	/*
4091  	 * Find the best possible voltage change on each loop. Leave the loop
4092  	 * if there isn't any possible change.
4093  	 */
4094  	do {
4095  		best_c_rdev_done = false;
4096  		best_delta = 0;
4097  		best_min_uV = 0;
4098  		best_max_uV = 0;
4099  		best_c_rdev = 0;
4100  		best_rdev = NULL;
4101  
4102  		/*
4103  		 * Find highest difference between optimal voltage
4104  		 * and current voltage.
4105  		 */
4106  		for (i = 0; i < n_coupled; i++) {
4107  			/*
4108  			 * optimal_uV is the best voltage that can be set for
4109  			 * i-th regulator at the moment without violating
4110  			 * max_spread constraint in order to balance
4111  			 * the coupled voltages.
4112  			 */
4113  			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4114  
4115  			if (test_bit(i, &c_rdev_done))
4116  				continue;
4117  
4118  			ret = regulator_get_optimal_voltage(c_rdevs[i],
4119  							    &current_uV,
4120  							    &optimal_uV,
4121  							    &optimal_max_uV,
4122  							    state, n_coupled);
4123  			if (ret < 0)
4124  				goto out;
4125  
4126  			delta = abs(optimal_uV - current_uV);
4127  
4128  			if (delta && best_delta <= delta) {
4129  				best_c_rdev_done = ret;
4130  				best_delta = delta;
4131  				best_rdev = c_rdevs[i];
4132  				best_min_uV = optimal_uV;
4133  				best_max_uV = optimal_max_uV;
4134  				best_c_rdev = i;
4135  			}
4136  		}
4137  
4138  		/* Nothing to change, return successfully */
4139  		if (!best_rdev) {
4140  			ret = 0;
4141  			goto out;
4142  		}
4143  
4144  		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4145  						 best_max_uV, state);
4146  
4147  		if (ret < 0)
4148  			goto out;
4149  
4150  		if (best_c_rdev_done)
4151  			set_bit(best_c_rdev, &c_rdev_done);
4152  
4153  	} while (n_coupled > 1);
4154  
4155  out:
4156  	return ret;
4157  }
4158  
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4159  static int regulator_balance_voltage(struct regulator_dev *rdev,
4160  				     suspend_state_t state)
4161  {
4162  	struct coupling_desc *c_desc = &rdev->coupling_desc;
4163  	struct regulator_coupler *coupler = c_desc->coupler;
4164  	bool skip_coupled = false;
4165  
4166  	/*
4167  	 * If system is in a state other than PM_SUSPEND_ON, don't check
4168  	 * other coupled regulators.
4169  	 */
4170  	if (state != PM_SUSPEND_ON)
4171  		skip_coupled = true;
4172  
4173  	if (c_desc->n_resolved < c_desc->n_coupled) {
4174  		rdev_err(rdev, "Not all coupled regulators registered\n");
4175  		return -EPERM;
4176  	}
4177  
4178  	/* Invoke custom balancer for customized couplers */
4179  	if (coupler && coupler->balance_voltage)
4180  		return coupler->balance_voltage(coupler, rdev, state);
4181  
4182  	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4183  }
4184  
4185  /**
4186   * regulator_set_voltage - set regulator output voltage
4187   * @regulator: regulator source
4188   * @min_uV: Minimum required voltage in uV
4189   * @max_uV: Maximum acceptable voltage in uV
4190   *
4191   * Sets a voltage regulator to the desired output voltage. This can be set
4192   * during any regulator state. IOW, regulator can be disabled or enabled.
4193   *
4194   * If the regulator is enabled then the voltage will change to the new value
4195   * immediately otherwise if the regulator is disabled the regulator will
4196   * output at the new voltage when enabled.
4197   *
4198   * NOTE: If the regulator is shared between several devices then the lowest
4199   * request voltage that meets the system constraints will be used.
4200   * Regulator system constraints must be set for this regulator before
4201   * calling this function otherwise this call will fail.
4202   *
4203   * Return: 0 on success or a negative error number on failure.
4204   */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4205  int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4206  {
4207  	struct ww_acquire_ctx ww_ctx;
4208  	int ret;
4209  
4210  	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4211  
4212  	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4213  					     PM_SUSPEND_ON);
4214  
4215  	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4216  
4217  	return ret;
4218  }
4219  EXPORT_SYMBOL_GPL(regulator_set_voltage);
4220  
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4221  static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4222  					   suspend_state_t state, bool en)
4223  {
4224  	struct regulator_state *rstate;
4225  
4226  	rstate = regulator_get_suspend_state(rdev, state);
4227  	if (rstate == NULL)
4228  		return -EINVAL;
4229  
4230  	if (!rstate->changeable)
4231  		return -EPERM;
4232  
4233  	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4234  
4235  	return 0;
4236  }
4237  
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4238  int regulator_suspend_enable(struct regulator_dev *rdev,
4239  				    suspend_state_t state)
4240  {
4241  	return regulator_suspend_toggle(rdev, state, true);
4242  }
4243  EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4244  
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4245  int regulator_suspend_disable(struct regulator_dev *rdev,
4246  				     suspend_state_t state)
4247  {
4248  	struct regulator *regulator;
4249  	struct regulator_voltage *voltage;
4250  
4251  	/*
4252  	 * if any consumer wants this regulator device keeping on in
4253  	 * suspend states, don't set it as disabled.
4254  	 */
4255  	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4256  		voltage = &regulator->voltage[state];
4257  		if (voltage->min_uV || voltage->max_uV)
4258  			return 0;
4259  	}
4260  
4261  	return regulator_suspend_toggle(rdev, state, false);
4262  }
4263  EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4264  
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4265  static int _regulator_set_suspend_voltage(struct regulator *regulator,
4266  					  int min_uV, int max_uV,
4267  					  suspend_state_t state)
4268  {
4269  	struct regulator_dev *rdev = regulator->rdev;
4270  	struct regulator_state *rstate;
4271  
4272  	rstate = regulator_get_suspend_state(rdev, state);
4273  	if (rstate == NULL)
4274  		return -EINVAL;
4275  
4276  	if (rstate->min_uV == rstate->max_uV) {
4277  		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4278  		return -EPERM;
4279  	}
4280  
4281  	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4282  }
4283  
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4284  int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4285  				  int max_uV, suspend_state_t state)
4286  {
4287  	struct ww_acquire_ctx ww_ctx;
4288  	int ret;
4289  
4290  	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4291  	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4292  		return -EINVAL;
4293  
4294  	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4295  
4296  	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4297  					     max_uV, state);
4298  
4299  	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4300  
4301  	return ret;
4302  }
4303  EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4304  
4305  /**
4306   * regulator_set_voltage_time - get raise/fall time
4307   * @regulator: regulator source
4308   * @old_uV: starting voltage in microvolts
4309   * @new_uV: target voltage in microvolts
4310   *
4311   * Provided with the starting and ending voltage, this function attempts to
4312   * calculate the time in microseconds required to rise or fall to this new
4313   * voltage.
4314   *
4315   * Return: ramp time in microseconds, or a negative error number if calculation failed.
4316   */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4317  int regulator_set_voltage_time(struct regulator *regulator,
4318  			       int old_uV, int new_uV)
4319  {
4320  	struct regulator_dev *rdev = regulator->rdev;
4321  	const struct regulator_ops *ops = rdev->desc->ops;
4322  	int old_sel = -1;
4323  	int new_sel = -1;
4324  	int voltage;
4325  	int i;
4326  
4327  	if (ops->set_voltage_time)
4328  		return ops->set_voltage_time(rdev, old_uV, new_uV);
4329  	else if (!ops->set_voltage_time_sel)
4330  		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4331  
4332  	/* Currently requires operations to do this */
4333  	if (!ops->list_voltage || !rdev->desc->n_voltages)
4334  		return -EINVAL;
4335  
4336  	for (i = 0; i < rdev->desc->n_voltages; i++) {
4337  		/* We only look for exact voltage matches here */
4338  		if (i < rdev->desc->linear_min_sel)
4339  			continue;
4340  
4341  		if (old_sel >= 0 && new_sel >= 0)
4342  			break;
4343  
4344  		voltage = regulator_list_voltage(regulator, i);
4345  		if (voltage < 0)
4346  			return -EINVAL;
4347  		if (voltage == 0)
4348  			continue;
4349  		if (voltage == old_uV)
4350  			old_sel = i;
4351  		if (voltage == new_uV)
4352  			new_sel = i;
4353  	}
4354  
4355  	if (old_sel < 0 || new_sel < 0)
4356  		return -EINVAL;
4357  
4358  	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4359  }
4360  EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4361  
4362  /**
4363   * regulator_set_voltage_time_sel - get raise/fall time
4364   * @rdev: regulator source device
4365   * @old_selector: selector for starting voltage
4366   * @new_selector: selector for target voltage
4367   *
4368   * Provided with the starting and target voltage selectors, this function
4369   * returns time in microseconds required to rise or fall to this new voltage
4370   *
4371   * Drivers providing ramp_delay in regulation_constraints can use this as their
4372   * set_voltage_time_sel() operation.
4373   *
4374   * Return: ramp time in microseconds, or a negative error number if calculation failed.
4375   */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4376  int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4377  				   unsigned int old_selector,
4378  				   unsigned int new_selector)
4379  {
4380  	int old_volt, new_volt;
4381  
4382  	/* sanity check */
4383  	if (!rdev->desc->ops->list_voltage)
4384  		return -EINVAL;
4385  
4386  	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4387  	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4388  
4389  	if (rdev->desc->ops->set_voltage_time)
4390  		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4391  							 new_volt);
4392  	else
4393  		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4394  }
4395  EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4396  
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4397  int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4398  {
4399  	int ret;
4400  
4401  	regulator_lock(rdev);
4402  
4403  	if (!rdev->desc->ops->set_voltage &&
4404  	    !rdev->desc->ops->set_voltage_sel) {
4405  		ret = -EINVAL;
4406  		goto out;
4407  	}
4408  
4409  	/* balance only, if regulator is coupled */
4410  	if (rdev->coupling_desc.n_coupled > 1)
4411  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4412  	else
4413  		ret = -EOPNOTSUPP;
4414  
4415  out:
4416  	regulator_unlock(rdev);
4417  	return ret;
4418  }
4419  
4420  /**
4421   * regulator_sync_voltage - re-apply last regulator output voltage
4422   * @regulator: regulator source
4423   *
4424   * Re-apply the last configured voltage.  This is intended to be used
4425   * where some external control source the consumer is cooperating with
4426   * has caused the configured voltage to change.
4427   *
4428   * Return: 0 on success or a negative error number on failure.
4429   */
regulator_sync_voltage(struct regulator * regulator)4430  int regulator_sync_voltage(struct regulator *regulator)
4431  {
4432  	struct regulator_dev *rdev = regulator->rdev;
4433  	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4434  	int ret, min_uV, max_uV;
4435  
4436  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4437  		return 0;
4438  
4439  	regulator_lock(rdev);
4440  
4441  	if (!rdev->desc->ops->set_voltage &&
4442  	    !rdev->desc->ops->set_voltage_sel) {
4443  		ret = -EINVAL;
4444  		goto out;
4445  	}
4446  
4447  	/* This is only going to work if we've had a voltage configured. */
4448  	if (!voltage->min_uV && !voltage->max_uV) {
4449  		ret = -EINVAL;
4450  		goto out;
4451  	}
4452  
4453  	min_uV = voltage->min_uV;
4454  	max_uV = voltage->max_uV;
4455  
4456  	/* This should be a paranoia check... */
4457  	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4458  	if (ret < 0)
4459  		goto out;
4460  
4461  	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4462  	if (ret < 0)
4463  		goto out;
4464  
4465  	/* balance only, if regulator is coupled */
4466  	if (rdev->coupling_desc.n_coupled > 1)
4467  		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4468  	else
4469  		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4470  
4471  out:
4472  	regulator_unlock(rdev);
4473  	return ret;
4474  }
4475  EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4476  
regulator_get_voltage_rdev(struct regulator_dev * rdev)4477  int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4478  {
4479  	int sel, ret;
4480  	bool bypassed;
4481  
4482  	if (rdev->desc->ops->get_bypass) {
4483  		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4484  		if (ret < 0)
4485  			return ret;
4486  		if (bypassed) {
4487  			/* if bypassed the regulator must have a supply */
4488  			if (!rdev->supply) {
4489  				rdev_err(rdev,
4490  					 "bypassed regulator has no supply!\n");
4491  				return -EPROBE_DEFER;
4492  			}
4493  
4494  			return regulator_get_voltage_rdev(rdev->supply->rdev);
4495  		}
4496  	}
4497  
4498  	if (rdev->desc->ops->get_voltage_sel) {
4499  		sel = rdev->desc->ops->get_voltage_sel(rdev);
4500  		if (sel < 0)
4501  			return sel;
4502  		ret = rdev->desc->ops->list_voltage(rdev, sel);
4503  	} else if (rdev->desc->ops->get_voltage) {
4504  		ret = rdev->desc->ops->get_voltage(rdev);
4505  	} else if (rdev->desc->ops->list_voltage) {
4506  		ret = rdev->desc->ops->list_voltage(rdev, 0);
4507  	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4508  		ret = rdev->desc->fixed_uV;
4509  	} else if (rdev->supply) {
4510  		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4511  	} else if (rdev->supply_name) {
4512  		return -EPROBE_DEFER;
4513  	} else {
4514  		return -EINVAL;
4515  	}
4516  
4517  	if (ret < 0)
4518  		return ret;
4519  	return ret - rdev->constraints->uV_offset;
4520  }
4521  EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4522  
4523  /**
4524   * regulator_get_voltage - get regulator output voltage
4525   * @regulator: regulator source
4526   *
4527   * Return: Current regulator voltage in uV, or a negative error number on failure.
4528   *
4529   * NOTE: If the regulator is disabled it will return the voltage value. This
4530   * function should not be used to determine regulator state.
4531   */
regulator_get_voltage(struct regulator * regulator)4532  int regulator_get_voltage(struct regulator *regulator)
4533  {
4534  	struct ww_acquire_ctx ww_ctx;
4535  	int ret;
4536  
4537  	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4538  	ret = regulator_get_voltage_rdev(regulator->rdev);
4539  	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4540  
4541  	return ret;
4542  }
4543  EXPORT_SYMBOL_GPL(regulator_get_voltage);
4544  
4545  /**
4546   * regulator_set_current_limit - set regulator output current limit
4547   * @regulator: regulator source
4548   * @min_uA: Minimum supported current in uA
4549   * @max_uA: Maximum supported current in uA
4550   *
4551   * Sets current sink to the desired output current. This can be set during
4552   * any regulator state. IOW, regulator can be disabled or enabled.
4553   *
4554   * If the regulator is enabled then the current will change to the new value
4555   * immediately otherwise if the regulator is disabled the regulator will
4556   * output at the new current when enabled.
4557   *
4558   * NOTE: Regulator system constraints must be set for this regulator before
4559   * calling this function otherwise this call will fail.
4560   *
4561   * Return: 0 on success or a negative error number on failure.
4562   */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4563  int regulator_set_current_limit(struct regulator *regulator,
4564  			       int min_uA, int max_uA)
4565  {
4566  	struct regulator_dev *rdev = regulator->rdev;
4567  	int ret;
4568  
4569  	regulator_lock(rdev);
4570  
4571  	/* sanity check */
4572  	if (!rdev->desc->ops->set_current_limit) {
4573  		ret = -EINVAL;
4574  		goto out;
4575  	}
4576  
4577  	/* constraints check */
4578  	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4579  	if (ret < 0)
4580  		goto out;
4581  
4582  	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4583  out:
4584  	regulator_unlock(rdev);
4585  	return ret;
4586  }
4587  EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4588  
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4589  static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4590  {
4591  	/* sanity check */
4592  	if (!rdev->desc->ops->get_current_limit)
4593  		return -EINVAL;
4594  
4595  	return rdev->desc->ops->get_current_limit(rdev);
4596  }
4597  
_regulator_get_current_limit(struct regulator_dev * rdev)4598  static int _regulator_get_current_limit(struct regulator_dev *rdev)
4599  {
4600  	int ret;
4601  
4602  	regulator_lock(rdev);
4603  	ret = _regulator_get_current_limit_unlocked(rdev);
4604  	regulator_unlock(rdev);
4605  
4606  	return ret;
4607  }
4608  
4609  /**
4610   * regulator_get_current_limit - get regulator output current
4611   * @regulator: regulator source
4612   *
4613   * Return: Current supplied by the specified current sink in uA,
4614   *	   or a negative error number on failure.
4615   *
4616   * NOTE: If the regulator is disabled it will return the current value. This
4617   * function should not be used to determine regulator state.
4618   */
regulator_get_current_limit(struct regulator * regulator)4619  int regulator_get_current_limit(struct regulator *regulator)
4620  {
4621  	return _regulator_get_current_limit(regulator->rdev);
4622  }
4623  EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4624  
4625  /**
4626   * regulator_set_mode - set regulator operating mode
4627   * @regulator: regulator source
4628   * @mode: operating mode - one of the REGULATOR_MODE constants
4629   *
4630   * Set regulator operating mode to increase regulator efficiency or improve
4631   * regulation performance.
4632   *
4633   * NOTE: Regulator system constraints must be set for this regulator before
4634   * calling this function otherwise this call will fail.
4635   *
4636   * Return: 0 on success or a negative error number on failure.
4637   */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4638  int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4639  {
4640  	struct regulator_dev *rdev = regulator->rdev;
4641  	int ret;
4642  	int regulator_curr_mode;
4643  
4644  	regulator_lock(rdev);
4645  
4646  	/* sanity check */
4647  	if (!rdev->desc->ops->set_mode) {
4648  		ret = -EINVAL;
4649  		goto out;
4650  	}
4651  
4652  	/* return if the same mode is requested */
4653  	if (rdev->desc->ops->get_mode) {
4654  		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4655  		if (regulator_curr_mode == mode) {
4656  			ret = 0;
4657  			goto out;
4658  		}
4659  	}
4660  
4661  	/* constraints check */
4662  	ret = regulator_mode_constrain(rdev, &mode);
4663  	if (ret < 0)
4664  		goto out;
4665  
4666  	ret = rdev->desc->ops->set_mode(rdev, mode);
4667  out:
4668  	regulator_unlock(rdev);
4669  	return ret;
4670  }
4671  EXPORT_SYMBOL_GPL(regulator_set_mode);
4672  
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4673  static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4674  {
4675  	/* sanity check */
4676  	if (!rdev->desc->ops->get_mode)
4677  		return -EINVAL;
4678  
4679  	return rdev->desc->ops->get_mode(rdev);
4680  }
4681  
_regulator_get_mode(struct regulator_dev * rdev)4682  static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4683  {
4684  	int ret;
4685  
4686  	regulator_lock(rdev);
4687  	ret = _regulator_get_mode_unlocked(rdev);
4688  	regulator_unlock(rdev);
4689  
4690  	return ret;
4691  }
4692  
4693  /**
4694   * regulator_get_mode - get regulator operating mode
4695   * @regulator: regulator source
4696   *
4697   * Get the current regulator operating mode.
4698   *
4699   * Return: Current operating mode as %REGULATOR_MODE_* values,
4700   *	   or a negative error number on failure.
4701   */
regulator_get_mode(struct regulator * regulator)4702  unsigned int regulator_get_mode(struct regulator *regulator)
4703  {
4704  	return _regulator_get_mode(regulator->rdev);
4705  }
4706  EXPORT_SYMBOL_GPL(regulator_get_mode);
4707  
rdev_get_cached_err_flags(struct regulator_dev * rdev)4708  static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4709  {
4710  	int ret = 0;
4711  
4712  	if (rdev->use_cached_err) {
4713  		spin_lock(&rdev->err_lock);
4714  		ret = rdev->cached_err;
4715  		spin_unlock(&rdev->err_lock);
4716  	}
4717  	return ret;
4718  }
4719  
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4720  static int _regulator_get_error_flags(struct regulator_dev *rdev,
4721  					unsigned int *flags)
4722  {
4723  	int cached_flags, ret = 0;
4724  
4725  	regulator_lock(rdev);
4726  
4727  	cached_flags = rdev_get_cached_err_flags(rdev);
4728  
4729  	if (rdev->desc->ops->get_error_flags)
4730  		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4731  	else if (!rdev->use_cached_err)
4732  		ret = -EINVAL;
4733  
4734  	*flags |= cached_flags;
4735  
4736  	regulator_unlock(rdev);
4737  
4738  	return ret;
4739  }
4740  
4741  /**
4742   * regulator_get_error_flags - get regulator error information
4743   * @regulator: regulator source
4744   * @flags: pointer to store error flags
4745   *
4746   * Get the current regulator error information.
4747   *
4748   * Return: 0 on success or a negative error number on failure.
4749   */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4750  int regulator_get_error_flags(struct regulator *regulator,
4751  				unsigned int *flags)
4752  {
4753  	return _regulator_get_error_flags(regulator->rdev, flags);
4754  }
4755  EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4756  
4757  /**
4758   * regulator_set_load - set regulator load
4759   * @regulator: regulator source
4760   * @uA_load: load current
4761   *
4762   * Notifies the regulator core of a new device load. This is then used by
4763   * DRMS (if enabled by constraints) to set the most efficient regulator
4764   * operating mode for the new regulator loading.
4765   *
4766   * Consumer devices notify their supply regulator of the maximum power
4767   * they will require (can be taken from device datasheet in the power
4768   * consumption tables) when they change operational status and hence power
4769   * state. Examples of operational state changes that can affect power
4770   * consumption are :-
4771   *
4772   *    o Device is opened / closed.
4773   *    o Device I/O is about to begin or has just finished.
4774   *    o Device is idling in between work.
4775   *
4776   * This information is also exported via sysfs to userspace.
4777   *
4778   * DRMS will sum the total requested load on the regulator and change
4779   * to the most efficient operating mode if platform constraints allow.
4780   *
4781   * NOTE: when a regulator consumer requests to have a regulator
4782   * disabled then any load that consumer requested no longer counts
4783   * toward the total requested load.  If the regulator is re-enabled
4784   * then the previously requested load will start counting again.
4785   *
4786   * If a regulator is an always-on regulator then an individual consumer's
4787   * load will still be removed if that consumer is fully disabled.
4788   *
4789   * Return: 0 on success or a negative error number on failure.
4790   */
regulator_set_load(struct regulator * regulator,int uA_load)4791  int regulator_set_load(struct regulator *regulator, int uA_load)
4792  {
4793  	struct regulator_dev *rdev = regulator->rdev;
4794  	int old_uA_load;
4795  	int ret = 0;
4796  
4797  	regulator_lock(rdev);
4798  	old_uA_load = regulator->uA_load;
4799  	regulator->uA_load = uA_load;
4800  	if (regulator->enable_count && old_uA_load != uA_load) {
4801  		ret = drms_uA_update(rdev);
4802  		if (ret < 0)
4803  			regulator->uA_load = old_uA_load;
4804  	}
4805  	regulator_unlock(rdev);
4806  
4807  	return ret;
4808  }
4809  EXPORT_SYMBOL_GPL(regulator_set_load);
4810  
4811  /**
4812   * regulator_allow_bypass - allow the regulator to go into bypass mode
4813   *
4814   * @regulator: Regulator to configure
4815   * @enable: enable or disable bypass mode
4816   *
4817   * Allow the regulator to go into bypass mode if all other consumers
4818   * for the regulator also enable bypass mode and the machine
4819   * constraints allow this.  Bypass mode means that the regulator is
4820   * simply passing the input directly to the output with no regulation.
4821   *
4822   * Return: 0 on success or if changing bypass is not possible, or
4823   *	   a negative error number on failure.
4824   */
regulator_allow_bypass(struct regulator * regulator,bool enable)4825  int regulator_allow_bypass(struct regulator *regulator, bool enable)
4826  {
4827  	struct regulator_dev *rdev = regulator->rdev;
4828  	const char *name = rdev_get_name(rdev);
4829  	int ret = 0;
4830  
4831  	if (!rdev->desc->ops->set_bypass)
4832  		return 0;
4833  
4834  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4835  		return 0;
4836  
4837  	regulator_lock(rdev);
4838  
4839  	if (enable && !regulator->bypass) {
4840  		rdev->bypass_count++;
4841  
4842  		if (rdev->bypass_count == rdev->open_count) {
4843  			trace_regulator_bypass_enable(name);
4844  
4845  			ret = rdev->desc->ops->set_bypass(rdev, enable);
4846  			if (ret != 0)
4847  				rdev->bypass_count--;
4848  			else
4849  				trace_regulator_bypass_enable_complete(name);
4850  		}
4851  
4852  	} else if (!enable && regulator->bypass) {
4853  		rdev->bypass_count--;
4854  
4855  		if (rdev->bypass_count != rdev->open_count) {
4856  			trace_regulator_bypass_disable(name);
4857  
4858  			ret = rdev->desc->ops->set_bypass(rdev, enable);
4859  			if (ret != 0)
4860  				rdev->bypass_count++;
4861  			else
4862  				trace_regulator_bypass_disable_complete(name);
4863  		}
4864  	}
4865  
4866  	if (ret == 0)
4867  		regulator->bypass = enable;
4868  
4869  	regulator_unlock(rdev);
4870  
4871  	return ret;
4872  }
4873  EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4874  
4875  /**
4876   * regulator_register_notifier - register regulator event notifier
4877   * @regulator: regulator source
4878   * @nb: notifier block
4879   *
4880   * Register notifier block to receive regulator events.
4881   *
4882   * Return: 0 on success or a negative error number on failure.
4883   */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4884  int regulator_register_notifier(struct regulator *regulator,
4885  			      struct notifier_block *nb)
4886  {
4887  	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4888  						nb);
4889  }
4890  EXPORT_SYMBOL_GPL(regulator_register_notifier);
4891  
4892  /**
4893   * regulator_unregister_notifier - unregister regulator event notifier
4894   * @regulator: regulator source
4895   * @nb: notifier block
4896   *
4897   * Unregister regulator event notifier block.
4898   *
4899   * Return: 0 on success or a negative error number on failure.
4900   */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4901  int regulator_unregister_notifier(struct regulator *regulator,
4902  				struct notifier_block *nb)
4903  {
4904  	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4905  						  nb);
4906  }
4907  EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4908  
4909  /* notify regulator consumers and downstream regulator consumers.
4910   * Note mutex must be held by caller.
4911   */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4912  static int _notifier_call_chain(struct regulator_dev *rdev,
4913  				  unsigned long event, void *data)
4914  {
4915  	/* call rdev chain first */
4916  	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4917  
4918  	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4919  		struct device *parent = rdev->dev.parent;
4920  		const char *rname = rdev_get_name(rdev);
4921  		char name[32];
4922  
4923  		/* Avoid duplicate debugfs directory names */
4924  		if (parent && rname == rdev->desc->name) {
4925  			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4926  				 rname);
4927  			rname = name;
4928  		}
4929  		reg_generate_netlink_event(rname, event);
4930  	}
4931  
4932  	return ret;
4933  }
4934  
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)4935  int _regulator_bulk_get(struct device *dev, int num_consumers,
4936  			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4937  {
4938  	int i;
4939  	int ret;
4940  
4941  	for (i = 0; i < num_consumers; i++)
4942  		consumers[i].consumer = NULL;
4943  
4944  	for (i = 0; i < num_consumers; i++) {
4945  		consumers[i].consumer = _regulator_get(dev,
4946  						       consumers[i].supply, get_type);
4947  		if (IS_ERR(consumers[i].consumer)) {
4948  			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4949  					    "Failed to get supply '%s'",
4950  					    consumers[i].supply);
4951  			consumers[i].consumer = NULL;
4952  			goto err;
4953  		}
4954  
4955  		if (consumers[i].init_load_uA > 0) {
4956  			ret = regulator_set_load(consumers[i].consumer,
4957  						 consumers[i].init_load_uA);
4958  			if (ret) {
4959  				i++;
4960  				goto err;
4961  			}
4962  		}
4963  	}
4964  
4965  	return 0;
4966  
4967  err:
4968  	while (--i >= 0)
4969  		regulator_put(consumers[i].consumer);
4970  
4971  	return ret;
4972  }
4973  
4974  /**
4975   * regulator_bulk_get - get multiple regulator consumers
4976   *
4977   * @dev:           Device to supply
4978   * @num_consumers: Number of consumers to register
4979   * @consumers:     Configuration of consumers; clients are stored here.
4980   *
4981   * This helper function allows drivers to get several regulator
4982   * consumers in one operation.  If any of the regulators cannot be
4983   * acquired then any regulators that were allocated will be freed
4984   * before returning to the caller.
4985   *
4986   * Return: 0 on success or a negative error number on failure.
4987   */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4988  int regulator_bulk_get(struct device *dev, int num_consumers,
4989  		       struct regulator_bulk_data *consumers)
4990  {
4991  	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4992  }
4993  EXPORT_SYMBOL_GPL(regulator_bulk_get);
4994  
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4995  static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4996  {
4997  	struct regulator_bulk_data *bulk = data;
4998  
4999  	bulk->ret = regulator_enable(bulk->consumer);
5000  }
5001  
5002  /**
5003   * regulator_bulk_enable - enable multiple regulator consumers
5004   *
5005   * @num_consumers: Number of consumers
5006   * @consumers:     Consumer data; clients are stored here.
5007   *
5008   * This convenience API allows consumers to enable multiple regulator
5009   * clients in a single API call.  If any consumers cannot be enabled
5010   * then any others that were enabled will be disabled again prior to
5011   * return.
5012   *
5013   * Return: 0 on success or a negative error number on failure.
5014   */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5015  int regulator_bulk_enable(int num_consumers,
5016  			  struct regulator_bulk_data *consumers)
5017  {
5018  	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5019  	int i;
5020  	int ret = 0;
5021  
5022  	for (i = 0; i < num_consumers; i++) {
5023  		async_schedule_domain(regulator_bulk_enable_async,
5024  				      &consumers[i], &async_domain);
5025  	}
5026  
5027  	async_synchronize_full_domain(&async_domain);
5028  
5029  	/* If any consumer failed we need to unwind any that succeeded */
5030  	for (i = 0; i < num_consumers; i++) {
5031  		if (consumers[i].ret != 0) {
5032  			ret = consumers[i].ret;
5033  			goto err;
5034  		}
5035  	}
5036  
5037  	return 0;
5038  
5039  err:
5040  	for (i = 0; i < num_consumers; i++) {
5041  		if (consumers[i].ret < 0)
5042  			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5043  			       ERR_PTR(consumers[i].ret));
5044  		else
5045  			regulator_disable(consumers[i].consumer);
5046  	}
5047  
5048  	return ret;
5049  }
5050  EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5051  
5052  /**
5053   * regulator_bulk_disable - disable multiple regulator consumers
5054   *
5055   * @num_consumers: Number of consumers
5056   * @consumers:     Consumer data; clients are stored here.
5057   *
5058   * This convenience API allows consumers to disable multiple regulator
5059   * clients in a single API call.  If any consumers cannot be disabled
5060   * then any others that were disabled will be enabled again prior to
5061   * return.
5062   *
5063   * Return: 0 on success or a negative error number on failure.
5064   */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5065  int regulator_bulk_disable(int num_consumers,
5066  			   struct regulator_bulk_data *consumers)
5067  {
5068  	int i;
5069  	int ret, r;
5070  
5071  	for (i = num_consumers - 1; i >= 0; --i) {
5072  		ret = regulator_disable(consumers[i].consumer);
5073  		if (ret != 0)
5074  			goto err;
5075  	}
5076  
5077  	return 0;
5078  
5079  err:
5080  	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5081  	for (++i; i < num_consumers; ++i) {
5082  		r = regulator_enable(consumers[i].consumer);
5083  		if (r != 0)
5084  			pr_err("Failed to re-enable %s: %pe\n",
5085  			       consumers[i].supply, ERR_PTR(r));
5086  	}
5087  
5088  	return ret;
5089  }
5090  EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5091  
5092  /**
5093   * regulator_bulk_force_disable - force disable multiple regulator consumers
5094   *
5095   * @num_consumers: Number of consumers
5096   * @consumers:     Consumer data; clients are stored here.
5097   *
5098   * This convenience API allows consumers to forcibly disable multiple regulator
5099   * clients in a single API call.
5100   * NOTE: This should be used for situations when device damage will
5101   * likely occur if the regulators are not disabled (e.g. over temp).
5102   * Although regulator_force_disable function call for some consumers can
5103   * return error numbers, the function is called for all consumers.
5104   *
5105   * Return: 0 on success or a negative error number on failure.
5106   */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5107  int regulator_bulk_force_disable(int num_consumers,
5108  			   struct regulator_bulk_data *consumers)
5109  {
5110  	int i;
5111  	int ret = 0;
5112  
5113  	for (i = 0; i < num_consumers; i++) {
5114  		consumers[i].ret =
5115  			    regulator_force_disable(consumers[i].consumer);
5116  
5117  		/* Store first error for reporting */
5118  		if (consumers[i].ret && !ret)
5119  			ret = consumers[i].ret;
5120  	}
5121  
5122  	return ret;
5123  }
5124  EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5125  
5126  /**
5127   * regulator_bulk_free - free multiple regulator consumers
5128   *
5129   * @num_consumers: Number of consumers
5130   * @consumers:     Consumer data; clients are stored here.
5131   *
5132   * This convenience API allows consumers to free multiple regulator
5133   * clients in a single API call.
5134   */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5135  void regulator_bulk_free(int num_consumers,
5136  			 struct regulator_bulk_data *consumers)
5137  {
5138  	int i;
5139  
5140  	for (i = 0; i < num_consumers; i++) {
5141  		regulator_put(consumers[i].consumer);
5142  		consumers[i].consumer = NULL;
5143  	}
5144  }
5145  EXPORT_SYMBOL_GPL(regulator_bulk_free);
5146  
5147  /**
5148   * regulator_handle_critical - Handle events for system-critical regulators.
5149   * @rdev: The regulator device.
5150   * @event: The event being handled.
5151   *
5152   * This function handles critical events such as under-voltage, over-current,
5153   * and unknown errors for regulators deemed system-critical. On detecting such
5154   * events, it triggers a hardware protection shutdown with a defined timeout.
5155   */
regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5156  static void regulator_handle_critical(struct regulator_dev *rdev,
5157  				      unsigned long event)
5158  {
5159  	const char *reason = NULL;
5160  
5161  	if (!rdev->constraints->system_critical)
5162  		return;
5163  
5164  	switch (event) {
5165  	case REGULATOR_EVENT_UNDER_VOLTAGE:
5166  		reason = "System critical regulator: voltage drop detected";
5167  		break;
5168  	case REGULATOR_EVENT_OVER_CURRENT:
5169  		reason = "System critical regulator: over-current detected";
5170  		break;
5171  	case REGULATOR_EVENT_FAIL:
5172  		reason = "System critical regulator: unknown error";
5173  	}
5174  
5175  	if (!reason)
5176  		return;
5177  
5178  	hw_protection_shutdown(reason,
5179  			       rdev->constraints->uv_less_critical_window_ms);
5180  }
5181  
5182  /**
5183   * regulator_notifier_call_chain - call regulator event notifier
5184   * @rdev: regulator source
5185   * @event: notifier block
5186   * @data: callback-specific data.
5187   *
5188   * Called by regulator drivers to notify clients a regulator event has
5189   * occurred.
5190   *
5191   * Return: %NOTIFY_DONE.
5192   */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5193  int regulator_notifier_call_chain(struct regulator_dev *rdev,
5194  				  unsigned long event, void *data)
5195  {
5196  	regulator_handle_critical(rdev, event);
5197  
5198  	_notifier_call_chain(rdev, event, data);
5199  	return NOTIFY_DONE;
5200  
5201  }
5202  EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5203  
5204  /**
5205   * regulator_mode_to_status - convert a regulator mode into a status
5206   *
5207   * @mode: Mode to convert
5208   *
5209   * Convert a regulator mode into a status.
5210   *
5211   * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5212   */
regulator_mode_to_status(unsigned int mode)5213  int regulator_mode_to_status(unsigned int mode)
5214  {
5215  	switch (mode) {
5216  	case REGULATOR_MODE_FAST:
5217  		return REGULATOR_STATUS_FAST;
5218  	case REGULATOR_MODE_NORMAL:
5219  		return REGULATOR_STATUS_NORMAL;
5220  	case REGULATOR_MODE_IDLE:
5221  		return REGULATOR_STATUS_IDLE;
5222  	case REGULATOR_MODE_STANDBY:
5223  		return REGULATOR_STATUS_STANDBY;
5224  	default:
5225  		return REGULATOR_STATUS_UNDEFINED;
5226  	}
5227  }
5228  EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5229  
5230  static struct attribute *regulator_dev_attrs[] = {
5231  	&dev_attr_name.attr,
5232  	&dev_attr_num_users.attr,
5233  	&dev_attr_type.attr,
5234  	&dev_attr_microvolts.attr,
5235  	&dev_attr_microamps.attr,
5236  	&dev_attr_opmode.attr,
5237  	&dev_attr_state.attr,
5238  	&dev_attr_status.attr,
5239  	&dev_attr_bypass.attr,
5240  	&dev_attr_requested_microamps.attr,
5241  	&dev_attr_min_microvolts.attr,
5242  	&dev_attr_max_microvolts.attr,
5243  	&dev_attr_min_microamps.attr,
5244  	&dev_attr_max_microamps.attr,
5245  	&dev_attr_under_voltage.attr,
5246  	&dev_attr_over_current.attr,
5247  	&dev_attr_regulation_out.attr,
5248  	&dev_attr_fail.attr,
5249  	&dev_attr_over_temp.attr,
5250  	&dev_attr_under_voltage_warn.attr,
5251  	&dev_attr_over_current_warn.attr,
5252  	&dev_attr_over_voltage_warn.attr,
5253  	&dev_attr_over_temp_warn.attr,
5254  	&dev_attr_suspend_standby_state.attr,
5255  	&dev_attr_suspend_mem_state.attr,
5256  	&dev_attr_suspend_disk_state.attr,
5257  	&dev_attr_suspend_standby_microvolts.attr,
5258  	&dev_attr_suspend_mem_microvolts.attr,
5259  	&dev_attr_suspend_disk_microvolts.attr,
5260  	&dev_attr_suspend_standby_mode.attr,
5261  	&dev_attr_suspend_mem_mode.attr,
5262  	&dev_attr_suspend_disk_mode.attr,
5263  	NULL
5264  };
5265  
5266  /*
5267   * To avoid cluttering sysfs (and memory) with useless state, only
5268   * create attributes that can be meaningfully displayed.
5269   */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5270  static umode_t regulator_attr_is_visible(struct kobject *kobj,
5271  					 struct attribute *attr, int idx)
5272  {
5273  	struct device *dev = kobj_to_dev(kobj);
5274  	struct regulator_dev *rdev = dev_to_rdev(dev);
5275  	const struct regulator_ops *ops = rdev->desc->ops;
5276  	umode_t mode = attr->mode;
5277  
5278  	/* these three are always present */
5279  	if (attr == &dev_attr_name.attr ||
5280  	    attr == &dev_attr_num_users.attr ||
5281  	    attr == &dev_attr_type.attr)
5282  		return mode;
5283  
5284  	/* some attributes need specific methods to be displayed */
5285  	if (attr == &dev_attr_microvolts.attr) {
5286  		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5287  		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5288  		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5289  		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5290  			return mode;
5291  		return 0;
5292  	}
5293  
5294  	if (attr == &dev_attr_microamps.attr)
5295  		return ops->get_current_limit ? mode : 0;
5296  
5297  	if (attr == &dev_attr_opmode.attr)
5298  		return ops->get_mode ? mode : 0;
5299  
5300  	if (attr == &dev_attr_state.attr)
5301  		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5302  
5303  	if (attr == &dev_attr_status.attr)
5304  		return ops->get_status ? mode : 0;
5305  
5306  	if (attr == &dev_attr_bypass.attr)
5307  		return ops->get_bypass ? mode : 0;
5308  
5309  	if (attr == &dev_attr_under_voltage.attr ||
5310  	    attr == &dev_attr_over_current.attr ||
5311  	    attr == &dev_attr_regulation_out.attr ||
5312  	    attr == &dev_attr_fail.attr ||
5313  	    attr == &dev_attr_over_temp.attr ||
5314  	    attr == &dev_attr_under_voltage_warn.attr ||
5315  	    attr == &dev_attr_over_current_warn.attr ||
5316  	    attr == &dev_attr_over_voltage_warn.attr ||
5317  	    attr == &dev_attr_over_temp_warn.attr)
5318  		return ops->get_error_flags ? mode : 0;
5319  
5320  	/* constraints need specific supporting methods */
5321  	if (attr == &dev_attr_min_microvolts.attr ||
5322  	    attr == &dev_attr_max_microvolts.attr)
5323  		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5324  
5325  	if (attr == &dev_attr_min_microamps.attr ||
5326  	    attr == &dev_attr_max_microamps.attr)
5327  		return ops->set_current_limit ? mode : 0;
5328  
5329  	if (attr == &dev_attr_suspend_standby_state.attr ||
5330  	    attr == &dev_attr_suspend_mem_state.attr ||
5331  	    attr == &dev_attr_suspend_disk_state.attr)
5332  		return mode;
5333  
5334  	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5335  	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5336  	    attr == &dev_attr_suspend_disk_microvolts.attr)
5337  		return ops->set_suspend_voltage ? mode : 0;
5338  
5339  	if (attr == &dev_attr_suspend_standby_mode.attr ||
5340  	    attr == &dev_attr_suspend_mem_mode.attr ||
5341  	    attr == &dev_attr_suspend_disk_mode.attr)
5342  		return ops->set_suspend_mode ? mode : 0;
5343  
5344  	return mode;
5345  }
5346  
5347  static const struct attribute_group regulator_dev_group = {
5348  	.attrs = regulator_dev_attrs,
5349  	.is_visible = regulator_attr_is_visible,
5350  };
5351  
5352  static const struct attribute_group *regulator_dev_groups[] = {
5353  	&regulator_dev_group,
5354  	NULL
5355  };
5356  
regulator_dev_release(struct device * dev)5357  static void regulator_dev_release(struct device *dev)
5358  {
5359  	struct regulator_dev *rdev = dev_get_drvdata(dev);
5360  
5361  	debugfs_remove_recursive(rdev->debugfs);
5362  	kfree(rdev->constraints);
5363  	of_node_put(rdev->dev.of_node);
5364  	kfree(rdev);
5365  }
5366  
rdev_init_debugfs(struct regulator_dev * rdev)5367  static void rdev_init_debugfs(struct regulator_dev *rdev)
5368  {
5369  	struct device *parent = rdev->dev.parent;
5370  	const char *rname = rdev_get_name(rdev);
5371  	char name[NAME_MAX];
5372  
5373  	/* Avoid duplicate debugfs directory names */
5374  	if (parent && rname == rdev->desc->name) {
5375  		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5376  			 rname);
5377  		rname = name;
5378  	}
5379  
5380  	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5381  	if (IS_ERR(rdev->debugfs))
5382  		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5383  
5384  	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5385  			   &rdev->use_count);
5386  	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5387  			   &rdev->open_count);
5388  	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5389  			   &rdev->bypass_count);
5390  }
5391  
regulator_register_resolve_supply(struct device * dev,void * data)5392  static int regulator_register_resolve_supply(struct device *dev, void *data)
5393  {
5394  	struct regulator_dev *rdev = dev_to_rdev(dev);
5395  
5396  	if (regulator_resolve_supply(rdev))
5397  		rdev_dbg(rdev, "unable to resolve supply\n");
5398  
5399  	return 0;
5400  }
5401  
regulator_coupler_register(struct regulator_coupler * coupler)5402  int regulator_coupler_register(struct regulator_coupler *coupler)
5403  {
5404  	mutex_lock(&regulator_list_mutex);
5405  	list_add_tail(&coupler->list, &regulator_coupler_list);
5406  	mutex_unlock(&regulator_list_mutex);
5407  
5408  	return 0;
5409  }
5410  
5411  static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5412  regulator_find_coupler(struct regulator_dev *rdev)
5413  {
5414  	struct regulator_coupler *coupler;
5415  	int err;
5416  
5417  	/*
5418  	 * Note that regulators are appended to the list and the generic
5419  	 * coupler is registered first, hence it will be attached at last
5420  	 * if nobody cared.
5421  	 */
5422  	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5423  		err = coupler->attach_regulator(coupler, rdev);
5424  		if (!err) {
5425  			if (!coupler->balance_voltage &&
5426  			    rdev->coupling_desc.n_coupled > 2)
5427  				goto err_unsupported;
5428  
5429  			return coupler;
5430  		}
5431  
5432  		if (err < 0)
5433  			return ERR_PTR(err);
5434  
5435  		if (err == 1)
5436  			continue;
5437  
5438  		break;
5439  	}
5440  
5441  	return ERR_PTR(-EINVAL);
5442  
5443  err_unsupported:
5444  	if (coupler->detach_regulator)
5445  		coupler->detach_regulator(coupler, rdev);
5446  
5447  	rdev_err(rdev,
5448  		"Voltage balancing for multiple regulator couples is unimplemented\n");
5449  
5450  	return ERR_PTR(-EPERM);
5451  }
5452  
regulator_resolve_coupling(struct regulator_dev * rdev)5453  static void regulator_resolve_coupling(struct regulator_dev *rdev)
5454  {
5455  	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5456  	struct coupling_desc *c_desc = &rdev->coupling_desc;
5457  	int n_coupled = c_desc->n_coupled;
5458  	struct regulator_dev *c_rdev;
5459  	int i;
5460  
5461  	for (i = 1; i < n_coupled; i++) {
5462  		/* already resolved */
5463  		if (c_desc->coupled_rdevs[i])
5464  			continue;
5465  
5466  		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5467  
5468  		if (!c_rdev)
5469  			continue;
5470  
5471  		if (c_rdev->coupling_desc.coupler != coupler) {
5472  			rdev_err(rdev, "coupler mismatch with %s\n",
5473  				 rdev_get_name(c_rdev));
5474  			return;
5475  		}
5476  
5477  		c_desc->coupled_rdevs[i] = c_rdev;
5478  		c_desc->n_resolved++;
5479  
5480  		regulator_resolve_coupling(c_rdev);
5481  	}
5482  }
5483  
regulator_remove_coupling(struct regulator_dev * rdev)5484  static void regulator_remove_coupling(struct regulator_dev *rdev)
5485  {
5486  	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5487  	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5488  	struct regulator_dev *__c_rdev, *c_rdev;
5489  	unsigned int __n_coupled, n_coupled;
5490  	int i, k;
5491  	int err;
5492  
5493  	n_coupled = c_desc->n_coupled;
5494  
5495  	for (i = 1; i < n_coupled; i++) {
5496  		c_rdev = c_desc->coupled_rdevs[i];
5497  
5498  		if (!c_rdev)
5499  			continue;
5500  
5501  		regulator_lock(c_rdev);
5502  
5503  		__c_desc = &c_rdev->coupling_desc;
5504  		__n_coupled = __c_desc->n_coupled;
5505  
5506  		for (k = 1; k < __n_coupled; k++) {
5507  			__c_rdev = __c_desc->coupled_rdevs[k];
5508  
5509  			if (__c_rdev == rdev) {
5510  				__c_desc->coupled_rdevs[k] = NULL;
5511  				__c_desc->n_resolved--;
5512  				break;
5513  			}
5514  		}
5515  
5516  		regulator_unlock(c_rdev);
5517  
5518  		c_desc->coupled_rdevs[i] = NULL;
5519  		c_desc->n_resolved--;
5520  	}
5521  
5522  	if (coupler && coupler->detach_regulator) {
5523  		err = coupler->detach_regulator(coupler, rdev);
5524  		if (err)
5525  			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5526  				 ERR_PTR(err));
5527  	}
5528  
5529  	kfree(rdev->coupling_desc.coupled_rdevs);
5530  	rdev->coupling_desc.coupled_rdevs = NULL;
5531  }
5532  
regulator_init_coupling(struct regulator_dev * rdev)5533  static int regulator_init_coupling(struct regulator_dev *rdev)
5534  {
5535  	struct regulator_dev **coupled;
5536  	int err, n_phandles;
5537  
5538  	if (!IS_ENABLED(CONFIG_OF))
5539  		n_phandles = 0;
5540  	else
5541  		n_phandles = of_get_n_coupled(rdev);
5542  
5543  	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5544  	if (!coupled)
5545  		return -ENOMEM;
5546  
5547  	rdev->coupling_desc.coupled_rdevs = coupled;
5548  
5549  	/*
5550  	 * Every regulator should always have coupling descriptor filled with
5551  	 * at least pointer to itself.
5552  	 */
5553  	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5554  	rdev->coupling_desc.n_coupled = n_phandles + 1;
5555  	rdev->coupling_desc.n_resolved++;
5556  
5557  	/* regulator isn't coupled */
5558  	if (n_phandles == 0)
5559  		return 0;
5560  
5561  	if (!of_check_coupling_data(rdev))
5562  		return -EPERM;
5563  
5564  	mutex_lock(&regulator_list_mutex);
5565  	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5566  	mutex_unlock(&regulator_list_mutex);
5567  
5568  	if (IS_ERR(rdev->coupling_desc.coupler)) {
5569  		err = PTR_ERR(rdev->coupling_desc.coupler);
5570  		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5571  		return err;
5572  	}
5573  
5574  	return 0;
5575  }
5576  
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5577  static int generic_coupler_attach(struct regulator_coupler *coupler,
5578  				  struct regulator_dev *rdev)
5579  {
5580  	if (rdev->coupling_desc.n_coupled > 2) {
5581  		rdev_err(rdev,
5582  			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5583  		return -EPERM;
5584  	}
5585  
5586  	if (!rdev->constraints->always_on) {
5587  		rdev_err(rdev,
5588  			 "Coupling of a non always-on regulator is unimplemented\n");
5589  		return -ENOTSUPP;
5590  	}
5591  
5592  	return 0;
5593  }
5594  
5595  static struct regulator_coupler generic_regulator_coupler = {
5596  	.attach_regulator = generic_coupler_attach,
5597  };
5598  
5599  /**
5600   * regulator_register - register regulator
5601   * @dev: the device that drive the regulator
5602   * @regulator_desc: regulator to register
5603   * @cfg: runtime configuration for regulator
5604   *
5605   * Called by regulator drivers to register a regulator.
5606   *
5607   * Return: Pointer to a valid &struct regulator_dev on success or
5608   *	   an ERR_PTR() encoded negative error number on failure.
5609   */
5610  struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5611  regulator_register(struct device *dev,
5612  		   const struct regulator_desc *regulator_desc,
5613  		   const struct regulator_config *cfg)
5614  {
5615  	const struct regulator_init_data *init_data;
5616  	struct regulator_config *config = NULL;
5617  	static atomic_t regulator_no = ATOMIC_INIT(-1);
5618  	struct regulator_dev *rdev;
5619  	bool dangling_cfg_gpiod = false;
5620  	bool dangling_of_gpiod = false;
5621  	int ret, i;
5622  	bool resolved_early = false;
5623  
5624  	if (cfg == NULL)
5625  		return ERR_PTR(-EINVAL);
5626  	if (cfg->ena_gpiod)
5627  		dangling_cfg_gpiod = true;
5628  	if (regulator_desc == NULL) {
5629  		ret = -EINVAL;
5630  		goto rinse;
5631  	}
5632  
5633  	WARN_ON(!dev || !cfg->dev);
5634  
5635  	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5636  		ret = -EINVAL;
5637  		goto rinse;
5638  	}
5639  
5640  	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5641  	    regulator_desc->type != REGULATOR_CURRENT) {
5642  		ret = -EINVAL;
5643  		goto rinse;
5644  	}
5645  
5646  	/* Only one of each should be implemented */
5647  	WARN_ON(regulator_desc->ops->get_voltage &&
5648  		regulator_desc->ops->get_voltage_sel);
5649  	WARN_ON(regulator_desc->ops->set_voltage &&
5650  		regulator_desc->ops->set_voltage_sel);
5651  
5652  	/* If we're using selectors we must implement list_voltage. */
5653  	if (regulator_desc->ops->get_voltage_sel &&
5654  	    !regulator_desc->ops->list_voltage) {
5655  		ret = -EINVAL;
5656  		goto rinse;
5657  	}
5658  	if (regulator_desc->ops->set_voltage_sel &&
5659  	    !regulator_desc->ops->list_voltage) {
5660  		ret = -EINVAL;
5661  		goto rinse;
5662  	}
5663  
5664  	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5665  	if (rdev == NULL) {
5666  		ret = -ENOMEM;
5667  		goto rinse;
5668  	}
5669  	device_initialize(&rdev->dev);
5670  	dev_set_drvdata(&rdev->dev, rdev);
5671  	rdev->dev.class = &regulator_class;
5672  	spin_lock_init(&rdev->err_lock);
5673  
5674  	/*
5675  	 * Duplicate the config so the driver could override it after
5676  	 * parsing init data.
5677  	 */
5678  	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5679  	if (config == NULL) {
5680  		ret = -ENOMEM;
5681  		goto clean;
5682  	}
5683  
5684  	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5685  					       &rdev->dev.of_node);
5686  
5687  	/*
5688  	 * Sometimes not all resources are probed already so we need to take
5689  	 * that into account. This happens most the time if the ena_gpiod comes
5690  	 * from a gpio extender or something else.
5691  	 */
5692  	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5693  		ret = -EPROBE_DEFER;
5694  		goto clean;
5695  	}
5696  
5697  	/*
5698  	 * We need to keep track of any GPIO descriptor coming from the
5699  	 * device tree until we have handled it over to the core. If the
5700  	 * config that was passed in to this function DOES NOT contain
5701  	 * a descriptor, and the config after this call DOES contain
5702  	 * a descriptor, we definitely got one from parsing the device
5703  	 * tree.
5704  	 */
5705  	if (!cfg->ena_gpiod && config->ena_gpiod)
5706  		dangling_of_gpiod = true;
5707  	if (!init_data) {
5708  		init_data = config->init_data;
5709  		rdev->dev.of_node = of_node_get(config->of_node);
5710  	}
5711  
5712  	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5713  	rdev->reg_data = config->driver_data;
5714  	rdev->owner = regulator_desc->owner;
5715  	rdev->desc = regulator_desc;
5716  	if (config->regmap)
5717  		rdev->regmap = config->regmap;
5718  	else if (dev_get_regmap(dev, NULL))
5719  		rdev->regmap = dev_get_regmap(dev, NULL);
5720  	else if (dev->parent)
5721  		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5722  	INIT_LIST_HEAD(&rdev->consumer_list);
5723  	INIT_LIST_HEAD(&rdev->list);
5724  	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5725  	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5726  
5727  	if (init_data && init_data->supply_regulator)
5728  		rdev->supply_name = init_data->supply_regulator;
5729  	else if (regulator_desc->supply_name)
5730  		rdev->supply_name = regulator_desc->supply_name;
5731  
5732  	/* register with sysfs */
5733  	rdev->dev.parent = config->dev;
5734  	dev_set_name(&rdev->dev, "regulator.%lu",
5735  		    (unsigned long) atomic_inc_return(&regulator_no));
5736  
5737  	/* set regulator constraints */
5738  	if (init_data)
5739  		rdev->constraints = kmemdup(&init_data->constraints,
5740  					    sizeof(*rdev->constraints),
5741  					    GFP_KERNEL);
5742  	else
5743  		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5744  					    GFP_KERNEL);
5745  	if (!rdev->constraints) {
5746  		ret = -ENOMEM;
5747  		goto wash;
5748  	}
5749  
5750  	if ((rdev->supply_name && !rdev->supply) &&
5751  		(rdev->constraints->always_on ||
5752  		 rdev->constraints->boot_on)) {
5753  		ret = regulator_resolve_supply(rdev);
5754  		if (ret)
5755  			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5756  					 ERR_PTR(ret));
5757  
5758  		resolved_early = true;
5759  	}
5760  
5761  	/* perform any regulator specific init */
5762  	if (init_data && init_data->regulator_init) {
5763  		ret = init_data->regulator_init(rdev->reg_data);
5764  		if (ret < 0)
5765  			goto wash;
5766  	}
5767  
5768  	if (config->ena_gpiod) {
5769  		ret = regulator_ena_gpio_request(rdev, config);
5770  		if (ret != 0) {
5771  			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5772  				 ERR_PTR(ret));
5773  			goto wash;
5774  		}
5775  		/* The regulator core took over the GPIO descriptor */
5776  		dangling_cfg_gpiod = false;
5777  		dangling_of_gpiod = false;
5778  	}
5779  
5780  	ret = set_machine_constraints(rdev);
5781  	if (ret == -EPROBE_DEFER && !resolved_early) {
5782  		/* Regulator might be in bypass mode and so needs its supply
5783  		 * to set the constraints
5784  		 */
5785  		/* FIXME: this currently triggers a chicken-and-egg problem
5786  		 * when creating -SUPPLY symlink in sysfs to a regulator
5787  		 * that is just being created
5788  		 */
5789  		rdev_dbg(rdev, "will resolve supply early: %s\n",
5790  			 rdev->supply_name);
5791  		ret = regulator_resolve_supply(rdev);
5792  		if (!ret)
5793  			ret = set_machine_constraints(rdev);
5794  		else
5795  			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5796  				 ERR_PTR(ret));
5797  	}
5798  	if (ret < 0)
5799  		goto wash;
5800  
5801  	ret = regulator_init_coupling(rdev);
5802  	if (ret < 0)
5803  		goto wash;
5804  
5805  	/* add consumers devices */
5806  	if (init_data) {
5807  		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5808  			ret = set_consumer_device_supply(rdev,
5809  				init_data->consumer_supplies[i].dev_name,
5810  				init_data->consumer_supplies[i].supply);
5811  			if (ret < 0) {
5812  				dev_err(dev, "Failed to set supply %s\n",
5813  					init_data->consumer_supplies[i].supply);
5814  				goto unset_supplies;
5815  			}
5816  		}
5817  	}
5818  
5819  	if (!rdev->desc->ops->get_voltage &&
5820  	    !rdev->desc->ops->list_voltage &&
5821  	    !rdev->desc->fixed_uV)
5822  		rdev->is_switch = true;
5823  
5824  	ret = device_add(&rdev->dev);
5825  	if (ret != 0)
5826  		goto unset_supplies;
5827  
5828  	rdev_init_debugfs(rdev);
5829  
5830  	/* try to resolve regulators coupling since a new one was registered */
5831  	mutex_lock(&regulator_list_mutex);
5832  	regulator_resolve_coupling(rdev);
5833  	mutex_unlock(&regulator_list_mutex);
5834  
5835  	/* try to resolve regulators supply since a new one was registered */
5836  	class_for_each_device(&regulator_class, NULL, NULL,
5837  			      regulator_register_resolve_supply);
5838  	kfree(config);
5839  	return rdev;
5840  
5841  unset_supplies:
5842  	mutex_lock(&regulator_list_mutex);
5843  	unset_regulator_supplies(rdev);
5844  	regulator_remove_coupling(rdev);
5845  	mutex_unlock(&regulator_list_mutex);
5846  wash:
5847  	regulator_put(rdev->supply);
5848  	kfree(rdev->coupling_desc.coupled_rdevs);
5849  	mutex_lock(&regulator_list_mutex);
5850  	regulator_ena_gpio_free(rdev);
5851  	mutex_unlock(&regulator_list_mutex);
5852  clean:
5853  	if (dangling_of_gpiod)
5854  		gpiod_put(config->ena_gpiod);
5855  	kfree(config);
5856  	put_device(&rdev->dev);
5857  rinse:
5858  	if (dangling_cfg_gpiod)
5859  		gpiod_put(cfg->ena_gpiod);
5860  	return ERR_PTR(ret);
5861  }
5862  EXPORT_SYMBOL_GPL(regulator_register);
5863  
5864  /**
5865   * regulator_unregister - unregister regulator
5866   * @rdev: regulator to unregister
5867   *
5868   * Called by regulator drivers to unregister a regulator.
5869   */
regulator_unregister(struct regulator_dev * rdev)5870  void regulator_unregister(struct regulator_dev *rdev)
5871  {
5872  	if (rdev == NULL)
5873  		return;
5874  
5875  	if (rdev->supply) {
5876  		while (rdev->use_count--)
5877  			regulator_disable(rdev->supply);
5878  		regulator_put(rdev->supply);
5879  	}
5880  
5881  	flush_work(&rdev->disable_work.work);
5882  
5883  	mutex_lock(&regulator_list_mutex);
5884  
5885  	WARN_ON(rdev->open_count);
5886  	regulator_remove_coupling(rdev);
5887  	unset_regulator_supplies(rdev);
5888  	list_del(&rdev->list);
5889  	regulator_ena_gpio_free(rdev);
5890  	device_unregister(&rdev->dev);
5891  
5892  	mutex_unlock(&regulator_list_mutex);
5893  }
5894  EXPORT_SYMBOL_GPL(regulator_unregister);
5895  
5896  #ifdef CONFIG_SUSPEND
5897  /**
5898   * regulator_suspend - prepare regulators for system wide suspend
5899   * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5900   *
5901   * Configure each regulator with it's suspend operating parameters for state.
5902   *
5903   * Return: 0 on success or a negative error number on failure.
5904   */
regulator_suspend(struct device * dev)5905  static int regulator_suspend(struct device *dev)
5906  {
5907  	struct regulator_dev *rdev = dev_to_rdev(dev);
5908  	suspend_state_t state = pm_suspend_target_state;
5909  	int ret;
5910  	const struct regulator_state *rstate;
5911  
5912  	rstate = regulator_get_suspend_state_check(rdev, state);
5913  	if (!rstate)
5914  		return 0;
5915  
5916  	regulator_lock(rdev);
5917  	ret = __suspend_set_state(rdev, rstate);
5918  	regulator_unlock(rdev);
5919  
5920  	return ret;
5921  }
5922  
regulator_resume(struct device * dev)5923  static int regulator_resume(struct device *dev)
5924  {
5925  	suspend_state_t state = pm_suspend_target_state;
5926  	struct regulator_dev *rdev = dev_to_rdev(dev);
5927  	struct regulator_state *rstate;
5928  	int ret = 0;
5929  
5930  	rstate = regulator_get_suspend_state(rdev, state);
5931  	if (rstate == NULL)
5932  		return 0;
5933  
5934  	/* Avoid grabbing the lock if we don't need to */
5935  	if (!rdev->desc->ops->resume)
5936  		return 0;
5937  
5938  	regulator_lock(rdev);
5939  
5940  	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5941  	    rstate->enabled == DISABLE_IN_SUSPEND)
5942  		ret = rdev->desc->ops->resume(rdev);
5943  
5944  	regulator_unlock(rdev);
5945  
5946  	return ret;
5947  }
5948  #else /* !CONFIG_SUSPEND */
5949  
5950  #define regulator_suspend	NULL
5951  #define regulator_resume	NULL
5952  
5953  #endif /* !CONFIG_SUSPEND */
5954  
5955  #ifdef CONFIG_PM
5956  static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5957  	.suspend	= regulator_suspend,
5958  	.resume		= regulator_resume,
5959  };
5960  #endif
5961  
5962  const struct class regulator_class = {
5963  	.name = "regulator",
5964  	.dev_release = regulator_dev_release,
5965  	.dev_groups = regulator_dev_groups,
5966  #ifdef CONFIG_PM
5967  	.pm = &regulator_pm_ops,
5968  #endif
5969  };
5970  /**
5971   * regulator_has_full_constraints - the system has fully specified constraints
5972   *
5973   * Calling this function will cause the regulator API to disable all
5974   * regulators which have a zero use count and don't have an always_on
5975   * constraint in a late_initcall.
5976   *
5977   * The intention is that this will become the default behaviour in a
5978   * future kernel release so users are encouraged to use this facility
5979   * now.
5980   */
regulator_has_full_constraints(void)5981  void regulator_has_full_constraints(void)
5982  {
5983  	has_full_constraints = 1;
5984  }
5985  EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5986  
5987  /**
5988   * rdev_get_drvdata - get rdev regulator driver data
5989   * @rdev: regulator
5990   *
5991   * Get rdev regulator driver private data. This call can be used in the
5992   * regulator driver context.
5993   *
5994   * Return: Pointer to regulator driver private data.
5995   */
rdev_get_drvdata(struct regulator_dev * rdev)5996  void *rdev_get_drvdata(struct regulator_dev *rdev)
5997  {
5998  	return rdev->reg_data;
5999  }
6000  EXPORT_SYMBOL_GPL(rdev_get_drvdata);
6001  
6002  /**
6003   * regulator_get_drvdata - get regulator driver data
6004   * @regulator: regulator
6005   *
6006   * Get regulator driver private data. This call can be used in the consumer
6007   * driver context when non API regulator specific functions need to be called.
6008   *
6009   * Return: Pointer to regulator driver private data.
6010   */
regulator_get_drvdata(struct regulator * regulator)6011  void *regulator_get_drvdata(struct regulator *regulator)
6012  {
6013  	return regulator->rdev->reg_data;
6014  }
6015  EXPORT_SYMBOL_GPL(regulator_get_drvdata);
6016  
6017  /**
6018   * regulator_set_drvdata - set regulator driver data
6019   * @regulator: regulator
6020   * @data: data
6021   */
regulator_set_drvdata(struct regulator * regulator,void * data)6022  void regulator_set_drvdata(struct regulator *regulator, void *data)
6023  {
6024  	regulator->rdev->reg_data = data;
6025  }
6026  EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6027  
6028  /**
6029   * rdev_get_id - get regulator ID
6030   * @rdev: regulator
6031   *
6032   * Return: Regulator ID for @rdev.
6033   */
rdev_get_id(struct regulator_dev * rdev)6034  int rdev_get_id(struct regulator_dev *rdev)
6035  {
6036  	return rdev->desc->id;
6037  }
6038  EXPORT_SYMBOL_GPL(rdev_get_id);
6039  
rdev_get_dev(struct regulator_dev * rdev)6040  struct device *rdev_get_dev(struct regulator_dev *rdev)
6041  {
6042  	return &rdev->dev;
6043  }
6044  EXPORT_SYMBOL_GPL(rdev_get_dev);
6045  
rdev_get_regmap(struct regulator_dev * rdev)6046  struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6047  {
6048  	return rdev->regmap;
6049  }
6050  EXPORT_SYMBOL_GPL(rdev_get_regmap);
6051  
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6052  void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6053  {
6054  	return reg_init_data->driver_data;
6055  }
6056  EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6057  
6058  #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)6059  static int supply_map_show(struct seq_file *sf, void *data)
6060  {
6061  	struct regulator_map *map;
6062  
6063  	list_for_each_entry(map, &regulator_map_list, list) {
6064  		seq_printf(sf, "%s -> %s.%s\n",
6065  				rdev_get_name(map->regulator), map->dev_name,
6066  				map->supply);
6067  	}
6068  
6069  	return 0;
6070  }
6071  DEFINE_SHOW_ATTRIBUTE(supply_map);
6072  
6073  struct summary_data {
6074  	struct seq_file *s;
6075  	struct regulator_dev *parent;
6076  	int level;
6077  };
6078  
6079  static void regulator_summary_show_subtree(struct seq_file *s,
6080  					   struct regulator_dev *rdev,
6081  					   int level);
6082  
regulator_summary_show_children(struct device * dev,void * data)6083  static int regulator_summary_show_children(struct device *dev, void *data)
6084  {
6085  	struct regulator_dev *rdev = dev_to_rdev(dev);
6086  	struct summary_data *summary_data = data;
6087  
6088  	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6089  		regulator_summary_show_subtree(summary_data->s, rdev,
6090  					       summary_data->level + 1);
6091  
6092  	return 0;
6093  }
6094  
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6095  static void regulator_summary_show_subtree(struct seq_file *s,
6096  					   struct regulator_dev *rdev,
6097  					   int level)
6098  {
6099  	struct regulation_constraints *c;
6100  	struct regulator *consumer;
6101  	struct summary_data summary_data;
6102  	unsigned int opmode;
6103  
6104  	if (!rdev)
6105  		return;
6106  
6107  	opmode = _regulator_get_mode_unlocked(rdev);
6108  	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6109  		   level * 3 + 1, "",
6110  		   30 - level * 3, rdev_get_name(rdev),
6111  		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6112  		   regulator_opmode_to_str(opmode));
6113  
6114  	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6115  	seq_printf(s, "%5dmA ",
6116  		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6117  
6118  	c = rdev->constraints;
6119  	if (c) {
6120  		switch (rdev->desc->type) {
6121  		case REGULATOR_VOLTAGE:
6122  			seq_printf(s, "%5dmV %5dmV ",
6123  				   c->min_uV / 1000, c->max_uV / 1000);
6124  			break;
6125  		case REGULATOR_CURRENT:
6126  			seq_printf(s, "%5dmA %5dmA ",
6127  				   c->min_uA / 1000, c->max_uA / 1000);
6128  			break;
6129  		}
6130  	}
6131  
6132  	seq_puts(s, "\n");
6133  
6134  	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6135  		if (consumer->dev && consumer->dev->class == &regulator_class)
6136  			continue;
6137  
6138  		seq_printf(s, "%*s%-*s ",
6139  			   (level + 1) * 3 + 1, "",
6140  			   30 - (level + 1) * 3,
6141  			   consumer->supply_name ? consumer->supply_name :
6142  			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6143  
6144  		switch (rdev->desc->type) {
6145  		case REGULATOR_VOLTAGE:
6146  			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6147  				   consumer->enable_count,
6148  				   consumer->uA_load / 1000,
6149  				   consumer->uA_load && !consumer->enable_count ?
6150  				   '*' : ' ',
6151  				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6152  				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6153  			break;
6154  		case REGULATOR_CURRENT:
6155  			break;
6156  		}
6157  
6158  		seq_puts(s, "\n");
6159  	}
6160  
6161  	summary_data.s = s;
6162  	summary_data.level = level;
6163  	summary_data.parent = rdev;
6164  
6165  	class_for_each_device(&regulator_class, NULL, &summary_data,
6166  			      regulator_summary_show_children);
6167  }
6168  
6169  struct summary_lock_data {
6170  	struct ww_acquire_ctx *ww_ctx;
6171  	struct regulator_dev **new_contended_rdev;
6172  	struct regulator_dev **old_contended_rdev;
6173  };
6174  
regulator_summary_lock_one(struct device * dev,void * data)6175  static int regulator_summary_lock_one(struct device *dev, void *data)
6176  {
6177  	struct regulator_dev *rdev = dev_to_rdev(dev);
6178  	struct summary_lock_data *lock_data = data;
6179  	int ret = 0;
6180  
6181  	if (rdev != *lock_data->old_contended_rdev) {
6182  		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6183  
6184  		if (ret == -EDEADLK)
6185  			*lock_data->new_contended_rdev = rdev;
6186  		else
6187  			WARN_ON_ONCE(ret);
6188  	} else {
6189  		*lock_data->old_contended_rdev = NULL;
6190  	}
6191  
6192  	return ret;
6193  }
6194  
regulator_summary_unlock_one(struct device * dev,void * data)6195  static int regulator_summary_unlock_one(struct device *dev, void *data)
6196  {
6197  	struct regulator_dev *rdev = dev_to_rdev(dev);
6198  	struct summary_lock_data *lock_data = data;
6199  
6200  	if (lock_data) {
6201  		if (rdev == *lock_data->new_contended_rdev)
6202  			return -EDEADLK;
6203  	}
6204  
6205  	regulator_unlock(rdev);
6206  
6207  	return 0;
6208  }
6209  
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6210  static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6211  				      struct regulator_dev **new_contended_rdev,
6212  				      struct regulator_dev **old_contended_rdev)
6213  {
6214  	struct summary_lock_data lock_data;
6215  	int ret;
6216  
6217  	lock_data.ww_ctx = ww_ctx;
6218  	lock_data.new_contended_rdev = new_contended_rdev;
6219  	lock_data.old_contended_rdev = old_contended_rdev;
6220  
6221  	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6222  				    regulator_summary_lock_one);
6223  	if (ret)
6224  		class_for_each_device(&regulator_class, NULL, &lock_data,
6225  				      regulator_summary_unlock_one);
6226  
6227  	return ret;
6228  }
6229  
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6230  static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6231  {
6232  	struct regulator_dev *new_contended_rdev = NULL;
6233  	struct regulator_dev *old_contended_rdev = NULL;
6234  	int err;
6235  
6236  	mutex_lock(&regulator_list_mutex);
6237  
6238  	ww_acquire_init(ww_ctx, &regulator_ww_class);
6239  
6240  	do {
6241  		if (new_contended_rdev) {
6242  			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6243  			old_contended_rdev = new_contended_rdev;
6244  			old_contended_rdev->ref_cnt++;
6245  			old_contended_rdev->mutex_owner = current;
6246  		}
6247  
6248  		err = regulator_summary_lock_all(ww_ctx,
6249  						 &new_contended_rdev,
6250  						 &old_contended_rdev);
6251  
6252  		if (old_contended_rdev)
6253  			regulator_unlock(old_contended_rdev);
6254  
6255  	} while (err == -EDEADLK);
6256  
6257  	ww_acquire_done(ww_ctx);
6258  }
6259  
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6260  static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6261  {
6262  	class_for_each_device(&regulator_class, NULL, NULL,
6263  			      regulator_summary_unlock_one);
6264  	ww_acquire_fini(ww_ctx);
6265  
6266  	mutex_unlock(&regulator_list_mutex);
6267  }
6268  
regulator_summary_show_roots(struct device * dev,void * data)6269  static int regulator_summary_show_roots(struct device *dev, void *data)
6270  {
6271  	struct regulator_dev *rdev = dev_to_rdev(dev);
6272  	struct seq_file *s = data;
6273  
6274  	if (!rdev->supply)
6275  		regulator_summary_show_subtree(s, rdev, 0);
6276  
6277  	return 0;
6278  }
6279  
regulator_summary_show(struct seq_file * s,void * data)6280  static int regulator_summary_show(struct seq_file *s, void *data)
6281  {
6282  	struct ww_acquire_ctx ww_ctx;
6283  
6284  	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6285  	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6286  
6287  	regulator_summary_lock(&ww_ctx);
6288  
6289  	class_for_each_device(&regulator_class, NULL, s,
6290  			      regulator_summary_show_roots);
6291  
6292  	regulator_summary_unlock(&ww_ctx);
6293  
6294  	return 0;
6295  }
6296  DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6297  #endif /* CONFIG_DEBUG_FS */
6298  
regulator_init(void)6299  static int __init regulator_init(void)
6300  {
6301  	int ret;
6302  
6303  	ret = class_register(&regulator_class);
6304  
6305  	debugfs_root = debugfs_create_dir("regulator", NULL);
6306  	if (IS_ERR(debugfs_root))
6307  		pr_debug("regulator: Failed to create debugfs directory\n");
6308  
6309  #ifdef CONFIG_DEBUG_FS
6310  	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6311  			    &supply_map_fops);
6312  
6313  	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6314  			    NULL, &regulator_summary_fops);
6315  #endif
6316  	regulator_dummy_init();
6317  
6318  	regulator_coupler_register(&generic_regulator_coupler);
6319  
6320  	return ret;
6321  }
6322  
6323  /* init early to allow our consumers to complete system booting */
6324  core_initcall(regulator_init);
6325  
regulator_late_cleanup(struct device * dev,void * data)6326  static int regulator_late_cleanup(struct device *dev, void *data)
6327  {
6328  	struct regulator_dev *rdev = dev_to_rdev(dev);
6329  	struct regulation_constraints *c = rdev->constraints;
6330  	int ret;
6331  
6332  	if (c && c->always_on)
6333  		return 0;
6334  
6335  	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6336  		return 0;
6337  
6338  	regulator_lock(rdev);
6339  
6340  	if (rdev->use_count)
6341  		goto unlock;
6342  
6343  	/* If reading the status failed, assume that it's off. */
6344  	if (_regulator_is_enabled(rdev) <= 0)
6345  		goto unlock;
6346  
6347  	if (have_full_constraints()) {
6348  		/* We log since this may kill the system if it goes
6349  		 * wrong.
6350  		 */
6351  		rdev_info(rdev, "disabling\n");
6352  		ret = _regulator_do_disable(rdev);
6353  		if (ret != 0)
6354  			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6355  	} else {
6356  		/* The intention is that in future we will
6357  		 * assume that full constraints are provided
6358  		 * so warn even if we aren't going to do
6359  		 * anything here.
6360  		 */
6361  		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6362  	}
6363  
6364  unlock:
6365  	regulator_unlock(rdev);
6366  
6367  	return 0;
6368  }
6369  
6370  static bool regulator_ignore_unused;
regulator_ignore_unused_setup(char * __unused)6371  static int __init regulator_ignore_unused_setup(char *__unused)
6372  {
6373  	regulator_ignore_unused = true;
6374  	return 1;
6375  }
6376  __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6377  
regulator_init_complete_work_function(struct work_struct * work)6378  static void regulator_init_complete_work_function(struct work_struct *work)
6379  {
6380  	/*
6381  	 * Regulators may had failed to resolve their input supplies
6382  	 * when were registered, either because the input supply was
6383  	 * not registered yet or because its parent device was not
6384  	 * bound yet. So attempt to resolve the input supplies for
6385  	 * pending regulators before trying to disable unused ones.
6386  	 */
6387  	class_for_each_device(&regulator_class, NULL, NULL,
6388  			      regulator_register_resolve_supply);
6389  
6390  	/*
6391  	 * For debugging purposes, it may be useful to prevent unused
6392  	 * regulators from being disabled.
6393  	 */
6394  	if (regulator_ignore_unused) {
6395  		pr_warn("regulator: Not disabling unused regulators\n");
6396  		return;
6397  	}
6398  
6399  	/* If we have a full configuration then disable any regulators
6400  	 * we have permission to change the status for and which are
6401  	 * not in use or always_on.  This is effectively the default
6402  	 * for DT and ACPI as they have full constraints.
6403  	 */
6404  	class_for_each_device(&regulator_class, NULL, NULL,
6405  			      regulator_late_cleanup);
6406  }
6407  
6408  static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6409  			    regulator_init_complete_work_function);
6410  
regulator_init_complete(void)6411  static int __init regulator_init_complete(void)
6412  {
6413  	/*
6414  	 * Since DT doesn't provide an idiomatic mechanism for
6415  	 * enabling full constraints and since it's much more natural
6416  	 * with DT to provide them just assume that a DT enabled
6417  	 * system has full constraints.
6418  	 */
6419  	if (of_have_populated_dt())
6420  		has_full_constraints = true;
6421  
6422  	/*
6423  	 * We punt completion for an arbitrary amount of time since
6424  	 * systems like distros will load many drivers from userspace
6425  	 * so consumers might not always be ready yet, this is
6426  	 * particularly an issue with laptops where this might bounce
6427  	 * the display off then on.  Ideally we'd get a notification
6428  	 * from userspace when this happens but we don't so just wait
6429  	 * a bit and hope we waited long enough.  It'd be better if
6430  	 * we'd only do this on systems that need it, and a kernel
6431  	 * command line option might be useful.
6432  	 */
6433  	schedule_delayed_work(&regulator_init_complete_work,
6434  			      msecs_to_jiffies(30000));
6435  
6436  	return 0;
6437  }
6438  late_initcall_sync(regulator_init_complete);
6439