1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Variant of atomic_t specialized for reference counts.
4  *
5  * The interface matches the atomic_t interface (to aid in porting) but only
6  * provides the few functions one should use for reference counting.
7  *
8  * Saturation semantics
9  * ====================
10  *
11  * refcount_t differs from atomic_t in that the counter saturates at
12  * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the
13  * counter and causing 'spurious' use-after-free issues. In order to avoid the
14  * cost associated with introducing cmpxchg() loops into all of the saturating
15  * operations, we temporarily allow the counter to take on an unchecked value
16  * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow
17  * or overflow has occurred. Although this is racy when multiple threads
18  * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly
19  * equidistant from 0 and INT_MAX we minimise the scope for error:
20  *
21  * 	                           INT_MAX     REFCOUNT_SATURATED   UINT_MAX
22  *   0                          (0x7fff_ffff)    (0xc000_0000)    (0xffff_ffff)
23  *   +--------------------------------+----------------+----------------+
24  *                                     <---------- bad value! ---------->
25  *
26  * (in a signed view of the world, the "bad value" range corresponds to
27  * a negative counter value).
28  *
29  * As an example, consider a refcount_inc() operation that causes the counter
30  * to overflow:
31  *
32  * 	int old = atomic_fetch_add_relaxed(r);
33  *	// old is INT_MAX, refcount now INT_MIN (0x8000_0000)
34  *	if (old < 0)
35  *		atomic_set(r, REFCOUNT_SATURATED);
36  *
37  * If another thread also performs a refcount_inc() operation between the two
38  * atomic operations, then the count will continue to edge closer to 0. If it
39  * reaches a value of 1 before /any/ of the threads reset it to the saturated
40  * value, then a concurrent refcount_dec_and_test() may erroneously free the
41  * underlying object.
42  * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently
43  * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK).
44  * With the current PID limit, if no batched refcounting operations are used and
45  * the attacker can't repeatedly trigger kernel oopses in the middle of refcount
46  * operations, this makes it impossible for a saturated refcount to leave the
47  * saturation range, even if it is possible for multiple uses of the same
48  * refcount to nest in the context of a single task:
49  *
50  *     (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT =
51  *     0x40000000 / 0x400000 = 0x100 = 256
52  *
53  * If hundreds of references are added/removed with a single refcounting
54  * operation, it may potentially be possible to leave the saturation range; but
55  * given the precise timing details involved with the round-robin scheduling of
56  * each thread manipulating the refcount and the need to hit the race multiple
57  * times in succession, there doesn't appear to be a practical avenue of attack
58  * even if using refcount_add() operations with larger increments.
59  *
60  * Memory ordering
61  * ===============
62  *
63  * Memory ordering rules are slightly relaxed wrt regular atomic_t functions
64  * and provide only what is strictly required for refcounts.
65  *
66  * The increments are fully relaxed; these will not provide ordering. The
67  * rationale is that whatever is used to obtain the object we're increasing the
68  * reference count on will provide the ordering. For locked data structures,
69  * its the lock acquire, for RCU/lockless data structures its the dependent
70  * load.
71  *
72  * Do note that inc_not_zero() provides a control dependency which will order
73  * future stores against the inc, this ensures we'll never modify the object
74  * if we did not in fact acquire a reference.
75  *
76  * The decrements will provide release order, such that all the prior loads and
77  * stores will be issued before, it also provides a control dependency, which
78  * will order us against the subsequent free().
79  *
80  * The control dependency is against the load of the cmpxchg (ll/sc) that
81  * succeeded. This means the stores aren't fully ordered, but this is fine
82  * because the 1->0 transition indicates no concurrency.
83  *
84  * Note that the allocator is responsible for ordering things between free()
85  * and alloc().
86  *
87  * The decrements dec_and_test() and sub_and_test() also provide acquire
88  * ordering on success.
89  *
90  */
91 
92 #ifndef _LINUX_REFCOUNT_H
93 #define _LINUX_REFCOUNT_H
94 
95 #include <linux/atomic.h>
96 #include <linux/bug.h>
97 #include <linux/compiler.h>
98 #include <linux/limits.h>
99 #include <linux/refcount_types.h>
100 #include <linux/spinlock_types.h>
101 
102 struct mutex;
103 
104 #define REFCOUNT_INIT(n)	{ .refs = ATOMIC_INIT(n), }
105 #define REFCOUNT_MAX		INT_MAX
106 #define REFCOUNT_SATURATED	(INT_MIN / 2)
107 
108 enum refcount_saturation_type {
109 	REFCOUNT_ADD_NOT_ZERO_OVF,
110 	REFCOUNT_ADD_OVF,
111 	REFCOUNT_ADD_UAF,
112 	REFCOUNT_SUB_UAF,
113 	REFCOUNT_DEC_LEAK,
114 };
115 
116 void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t);
117 
118 /**
119  * refcount_set - set a refcount's value
120  * @r: the refcount
121  * @n: value to which the refcount will be set
122  */
refcount_set(refcount_t * r,int n)123 static inline void refcount_set(refcount_t *r, int n)
124 {
125 	atomic_set(&r->refs, n);
126 }
127 
128 /**
129  * refcount_read - get a refcount's value
130  * @r: the refcount
131  *
132  * Return: the refcount's value
133  */
refcount_read(const refcount_t * r)134 static inline unsigned int refcount_read(const refcount_t *r)
135 {
136 	return atomic_read(&r->refs);
137 }
138 
139 static inline __must_check __signed_wrap
__refcount_add_not_zero(int i,refcount_t * r,int * oldp)140 bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp)
141 {
142 	int old = refcount_read(r);
143 
144 	do {
145 		if (!old)
146 			break;
147 	} while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i));
148 
149 	if (oldp)
150 		*oldp = old;
151 
152 	if (unlikely(old < 0 || old + i < 0))
153 		refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF);
154 
155 	return old;
156 }
157 
158 /**
159  * refcount_add_not_zero - add a value to a refcount unless it is 0
160  * @i: the value to add to the refcount
161  * @r: the refcount
162  *
163  * Will saturate at REFCOUNT_SATURATED and WARN.
164  *
165  * Provides no memory ordering, it is assumed the caller has guaranteed the
166  * object memory to be stable (RCU, etc.). It does provide a control dependency
167  * and thereby orders future stores. See the comment on top.
168  *
169  * Use of this function is not recommended for the normal reference counting
170  * use case in which references are taken and released one at a time.  In these
171  * cases, refcount_inc(), or one of its variants, should instead be used to
172  * increment a reference count.
173  *
174  * Return: false if the passed refcount is 0, true otherwise
175  */
refcount_add_not_zero(int i,refcount_t * r)176 static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
177 {
178 	return __refcount_add_not_zero(i, r, NULL);
179 }
180 
181 static inline __signed_wrap
__refcount_add(int i,refcount_t * r,int * oldp)182 void __refcount_add(int i, refcount_t *r, int *oldp)
183 {
184 	int old = atomic_fetch_add_relaxed(i, &r->refs);
185 
186 	if (oldp)
187 		*oldp = old;
188 
189 	if (unlikely(!old))
190 		refcount_warn_saturate(r, REFCOUNT_ADD_UAF);
191 	else if (unlikely(old < 0 || old + i < 0))
192 		refcount_warn_saturate(r, REFCOUNT_ADD_OVF);
193 }
194 
195 /**
196  * refcount_add - add a value to a refcount
197  * @i: the value to add to the refcount
198  * @r: the refcount
199  *
200  * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
201  *
202  * Provides no memory ordering, it is assumed the caller has guaranteed the
203  * object memory to be stable (RCU, etc.). It does provide a control dependency
204  * and thereby orders future stores. See the comment on top.
205  *
206  * Use of this function is not recommended for the normal reference counting
207  * use case in which references are taken and released one at a time.  In these
208  * cases, refcount_inc(), or one of its variants, should instead be used to
209  * increment a reference count.
210  */
refcount_add(int i,refcount_t * r)211 static inline void refcount_add(int i, refcount_t *r)
212 {
213 	__refcount_add(i, r, NULL);
214 }
215 
__refcount_inc_not_zero(refcount_t * r,int * oldp)216 static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp)
217 {
218 	return __refcount_add_not_zero(1, r, oldp);
219 }
220 
221 /**
222  * refcount_inc_not_zero - increment a refcount unless it is 0
223  * @r: the refcount to increment
224  *
225  * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
226  * and WARN.
227  *
228  * Provides no memory ordering, it is assumed the caller has guaranteed the
229  * object memory to be stable (RCU, etc.). It does provide a control dependency
230  * and thereby orders future stores. See the comment on top.
231  *
232  * Return: true if the increment was successful, false otherwise
233  */
refcount_inc_not_zero(refcount_t * r)234 static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
235 {
236 	return __refcount_inc_not_zero(r, NULL);
237 }
238 
__refcount_inc(refcount_t * r,int * oldp)239 static inline void __refcount_inc(refcount_t *r, int *oldp)
240 {
241 	__refcount_add(1, r, oldp);
242 }
243 
244 /**
245  * refcount_inc - increment a refcount
246  * @r: the refcount to increment
247  *
248  * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
249  *
250  * Provides no memory ordering, it is assumed the caller already has a
251  * reference on the object.
252  *
253  * Will WARN if the refcount is 0, as this represents a possible use-after-free
254  * condition.
255  */
refcount_inc(refcount_t * r)256 static inline void refcount_inc(refcount_t *r)
257 {
258 	__refcount_inc(r, NULL);
259 }
260 
261 static inline __must_check __signed_wrap
__refcount_sub_and_test(int i,refcount_t * r,int * oldp)262 bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp)
263 {
264 	int old = atomic_fetch_sub_release(i, &r->refs);
265 
266 	if (oldp)
267 		*oldp = old;
268 
269 	if (old > 0 && old == i) {
270 		smp_acquire__after_ctrl_dep();
271 		return true;
272 	}
273 
274 	if (unlikely(old <= 0 || old - i < 0))
275 		refcount_warn_saturate(r, REFCOUNT_SUB_UAF);
276 
277 	return false;
278 }
279 
280 /**
281  * refcount_sub_and_test - subtract from a refcount and test if it is 0
282  * @i: amount to subtract from the refcount
283  * @r: the refcount
284  *
285  * Similar to atomic_dec_and_test(), but it will WARN, return false and
286  * ultimately leak on underflow and will fail to decrement when saturated
287  * at REFCOUNT_SATURATED.
288  *
289  * Provides release memory ordering, such that prior loads and stores are done
290  * before, and provides an acquire ordering on success such that free()
291  * must come after.
292  *
293  * Use of this function is not recommended for the normal reference counting
294  * use case in which references are taken and released one at a time.  In these
295  * cases, refcount_dec(), or one of its variants, should instead be used to
296  * decrement a reference count.
297  *
298  * Return: true if the resulting refcount is 0, false otherwise
299  */
refcount_sub_and_test(int i,refcount_t * r)300 static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
301 {
302 	return __refcount_sub_and_test(i, r, NULL);
303 }
304 
__refcount_dec_and_test(refcount_t * r,int * oldp)305 static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp)
306 {
307 	return __refcount_sub_and_test(1, r, oldp);
308 }
309 
310 /**
311  * refcount_dec_and_test - decrement a refcount and test if it is 0
312  * @r: the refcount
313  *
314  * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
315  * decrement when saturated at REFCOUNT_SATURATED.
316  *
317  * Provides release memory ordering, such that prior loads and stores are done
318  * before, and provides an acquire ordering on success such that free()
319  * must come after.
320  *
321  * Return: true if the resulting refcount is 0, false otherwise
322  */
refcount_dec_and_test(refcount_t * r)323 static inline __must_check bool refcount_dec_and_test(refcount_t *r)
324 {
325 	return __refcount_dec_and_test(r, NULL);
326 }
327 
__refcount_dec(refcount_t * r,int * oldp)328 static inline void __refcount_dec(refcount_t *r, int *oldp)
329 {
330 	int old = atomic_fetch_sub_release(1, &r->refs);
331 
332 	if (oldp)
333 		*oldp = old;
334 
335 	if (unlikely(old <= 1))
336 		refcount_warn_saturate(r, REFCOUNT_DEC_LEAK);
337 }
338 
339 /**
340  * refcount_dec - decrement a refcount
341  * @r: the refcount
342  *
343  * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
344  * when saturated at REFCOUNT_SATURATED.
345  *
346  * Provides release memory ordering, such that prior loads and stores are done
347  * before.
348  */
refcount_dec(refcount_t * r)349 static inline void refcount_dec(refcount_t *r)
350 {
351 	__refcount_dec(r, NULL);
352 }
353 
354 extern __must_check bool refcount_dec_if_one(refcount_t *r);
355 extern __must_check bool refcount_dec_not_one(refcount_t *r);
356 extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) __cond_acquires(lock);
357 extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) __cond_acquires(lock);
358 extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r,
359 						       spinlock_t *lock,
360 						       unsigned long *flags) __cond_acquires(lock);
361 #endif /* _LINUX_REFCOUNT_H */
362