1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (c) 2018-2023, Intel Corporation. */
3  
4  #include "ice_common.h"
5  #include "ice_sched.h"
6  #include "ice_adminq_cmd.h"
7  #include "ice_flow.h"
8  #include "ice_ptp_hw.h"
9  
10  #define ICE_PF_RESET_WAIT_COUNT	300
11  #define ICE_MAX_NETLIST_SIZE	10
12  
13  static const char * const ice_link_mode_str_low[] = {
14  	[0] = "100BASE_TX",
15  	[1] = "100M_SGMII",
16  	[2] = "1000BASE_T",
17  	[3] = "1000BASE_SX",
18  	[4] = "1000BASE_LX",
19  	[5] = "1000BASE_KX",
20  	[6] = "1G_SGMII",
21  	[7] = "2500BASE_T",
22  	[8] = "2500BASE_X",
23  	[9] = "2500BASE_KX",
24  	[10] = "5GBASE_T",
25  	[11] = "5GBASE_KR",
26  	[12] = "10GBASE_T",
27  	[13] = "10G_SFI_DA",
28  	[14] = "10GBASE_SR",
29  	[15] = "10GBASE_LR",
30  	[16] = "10GBASE_KR_CR1",
31  	[17] = "10G_SFI_AOC_ACC",
32  	[18] = "10G_SFI_C2C",
33  	[19] = "25GBASE_T",
34  	[20] = "25GBASE_CR",
35  	[21] = "25GBASE_CR_S",
36  	[22] = "25GBASE_CR1",
37  	[23] = "25GBASE_SR",
38  	[24] = "25GBASE_LR",
39  	[25] = "25GBASE_KR",
40  	[26] = "25GBASE_KR_S",
41  	[27] = "25GBASE_KR1",
42  	[28] = "25G_AUI_AOC_ACC",
43  	[29] = "25G_AUI_C2C",
44  	[30] = "40GBASE_CR4",
45  	[31] = "40GBASE_SR4",
46  	[32] = "40GBASE_LR4",
47  	[33] = "40GBASE_KR4",
48  	[34] = "40G_XLAUI_AOC_ACC",
49  	[35] = "40G_XLAUI",
50  	[36] = "50GBASE_CR2",
51  	[37] = "50GBASE_SR2",
52  	[38] = "50GBASE_LR2",
53  	[39] = "50GBASE_KR2",
54  	[40] = "50G_LAUI2_AOC_ACC",
55  	[41] = "50G_LAUI2",
56  	[42] = "50G_AUI2_AOC_ACC",
57  	[43] = "50G_AUI2",
58  	[44] = "50GBASE_CP",
59  	[45] = "50GBASE_SR",
60  	[46] = "50GBASE_FR",
61  	[47] = "50GBASE_LR",
62  	[48] = "50GBASE_KR_PAM4",
63  	[49] = "50G_AUI1_AOC_ACC",
64  	[50] = "50G_AUI1",
65  	[51] = "100GBASE_CR4",
66  	[52] = "100GBASE_SR4",
67  	[53] = "100GBASE_LR4",
68  	[54] = "100GBASE_KR4",
69  	[55] = "100G_CAUI4_AOC_ACC",
70  	[56] = "100G_CAUI4",
71  	[57] = "100G_AUI4_AOC_ACC",
72  	[58] = "100G_AUI4",
73  	[59] = "100GBASE_CR_PAM4",
74  	[60] = "100GBASE_KR_PAM4",
75  	[61] = "100GBASE_CP2",
76  	[62] = "100GBASE_SR2",
77  	[63] = "100GBASE_DR",
78  };
79  
80  static const char * const ice_link_mode_str_high[] = {
81  	[0] = "100GBASE_KR2_PAM4",
82  	[1] = "100G_CAUI2_AOC_ACC",
83  	[2] = "100G_CAUI2",
84  	[3] = "100G_AUI2_AOC_ACC",
85  	[4] = "100G_AUI2",
86  };
87  
88  /**
89   * ice_dump_phy_type - helper function to dump phy_type
90   * @hw: pointer to the HW structure
91   * @low: 64 bit value for phy_type_low
92   * @high: 64 bit value for phy_type_high
93   * @prefix: prefix string to differentiate multiple dumps
94   */
95  static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)96  ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97  {
98  	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99  
100  	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101  		if (low & BIT_ULL(i))
102  			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103  				  prefix, i, ice_link_mode_str_low[i]);
104  	}
105  
106  	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107  
108  	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109  		if (high & BIT_ULL(i))
110  			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111  				  prefix, i, ice_link_mode_str_high[i]);
112  	}
113  }
114  
115  /**
116   * ice_set_mac_type - Sets MAC type
117   * @hw: pointer to the HW structure
118   *
119   * This function sets the MAC type of the adapter based on the
120   * vendor ID and device ID stored in the HW structure.
121   */
ice_set_mac_type(struct ice_hw * hw)122  static int ice_set_mac_type(struct ice_hw *hw)
123  {
124  	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125  		return -ENODEV;
126  
127  	switch (hw->device_id) {
128  	case ICE_DEV_ID_E810C_BACKPLANE:
129  	case ICE_DEV_ID_E810C_QSFP:
130  	case ICE_DEV_ID_E810C_SFP:
131  	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132  	case ICE_DEV_ID_E810_XXV_QSFP:
133  	case ICE_DEV_ID_E810_XXV_SFP:
134  		hw->mac_type = ICE_MAC_E810;
135  		break;
136  	case ICE_DEV_ID_E823C_10G_BASE_T:
137  	case ICE_DEV_ID_E823C_BACKPLANE:
138  	case ICE_DEV_ID_E823C_QSFP:
139  	case ICE_DEV_ID_E823C_SFP:
140  	case ICE_DEV_ID_E823C_SGMII:
141  	case ICE_DEV_ID_E822C_10G_BASE_T:
142  	case ICE_DEV_ID_E822C_BACKPLANE:
143  	case ICE_DEV_ID_E822C_QSFP:
144  	case ICE_DEV_ID_E822C_SFP:
145  	case ICE_DEV_ID_E822C_SGMII:
146  	case ICE_DEV_ID_E822L_10G_BASE_T:
147  	case ICE_DEV_ID_E822L_BACKPLANE:
148  	case ICE_DEV_ID_E822L_SFP:
149  	case ICE_DEV_ID_E822L_SGMII:
150  	case ICE_DEV_ID_E823L_10G_BASE_T:
151  	case ICE_DEV_ID_E823L_1GBE:
152  	case ICE_DEV_ID_E823L_BACKPLANE:
153  	case ICE_DEV_ID_E823L_QSFP:
154  	case ICE_DEV_ID_E823L_SFP:
155  		hw->mac_type = ICE_MAC_GENERIC;
156  		break;
157  	case ICE_DEV_ID_E825C_BACKPLANE:
158  	case ICE_DEV_ID_E825C_QSFP:
159  	case ICE_DEV_ID_E825C_SFP:
160  	case ICE_DEV_ID_E825C_SGMII:
161  		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162  		break;
163  	case ICE_DEV_ID_E830CC_BACKPLANE:
164  	case ICE_DEV_ID_E830CC_QSFP56:
165  	case ICE_DEV_ID_E830CC_SFP:
166  	case ICE_DEV_ID_E830CC_SFP_DD:
167  	case ICE_DEV_ID_E830C_BACKPLANE:
168  	case ICE_DEV_ID_E830_XXV_BACKPLANE:
169  	case ICE_DEV_ID_E830C_QSFP:
170  	case ICE_DEV_ID_E830_XXV_QSFP:
171  	case ICE_DEV_ID_E830C_SFP:
172  	case ICE_DEV_ID_E830_XXV_SFP:
173  		hw->mac_type = ICE_MAC_E830;
174  		break;
175  	default:
176  		hw->mac_type = ICE_MAC_UNKNOWN;
177  		break;
178  	}
179  
180  	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
181  	return 0;
182  }
183  
184  /**
185   * ice_is_generic_mac - check if device's mac_type is generic
186   * @hw: pointer to the hardware structure
187   *
188   * Return: true if mac_type is generic (with SBQ support), false if not
189   */
ice_is_generic_mac(struct ice_hw * hw)190  bool ice_is_generic_mac(struct ice_hw *hw)
191  {
192  	return (hw->mac_type == ICE_MAC_GENERIC ||
193  		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
194  }
195  
196  /**
197   * ice_is_e810
198   * @hw: pointer to the hardware structure
199   *
200   * returns true if the device is E810 based, false if not.
201   */
ice_is_e810(struct ice_hw * hw)202  bool ice_is_e810(struct ice_hw *hw)
203  {
204  	return hw->mac_type == ICE_MAC_E810;
205  }
206  
207  /**
208   * ice_is_e810t
209   * @hw: pointer to the hardware structure
210   *
211   * returns true if the device is E810T based, false if not.
212   */
ice_is_e810t(struct ice_hw * hw)213  bool ice_is_e810t(struct ice_hw *hw)
214  {
215  	switch (hw->device_id) {
216  	case ICE_DEV_ID_E810C_SFP:
217  		switch (hw->subsystem_device_id) {
218  		case ICE_SUBDEV_ID_E810T:
219  		case ICE_SUBDEV_ID_E810T2:
220  		case ICE_SUBDEV_ID_E810T3:
221  		case ICE_SUBDEV_ID_E810T4:
222  		case ICE_SUBDEV_ID_E810T6:
223  		case ICE_SUBDEV_ID_E810T7:
224  			return true;
225  		}
226  		break;
227  	case ICE_DEV_ID_E810C_QSFP:
228  		switch (hw->subsystem_device_id) {
229  		case ICE_SUBDEV_ID_E810T2:
230  		case ICE_SUBDEV_ID_E810T3:
231  		case ICE_SUBDEV_ID_E810T5:
232  			return true;
233  		}
234  		break;
235  	default:
236  		break;
237  	}
238  
239  	return false;
240  }
241  
242  /**
243   * ice_is_e822 - Check if a device is E822 family device
244   * @hw: pointer to the hardware structure
245   *
246   * Return: true if the device is E822 based, false if not.
247   */
ice_is_e822(struct ice_hw * hw)248  bool ice_is_e822(struct ice_hw *hw)
249  {
250  	switch (hw->device_id) {
251  	case ICE_DEV_ID_E822C_BACKPLANE:
252  	case ICE_DEV_ID_E822C_QSFP:
253  	case ICE_DEV_ID_E822C_SFP:
254  	case ICE_DEV_ID_E822C_10G_BASE_T:
255  	case ICE_DEV_ID_E822C_SGMII:
256  	case ICE_DEV_ID_E822L_BACKPLANE:
257  	case ICE_DEV_ID_E822L_SFP:
258  	case ICE_DEV_ID_E822L_10G_BASE_T:
259  	case ICE_DEV_ID_E822L_SGMII:
260  		return true;
261  	default:
262  		return false;
263  	}
264  }
265  
266  /**
267   * ice_is_e823
268   * @hw: pointer to the hardware structure
269   *
270   * returns true if the device is E823-L or E823-C based, false if not.
271   */
ice_is_e823(struct ice_hw * hw)272  bool ice_is_e823(struct ice_hw *hw)
273  {
274  	switch (hw->device_id) {
275  	case ICE_DEV_ID_E823L_BACKPLANE:
276  	case ICE_DEV_ID_E823L_SFP:
277  	case ICE_DEV_ID_E823L_10G_BASE_T:
278  	case ICE_DEV_ID_E823L_1GBE:
279  	case ICE_DEV_ID_E823L_QSFP:
280  	case ICE_DEV_ID_E823C_BACKPLANE:
281  	case ICE_DEV_ID_E823C_QSFP:
282  	case ICE_DEV_ID_E823C_SFP:
283  	case ICE_DEV_ID_E823C_10G_BASE_T:
284  	case ICE_DEV_ID_E823C_SGMII:
285  		return true;
286  	default:
287  		return false;
288  	}
289  }
290  
291  /**
292   * ice_is_e825c - Check if a device is E825C family device
293   * @hw: pointer to the hardware structure
294   *
295   * Return: true if the device is E825-C based, false if not.
296   */
ice_is_e825c(struct ice_hw * hw)297  bool ice_is_e825c(struct ice_hw *hw)
298  {
299  	switch (hw->device_id) {
300  	case ICE_DEV_ID_E825C_BACKPLANE:
301  	case ICE_DEV_ID_E825C_QSFP:
302  	case ICE_DEV_ID_E825C_SFP:
303  	case ICE_DEV_ID_E825C_SGMII:
304  		return true;
305  	default:
306  		return false;
307  	}
308  }
309  
310  /**
311   * ice_clear_pf_cfg - Clear PF configuration
312   * @hw: pointer to the hardware structure
313   *
314   * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
315   * configuration, flow director filters, etc.).
316   */
ice_clear_pf_cfg(struct ice_hw * hw)317  int ice_clear_pf_cfg(struct ice_hw *hw)
318  {
319  	struct ice_aq_desc desc;
320  
321  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
322  
323  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
324  }
325  
326  /**
327   * ice_aq_manage_mac_read - manage MAC address read command
328   * @hw: pointer to the HW struct
329   * @buf: a virtual buffer to hold the manage MAC read response
330   * @buf_size: Size of the virtual buffer
331   * @cd: pointer to command details structure or NULL
332   *
333   * This function is used to return per PF station MAC address (0x0107).
334   * NOTE: Upon successful completion of this command, MAC address information
335   * is returned in user specified buffer. Please interpret user specified
336   * buffer as "manage_mac_read" response.
337   * Response such as various MAC addresses are stored in HW struct (port.mac)
338   * ice_discover_dev_caps is expected to be called before this function is
339   * called.
340   */
341  static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)342  ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
343  		       struct ice_sq_cd *cd)
344  {
345  	struct ice_aqc_manage_mac_read_resp *resp;
346  	struct ice_aqc_manage_mac_read *cmd;
347  	struct ice_aq_desc desc;
348  	int status;
349  	u16 flags;
350  	u8 i;
351  
352  	cmd = &desc.params.mac_read;
353  
354  	if (buf_size < sizeof(*resp))
355  		return -EINVAL;
356  
357  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
358  
359  	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
360  	if (status)
361  		return status;
362  
363  	resp = buf;
364  	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
365  
366  	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
367  		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
368  		return -EIO;
369  	}
370  
371  	/* A single port can report up to two (LAN and WoL) addresses */
372  	for (i = 0; i < cmd->num_addr; i++)
373  		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
374  			ether_addr_copy(hw->port_info->mac.lan_addr,
375  					resp[i].mac_addr);
376  			ether_addr_copy(hw->port_info->mac.perm_addr,
377  					resp[i].mac_addr);
378  			break;
379  		}
380  
381  	return 0;
382  }
383  
384  /**
385   * ice_aq_get_phy_caps - returns PHY capabilities
386   * @pi: port information structure
387   * @qual_mods: report qualified modules
388   * @report_mode: report mode capabilities
389   * @pcaps: structure for PHY capabilities to be filled
390   * @cd: pointer to command details structure or NULL
391   *
392   * Returns the various PHY capabilities supported on the Port (0x0600)
393   */
394  int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)395  ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
396  		    struct ice_aqc_get_phy_caps_data *pcaps,
397  		    struct ice_sq_cd *cd)
398  {
399  	struct ice_aqc_get_phy_caps *cmd;
400  	u16 pcaps_size = sizeof(*pcaps);
401  	struct ice_aq_desc desc;
402  	const char *prefix;
403  	struct ice_hw *hw;
404  	int status;
405  
406  	cmd = &desc.params.get_phy;
407  
408  	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
409  		return -EINVAL;
410  	hw = pi->hw;
411  
412  	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
413  	    !ice_fw_supports_report_dflt_cfg(hw))
414  		return -EINVAL;
415  
416  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
417  
418  	if (qual_mods)
419  		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
420  
421  	cmd->param0 |= cpu_to_le16(report_mode);
422  	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
423  
424  	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
425  
426  	switch (report_mode) {
427  	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
428  		prefix = "phy_caps_media";
429  		break;
430  	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
431  		prefix = "phy_caps_no_media";
432  		break;
433  	case ICE_AQC_REPORT_ACTIVE_CFG:
434  		prefix = "phy_caps_active";
435  		break;
436  	case ICE_AQC_REPORT_DFLT_CFG:
437  		prefix = "phy_caps_default";
438  		break;
439  	default:
440  		prefix = "phy_caps_invalid";
441  	}
442  
443  	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
444  			  le64_to_cpu(pcaps->phy_type_high), prefix);
445  
446  	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
447  		  prefix, report_mode);
448  	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
449  	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
450  		  pcaps->low_power_ctrl_an);
451  	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
452  		  pcaps->eee_cap);
453  	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
454  		  pcaps->eeer_value);
455  	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
456  		  pcaps->link_fec_options);
457  	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
458  		  prefix, pcaps->module_compliance_enforcement);
459  	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
460  		  prefix, pcaps->extended_compliance_code);
461  	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
462  		  pcaps->module_type[0]);
463  	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
464  		  pcaps->module_type[1]);
465  	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
466  		  pcaps->module_type[2]);
467  
468  	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
469  		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
470  		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
471  		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
472  		       sizeof(pi->phy.link_info.module_type));
473  	}
474  
475  	return status;
476  }
477  
478  /**
479   * ice_aq_get_link_topo_handle - get link topology node return status
480   * @pi: port information structure
481   * @node_type: requested node type
482   * @cd: pointer to command details structure or NULL
483   *
484   * Get link topology node return status for specified node type (0x06E0)
485   *
486   * Node type cage can be used to determine if cage is present. If AQC
487   * returns error (ENOENT), then no cage present. If no cage present, then
488   * connection type is backplane or BASE-T.
489   */
490  static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)491  ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
492  			    struct ice_sq_cd *cd)
493  {
494  	struct ice_aqc_get_link_topo *cmd;
495  	struct ice_aq_desc desc;
496  
497  	cmd = &desc.params.get_link_topo;
498  
499  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
500  
501  	cmd->addr.topo_params.node_type_ctx =
502  		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
503  		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
504  
505  	/* set node type */
506  	cmd->addr.topo_params.node_type_ctx |=
507  		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
508  
509  	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
510  }
511  
512  /**
513   * ice_aq_get_netlist_node
514   * @hw: pointer to the hw struct
515   * @cmd: get_link_topo AQ structure
516   * @node_part_number: output node part number if node found
517   * @node_handle: output node handle parameter if node found
518   *
519   * Get netlist node handle.
520   */
521  int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)522  ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
523  			u8 *node_part_number, u16 *node_handle)
524  {
525  	struct ice_aq_desc desc;
526  
527  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
528  	desc.params.get_link_topo = *cmd;
529  
530  	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
531  		return -EINTR;
532  
533  	if (node_handle)
534  		*node_handle =
535  			le16_to_cpu(desc.params.get_link_topo.addr.handle);
536  	if (node_part_number)
537  		*node_part_number = desc.params.get_link_topo.node_part_num;
538  
539  	return 0;
540  }
541  
542  /**
543   * ice_find_netlist_node
544   * @hw: pointer to the hw struct
545   * @node_type_ctx: type of netlist node to look for
546   * @node_part_number: node part number to look for
547   * @node_handle: output parameter if node found - optional
548   *
549   * Scan the netlist for a node handle of the given node type and part number.
550   *
551   * If node_handle is non-NULL it will be modified on function exit. It is only
552   * valid if the function returns zero, and should be ignored on any non-zero
553   * return value.
554   *
555   * Returns: 0 if the node is found, -ENOENT if no handle was found, and
556   * a negative error code on failure to access the AQ.
557   */
ice_find_netlist_node(struct ice_hw * hw,u8 node_type_ctx,u8 node_part_number,u16 * node_handle)558  static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
559  				 u8 node_part_number, u16 *node_handle)
560  {
561  	u8 idx;
562  
563  	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
564  		struct ice_aqc_get_link_topo cmd = {};
565  		u8 rec_node_part_number;
566  		int status;
567  
568  		cmd.addr.topo_params.node_type_ctx =
569  			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
570  				   node_type_ctx);
571  		cmd.addr.topo_params.index = idx;
572  
573  		status = ice_aq_get_netlist_node(hw, &cmd,
574  						 &rec_node_part_number,
575  						 node_handle);
576  		if (status)
577  			return status;
578  
579  		if (rec_node_part_number == node_part_number)
580  			return 0;
581  	}
582  
583  	return -ENOENT;
584  }
585  
586  /**
587   * ice_is_media_cage_present
588   * @pi: port information structure
589   *
590   * Returns true if media cage is present, else false. If no cage, then
591   * media type is backplane or BASE-T.
592   */
ice_is_media_cage_present(struct ice_port_info * pi)593  static bool ice_is_media_cage_present(struct ice_port_info *pi)
594  {
595  	/* Node type cage can be used to determine if cage is present. If AQC
596  	 * returns error (ENOENT), then no cage present. If no cage present then
597  	 * connection type is backplane or BASE-T.
598  	 */
599  	return !ice_aq_get_link_topo_handle(pi,
600  					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
601  					    NULL);
602  }
603  
604  /**
605   * ice_get_media_type - Gets media type
606   * @pi: port information structure
607   */
ice_get_media_type(struct ice_port_info * pi)608  static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
609  {
610  	struct ice_link_status *hw_link_info;
611  
612  	if (!pi)
613  		return ICE_MEDIA_UNKNOWN;
614  
615  	hw_link_info = &pi->phy.link_info;
616  	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
617  		/* If more than one media type is selected, report unknown */
618  		return ICE_MEDIA_UNKNOWN;
619  
620  	if (hw_link_info->phy_type_low) {
621  		/* 1G SGMII is a special case where some DA cable PHYs
622  		 * may show this as an option when it really shouldn't
623  		 * be since SGMII is meant to be between a MAC and a PHY
624  		 * in a backplane. Try to detect this case and handle it
625  		 */
626  		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
627  		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
628  		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
629  		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
630  		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
631  			return ICE_MEDIA_DA;
632  
633  		switch (hw_link_info->phy_type_low) {
634  		case ICE_PHY_TYPE_LOW_1000BASE_SX:
635  		case ICE_PHY_TYPE_LOW_1000BASE_LX:
636  		case ICE_PHY_TYPE_LOW_10GBASE_SR:
637  		case ICE_PHY_TYPE_LOW_10GBASE_LR:
638  		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
639  		case ICE_PHY_TYPE_LOW_25GBASE_SR:
640  		case ICE_PHY_TYPE_LOW_25GBASE_LR:
641  		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
642  		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
643  		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
644  		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
645  		case ICE_PHY_TYPE_LOW_50GBASE_SR:
646  		case ICE_PHY_TYPE_LOW_50GBASE_FR:
647  		case ICE_PHY_TYPE_LOW_50GBASE_LR:
648  		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
649  		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
650  		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
651  		case ICE_PHY_TYPE_LOW_100GBASE_DR:
652  		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
653  		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
654  		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
655  		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
656  		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
657  		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
658  		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
659  		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
660  			return ICE_MEDIA_FIBER;
661  		case ICE_PHY_TYPE_LOW_100BASE_TX:
662  		case ICE_PHY_TYPE_LOW_1000BASE_T:
663  		case ICE_PHY_TYPE_LOW_2500BASE_T:
664  		case ICE_PHY_TYPE_LOW_5GBASE_T:
665  		case ICE_PHY_TYPE_LOW_10GBASE_T:
666  		case ICE_PHY_TYPE_LOW_25GBASE_T:
667  			return ICE_MEDIA_BASET;
668  		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
669  		case ICE_PHY_TYPE_LOW_25GBASE_CR:
670  		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
671  		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
672  		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
673  		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
674  		case ICE_PHY_TYPE_LOW_50GBASE_CP:
675  		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
676  		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
677  		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
678  			return ICE_MEDIA_DA;
679  		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
680  		case ICE_PHY_TYPE_LOW_40G_XLAUI:
681  		case ICE_PHY_TYPE_LOW_50G_LAUI2:
682  		case ICE_PHY_TYPE_LOW_50G_AUI2:
683  		case ICE_PHY_TYPE_LOW_50G_AUI1:
684  		case ICE_PHY_TYPE_LOW_100G_AUI4:
685  		case ICE_PHY_TYPE_LOW_100G_CAUI4:
686  			if (ice_is_media_cage_present(pi))
687  				return ICE_MEDIA_DA;
688  			fallthrough;
689  		case ICE_PHY_TYPE_LOW_1000BASE_KX:
690  		case ICE_PHY_TYPE_LOW_2500BASE_KX:
691  		case ICE_PHY_TYPE_LOW_2500BASE_X:
692  		case ICE_PHY_TYPE_LOW_5GBASE_KR:
693  		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
694  		case ICE_PHY_TYPE_LOW_25GBASE_KR:
695  		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
696  		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
697  		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
698  		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
699  		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
700  		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
701  		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
702  			return ICE_MEDIA_BACKPLANE;
703  		}
704  	} else {
705  		switch (hw_link_info->phy_type_high) {
706  		case ICE_PHY_TYPE_HIGH_100G_AUI2:
707  		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
708  			if (ice_is_media_cage_present(pi))
709  				return ICE_MEDIA_DA;
710  			fallthrough;
711  		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
712  			return ICE_MEDIA_BACKPLANE;
713  		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
714  		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
715  			return ICE_MEDIA_FIBER;
716  		}
717  	}
718  	return ICE_MEDIA_UNKNOWN;
719  }
720  
721  /**
722   * ice_get_link_status_datalen
723   * @hw: pointer to the HW struct
724   *
725   * Returns datalength for the Get Link Status AQ command, which is bigger for
726   * newer adapter families handled by ice driver.
727   */
ice_get_link_status_datalen(struct ice_hw * hw)728  static u16 ice_get_link_status_datalen(struct ice_hw *hw)
729  {
730  	switch (hw->mac_type) {
731  	case ICE_MAC_E830:
732  		return ICE_AQC_LS_DATA_SIZE_V2;
733  	case ICE_MAC_E810:
734  	default:
735  		return ICE_AQC_LS_DATA_SIZE_V1;
736  	}
737  }
738  
739  /**
740   * ice_aq_get_link_info
741   * @pi: port information structure
742   * @ena_lse: enable/disable LinkStatusEvent reporting
743   * @link: pointer to link status structure - optional
744   * @cd: pointer to command details structure or NULL
745   *
746   * Get Link Status (0x607). Returns the link status of the adapter.
747   */
748  int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)749  ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
750  		     struct ice_link_status *link, struct ice_sq_cd *cd)
751  {
752  	struct ice_aqc_get_link_status_data link_data = { 0 };
753  	struct ice_aqc_get_link_status *resp;
754  	struct ice_link_status *li_old, *li;
755  	enum ice_media_type *hw_media_type;
756  	struct ice_fc_info *hw_fc_info;
757  	bool tx_pause, rx_pause;
758  	struct ice_aq_desc desc;
759  	struct ice_hw *hw;
760  	u16 cmd_flags;
761  	int status;
762  
763  	if (!pi)
764  		return -EINVAL;
765  	hw = pi->hw;
766  	li_old = &pi->phy.link_info_old;
767  	hw_media_type = &pi->phy.media_type;
768  	li = &pi->phy.link_info;
769  	hw_fc_info = &pi->fc;
770  
771  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
772  	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
773  	resp = &desc.params.get_link_status;
774  	resp->cmd_flags = cpu_to_le16(cmd_flags);
775  	resp->lport_num = pi->lport;
776  
777  	status = ice_aq_send_cmd(hw, &desc, &link_data,
778  				 ice_get_link_status_datalen(hw), cd);
779  	if (status)
780  		return status;
781  
782  	/* save off old link status information */
783  	*li_old = *li;
784  
785  	/* update current link status information */
786  	li->link_speed = le16_to_cpu(link_data.link_speed);
787  	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
788  	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
789  	*hw_media_type = ice_get_media_type(pi);
790  	li->link_info = link_data.link_info;
791  	li->link_cfg_err = link_data.link_cfg_err;
792  	li->an_info = link_data.an_info;
793  	li->ext_info = link_data.ext_info;
794  	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
795  	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
796  	li->topo_media_conflict = link_data.topo_media_conflict;
797  	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
798  				      ICE_AQ_CFG_PACING_TYPE_M);
799  
800  	/* update fc info */
801  	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
802  	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
803  	if (tx_pause && rx_pause)
804  		hw_fc_info->current_mode = ICE_FC_FULL;
805  	else if (tx_pause)
806  		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
807  	else if (rx_pause)
808  		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
809  	else
810  		hw_fc_info->current_mode = ICE_FC_NONE;
811  
812  	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
813  
814  	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
815  	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
816  	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
817  		  (unsigned long long)li->phy_type_low);
818  	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
819  		  (unsigned long long)li->phy_type_high);
820  	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
821  	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
822  	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
823  	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
824  	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
825  	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
826  	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
827  	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
828  		  li->max_frame_size);
829  	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
830  
831  	/* save link status information */
832  	if (link)
833  		*link = *li;
834  
835  	/* flag cleared so calling functions don't call AQ again */
836  	pi->phy.get_link_info = false;
837  
838  	return 0;
839  }
840  
841  /**
842   * ice_fill_tx_timer_and_fc_thresh
843   * @hw: pointer to the HW struct
844   * @cmd: pointer to MAC cfg structure
845   *
846   * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
847   * descriptor
848   */
849  static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)850  ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
851  				struct ice_aqc_set_mac_cfg *cmd)
852  {
853  	u32 val, fc_thres_m;
854  
855  	/* We read back the transmit timer and FC threshold value of
856  	 * LFC. Thus, we will use index =
857  	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
858  	 *
859  	 * Also, because we are operating on transmit timer and FC
860  	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
861  	 */
862  #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
863  #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
864  
865  	if (hw->mac_type == ICE_MAC_E830) {
866  		/* Retrieve the transmit timer */
867  		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
868  		cmd->tx_tmr_value =
869  			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
870  
871  		/* Retrieve the fc threshold */
872  		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
873  		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
874  	} else {
875  		/* Retrieve the transmit timer */
876  		val = rd32(hw,
877  			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
878  		cmd->tx_tmr_value =
879  			le16_encode_bits(val,
880  					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
881  
882  		/* Retrieve the fc threshold */
883  		val = rd32(hw,
884  			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
885  		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
886  	}
887  	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
888  }
889  
890  /**
891   * ice_aq_set_mac_cfg
892   * @hw: pointer to the HW struct
893   * @max_frame_size: Maximum Frame Size to be supported
894   * @cd: pointer to command details structure or NULL
895   *
896   * Set MAC configuration (0x0603)
897   */
898  int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)899  ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
900  {
901  	struct ice_aqc_set_mac_cfg *cmd;
902  	struct ice_aq_desc desc;
903  
904  	cmd = &desc.params.set_mac_cfg;
905  
906  	if (max_frame_size == 0)
907  		return -EINVAL;
908  
909  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
910  
911  	cmd->max_frame_size = cpu_to_le16(max_frame_size);
912  
913  	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
914  
915  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
916  }
917  
918  /**
919   * ice_init_fltr_mgmt_struct - initializes filter management list and locks
920   * @hw: pointer to the HW struct
921   */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)922  static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
923  {
924  	struct ice_switch_info *sw;
925  	int status;
926  
927  	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
928  				       sizeof(*hw->switch_info), GFP_KERNEL);
929  	sw = hw->switch_info;
930  
931  	if (!sw)
932  		return -ENOMEM;
933  
934  	INIT_LIST_HEAD(&sw->vsi_list_map_head);
935  	sw->prof_res_bm_init = 0;
936  
937  	/* Initialize recipe count with default recipes read from NVM */
938  	sw->recp_cnt = ICE_SW_LKUP_LAST;
939  
940  	status = ice_init_def_sw_recp(hw);
941  	if (status) {
942  		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
943  		return status;
944  	}
945  	return 0;
946  }
947  
948  /**
949   * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
950   * @hw: pointer to the HW struct
951   */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)952  static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
953  {
954  	struct ice_switch_info *sw = hw->switch_info;
955  	struct ice_vsi_list_map_info *v_pos_map;
956  	struct ice_vsi_list_map_info *v_tmp_map;
957  	struct ice_sw_recipe *recps;
958  	u8 i;
959  
960  	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
961  				 list_entry) {
962  		list_del(&v_pos_map->list_entry);
963  		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
964  	}
965  	recps = sw->recp_list;
966  	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
967  		recps[i].root_rid = i;
968  
969  		if (recps[i].adv_rule) {
970  			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
971  			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
972  
973  			mutex_destroy(&recps[i].filt_rule_lock);
974  			list_for_each_entry_safe(lst_itr, tmp_entry,
975  						 &recps[i].filt_rules,
976  						 list_entry) {
977  				list_del(&lst_itr->list_entry);
978  				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
979  				devm_kfree(ice_hw_to_dev(hw), lst_itr);
980  			}
981  		} else {
982  			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
983  
984  			mutex_destroy(&recps[i].filt_rule_lock);
985  			list_for_each_entry_safe(lst_itr, tmp_entry,
986  						 &recps[i].filt_rules,
987  						 list_entry) {
988  				list_del(&lst_itr->list_entry);
989  				devm_kfree(ice_hw_to_dev(hw), lst_itr);
990  			}
991  		}
992  	}
993  	ice_rm_all_sw_replay_rule_info(hw);
994  	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
995  	devm_kfree(ice_hw_to_dev(hw), sw);
996  }
997  
998  /**
999   * ice_get_itr_intrl_gran
1000   * @hw: pointer to the HW struct
1001   *
1002   * Determines the ITR/INTRL granularities based on the maximum aggregate
1003   * bandwidth according to the device's configuration during power-on.
1004   */
ice_get_itr_intrl_gran(struct ice_hw * hw)1005  static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1006  {
1007  	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1008  				  rd32(hw, GL_PWR_MODE_CTL));
1009  
1010  	switch (max_agg_bw) {
1011  	case ICE_MAX_AGG_BW_200G:
1012  	case ICE_MAX_AGG_BW_100G:
1013  	case ICE_MAX_AGG_BW_50G:
1014  		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1015  		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1016  		break;
1017  	case ICE_MAX_AGG_BW_25G:
1018  		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1019  		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1020  		break;
1021  	}
1022  }
1023  
1024  /**
1025   * ice_init_hw - main hardware initialization routine
1026   * @hw: pointer to the hardware structure
1027   */
ice_init_hw(struct ice_hw * hw)1028  int ice_init_hw(struct ice_hw *hw)
1029  {
1030  	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1031  	void *mac_buf __free(kfree) = NULL;
1032  	u16 mac_buf_len;
1033  	int status;
1034  
1035  	/* Set MAC type based on DeviceID */
1036  	status = ice_set_mac_type(hw);
1037  	if (status)
1038  		return status;
1039  
1040  	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1041  
1042  	status = ice_reset(hw, ICE_RESET_PFR);
1043  	if (status)
1044  		return status;
1045  
1046  	ice_get_itr_intrl_gran(hw);
1047  
1048  	status = ice_create_all_ctrlq(hw);
1049  	if (status)
1050  		goto err_unroll_cqinit;
1051  
1052  	status = ice_fwlog_init(hw);
1053  	if (status)
1054  		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1055  			  status);
1056  
1057  	status = ice_clear_pf_cfg(hw);
1058  	if (status)
1059  		goto err_unroll_cqinit;
1060  
1061  	/* Set bit to enable Flow Director filters */
1062  	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1063  	INIT_LIST_HEAD(&hw->fdir_list_head);
1064  
1065  	ice_clear_pxe_mode(hw);
1066  
1067  	status = ice_init_nvm(hw);
1068  	if (status)
1069  		goto err_unroll_cqinit;
1070  
1071  	status = ice_get_caps(hw);
1072  	if (status)
1073  		goto err_unroll_cqinit;
1074  
1075  	if (!hw->port_info)
1076  		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1077  					     sizeof(*hw->port_info),
1078  					     GFP_KERNEL);
1079  	if (!hw->port_info) {
1080  		status = -ENOMEM;
1081  		goto err_unroll_cqinit;
1082  	}
1083  
1084  	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1085  	/* set the back pointer to HW */
1086  	hw->port_info->hw = hw;
1087  
1088  	/* Initialize port_info struct with switch configuration data */
1089  	status = ice_get_initial_sw_cfg(hw);
1090  	if (status)
1091  		goto err_unroll_alloc;
1092  
1093  	hw->evb_veb = true;
1094  
1095  	/* init xarray for identifying scheduling nodes uniquely */
1096  	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1097  
1098  	/* Query the allocated resources for Tx scheduler */
1099  	status = ice_sched_query_res_alloc(hw);
1100  	if (status) {
1101  		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1102  		goto err_unroll_alloc;
1103  	}
1104  	ice_sched_get_psm_clk_freq(hw);
1105  
1106  	/* Initialize port_info struct with scheduler data */
1107  	status = ice_sched_init_port(hw->port_info);
1108  	if (status)
1109  		goto err_unroll_sched;
1110  
1111  	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1112  	if (!pcaps) {
1113  		status = -ENOMEM;
1114  		goto err_unroll_sched;
1115  	}
1116  
1117  	/* Initialize port_info struct with PHY capabilities */
1118  	status = ice_aq_get_phy_caps(hw->port_info, false,
1119  				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1120  				     NULL);
1121  	if (status)
1122  		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1123  			 status);
1124  
1125  	/* Initialize port_info struct with link information */
1126  	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1127  	if (status)
1128  		goto err_unroll_sched;
1129  
1130  	/* need a valid SW entry point to build a Tx tree */
1131  	if (!hw->sw_entry_point_layer) {
1132  		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1133  		status = -EIO;
1134  		goto err_unroll_sched;
1135  	}
1136  	INIT_LIST_HEAD(&hw->agg_list);
1137  	/* Initialize max burst size */
1138  	if (!hw->max_burst_size)
1139  		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1140  
1141  	status = ice_init_fltr_mgmt_struct(hw);
1142  	if (status)
1143  		goto err_unroll_sched;
1144  
1145  	/* Get MAC information */
1146  	/* A single port can report up to two (LAN and WoL) addresses */
1147  	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1148  			  GFP_KERNEL);
1149  	if (!mac_buf) {
1150  		status = -ENOMEM;
1151  		goto err_unroll_fltr_mgmt_struct;
1152  	}
1153  
1154  	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1155  	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1156  
1157  	if (status)
1158  		goto err_unroll_fltr_mgmt_struct;
1159  	/* enable jumbo frame support at MAC level */
1160  	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1161  	if (status)
1162  		goto err_unroll_fltr_mgmt_struct;
1163  	/* Obtain counter base index which would be used by flow director */
1164  	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1165  	if (status)
1166  		goto err_unroll_fltr_mgmt_struct;
1167  	status = ice_init_hw_tbls(hw);
1168  	if (status)
1169  		goto err_unroll_fltr_mgmt_struct;
1170  	mutex_init(&hw->tnl_lock);
1171  	ice_init_chk_recipe_reuse_support(hw);
1172  
1173  	return 0;
1174  
1175  err_unroll_fltr_mgmt_struct:
1176  	ice_cleanup_fltr_mgmt_struct(hw);
1177  err_unroll_sched:
1178  	ice_sched_cleanup_all(hw);
1179  err_unroll_alloc:
1180  	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1181  err_unroll_cqinit:
1182  	ice_destroy_all_ctrlq(hw);
1183  	return status;
1184  }
1185  
1186  /**
1187   * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1188   * @hw: pointer to the hardware structure
1189   *
1190   * This should be called only during nominal operation, not as a result of
1191   * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1192   * applicable initializations if it fails for any reason.
1193   */
ice_deinit_hw(struct ice_hw * hw)1194  void ice_deinit_hw(struct ice_hw *hw)
1195  {
1196  	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1197  	ice_cleanup_fltr_mgmt_struct(hw);
1198  
1199  	ice_sched_cleanup_all(hw);
1200  	ice_sched_clear_agg(hw);
1201  	ice_free_seg(hw);
1202  	ice_free_hw_tbls(hw);
1203  	mutex_destroy(&hw->tnl_lock);
1204  
1205  	ice_fwlog_deinit(hw);
1206  	ice_destroy_all_ctrlq(hw);
1207  
1208  	/* Clear VSI contexts if not already cleared */
1209  	ice_clear_all_vsi_ctx(hw);
1210  }
1211  
1212  /**
1213   * ice_check_reset - Check to see if a global reset is complete
1214   * @hw: pointer to the hardware structure
1215   */
ice_check_reset(struct ice_hw * hw)1216  int ice_check_reset(struct ice_hw *hw)
1217  {
1218  	u32 cnt, reg = 0, grst_timeout, uld_mask;
1219  
1220  	/* Poll for Device Active state in case a recent CORER, GLOBR,
1221  	 * or EMPR has occurred. The grst delay value is in 100ms units.
1222  	 * Add 1sec for outstanding AQ commands that can take a long time.
1223  	 */
1224  	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1225  				 rd32(hw, GLGEN_RSTCTL)) + 10;
1226  
1227  	for (cnt = 0; cnt < grst_timeout; cnt++) {
1228  		mdelay(100);
1229  		reg = rd32(hw, GLGEN_RSTAT);
1230  		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1231  			break;
1232  	}
1233  
1234  	if (cnt == grst_timeout) {
1235  		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1236  		return -EIO;
1237  	}
1238  
1239  #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1240  				 GLNVM_ULD_PCIER_DONE_1_M |\
1241  				 GLNVM_ULD_CORER_DONE_M |\
1242  				 GLNVM_ULD_GLOBR_DONE_M |\
1243  				 GLNVM_ULD_POR_DONE_M |\
1244  				 GLNVM_ULD_POR_DONE_1_M |\
1245  				 GLNVM_ULD_PCIER_DONE_2_M)
1246  
1247  	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1248  					  GLNVM_ULD_PE_DONE_M : 0);
1249  
1250  	/* Device is Active; check Global Reset processes are done */
1251  	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1252  		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1253  		if (reg == uld_mask) {
1254  			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1255  			break;
1256  		}
1257  		mdelay(10);
1258  	}
1259  
1260  	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1261  		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1262  			  reg);
1263  		return -EIO;
1264  	}
1265  
1266  	return 0;
1267  }
1268  
1269  /**
1270   * ice_pf_reset - Reset the PF
1271   * @hw: pointer to the hardware structure
1272   *
1273   * If a global reset has been triggered, this function checks
1274   * for its completion and then issues the PF reset
1275   */
ice_pf_reset(struct ice_hw * hw)1276  static int ice_pf_reset(struct ice_hw *hw)
1277  {
1278  	u32 cnt, reg;
1279  
1280  	/* If at function entry a global reset was already in progress, i.e.
1281  	 * state is not 'device active' or any of the reset done bits are not
1282  	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1283  	 * global reset is done.
1284  	 */
1285  	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1286  	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1287  		/* poll on global reset currently in progress until done */
1288  		if (ice_check_reset(hw))
1289  			return -EIO;
1290  
1291  		return 0;
1292  	}
1293  
1294  	/* Reset the PF */
1295  	reg = rd32(hw, PFGEN_CTRL);
1296  
1297  	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1298  
1299  	/* Wait for the PFR to complete. The wait time is the global config lock
1300  	 * timeout plus the PFR timeout which will account for a possible reset
1301  	 * that is occurring during a download package operation.
1302  	 */
1303  	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1304  	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1305  		reg = rd32(hw, PFGEN_CTRL);
1306  		if (!(reg & PFGEN_CTRL_PFSWR_M))
1307  			break;
1308  
1309  		mdelay(1);
1310  	}
1311  
1312  	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1313  		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1314  		return -EIO;
1315  	}
1316  
1317  	return 0;
1318  }
1319  
1320  /**
1321   * ice_reset - Perform different types of reset
1322   * @hw: pointer to the hardware structure
1323   * @req: reset request
1324   *
1325   * This function triggers a reset as specified by the req parameter.
1326   *
1327   * Note:
1328   * If anything other than a PF reset is triggered, PXE mode is restored.
1329   * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1330   * interface has been restored in the rebuild flow.
1331   */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1332  int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1333  {
1334  	u32 val = 0;
1335  
1336  	switch (req) {
1337  	case ICE_RESET_PFR:
1338  		return ice_pf_reset(hw);
1339  	case ICE_RESET_CORER:
1340  		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1341  		val = GLGEN_RTRIG_CORER_M;
1342  		break;
1343  	case ICE_RESET_GLOBR:
1344  		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1345  		val = GLGEN_RTRIG_GLOBR_M;
1346  		break;
1347  	default:
1348  		return -EINVAL;
1349  	}
1350  
1351  	val |= rd32(hw, GLGEN_RTRIG);
1352  	wr32(hw, GLGEN_RTRIG, val);
1353  	ice_flush(hw);
1354  
1355  	/* wait for the FW to be ready */
1356  	return ice_check_reset(hw);
1357  }
1358  
1359  /**
1360   * ice_copy_rxq_ctx_to_hw
1361   * @hw: pointer to the hardware structure
1362   * @ice_rxq_ctx: pointer to the rxq context
1363   * @rxq_index: the index of the Rx queue
1364   *
1365   * Copies rxq context from dense structure to HW register space
1366   */
1367  static int
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,u8 * ice_rxq_ctx,u32 rxq_index)1368  ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1369  {
1370  	u8 i;
1371  
1372  	if (!ice_rxq_ctx)
1373  		return -EINVAL;
1374  
1375  	if (rxq_index > QRX_CTRL_MAX_INDEX)
1376  		return -EINVAL;
1377  
1378  	/* Copy each dword separately to HW */
1379  	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1380  		wr32(hw, QRX_CONTEXT(i, rxq_index),
1381  		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1382  
1383  		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1384  			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1385  	}
1386  
1387  	return 0;
1388  }
1389  
1390  /* LAN Rx Queue Context */
1391  static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1392  	/* Field		Width	LSB */
1393  	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1394  	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1395  	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1396  	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1397  	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1398  	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1399  	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1400  	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1401  	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1402  	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1403  	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1404  	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1405  	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1406  	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1407  	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1408  	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1409  	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1410  	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1411  	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1412  	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1413  	{ 0 }
1414  };
1415  
1416  /**
1417   * ice_write_rxq_ctx
1418   * @hw: pointer to the hardware structure
1419   * @rlan_ctx: pointer to the rxq context
1420   * @rxq_index: the index of the Rx queue
1421   *
1422   * Converts rxq context from sparse to dense structure and then writes
1423   * it to HW register space and enables the hardware to prefetch descriptors
1424   * instead of only fetching them on demand
1425   */
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1426  int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1427  		      u32 rxq_index)
1428  {
1429  	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1430  
1431  	if (!rlan_ctx)
1432  		return -EINVAL;
1433  
1434  	rlan_ctx->prefena = 1;
1435  
1436  	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1437  	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1438  }
1439  
1440  /* LAN Tx Queue Context */
1441  const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1442  				    /* Field			Width	LSB */
1443  	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1444  	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1445  	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1446  	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1447  	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1448  	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1449  	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1450  	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1451  	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1452  	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1453  	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1454  	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1455  	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1456  	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1457  	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1458  	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1459  	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1460  	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1461  	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1462  	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1463  	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1464  	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1465  	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1466  	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1467  	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1468  	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1469  	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1470  	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1471  	{ 0 }
1472  };
1473  
1474  /* Sideband Queue command wrappers */
1475  
1476  /**
1477   * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1478   * @hw: pointer to the HW struct
1479   * @desc: descriptor describing the command
1480   * @buf: buffer to use for indirect commands (NULL for direct commands)
1481   * @buf_size: size of buffer for indirect commands (0 for direct commands)
1482   * @cd: pointer to command details structure
1483   */
1484  static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1485  ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1486  		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1487  {
1488  	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1489  			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1490  }
1491  
1492  /**
1493   * ice_sbq_rw_reg - Fill Sideband Queue command
1494   * @hw: pointer to the HW struct
1495   * @in: message info to be filled in descriptor
1496   * @flags: control queue descriptor flags
1497   */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in,u16 flags)1498  int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1499  {
1500  	struct ice_sbq_cmd_desc desc = {0};
1501  	struct ice_sbq_msg_req msg = {0};
1502  	u16 msg_len;
1503  	int status;
1504  
1505  	msg_len = sizeof(msg);
1506  
1507  	msg.dest_dev = in->dest_dev;
1508  	msg.opcode = in->opcode;
1509  	msg.flags = ICE_SBQ_MSG_FLAGS;
1510  	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1511  	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1512  	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1513  
1514  	if (in->opcode)
1515  		msg.data = cpu_to_le32(in->data);
1516  	else
1517  		/* data read comes back in completion, so shorten the struct by
1518  		 * sizeof(msg.data)
1519  		 */
1520  		msg_len -= sizeof(msg.data);
1521  
1522  	desc.flags = cpu_to_le16(flags);
1523  	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1524  	desc.param0.cmd_len = cpu_to_le16(msg_len);
1525  	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1526  	if (!status && !in->opcode)
1527  		in->data = le32_to_cpu
1528  			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1529  	return status;
1530  }
1531  
1532  /* FW Admin Queue command wrappers */
1533  
1534  /* Software lock/mutex that is meant to be held while the Global Config Lock
1535   * in firmware is acquired by the software to prevent most (but not all) types
1536   * of AQ commands from being sent to FW
1537   */
1538  DEFINE_MUTEX(ice_global_cfg_lock_sw);
1539  
1540  /**
1541   * ice_should_retry_sq_send_cmd
1542   * @opcode: AQ opcode
1543   *
1544   * Decide if we should retry the send command routine for the ATQ, depending
1545   * on the opcode.
1546   */
ice_should_retry_sq_send_cmd(u16 opcode)1547  static bool ice_should_retry_sq_send_cmd(u16 opcode)
1548  {
1549  	switch (opcode) {
1550  	case ice_aqc_opc_get_link_topo:
1551  	case ice_aqc_opc_lldp_stop:
1552  	case ice_aqc_opc_lldp_start:
1553  	case ice_aqc_opc_lldp_filter_ctrl:
1554  		return true;
1555  	}
1556  
1557  	return false;
1558  }
1559  
1560  /**
1561   * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1562   * @hw: pointer to the HW struct
1563   * @cq: pointer to the specific Control queue
1564   * @desc: prefilled descriptor describing the command
1565   * @buf: buffer to use for indirect commands (or NULL for direct commands)
1566   * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1567   * @cd: pointer to command details structure
1568   *
1569   * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1570   * Queue if the EBUSY AQ error is returned.
1571   */
1572  static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1573  ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1574  		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1575  		      struct ice_sq_cd *cd)
1576  {
1577  	struct ice_aq_desc desc_cpy;
1578  	bool is_cmd_for_retry;
1579  	u8 idx = 0;
1580  	u16 opcode;
1581  	int status;
1582  
1583  	opcode = le16_to_cpu(desc->opcode);
1584  	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1585  	memset(&desc_cpy, 0, sizeof(desc_cpy));
1586  
1587  	if (is_cmd_for_retry) {
1588  		/* All retryable cmds are direct, without buf. */
1589  		WARN_ON(buf);
1590  
1591  		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1592  	}
1593  
1594  	do {
1595  		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1596  
1597  		if (!is_cmd_for_retry || !status ||
1598  		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1599  			break;
1600  
1601  		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1602  
1603  		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1604  
1605  	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1606  
1607  	return status;
1608  }
1609  
1610  /**
1611   * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1612   * @hw: pointer to the HW struct
1613   * @desc: descriptor describing the command
1614   * @buf: buffer to use for indirect commands (NULL for direct commands)
1615   * @buf_size: size of buffer for indirect commands (0 for direct commands)
1616   * @cd: pointer to command details structure
1617   *
1618   * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1619   */
1620  int
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1621  ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1622  		u16 buf_size, struct ice_sq_cd *cd)
1623  {
1624  	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1625  	bool lock_acquired = false;
1626  	int status;
1627  
1628  	/* When a package download is in process (i.e. when the firmware's
1629  	 * Global Configuration Lock resource is held), only the Download
1630  	 * Package, Get Version, Get Package Info List, Upload Section,
1631  	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1632  	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1633  	 * Recipes to Profile Association, and Release Resource (with resource
1634  	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1635  	 * must block until the package download completes and the Global Config
1636  	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1637  	 */
1638  	switch (le16_to_cpu(desc->opcode)) {
1639  	case ice_aqc_opc_download_pkg:
1640  	case ice_aqc_opc_get_pkg_info_list:
1641  	case ice_aqc_opc_get_ver:
1642  	case ice_aqc_opc_upload_section:
1643  	case ice_aqc_opc_update_pkg:
1644  	case ice_aqc_opc_set_port_params:
1645  	case ice_aqc_opc_get_vlan_mode_parameters:
1646  	case ice_aqc_opc_set_vlan_mode_parameters:
1647  	case ice_aqc_opc_set_tx_topo:
1648  	case ice_aqc_opc_get_tx_topo:
1649  	case ice_aqc_opc_add_recipe:
1650  	case ice_aqc_opc_recipe_to_profile:
1651  	case ice_aqc_opc_get_recipe:
1652  	case ice_aqc_opc_get_recipe_to_profile:
1653  		break;
1654  	case ice_aqc_opc_release_res:
1655  		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1656  			break;
1657  		fallthrough;
1658  	default:
1659  		mutex_lock(&ice_global_cfg_lock_sw);
1660  		lock_acquired = true;
1661  		break;
1662  	}
1663  
1664  	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1665  	if (lock_acquired)
1666  		mutex_unlock(&ice_global_cfg_lock_sw);
1667  
1668  	return status;
1669  }
1670  
1671  /**
1672   * ice_aq_get_fw_ver
1673   * @hw: pointer to the HW struct
1674   * @cd: pointer to command details structure or NULL
1675   *
1676   * Get the firmware version (0x0001) from the admin queue commands
1677   */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1678  int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1679  {
1680  	struct ice_aqc_get_ver *resp;
1681  	struct ice_aq_desc desc;
1682  	int status;
1683  
1684  	resp = &desc.params.get_ver;
1685  
1686  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1687  
1688  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1689  
1690  	if (!status) {
1691  		hw->fw_branch = resp->fw_branch;
1692  		hw->fw_maj_ver = resp->fw_major;
1693  		hw->fw_min_ver = resp->fw_minor;
1694  		hw->fw_patch = resp->fw_patch;
1695  		hw->fw_build = le32_to_cpu(resp->fw_build);
1696  		hw->api_branch = resp->api_branch;
1697  		hw->api_maj_ver = resp->api_major;
1698  		hw->api_min_ver = resp->api_minor;
1699  		hw->api_patch = resp->api_patch;
1700  	}
1701  
1702  	return status;
1703  }
1704  
1705  /**
1706   * ice_aq_send_driver_ver
1707   * @hw: pointer to the HW struct
1708   * @dv: driver's major, minor version
1709   * @cd: pointer to command details structure or NULL
1710   *
1711   * Send the driver version (0x0002) to the firmware
1712   */
1713  int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1714  ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1715  		       struct ice_sq_cd *cd)
1716  {
1717  	struct ice_aqc_driver_ver *cmd;
1718  	struct ice_aq_desc desc;
1719  	u16 len;
1720  
1721  	cmd = &desc.params.driver_ver;
1722  
1723  	if (!dv)
1724  		return -EINVAL;
1725  
1726  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1727  
1728  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1729  	cmd->major_ver = dv->major_ver;
1730  	cmd->minor_ver = dv->minor_ver;
1731  	cmd->build_ver = dv->build_ver;
1732  	cmd->subbuild_ver = dv->subbuild_ver;
1733  
1734  	len = 0;
1735  	while (len < sizeof(dv->driver_string) &&
1736  	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1737  		len++;
1738  
1739  	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1740  }
1741  
1742  /**
1743   * ice_aq_q_shutdown
1744   * @hw: pointer to the HW struct
1745   * @unloading: is the driver unloading itself
1746   *
1747   * Tell the Firmware that we're shutting down the AdminQ and whether
1748   * or not the driver is unloading as well (0x0003).
1749   */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1750  int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1751  {
1752  	struct ice_aqc_q_shutdown *cmd;
1753  	struct ice_aq_desc desc;
1754  
1755  	cmd = &desc.params.q_shutdown;
1756  
1757  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1758  
1759  	if (unloading)
1760  		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1761  
1762  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1763  }
1764  
1765  /**
1766   * ice_aq_req_res
1767   * @hw: pointer to the HW struct
1768   * @res: resource ID
1769   * @access: access type
1770   * @sdp_number: resource number
1771   * @timeout: the maximum time in ms that the driver may hold the resource
1772   * @cd: pointer to command details structure or NULL
1773   *
1774   * Requests common resource using the admin queue commands (0x0008).
1775   * When attempting to acquire the Global Config Lock, the driver can
1776   * learn of three states:
1777   *  1) 0 -         acquired lock, and can perform download package
1778   *  2) -EIO -      did not get lock, driver should fail to load
1779   *  3) -EALREADY - did not get lock, but another driver has
1780   *                 successfully downloaded the package; the driver does
1781   *                 not have to download the package and can continue
1782   *                 loading
1783   *
1784   * Note that if the caller is in an acquire lock, perform action, release lock
1785   * phase of operation, it is possible that the FW may detect a timeout and issue
1786   * a CORER. In this case, the driver will receive a CORER interrupt and will
1787   * have to determine its cause. The calling thread that is handling this flow
1788   * will likely get an error propagated back to it indicating the Download
1789   * Package, Update Package or the Release Resource AQ commands timed out.
1790   */
1791  static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)1792  ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1793  	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1794  	       struct ice_sq_cd *cd)
1795  {
1796  	struct ice_aqc_req_res *cmd_resp;
1797  	struct ice_aq_desc desc;
1798  	int status;
1799  
1800  	cmd_resp = &desc.params.res_owner;
1801  
1802  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1803  
1804  	cmd_resp->res_id = cpu_to_le16(res);
1805  	cmd_resp->access_type = cpu_to_le16(access);
1806  	cmd_resp->res_number = cpu_to_le32(sdp_number);
1807  	cmd_resp->timeout = cpu_to_le32(*timeout);
1808  	*timeout = 0;
1809  
1810  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1811  
1812  	/* The completion specifies the maximum time in ms that the driver
1813  	 * may hold the resource in the Timeout field.
1814  	 */
1815  
1816  	/* Global config lock response utilizes an additional status field.
1817  	 *
1818  	 * If the Global config lock resource is held by some other driver, the
1819  	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1820  	 * and the timeout field indicates the maximum time the current owner
1821  	 * of the resource has to free it.
1822  	 */
1823  	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1824  		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1825  			*timeout = le32_to_cpu(cmd_resp->timeout);
1826  			return 0;
1827  		} else if (le16_to_cpu(cmd_resp->status) ==
1828  			   ICE_AQ_RES_GLBL_IN_PROG) {
1829  			*timeout = le32_to_cpu(cmd_resp->timeout);
1830  			return -EIO;
1831  		} else if (le16_to_cpu(cmd_resp->status) ==
1832  			   ICE_AQ_RES_GLBL_DONE) {
1833  			return -EALREADY;
1834  		}
1835  
1836  		/* invalid FW response, force a timeout immediately */
1837  		*timeout = 0;
1838  		return -EIO;
1839  	}
1840  
1841  	/* If the resource is held by some other driver, the command completes
1842  	 * with a busy return value and the timeout field indicates the maximum
1843  	 * time the current owner of the resource has to free it.
1844  	 */
1845  	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1846  		*timeout = le32_to_cpu(cmd_resp->timeout);
1847  
1848  	return status;
1849  }
1850  
1851  /**
1852   * ice_aq_release_res
1853   * @hw: pointer to the HW struct
1854   * @res: resource ID
1855   * @sdp_number: resource number
1856   * @cd: pointer to command details structure or NULL
1857   *
1858   * release common resource using the admin queue commands (0x0009)
1859   */
1860  static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)1861  ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1862  		   struct ice_sq_cd *cd)
1863  {
1864  	struct ice_aqc_req_res *cmd;
1865  	struct ice_aq_desc desc;
1866  
1867  	cmd = &desc.params.res_owner;
1868  
1869  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1870  
1871  	cmd->res_id = cpu_to_le16(res);
1872  	cmd->res_number = cpu_to_le32(sdp_number);
1873  
1874  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1875  }
1876  
1877  /**
1878   * ice_acquire_res
1879   * @hw: pointer to the HW structure
1880   * @res: resource ID
1881   * @access: access type (read or write)
1882   * @timeout: timeout in milliseconds
1883   *
1884   * This function will attempt to acquire the ownership of a resource.
1885   */
1886  int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1887  ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1888  		enum ice_aq_res_access_type access, u32 timeout)
1889  {
1890  #define ICE_RES_POLLING_DELAY_MS	10
1891  	u32 delay = ICE_RES_POLLING_DELAY_MS;
1892  	u32 time_left = timeout;
1893  	int status;
1894  
1895  	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1896  
1897  	/* A return code of -EALREADY means that another driver has
1898  	 * previously acquired the resource and performed any necessary updates;
1899  	 * in this case the caller does not obtain the resource and has no
1900  	 * further work to do.
1901  	 */
1902  	if (status == -EALREADY)
1903  		goto ice_acquire_res_exit;
1904  
1905  	if (status)
1906  		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1907  
1908  	/* If necessary, poll until the current lock owner timeouts */
1909  	timeout = time_left;
1910  	while (status && timeout && time_left) {
1911  		mdelay(delay);
1912  		timeout = (timeout > delay) ? timeout - delay : 0;
1913  		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1914  
1915  		if (status == -EALREADY)
1916  			/* lock free, but no work to do */
1917  			break;
1918  
1919  		if (!status)
1920  			/* lock acquired */
1921  			break;
1922  	}
1923  	if (status && status != -EALREADY)
1924  		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1925  
1926  ice_acquire_res_exit:
1927  	if (status == -EALREADY) {
1928  		if (access == ICE_RES_WRITE)
1929  			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1930  		else
1931  			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1932  	}
1933  	return status;
1934  }
1935  
1936  /**
1937   * ice_release_res
1938   * @hw: pointer to the HW structure
1939   * @res: resource ID
1940   *
1941   * This function will release a resource using the proper Admin Command.
1942   */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)1943  void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1944  {
1945  	unsigned long timeout;
1946  	int status;
1947  
1948  	/* there are some rare cases when trying to release the resource
1949  	 * results in an admin queue timeout, so handle them correctly
1950  	 */
1951  	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1952  	do {
1953  		status = ice_aq_release_res(hw, res, 0, NULL);
1954  		if (status != -EIO)
1955  			break;
1956  		usleep_range(1000, 2000);
1957  	} while (time_before(jiffies, timeout));
1958  }
1959  
1960  /**
1961   * ice_aq_alloc_free_res - command to allocate/free resources
1962   * @hw: pointer to the HW struct
1963   * @buf: Indirect buffer to hold data parameters and response
1964   * @buf_size: size of buffer for indirect commands
1965   * @opc: pass in the command opcode
1966   *
1967   * Helper function to allocate/free resources using the admin queue commands
1968   */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)1969  int ice_aq_alloc_free_res(struct ice_hw *hw,
1970  			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1971  			  enum ice_adminq_opc opc)
1972  {
1973  	struct ice_aqc_alloc_free_res_cmd *cmd;
1974  	struct ice_aq_desc desc;
1975  
1976  	cmd = &desc.params.sw_res_ctrl;
1977  
1978  	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1979  		return -EINVAL;
1980  
1981  	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1982  
1983  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1984  
1985  	cmd->num_entries = cpu_to_le16(1);
1986  
1987  	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1988  }
1989  
1990  /**
1991   * ice_alloc_hw_res - allocate resource
1992   * @hw: pointer to the HW struct
1993   * @type: type of resource
1994   * @num: number of resources to allocate
1995   * @btm: allocate from bottom
1996   * @res: pointer to array that will receive the resources
1997   */
1998  int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)1999  ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2000  {
2001  	struct ice_aqc_alloc_free_res_elem *buf;
2002  	u16 buf_len;
2003  	int status;
2004  
2005  	buf_len = struct_size(buf, elem, num);
2006  	buf = kzalloc(buf_len, GFP_KERNEL);
2007  	if (!buf)
2008  		return -ENOMEM;
2009  
2010  	/* Prepare buffer to allocate resource. */
2011  	buf->num_elems = cpu_to_le16(num);
2012  	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2013  				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2014  	if (btm)
2015  		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2016  
2017  	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2018  	if (status)
2019  		goto ice_alloc_res_exit;
2020  
2021  	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2022  
2023  ice_alloc_res_exit:
2024  	kfree(buf);
2025  	return status;
2026  }
2027  
2028  /**
2029   * ice_free_hw_res - free allocated HW resource
2030   * @hw: pointer to the HW struct
2031   * @type: type of resource to free
2032   * @num: number of resources
2033   * @res: pointer to array that contains the resources to free
2034   */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2035  int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2036  {
2037  	struct ice_aqc_alloc_free_res_elem *buf;
2038  	u16 buf_len;
2039  	int status;
2040  
2041  	buf_len = struct_size(buf, elem, num);
2042  	buf = kzalloc(buf_len, GFP_KERNEL);
2043  	if (!buf)
2044  		return -ENOMEM;
2045  
2046  	/* Prepare buffer to free resource. */
2047  	buf->num_elems = cpu_to_le16(num);
2048  	buf->res_type = cpu_to_le16(type);
2049  	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2050  
2051  	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2052  	if (status)
2053  		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2054  
2055  	kfree(buf);
2056  	return status;
2057  }
2058  
2059  /**
2060   * ice_get_num_per_func - determine number of resources per PF
2061   * @hw: pointer to the HW structure
2062   * @max: value to be evenly split between each PF
2063   *
2064   * Determine the number of valid functions by going through the bitmap returned
2065   * from parsing capabilities and use this to calculate the number of resources
2066   * per PF based on the max value passed in.
2067   */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2068  static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2069  {
2070  	u8 funcs;
2071  
2072  #define ICE_CAPS_VALID_FUNCS_M	0xFF
2073  	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2074  			 ICE_CAPS_VALID_FUNCS_M);
2075  
2076  	if (!funcs)
2077  		return 0;
2078  
2079  	return max / funcs;
2080  }
2081  
2082  /**
2083   * ice_parse_common_caps - parse common device/function capabilities
2084   * @hw: pointer to the HW struct
2085   * @caps: pointer to common capabilities structure
2086   * @elem: the capability element to parse
2087   * @prefix: message prefix for tracing capabilities
2088   *
2089   * Given a capability element, extract relevant details into the common
2090   * capability structure.
2091   *
2092   * Returns: true if the capability matches one of the common capability ids,
2093   * false otherwise.
2094   */
2095  static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct ice_aqc_list_caps_elem * elem,const char * prefix)2096  ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2097  		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2098  {
2099  	u32 logical_id = le32_to_cpu(elem->logical_id);
2100  	u32 phys_id = le32_to_cpu(elem->phys_id);
2101  	u32 number = le32_to_cpu(elem->number);
2102  	u16 cap = le16_to_cpu(elem->cap);
2103  	bool found = true;
2104  
2105  	switch (cap) {
2106  	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2107  		caps->valid_functions = number;
2108  		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2109  			  caps->valid_functions);
2110  		break;
2111  	case ICE_AQC_CAPS_SRIOV:
2112  		caps->sr_iov_1_1 = (number == 1);
2113  		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2114  			  caps->sr_iov_1_1);
2115  		break;
2116  	case ICE_AQC_CAPS_DCB:
2117  		caps->dcb = (number == 1);
2118  		caps->active_tc_bitmap = logical_id;
2119  		caps->maxtc = phys_id;
2120  		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2121  		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2122  			  caps->active_tc_bitmap);
2123  		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2124  		break;
2125  	case ICE_AQC_CAPS_RSS:
2126  		caps->rss_table_size = number;
2127  		caps->rss_table_entry_width = logical_id;
2128  		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2129  			  caps->rss_table_size);
2130  		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2131  			  caps->rss_table_entry_width);
2132  		break;
2133  	case ICE_AQC_CAPS_RXQS:
2134  		caps->num_rxq = number;
2135  		caps->rxq_first_id = phys_id;
2136  		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2137  			  caps->num_rxq);
2138  		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2139  			  caps->rxq_first_id);
2140  		break;
2141  	case ICE_AQC_CAPS_TXQS:
2142  		caps->num_txq = number;
2143  		caps->txq_first_id = phys_id;
2144  		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2145  			  caps->num_txq);
2146  		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2147  			  caps->txq_first_id);
2148  		break;
2149  	case ICE_AQC_CAPS_MSIX:
2150  		caps->num_msix_vectors = number;
2151  		caps->msix_vector_first_id = phys_id;
2152  		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2153  			  caps->num_msix_vectors);
2154  		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2155  			  caps->msix_vector_first_id);
2156  		break;
2157  	case ICE_AQC_CAPS_PENDING_NVM_VER:
2158  		caps->nvm_update_pending_nvm = true;
2159  		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2160  		break;
2161  	case ICE_AQC_CAPS_PENDING_OROM_VER:
2162  		caps->nvm_update_pending_orom = true;
2163  		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2164  		break;
2165  	case ICE_AQC_CAPS_PENDING_NET_VER:
2166  		caps->nvm_update_pending_netlist = true;
2167  		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2168  		break;
2169  	case ICE_AQC_CAPS_NVM_MGMT:
2170  		caps->nvm_unified_update =
2171  			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2172  			true : false;
2173  		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2174  			  caps->nvm_unified_update);
2175  		break;
2176  	case ICE_AQC_CAPS_RDMA:
2177  		caps->rdma = (number == 1);
2178  		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2179  		break;
2180  	case ICE_AQC_CAPS_MAX_MTU:
2181  		caps->max_mtu = number;
2182  		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2183  			  prefix, caps->max_mtu);
2184  		break;
2185  	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2186  		caps->pcie_reset_avoidance = (number > 0);
2187  		ice_debug(hw, ICE_DBG_INIT,
2188  			  "%s: pcie_reset_avoidance = %d\n", prefix,
2189  			  caps->pcie_reset_avoidance);
2190  		break;
2191  	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2192  		caps->reset_restrict_support = (number == 1);
2193  		ice_debug(hw, ICE_DBG_INIT,
2194  			  "%s: reset_restrict_support = %d\n", prefix,
2195  			  caps->reset_restrict_support);
2196  		break;
2197  	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2198  		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2199  		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2200  			  prefix, caps->roce_lag);
2201  		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2202  		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2203  			  prefix, caps->sriov_lag);
2204  		break;
2205  	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2206  		caps->tx_sched_topo_comp_mode_en = (number == 1);
2207  		break;
2208  	default:
2209  		/* Not one of the recognized common capabilities */
2210  		found = false;
2211  	}
2212  
2213  	return found;
2214  }
2215  
2216  /**
2217   * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2218   * @hw: pointer to the HW structure
2219   * @caps: pointer to capabilities structure to fix
2220   *
2221   * Re-calculate the capabilities that are dependent on the number of physical
2222   * ports; i.e. some features are not supported or function differently on
2223   * devices with more than 4 ports.
2224   */
2225  static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2226  ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2227  {
2228  	/* This assumes device capabilities are always scanned before function
2229  	 * capabilities during the initialization flow.
2230  	 */
2231  	if (hw->dev_caps.num_funcs > 4) {
2232  		/* Max 4 TCs per port */
2233  		caps->maxtc = 4;
2234  		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2235  			  caps->maxtc);
2236  		if (caps->rdma) {
2237  			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2238  			caps->rdma = 0;
2239  		}
2240  
2241  		/* print message only when processing device capabilities
2242  		 * during initialization.
2243  		 */
2244  		if (caps == &hw->dev_caps.common_cap)
2245  			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2246  	}
2247  }
2248  
2249  /**
2250   * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2251   * @hw: pointer to the HW struct
2252   * @func_p: pointer to function capabilities structure
2253   * @cap: pointer to the capability element to parse
2254   *
2255   * Extract function capabilities for ICE_AQC_CAPS_VF.
2256   */
2257  static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2258  ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2259  		       struct ice_aqc_list_caps_elem *cap)
2260  {
2261  	u32 logical_id = le32_to_cpu(cap->logical_id);
2262  	u32 number = le32_to_cpu(cap->number);
2263  
2264  	func_p->num_allocd_vfs = number;
2265  	func_p->vf_base_id = logical_id;
2266  	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2267  		  func_p->num_allocd_vfs);
2268  	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2269  		  func_p->vf_base_id);
2270  }
2271  
2272  /**
2273   * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2274   * @hw: pointer to the HW struct
2275   * @func_p: pointer to function capabilities structure
2276   * @cap: pointer to the capability element to parse
2277   *
2278   * Extract function capabilities for ICE_AQC_CAPS_VSI.
2279   */
2280  static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2281  ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2282  			struct ice_aqc_list_caps_elem *cap)
2283  {
2284  	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2285  	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2286  		  le32_to_cpu(cap->number));
2287  	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2288  		  func_p->guar_num_vsi);
2289  }
2290  
2291  /**
2292   * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2293   * @hw: pointer to the HW struct
2294   * @func_p: pointer to function capabilities structure
2295   * @cap: pointer to the capability element to parse
2296   *
2297   * Extract function capabilities for ICE_AQC_CAPS_1588.
2298   */
2299  static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2300  ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2301  			 struct ice_aqc_list_caps_elem *cap)
2302  {
2303  	struct ice_ts_func_info *info = &func_p->ts_func_info;
2304  	u32 number = le32_to_cpu(cap->number);
2305  
2306  	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2307  	func_p->common_cap.ieee_1588 = info->ena;
2308  
2309  	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2310  	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2311  	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2312  	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2313  
2314  	if (!ice_is_e825c(hw)) {
2315  		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2316  		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2317  	} else {
2318  		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2319  		info->clk_src = ICE_CLK_SRC_TCXO;
2320  	}
2321  
2322  	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2323  		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2324  	} else {
2325  		/* Unknown clock frequency, so assume a (probably incorrect)
2326  		 * default to avoid out-of-bounds look ups of frequency
2327  		 * related information.
2328  		 */
2329  		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2330  			  info->clk_freq);
2331  		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2332  	}
2333  
2334  	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2335  		  func_p->common_cap.ieee_1588);
2336  	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2337  		  info->src_tmr_owned);
2338  	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2339  		  info->tmr_ena);
2340  	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2341  		  info->tmr_index_owned);
2342  	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2343  		  info->tmr_index_assoc);
2344  	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2345  		  info->clk_freq);
2346  	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2347  		  info->clk_src);
2348  }
2349  
2350  /**
2351   * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2352   * @hw: pointer to the HW struct
2353   * @func_p: pointer to function capabilities structure
2354   *
2355   * Extract function capabilities for ICE_AQC_CAPS_FD.
2356   */
2357  static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2358  ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2359  {
2360  	u32 reg_val, gsize, bsize;
2361  
2362  	reg_val = rd32(hw, GLQF_FD_SIZE);
2363  	switch (hw->mac_type) {
2364  	case ICE_MAC_E830:
2365  		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2366  		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2367  		break;
2368  	case ICE_MAC_E810:
2369  	default:
2370  		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2371  		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2372  	}
2373  	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2374  	func_p->fd_fltr_best_effort = bsize;
2375  
2376  	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2377  		  func_p->fd_fltr_guar);
2378  	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2379  		  func_p->fd_fltr_best_effort);
2380  }
2381  
2382  /**
2383   * ice_parse_func_caps - Parse function capabilities
2384   * @hw: pointer to the HW struct
2385   * @func_p: pointer to function capabilities structure
2386   * @buf: buffer containing the function capability records
2387   * @cap_count: the number of capabilities
2388   *
2389   * Helper function to parse function (0x000A) capabilities list. For
2390   * capabilities shared between device and function, this relies on
2391   * ice_parse_common_caps.
2392   *
2393   * Loop through the list of provided capabilities and extract the relevant
2394   * data into the function capabilities structured.
2395   */
2396  static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2397  ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2398  		    void *buf, u32 cap_count)
2399  {
2400  	struct ice_aqc_list_caps_elem *cap_resp;
2401  	u32 i;
2402  
2403  	cap_resp = buf;
2404  
2405  	memset(func_p, 0, sizeof(*func_p));
2406  
2407  	for (i = 0; i < cap_count; i++) {
2408  		u16 cap = le16_to_cpu(cap_resp[i].cap);
2409  		bool found;
2410  
2411  		found = ice_parse_common_caps(hw, &func_p->common_cap,
2412  					      &cap_resp[i], "func caps");
2413  
2414  		switch (cap) {
2415  		case ICE_AQC_CAPS_VF:
2416  			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2417  			break;
2418  		case ICE_AQC_CAPS_VSI:
2419  			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2420  			break;
2421  		case ICE_AQC_CAPS_1588:
2422  			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2423  			break;
2424  		case ICE_AQC_CAPS_FD:
2425  			ice_parse_fdir_func_caps(hw, func_p);
2426  			break;
2427  		default:
2428  			/* Don't list common capabilities as unknown */
2429  			if (!found)
2430  				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2431  					  i, cap);
2432  			break;
2433  		}
2434  	}
2435  
2436  	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2437  }
2438  
2439  /**
2440   * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2441   * @hw: pointer to the HW struct
2442   * @dev_p: pointer to device capabilities structure
2443   * @cap: capability element to parse
2444   *
2445   * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2446   */
2447  static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2448  ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2449  			      struct ice_aqc_list_caps_elem *cap)
2450  {
2451  	u32 number = le32_to_cpu(cap->number);
2452  
2453  	dev_p->num_funcs = hweight32(number);
2454  	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2455  		  dev_p->num_funcs);
2456  }
2457  
2458  /**
2459   * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2460   * @hw: pointer to the HW struct
2461   * @dev_p: pointer to device capabilities structure
2462   * @cap: capability element to parse
2463   *
2464   * Parse ICE_AQC_CAPS_VF for device capabilities.
2465   */
2466  static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2467  ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2468  		      struct ice_aqc_list_caps_elem *cap)
2469  {
2470  	u32 number = le32_to_cpu(cap->number);
2471  
2472  	dev_p->num_vfs_exposed = number;
2473  	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2474  		  dev_p->num_vfs_exposed);
2475  }
2476  
2477  /**
2478   * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2479   * @hw: pointer to the HW struct
2480   * @dev_p: pointer to device capabilities structure
2481   * @cap: capability element to parse
2482   *
2483   * Parse ICE_AQC_CAPS_VSI for device capabilities.
2484   */
2485  static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2486  ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2487  		       struct ice_aqc_list_caps_elem *cap)
2488  {
2489  	u32 number = le32_to_cpu(cap->number);
2490  
2491  	dev_p->num_vsi_allocd_to_host = number;
2492  	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2493  		  dev_p->num_vsi_allocd_to_host);
2494  }
2495  
2496  /**
2497   * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2498   * @hw: pointer to the HW struct
2499   * @dev_p: pointer to device capabilities structure
2500   * @cap: capability element to parse
2501   *
2502   * Parse ICE_AQC_CAPS_1588 for device capabilities.
2503   */
2504  static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2505  ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2506  			struct ice_aqc_list_caps_elem *cap)
2507  {
2508  	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2509  	u32 logical_id = le32_to_cpu(cap->logical_id);
2510  	u32 phys_id = le32_to_cpu(cap->phys_id);
2511  	u32 number = le32_to_cpu(cap->number);
2512  
2513  	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2514  	dev_p->common_cap.ieee_1588 = info->ena;
2515  
2516  	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2517  	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2518  	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2519  
2520  	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2521  	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2522  	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2523  
2524  	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2525  	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2526  
2527  	info->ena_ports = logical_id;
2528  	info->tmr_own_map = phys_id;
2529  
2530  	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2531  		  dev_p->common_cap.ieee_1588);
2532  	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2533  		  info->tmr0_owner);
2534  	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2535  		  info->tmr0_owned);
2536  	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2537  		  info->tmr0_ena);
2538  	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2539  		  info->tmr1_owner);
2540  	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2541  		  info->tmr1_owned);
2542  	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2543  		  info->tmr1_ena);
2544  	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2545  		  info->ts_ll_read);
2546  	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2547  		  info->ts_ll_int_read);
2548  	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2549  		  info->ena_ports);
2550  	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2551  		  info->tmr_own_map);
2552  }
2553  
2554  /**
2555   * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2556   * @hw: pointer to the HW struct
2557   * @dev_p: pointer to device capabilities structure
2558   * @cap: capability element to parse
2559   *
2560   * Parse ICE_AQC_CAPS_FD for device capabilities.
2561   */
2562  static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2563  ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2564  			struct ice_aqc_list_caps_elem *cap)
2565  {
2566  	u32 number = le32_to_cpu(cap->number);
2567  
2568  	dev_p->num_flow_director_fltr = number;
2569  	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2570  		  dev_p->num_flow_director_fltr);
2571  }
2572  
2573  /**
2574   * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2575   * @hw: pointer to the HW struct
2576   * @dev_p: pointer to device capabilities structure
2577   * @cap: capability element to parse
2578   *
2579   * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2580   * enabled sensors.
2581   */
2582  static void
ice_parse_sensor_reading_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2583  ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2584  			     struct ice_aqc_list_caps_elem *cap)
2585  {
2586  	dev_p->supported_sensors = le32_to_cpu(cap->number);
2587  
2588  	ice_debug(hw, ICE_DBG_INIT,
2589  		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2590  		  dev_p->supported_sensors);
2591  }
2592  
2593  /**
2594   * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2595   * @hw: pointer to the HW struct
2596   * @dev_p: pointer to device capabilities structure
2597   * @cap: capability element to parse
2598   *
2599   * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2600   */
ice_parse_nac_topo_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2601  static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2602  					struct ice_hw_dev_caps *dev_p,
2603  					struct ice_aqc_list_caps_elem *cap)
2604  {
2605  	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2606  	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2607  
2608  	dev_info(ice_hw_to_dev(hw),
2609  		 "PF is configured in %s mode with IP instance ID %d\n",
2610  		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2611  		 "primary" : "secondary", dev_p->nac_topo.id);
2612  
2613  	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2614  		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2615  	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2616  		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2617  	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2618  		  dev_p->nac_topo.id);
2619  }
2620  
2621  /**
2622   * ice_parse_dev_caps - Parse device capabilities
2623   * @hw: pointer to the HW struct
2624   * @dev_p: pointer to device capabilities structure
2625   * @buf: buffer containing the device capability records
2626   * @cap_count: the number of capabilities
2627   *
2628   * Helper device to parse device (0x000B) capabilities list. For
2629   * capabilities shared between device and function, this relies on
2630   * ice_parse_common_caps.
2631   *
2632   * Loop through the list of provided capabilities and extract the relevant
2633   * data into the device capabilities structured.
2634   */
2635  static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2636  ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2637  		   void *buf, u32 cap_count)
2638  {
2639  	struct ice_aqc_list_caps_elem *cap_resp;
2640  	u32 i;
2641  
2642  	cap_resp = buf;
2643  
2644  	memset(dev_p, 0, sizeof(*dev_p));
2645  
2646  	for (i = 0; i < cap_count; i++) {
2647  		u16 cap = le16_to_cpu(cap_resp[i].cap);
2648  		bool found;
2649  
2650  		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2651  					      &cap_resp[i], "dev caps");
2652  
2653  		switch (cap) {
2654  		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2655  			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2656  			break;
2657  		case ICE_AQC_CAPS_VF:
2658  			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2659  			break;
2660  		case ICE_AQC_CAPS_VSI:
2661  			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2662  			break;
2663  		case ICE_AQC_CAPS_1588:
2664  			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2665  			break;
2666  		case ICE_AQC_CAPS_FD:
2667  			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2668  			break;
2669  		case ICE_AQC_CAPS_SENSOR_READING:
2670  			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2671  			break;
2672  		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2673  			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2674  			break;
2675  		default:
2676  			/* Don't list common capabilities as unknown */
2677  			if (!found)
2678  				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2679  					  i, cap);
2680  			break;
2681  		}
2682  	}
2683  
2684  	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2685  }
2686  
2687  /**
2688   * ice_is_pf_c827 - check if pf contains c827 phy
2689   * @hw: pointer to the hw struct
2690   */
ice_is_pf_c827(struct ice_hw * hw)2691  bool ice_is_pf_c827(struct ice_hw *hw)
2692  {
2693  	struct ice_aqc_get_link_topo cmd = {};
2694  	u8 node_part_number;
2695  	u16 node_handle;
2696  	int status;
2697  
2698  	if (hw->mac_type != ICE_MAC_E810)
2699  		return false;
2700  
2701  	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2702  		return true;
2703  
2704  	cmd.addr.topo_params.node_type_ctx =
2705  		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2706  		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2707  	cmd.addr.topo_params.index = 0;
2708  
2709  	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2710  					 &node_handle);
2711  
2712  	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2713  		return false;
2714  
2715  	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2716  		return true;
2717  
2718  	return false;
2719  }
2720  
2721  /**
2722   * ice_is_phy_rclk_in_netlist
2723   * @hw: pointer to the hw struct
2724   *
2725   * Check if the PHY Recovered Clock device is present in the netlist
2726   */
ice_is_phy_rclk_in_netlist(struct ice_hw * hw)2727  bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2728  {
2729  	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2730  				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2731  	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2732  				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2733  		return false;
2734  
2735  	return true;
2736  }
2737  
2738  /**
2739   * ice_is_clock_mux_in_netlist
2740   * @hw: pointer to the hw struct
2741   *
2742   * Check if the Clock Multiplexer device is present in the netlist
2743   */
ice_is_clock_mux_in_netlist(struct ice_hw * hw)2744  bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2745  {
2746  	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2747  				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2748  				  NULL))
2749  		return false;
2750  
2751  	return true;
2752  }
2753  
2754  /**
2755   * ice_is_cgu_in_netlist - check for CGU presence
2756   * @hw: pointer to the hw struct
2757   *
2758   * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2759   * Save the CGU part number in the hw structure for later use.
2760   * Return:
2761   * * true - cgu is present
2762   * * false - cgu is not present
2763   */
ice_is_cgu_in_netlist(struct ice_hw * hw)2764  bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2765  {
2766  	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2767  				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2768  				   NULL)) {
2769  		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2770  		return true;
2771  	} else if (!ice_find_netlist_node(hw,
2772  					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2773  					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2774  					  NULL)) {
2775  		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2776  		return true;
2777  	}
2778  
2779  	return false;
2780  }
2781  
2782  /**
2783   * ice_is_gps_in_netlist
2784   * @hw: pointer to the hw struct
2785   *
2786   * Check if the GPS generic device is present in the netlist
2787   */
ice_is_gps_in_netlist(struct ice_hw * hw)2788  bool ice_is_gps_in_netlist(struct ice_hw *hw)
2789  {
2790  	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2791  				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2792  		return false;
2793  
2794  	return true;
2795  }
2796  
2797  /**
2798   * ice_aq_list_caps - query function/device capabilities
2799   * @hw: pointer to the HW struct
2800   * @buf: a buffer to hold the capabilities
2801   * @buf_size: size of the buffer
2802   * @cap_count: if not NULL, set to the number of capabilities reported
2803   * @opc: capabilities type to discover, device or function
2804   * @cd: pointer to command details structure or NULL
2805   *
2806   * Get the function (0x000A) or device (0x000B) capabilities description from
2807   * firmware and store it in the buffer.
2808   *
2809   * If the cap_count pointer is not NULL, then it is set to the number of
2810   * capabilities firmware will report. Note that if the buffer size is too
2811   * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2812   * cap_count will still be updated in this case. It is recommended that the
2813   * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2814   * firmware could return) to avoid this.
2815   */
2816  int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)2817  ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2818  		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2819  {
2820  	struct ice_aqc_list_caps *cmd;
2821  	struct ice_aq_desc desc;
2822  	int status;
2823  
2824  	cmd = &desc.params.get_cap;
2825  
2826  	if (opc != ice_aqc_opc_list_func_caps &&
2827  	    opc != ice_aqc_opc_list_dev_caps)
2828  		return -EINVAL;
2829  
2830  	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2831  	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2832  
2833  	if (cap_count)
2834  		*cap_count = le32_to_cpu(cmd->count);
2835  
2836  	return status;
2837  }
2838  
2839  /**
2840   * ice_discover_dev_caps - Read and extract device capabilities
2841   * @hw: pointer to the hardware structure
2842   * @dev_caps: pointer to device capabilities structure
2843   *
2844   * Read the device capabilities and extract them into the dev_caps structure
2845   * for later use.
2846   */
2847  int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)2848  ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2849  {
2850  	u32 cap_count = 0;
2851  	void *cbuf;
2852  	int status;
2853  
2854  	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2855  	if (!cbuf)
2856  		return -ENOMEM;
2857  
2858  	/* Although the driver doesn't know the number of capabilities the
2859  	 * device will return, we can simply send a 4KB buffer, the maximum
2860  	 * possible size that firmware can return.
2861  	 */
2862  	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2863  
2864  	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2865  				  ice_aqc_opc_list_dev_caps, NULL);
2866  	if (!status)
2867  		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2868  	kfree(cbuf);
2869  
2870  	return status;
2871  }
2872  
2873  /**
2874   * ice_discover_func_caps - Read and extract function capabilities
2875   * @hw: pointer to the hardware structure
2876   * @func_caps: pointer to function capabilities structure
2877   *
2878   * Read the function capabilities and extract them into the func_caps structure
2879   * for later use.
2880   */
2881  static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)2882  ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2883  {
2884  	u32 cap_count = 0;
2885  	void *cbuf;
2886  	int status;
2887  
2888  	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2889  	if (!cbuf)
2890  		return -ENOMEM;
2891  
2892  	/* Although the driver doesn't know the number of capabilities the
2893  	 * device will return, we can simply send a 4KB buffer, the maximum
2894  	 * possible size that firmware can return.
2895  	 */
2896  	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2897  
2898  	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2899  				  ice_aqc_opc_list_func_caps, NULL);
2900  	if (!status)
2901  		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2902  	kfree(cbuf);
2903  
2904  	return status;
2905  }
2906  
2907  /**
2908   * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2909   * @hw: pointer to the hardware structure
2910   */
ice_set_safe_mode_caps(struct ice_hw * hw)2911  void ice_set_safe_mode_caps(struct ice_hw *hw)
2912  {
2913  	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2914  	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2915  	struct ice_hw_common_caps cached_caps;
2916  	u32 num_funcs;
2917  
2918  	/* cache some func_caps values that should be restored after memset */
2919  	cached_caps = func_caps->common_cap;
2920  
2921  	/* unset func capabilities */
2922  	memset(func_caps, 0, sizeof(*func_caps));
2923  
2924  #define ICE_RESTORE_FUNC_CAP(name) \
2925  	func_caps->common_cap.name = cached_caps.name
2926  
2927  	/* restore cached values */
2928  	ICE_RESTORE_FUNC_CAP(valid_functions);
2929  	ICE_RESTORE_FUNC_CAP(txq_first_id);
2930  	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2931  	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2932  	ICE_RESTORE_FUNC_CAP(max_mtu);
2933  	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2934  	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2935  	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2936  	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2937  
2938  	/* one Tx and one Rx queue in safe mode */
2939  	func_caps->common_cap.num_rxq = 1;
2940  	func_caps->common_cap.num_txq = 1;
2941  
2942  	/* two MSIX vectors, one for traffic and one for misc causes */
2943  	func_caps->common_cap.num_msix_vectors = 2;
2944  	func_caps->guar_num_vsi = 1;
2945  
2946  	/* cache some dev_caps values that should be restored after memset */
2947  	cached_caps = dev_caps->common_cap;
2948  	num_funcs = dev_caps->num_funcs;
2949  
2950  	/* unset dev capabilities */
2951  	memset(dev_caps, 0, sizeof(*dev_caps));
2952  
2953  #define ICE_RESTORE_DEV_CAP(name) \
2954  	dev_caps->common_cap.name = cached_caps.name
2955  
2956  	/* restore cached values */
2957  	ICE_RESTORE_DEV_CAP(valid_functions);
2958  	ICE_RESTORE_DEV_CAP(txq_first_id);
2959  	ICE_RESTORE_DEV_CAP(rxq_first_id);
2960  	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2961  	ICE_RESTORE_DEV_CAP(max_mtu);
2962  	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2963  	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2964  	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2965  	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2966  	dev_caps->num_funcs = num_funcs;
2967  
2968  	/* one Tx and one Rx queue per function in safe mode */
2969  	dev_caps->common_cap.num_rxq = num_funcs;
2970  	dev_caps->common_cap.num_txq = num_funcs;
2971  
2972  	/* two MSIX vectors per function */
2973  	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2974  }
2975  
2976  /**
2977   * ice_get_caps - get info about the HW
2978   * @hw: pointer to the hardware structure
2979   */
ice_get_caps(struct ice_hw * hw)2980  int ice_get_caps(struct ice_hw *hw)
2981  {
2982  	int status;
2983  
2984  	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2985  	if (status)
2986  		return status;
2987  
2988  	return ice_discover_func_caps(hw, &hw->func_caps);
2989  }
2990  
2991  /**
2992   * ice_aq_manage_mac_write - manage MAC address write command
2993   * @hw: pointer to the HW struct
2994   * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2995   * @flags: flags to control write behavior
2996   * @cd: pointer to command details structure or NULL
2997   *
2998   * This function is used to write MAC address to the NVM (0x0108).
2999   */
3000  int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)3001  ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3002  			struct ice_sq_cd *cd)
3003  {
3004  	struct ice_aqc_manage_mac_write *cmd;
3005  	struct ice_aq_desc desc;
3006  
3007  	cmd = &desc.params.mac_write;
3008  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3009  
3010  	cmd->flags = flags;
3011  	ether_addr_copy(cmd->mac_addr, mac_addr);
3012  
3013  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3014  }
3015  
3016  /**
3017   * ice_aq_clear_pxe_mode
3018   * @hw: pointer to the HW struct
3019   *
3020   * Tell the firmware that the driver is taking over from PXE (0x0110).
3021   */
ice_aq_clear_pxe_mode(struct ice_hw * hw)3022  static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3023  {
3024  	struct ice_aq_desc desc;
3025  
3026  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3027  	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3028  
3029  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3030  }
3031  
3032  /**
3033   * ice_clear_pxe_mode - clear pxe operations mode
3034   * @hw: pointer to the HW struct
3035   *
3036   * Make sure all PXE mode settings are cleared, including things
3037   * like descriptor fetch/write-back mode.
3038   */
ice_clear_pxe_mode(struct ice_hw * hw)3039  void ice_clear_pxe_mode(struct ice_hw *hw)
3040  {
3041  	if (ice_check_sq_alive(hw, &hw->adminq))
3042  		ice_aq_clear_pxe_mode(hw);
3043  }
3044  
3045  /**
3046   * ice_aq_set_port_params - set physical port parameters.
3047   * @pi: pointer to the port info struct
3048   * @double_vlan: if set double VLAN is enabled
3049   * @cd: pointer to command details structure or NULL
3050   *
3051   * Set Physical port parameters (0x0203)
3052   */
3053  int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)3054  ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3055  		       struct ice_sq_cd *cd)
3056  
3057  {
3058  	struct ice_aqc_set_port_params *cmd;
3059  	struct ice_hw *hw = pi->hw;
3060  	struct ice_aq_desc desc;
3061  	u16 cmd_flags = 0;
3062  
3063  	cmd = &desc.params.set_port_params;
3064  
3065  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3066  	if (double_vlan)
3067  		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3068  	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3069  
3070  	cmd->local_fwd_mode = pi->local_fwd_mode |
3071  				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3072  
3073  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3074  }
3075  
3076  /**
3077   * ice_is_100m_speed_supported
3078   * @hw: pointer to the HW struct
3079   *
3080   * returns true if 100M speeds are supported by the device,
3081   * false otherwise.
3082   */
ice_is_100m_speed_supported(struct ice_hw * hw)3083  bool ice_is_100m_speed_supported(struct ice_hw *hw)
3084  {
3085  	switch (hw->device_id) {
3086  	case ICE_DEV_ID_E822C_SGMII:
3087  	case ICE_DEV_ID_E822L_SGMII:
3088  	case ICE_DEV_ID_E823L_1GBE:
3089  	case ICE_DEV_ID_E823C_SGMII:
3090  		return true;
3091  	default:
3092  		return false;
3093  	}
3094  }
3095  
3096  /**
3097   * ice_get_link_speed_based_on_phy_type - returns link speed
3098   * @phy_type_low: lower part of phy_type
3099   * @phy_type_high: higher part of phy_type
3100   *
3101   * This helper function will convert an entry in PHY type structure
3102   * [phy_type_low, phy_type_high] to its corresponding link speed.
3103   * Note: In the structure of [phy_type_low, phy_type_high], there should
3104   * be one bit set, as this function will convert one PHY type to its
3105   * speed.
3106   *
3107   * Return:
3108   * * PHY speed for recognized PHY type
3109   * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3110   * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3111   */
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3112  u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3113  {
3114  	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3115  	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3116  
3117  	switch (phy_type_low) {
3118  	case ICE_PHY_TYPE_LOW_100BASE_TX:
3119  	case ICE_PHY_TYPE_LOW_100M_SGMII:
3120  		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3121  		break;
3122  	case ICE_PHY_TYPE_LOW_1000BASE_T:
3123  	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3124  	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3125  	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3126  	case ICE_PHY_TYPE_LOW_1G_SGMII:
3127  		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3128  		break;
3129  	case ICE_PHY_TYPE_LOW_2500BASE_T:
3130  	case ICE_PHY_TYPE_LOW_2500BASE_X:
3131  	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3132  		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3133  		break;
3134  	case ICE_PHY_TYPE_LOW_5GBASE_T:
3135  	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3136  		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3137  		break;
3138  	case ICE_PHY_TYPE_LOW_10GBASE_T:
3139  	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3140  	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3141  	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3142  	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3143  	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3144  	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3145  		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3146  		break;
3147  	case ICE_PHY_TYPE_LOW_25GBASE_T:
3148  	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3149  	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3150  	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3151  	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3152  	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3153  	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3154  	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3155  	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3156  	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3157  	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3158  		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3159  		break;
3160  	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3161  	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3162  	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3163  	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3164  	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3165  	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3166  		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3167  		break;
3168  	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3169  	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3170  	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3171  	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3172  	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3173  	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3174  	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3175  	case ICE_PHY_TYPE_LOW_50G_AUI2:
3176  	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3177  	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3178  	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3179  	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3180  	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3181  	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3182  	case ICE_PHY_TYPE_LOW_50G_AUI1:
3183  		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3184  		break;
3185  	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3186  	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3187  	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3188  	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3189  	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3190  	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3191  	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3192  	case ICE_PHY_TYPE_LOW_100G_AUI4:
3193  	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3194  	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3195  	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3196  	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3197  	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3198  		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3199  		break;
3200  	default:
3201  		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3202  		break;
3203  	}
3204  
3205  	switch (phy_type_high) {
3206  	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3207  	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3208  	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3209  	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3210  	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3211  		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3212  		break;
3213  	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3214  	case ICE_PHY_TYPE_HIGH_200G_SR4:
3215  	case ICE_PHY_TYPE_HIGH_200G_FR4:
3216  	case ICE_PHY_TYPE_HIGH_200G_LR4:
3217  	case ICE_PHY_TYPE_HIGH_200G_DR4:
3218  	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3219  	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3220  	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3221  		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3222  		break;
3223  	default:
3224  		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3225  		break;
3226  	}
3227  
3228  	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3229  	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3230  		return ICE_AQ_LINK_SPEED_UNKNOWN;
3231  	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3232  		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3233  		return ICE_AQ_LINK_SPEED_UNKNOWN;
3234  	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3235  		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3236  		return speed_phy_type_low;
3237  	else
3238  		return speed_phy_type_high;
3239  }
3240  
3241  /**
3242   * ice_update_phy_type
3243   * @phy_type_low: pointer to the lower part of phy_type
3244   * @phy_type_high: pointer to the higher part of phy_type
3245   * @link_speeds_bitmap: targeted link speeds bitmap
3246   *
3247   * Note: For the link_speeds_bitmap structure, you can check it at
3248   * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3249   * link_speeds_bitmap include multiple speeds.
3250   *
3251   * Each entry in this [phy_type_low, phy_type_high] structure will
3252   * present a certain link speed. This helper function will turn on bits
3253   * in [phy_type_low, phy_type_high] structure based on the value of
3254   * link_speeds_bitmap input parameter.
3255   */
3256  void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3257  ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3258  		    u16 link_speeds_bitmap)
3259  {
3260  	u64 pt_high;
3261  	u64 pt_low;
3262  	int index;
3263  	u16 speed;
3264  
3265  	/* We first check with low part of phy_type */
3266  	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3267  		pt_low = BIT_ULL(index);
3268  		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3269  
3270  		if (link_speeds_bitmap & speed)
3271  			*phy_type_low |= BIT_ULL(index);
3272  	}
3273  
3274  	/* We then check with high part of phy_type */
3275  	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3276  		pt_high = BIT_ULL(index);
3277  		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3278  
3279  		if (link_speeds_bitmap & speed)
3280  			*phy_type_high |= BIT_ULL(index);
3281  	}
3282  }
3283  
3284  /**
3285   * ice_aq_set_phy_cfg
3286   * @hw: pointer to the HW struct
3287   * @pi: port info structure of the interested logical port
3288   * @cfg: structure with PHY configuration data to be set
3289   * @cd: pointer to command details structure or NULL
3290   *
3291   * Set the various PHY configuration parameters supported on the Port.
3292   * One or more of the Set PHY config parameters may be ignored in an MFP
3293   * mode as the PF may not have the privilege to set some of the PHY Config
3294   * parameters. This status will be indicated by the command response (0x0601).
3295   */
3296  int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3297  ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3298  		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3299  {
3300  	struct ice_aq_desc desc;
3301  	int status;
3302  
3303  	if (!cfg)
3304  		return -EINVAL;
3305  
3306  	/* Ensure that only valid bits of cfg->caps can be turned on. */
3307  	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3308  		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3309  			  cfg->caps);
3310  
3311  		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3312  	}
3313  
3314  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3315  	desc.params.set_phy.lport_num = pi->lport;
3316  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3317  
3318  	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3319  	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3320  		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3321  	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3322  		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3323  	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3324  	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3325  		  cfg->low_power_ctrl_an);
3326  	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3327  	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3328  	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3329  		  cfg->link_fec_opt);
3330  
3331  	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3332  	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3333  		status = 0;
3334  
3335  	if (!status)
3336  		pi->phy.curr_user_phy_cfg = *cfg;
3337  
3338  	return status;
3339  }
3340  
3341  /**
3342   * ice_update_link_info - update status of the HW network link
3343   * @pi: port info structure of the interested logical port
3344   */
ice_update_link_info(struct ice_port_info * pi)3345  int ice_update_link_info(struct ice_port_info *pi)
3346  {
3347  	struct ice_link_status *li;
3348  	int status;
3349  
3350  	if (!pi)
3351  		return -EINVAL;
3352  
3353  	li = &pi->phy.link_info;
3354  
3355  	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3356  	if (status)
3357  		return status;
3358  
3359  	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3360  		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3361  
3362  		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3363  		if (!pcaps)
3364  			return -ENOMEM;
3365  
3366  		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3367  					     pcaps, NULL);
3368  	}
3369  
3370  	return status;
3371  }
3372  
3373  /**
3374   * ice_aq_get_phy_equalization - function to read serdes equaliser
3375   * value from firmware using admin queue command.
3376   * @hw: pointer to the HW struct
3377   * @data_in: represents the serdes equalization parameter requested
3378   * @op_code: represents the serdes number and flag to represent tx or rx
3379   * @serdes_num: represents the serdes number
3380   * @output: pointer to the caller-supplied buffer to return serdes equaliser
3381   *
3382   * Return: non-zero status on error and 0 on success.
3383   */
ice_aq_get_phy_equalization(struct ice_hw * hw,u16 data_in,u16 op_code,u8 serdes_num,int * output)3384  int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3385  				u8 serdes_num, int *output)
3386  {
3387  	struct ice_aqc_dnl_call_command *cmd;
3388  	struct ice_aqc_dnl_call buf = {};
3389  	struct ice_aq_desc desc;
3390  	int err;
3391  
3392  	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3393  	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3394  		cpu_to_le16(op_code | (serdes_num & 0xF));
3395  	cmd = &desc.params.dnl_call;
3396  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3397  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3398  				  ICE_AQ_FLAG_RD |
3399  				  ICE_AQ_FLAG_SI);
3400  	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3401  	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3402  
3403  	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3404  			      NULL);
3405  	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3406  
3407  	return err;
3408  }
3409  
3410  #define FEC_REG_PORT(port) {	\
3411  	FEC_CORR_LOW_REG_PORT##port,		\
3412  	FEC_CORR_HIGH_REG_PORT##port,	\
3413  	FEC_UNCORR_LOW_REG_PORT##port,	\
3414  	FEC_UNCORR_HIGH_REG_PORT##port,	\
3415  }
3416  
3417  static const u32 fec_reg[][ICE_FEC_MAX] = {
3418  	FEC_REG_PORT(0),
3419  	FEC_REG_PORT(1),
3420  	FEC_REG_PORT(2),
3421  	FEC_REG_PORT(3)
3422  };
3423  
3424  /**
3425   * ice_aq_get_fec_stats - reads fec stats from phy
3426   * @hw: pointer to the HW struct
3427   * @pcs_quad: represents pcsquad of user input serdes
3428   * @pcs_port: represents the pcs port number part of above pcs quad
3429   * @fec_type: represents FEC stats type
3430   * @output: pointer to the caller-supplied buffer to return requested fec stats
3431   *
3432   * Return: non-zero status on error and 0 on success.
3433   */
ice_aq_get_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,enum ice_fec_stats_types fec_type,u32 * output)3434  int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3435  			 enum ice_fec_stats_types fec_type, u32 *output)
3436  {
3437  	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3438  	struct ice_sbq_msg_input msg = {};
3439  	u32 receiver_id, reg_offset;
3440  	int err;
3441  
3442  	if (pcs_port > 3)
3443  		return -EINVAL;
3444  
3445  	reg_offset = fec_reg[pcs_port][fec_type];
3446  
3447  	if (pcs_quad == 0)
3448  		receiver_id = FEC_RECEIVER_ID_PCS0;
3449  	else if (pcs_quad == 1)
3450  		receiver_id = FEC_RECEIVER_ID_PCS1;
3451  	else
3452  		return -EINVAL;
3453  
3454  	msg.msg_addr_low = lower_16_bits(reg_offset);
3455  	msg.msg_addr_high = receiver_id;
3456  	msg.opcode = ice_sbq_msg_rd;
3457  	msg.dest_dev = rmn_0;
3458  
3459  	err = ice_sbq_rw_reg(hw, &msg, flag);
3460  	if (err)
3461  		return err;
3462  
3463  	*output = msg.data;
3464  	return 0;
3465  }
3466  
3467  /**
3468   * ice_cache_phy_user_req
3469   * @pi: port information structure
3470   * @cache_data: PHY logging data
3471   * @cache_mode: PHY logging mode
3472   *
3473   * Log the user request on (FC, FEC, SPEED) for later use.
3474   */
3475  static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3476  ice_cache_phy_user_req(struct ice_port_info *pi,
3477  		       struct ice_phy_cache_mode_data cache_data,
3478  		       enum ice_phy_cache_mode cache_mode)
3479  {
3480  	if (!pi)
3481  		return;
3482  
3483  	switch (cache_mode) {
3484  	case ICE_FC_MODE:
3485  		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3486  		break;
3487  	case ICE_SPEED_MODE:
3488  		pi->phy.curr_user_speed_req =
3489  			cache_data.data.curr_user_speed_req;
3490  		break;
3491  	case ICE_FEC_MODE:
3492  		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3493  		break;
3494  	default:
3495  		break;
3496  	}
3497  }
3498  
3499  /**
3500   * ice_caps_to_fc_mode
3501   * @caps: PHY capabilities
3502   *
3503   * Convert PHY FC capabilities to ice FC mode
3504   */
ice_caps_to_fc_mode(u8 caps)3505  enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3506  {
3507  	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3508  	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3509  		return ICE_FC_FULL;
3510  
3511  	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3512  		return ICE_FC_TX_PAUSE;
3513  
3514  	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3515  		return ICE_FC_RX_PAUSE;
3516  
3517  	return ICE_FC_NONE;
3518  }
3519  
3520  /**
3521   * ice_caps_to_fec_mode
3522   * @caps: PHY capabilities
3523   * @fec_options: Link FEC options
3524   *
3525   * Convert PHY FEC capabilities to ice FEC mode
3526   */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3527  enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3528  {
3529  	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3530  		return ICE_FEC_AUTO;
3531  
3532  	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3533  			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3534  			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3535  			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3536  		return ICE_FEC_BASER;
3537  
3538  	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3539  			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3540  			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3541  		return ICE_FEC_RS;
3542  
3543  	return ICE_FEC_NONE;
3544  }
3545  
3546  /**
3547   * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3548   * @pi: port information structure
3549   * @cfg: PHY configuration data to set FC mode
3550   * @req_mode: FC mode to configure
3551   */
3552  int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3553  ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3554  	       enum ice_fc_mode req_mode)
3555  {
3556  	struct ice_phy_cache_mode_data cache_data;
3557  	u8 pause_mask = 0x0;
3558  
3559  	if (!pi || !cfg)
3560  		return -EINVAL;
3561  
3562  	switch (req_mode) {
3563  	case ICE_FC_FULL:
3564  		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3565  		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3566  		break;
3567  	case ICE_FC_RX_PAUSE:
3568  		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3569  		break;
3570  	case ICE_FC_TX_PAUSE:
3571  		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3572  		break;
3573  	default:
3574  		break;
3575  	}
3576  
3577  	/* clear the old pause settings */
3578  	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3579  		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3580  
3581  	/* set the new capabilities */
3582  	cfg->caps |= pause_mask;
3583  
3584  	/* Cache user FC request */
3585  	cache_data.data.curr_user_fc_req = req_mode;
3586  	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3587  
3588  	return 0;
3589  }
3590  
3591  /**
3592   * ice_set_fc
3593   * @pi: port information structure
3594   * @aq_failures: pointer to status code, specific to ice_set_fc routine
3595   * @ena_auto_link_update: enable automatic link update
3596   *
3597   * Set the requested flow control mode.
3598   */
3599  int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3600  ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3601  {
3602  	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3603  	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3604  	struct ice_hw *hw;
3605  	int status;
3606  
3607  	if (!pi || !aq_failures)
3608  		return -EINVAL;
3609  
3610  	*aq_failures = 0;
3611  	hw = pi->hw;
3612  
3613  	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3614  	if (!pcaps)
3615  		return -ENOMEM;
3616  
3617  	/* Get the current PHY config */
3618  	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3619  				     pcaps, NULL);
3620  	if (status) {
3621  		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3622  		goto out;
3623  	}
3624  
3625  	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3626  
3627  	/* Configure the set PHY data */
3628  	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3629  	if (status)
3630  		goto out;
3631  
3632  	/* If the capabilities have changed, then set the new config */
3633  	if (cfg.caps != pcaps->caps) {
3634  		int retry_count, retry_max = 10;
3635  
3636  		/* Auto restart link so settings take effect */
3637  		if (ena_auto_link_update)
3638  			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3639  
3640  		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3641  		if (status) {
3642  			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3643  			goto out;
3644  		}
3645  
3646  		/* Update the link info
3647  		 * It sometimes takes a really long time for link to
3648  		 * come back from the atomic reset. Thus, we wait a
3649  		 * little bit.
3650  		 */
3651  		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3652  			status = ice_update_link_info(pi);
3653  
3654  			if (!status)
3655  				break;
3656  
3657  			mdelay(100);
3658  		}
3659  
3660  		if (status)
3661  			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3662  	}
3663  
3664  out:
3665  	return status;
3666  }
3667  
3668  /**
3669   * ice_phy_caps_equals_cfg
3670   * @phy_caps: PHY capabilities
3671   * @phy_cfg: PHY configuration
3672   *
3673   * Helper function to determine if PHY capabilities matches PHY
3674   * configuration
3675   */
3676  bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3677  ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3678  			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3679  {
3680  	u8 caps_mask, cfg_mask;
3681  
3682  	if (!phy_caps || !phy_cfg)
3683  		return false;
3684  
3685  	/* These bits are not common between capabilities and configuration.
3686  	 * Do not use them to determine equality.
3687  	 */
3688  	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3689  					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3690  	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3691  
3692  	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3693  	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3694  	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3695  	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3696  	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3697  	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3698  	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3699  		return false;
3700  
3701  	return true;
3702  }
3703  
3704  /**
3705   * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3706   * @pi: port information structure
3707   * @caps: PHY ability structure to copy date from
3708   * @cfg: PHY configuration structure to copy data to
3709   *
3710   * Helper function to copy AQC PHY get ability data to PHY set configuration
3711   * data structure
3712   */
3713  void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)3714  ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3715  			 struct ice_aqc_get_phy_caps_data *caps,
3716  			 struct ice_aqc_set_phy_cfg_data *cfg)
3717  {
3718  	if (!pi || !caps || !cfg)
3719  		return;
3720  
3721  	memset(cfg, 0, sizeof(*cfg));
3722  	cfg->phy_type_low = caps->phy_type_low;
3723  	cfg->phy_type_high = caps->phy_type_high;
3724  	cfg->caps = caps->caps;
3725  	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3726  	cfg->eee_cap = caps->eee_cap;
3727  	cfg->eeer_value = caps->eeer_value;
3728  	cfg->link_fec_opt = caps->link_fec_options;
3729  	cfg->module_compliance_enforcement =
3730  		caps->module_compliance_enforcement;
3731  }
3732  
3733  /**
3734   * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3735   * @pi: port information structure
3736   * @cfg: PHY configuration data to set FEC mode
3737   * @fec: FEC mode to configure
3738   */
3739  int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)3740  ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3741  		enum ice_fec_mode fec)
3742  {
3743  	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3744  	struct ice_hw *hw;
3745  	int status;
3746  
3747  	if (!pi || !cfg)
3748  		return -EINVAL;
3749  
3750  	hw = pi->hw;
3751  
3752  	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3753  	if (!pcaps)
3754  		return -ENOMEM;
3755  
3756  	status = ice_aq_get_phy_caps(pi, false,
3757  				     (ice_fw_supports_report_dflt_cfg(hw) ?
3758  				      ICE_AQC_REPORT_DFLT_CFG :
3759  				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3760  	if (status)
3761  		goto out;
3762  
3763  	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3764  	cfg->link_fec_opt = pcaps->link_fec_options;
3765  
3766  	switch (fec) {
3767  	case ICE_FEC_BASER:
3768  		/* Clear RS bits, and AND BASE-R ability
3769  		 * bits and OR request bits.
3770  		 */
3771  		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3772  			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3773  		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3774  			ICE_AQC_PHY_FEC_25G_KR_REQ;
3775  		break;
3776  	case ICE_FEC_RS:
3777  		/* Clear BASE-R bits, and AND RS ability
3778  		 * bits and OR request bits.
3779  		 */
3780  		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3781  		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3782  			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3783  		break;
3784  	case ICE_FEC_NONE:
3785  		/* Clear all FEC option bits. */
3786  		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3787  		break;
3788  	case ICE_FEC_AUTO:
3789  		/* AND auto FEC bit, and all caps bits. */
3790  		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3791  		cfg->link_fec_opt |= pcaps->link_fec_options;
3792  		break;
3793  	default:
3794  		status = -EINVAL;
3795  		break;
3796  	}
3797  
3798  	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3799  	    !ice_fw_supports_report_dflt_cfg(hw)) {
3800  		struct ice_link_default_override_tlv tlv = { 0 };
3801  
3802  		status = ice_get_link_default_override(&tlv, pi);
3803  		if (status)
3804  			goto out;
3805  
3806  		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3807  		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3808  			cfg->link_fec_opt = tlv.fec_options;
3809  	}
3810  
3811  out:
3812  	return status;
3813  }
3814  
3815  /**
3816   * ice_get_link_status - get status of the HW network link
3817   * @pi: port information structure
3818   * @link_up: pointer to bool (true/false = linkup/linkdown)
3819   *
3820   * Variable link_up is true if link is up, false if link is down.
3821   * The variable link_up is invalid if status is non zero. As a
3822   * result of this call, link status reporting becomes enabled
3823   */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)3824  int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3825  {
3826  	struct ice_phy_info *phy_info;
3827  	int status = 0;
3828  
3829  	if (!pi || !link_up)
3830  		return -EINVAL;
3831  
3832  	phy_info = &pi->phy;
3833  
3834  	if (phy_info->get_link_info) {
3835  		status = ice_update_link_info(pi);
3836  
3837  		if (status)
3838  			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3839  				  status);
3840  	}
3841  
3842  	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3843  
3844  	return status;
3845  }
3846  
3847  /**
3848   * ice_aq_set_link_restart_an
3849   * @pi: pointer to the port information structure
3850   * @ena_link: if true: enable link, if false: disable link
3851   * @cd: pointer to command details structure or NULL
3852   *
3853   * Sets up the link and restarts the Auto-Negotiation over the link.
3854   */
3855  int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)3856  ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3857  			   struct ice_sq_cd *cd)
3858  {
3859  	struct ice_aqc_restart_an *cmd;
3860  	struct ice_aq_desc desc;
3861  
3862  	cmd = &desc.params.restart_an;
3863  
3864  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3865  
3866  	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3867  	cmd->lport_num = pi->lport;
3868  	if (ena_link)
3869  		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3870  	else
3871  		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3872  
3873  	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3874  }
3875  
3876  /**
3877   * ice_aq_set_event_mask
3878   * @hw: pointer to the HW struct
3879   * @port_num: port number of the physical function
3880   * @mask: event mask to be set
3881   * @cd: pointer to command details structure or NULL
3882   *
3883   * Set event mask (0x0613)
3884   */
3885  int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)3886  ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3887  		      struct ice_sq_cd *cd)
3888  {
3889  	struct ice_aqc_set_event_mask *cmd;
3890  	struct ice_aq_desc desc;
3891  
3892  	cmd = &desc.params.set_event_mask;
3893  
3894  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3895  
3896  	cmd->lport_num = port_num;
3897  
3898  	cmd->event_mask = cpu_to_le16(mask);
3899  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3900  }
3901  
3902  /**
3903   * ice_aq_set_mac_loopback
3904   * @hw: pointer to the HW struct
3905   * @ena_lpbk: Enable or Disable loopback
3906   * @cd: pointer to command details structure or NULL
3907   *
3908   * Enable/disable loopback on a given port
3909   */
3910  int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)3911  ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3912  {
3913  	struct ice_aqc_set_mac_lb *cmd;
3914  	struct ice_aq_desc desc;
3915  
3916  	cmd = &desc.params.set_mac_lb;
3917  
3918  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3919  	if (ena_lpbk)
3920  		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3921  
3922  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3923  }
3924  
3925  /**
3926   * ice_aq_set_port_id_led
3927   * @pi: pointer to the port information
3928   * @is_orig_mode: is this LED set to original mode (by the net-list)
3929   * @cd: pointer to command details structure or NULL
3930   *
3931   * Set LED value for the given port (0x06e9)
3932   */
3933  int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)3934  ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3935  		       struct ice_sq_cd *cd)
3936  {
3937  	struct ice_aqc_set_port_id_led *cmd;
3938  	struct ice_hw *hw = pi->hw;
3939  	struct ice_aq_desc desc;
3940  
3941  	cmd = &desc.params.set_port_id_led;
3942  
3943  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3944  
3945  	if (is_orig_mode)
3946  		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3947  	else
3948  		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3949  
3950  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3951  }
3952  
3953  /**
3954   * ice_aq_get_port_options
3955   * @hw: pointer to the HW struct
3956   * @options: buffer for the resultant port options
3957   * @option_count: input - size of the buffer in port options structures,
3958   *                output - number of returned port options
3959   * @lport: logical port to call the command with (optional)
3960   * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3961   *               when PF owns more than 1 port it must be true
3962   * @active_option_idx: index of active port option in returned buffer
3963   * @active_option_valid: active option in returned buffer is valid
3964   * @pending_option_idx: index of pending port option in returned buffer
3965   * @pending_option_valid: pending option in returned buffer is valid
3966   *
3967   * Calls Get Port Options AQC (0x06ea) and verifies result.
3968   */
3969  int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)3970  ice_aq_get_port_options(struct ice_hw *hw,
3971  			struct ice_aqc_get_port_options_elem *options,
3972  			u8 *option_count, u8 lport, bool lport_valid,
3973  			u8 *active_option_idx, bool *active_option_valid,
3974  			u8 *pending_option_idx, bool *pending_option_valid)
3975  {
3976  	struct ice_aqc_get_port_options *cmd;
3977  	struct ice_aq_desc desc;
3978  	int status;
3979  	u8 i;
3980  
3981  	/* options buffer shall be able to hold max returned options */
3982  	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3983  		return -EINVAL;
3984  
3985  	cmd = &desc.params.get_port_options;
3986  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3987  
3988  	if (lport_valid)
3989  		cmd->lport_num = lport;
3990  	cmd->lport_num_valid = lport_valid;
3991  
3992  	status = ice_aq_send_cmd(hw, &desc, options,
3993  				 *option_count * sizeof(*options), NULL);
3994  	if (status)
3995  		return status;
3996  
3997  	/* verify direct FW response & set output parameters */
3998  	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3999  				  cmd->port_options_count);
4000  	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4001  	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4002  					 cmd->port_options);
4003  	if (*active_option_valid) {
4004  		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4005  					       cmd->port_options);
4006  		if (*active_option_idx > (*option_count - 1))
4007  			return -EIO;
4008  		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4009  			  *active_option_idx);
4010  	}
4011  
4012  	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4013  					  cmd->pending_port_option_status);
4014  	if (*pending_option_valid) {
4015  		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4016  						cmd->pending_port_option_status);
4017  		if (*pending_option_idx > (*option_count - 1))
4018  			return -EIO;
4019  		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4020  			  *pending_option_idx);
4021  	}
4022  
4023  	/* mask output options fields */
4024  	for (i = 0; i < *option_count; i++) {
4025  		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4026  					   options[i].pmd);
4027  		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4028  						      options[i].max_lane_speed);
4029  		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4030  			  options[i].pmd, options[i].max_lane_speed);
4031  	}
4032  
4033  	return 0;
4034  }
4035  
4036  /**
4037   * ice_aq_set_port_option
4038   * @hw: pointer to the HW struct
4039   * @lport: logical port to call the command with
4040   * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4041   *               when PF owns more than 1 port it must be true
4042   * @new_option: new port option to be written
4043   *
4044   * Calls Set Port Options AQC (0x06eb).
4045   */
4046  int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)4047  ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4048  		       u8 new_option)
4049  {
4050  	struct ice_aqc_set_port_option *cmd;
4051  	struct ice_aq_desc desc;
4052  
4053  	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4054  		return -EINVAL;
4055  
4056  	cmd = &desc.params.set_port_option;
4057  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4058  
4059  	if (lport_valid)
4060  		cmd->lport_num = lport;
4061  
4062  	cmd->lport_num_valid = lport_valid;
4063  	cmd->selected_port_option = new_option;
4064  
4065  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4066  }
4067  
4068  /**
4069   * ice_aq_sff_eeprom
4070   * @hw: pointer to the HW struct
4071   * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4072   * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4073   * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4074   * @page: QSFP page
4075   * @set_page: set or ignore the page
4076   * @data: pointer to data buffer to be read/written to the I2C device.
4077   * @length: 1-16 for read, 1 for write.
4078   * @write: 0 read, 1 for write.
4079   * @cd: pointer to command details structure or NULL
4080   *
4081   * Read/Write SFF EEPROM (0x06EE)
4082   */
4083  int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)4084  ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4085  		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4086  		  bool write, struct ice_sq_cd *cd)
4087  {
4088  	struct ice_aqc_sff_eeprom *cmd;
4089  	struct ice_aq_desc desc;
4090  	u16 i2c_bus_addr;
4091  	int status;
4092  
4093  	if (!data || (mem_addr & 0xff00))
4094  		return -EINVAL;
4095  
4096  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4097  	cmd = &desc.params.read_write_sff_param;
4098  	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4099  	cmd->lport_num = (u8)(lport & 0xff);
4100  	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4101  	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4102  		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4103  	if (write)
4104  		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4105  	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4106  	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4107  	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4108  
4109  	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4110  	return status;
4111  }
4112  
ice_lut_type_to_size(enum ice_lut_type type)4113  static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4114  {
4115  	switch (type) {
4116  	case ICE_LUT_VSI:
4117  		return ICE_LUT_VSI_SIZE;
4118  	case ICE_LUT_GLOBAL:
4119  		return ICE_LUT_GLOBAL_SIZE;
4120  	case ICE_LUT_PF:
4121  		return ICE_LUT_PF_SIZE;
4122  	}
4123  	WARN_ONCE(1, "incorrect type passed");
4124  	return ICE_LUT_VSI_SIZE;
4125  }
4126  
ice_lut_size_to_flag(enum ice_lut_size size)4127  static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4128  {
4129  	switch (size) {
4130  	case ICE_LUT_VSI_SIZE:
4131  		return ICE_AQC_LUT_SIZE_SMALL;
4132  	case ICE_LUT_GLOBAL_SIZE:
4133  		return ICE_AQC_LUT_SIZE_512;
4134  	case ICE_LUT_PF_SIZE:
4135  		return ICE_AQC_LUT_SIZE_2K;
4136  	}
4137  	WARN_ONCE(1, "incorrect size passed");
4138  	return 0;
4139  }
4140  
4141  /**
4142   * __ice_aq_get_set_rss_lut
4143   * @hw: pointer to the hardware structure
4144   * @params: RSS LUT parameters
4145   * @set: set true to set the table, false to get the table
4146   *
4147   * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4148   */
4149  static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)4150  __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4151  			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4152  {
4153  	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4154  	enum ice_lut_type lut_type = params->lut_type;
4155  	struct ice_aqc_get_set_rss_lut *desc_params;
4156  	enum ice_aqc_lut_flags flags;
4157  	enum ice_lut_size lut_size;
4158  	struct ice_aq_desc desc;
4159  	u8 *lut = params->lut;
4160  
4161  
4162  	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4163  		return -EINVAL;
4164  
4165  	lut_size = ice_lut_type_to_size(lut_type);
4166  	if (lut_size > params->lut_size)
4167  		return -EINVAL;
4168  	else if (set && lut_size != params->lut_size)
4169  		return -EINVAL;
4170  
4171  	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4172  	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4173  	if (set)
4174  		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4175  
4176  	desc_params = &desc.params.get_set_rss_lut;
4177  	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4178  	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4179  
4180  	if (lut_type == ICE_LUT_GLOBAL)
4181  		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4182  					  params->global_lut_id);
4183  
4184  	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4185  	desc_params->flags = cpu_to_le16(flags);
4186  
4187  	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4188  }
4189  
4190  /**
4191   * ice_aq_get_rss_lut
4192   * @hw: pointer to the hardware structure
4193   * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4194   *
4195   * get the RSS lookup table, PF or VSI type
4196   */
4197  int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4198  ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4199  {
4200  	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4201  }
4202  
4203  /**
4204   * ice_aq_set_rss_lut
4205   * @hw: pointer to the hardware structure
4206   * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4207   *
4208   * set the RSS lookup table, PF or VSI type
4209   */
4210  int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4211  ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4212  {
4213  	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4214  }
4215  
4216  /**
4217   * __ice_aq_get_set_rss_key
4218   * @hw: pointer to the HW struct
4219   * @vsi_id: VSI FW index
4220   * @key: pointer to key info struct
4221   * @set: set true to set the key, false to get the key
4222   *
4223   * get (0x0B04) or set (0x0B02) the RSS key per VSI
4224   */
4225  static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4226  __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4227  			 struct ice_aqc_get_set_rss_keys *key, bool set)
4228  {
4229  	struct ice_aqc_get_set_rss_key *desc_params;
4230  	u16 key_size = sizeof(*key);
4231  	struct ice_aq_desc desc;
4232  
4233  	if (set) {
4234  		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4235  		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4236  	} else {
4237  		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4238  	}
4239  
4240  	desc_params = &desc.params.get_set_rss_key;
4241  	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4242  
4243  	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4244  }
4245  
4246  /**
4247   * ice_aq_get_rss_key
4248   * @hw: pointer to the HW struct
4249   * @vsi_handle: software VSI handle
4250   * @key: pointer to key info struct
4251   *
4252   * get the RSS key per VSI
4253   */
4254  int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4255  ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4256  		   struct ice_aqc_get_set_rss_keys *key)
4257  {
4258  	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4259  		return -EINVAL;
4260  
4261  	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4262  					key, false);
4263  }
4264  
4265  /**
4266   * ice_aq_set_rss_key
4267   * @hw: pointer to the HW struct
4268   * @vsi_handle: software VSI handle
4269   * @keys: pointer to key info struct
4270   *
4271   * set the RSS key per VSI
4272   */
4273  int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4274  ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4275  		   struct ice_aqc_get_set_rss_keys *keys)
4276  {
4277  	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4278  		return -EINVAL;
4279  
4280  	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4281  					keys, true);
4282  }
4283  
4284  /**
4285   * ice_aq_add_lan_txq
4286   * @hw: pointer to the hardware structure
4287   * @num_qgrps: Number of added queue groups
4288   * @qg_list: list of queue groups to be added
4289   * @buf_size: size of buffer for indirect command
4290   * @cd: pointer to command details structure or NULL
4291   *
4292   * Add Tx LAN queue (0x0C30)
4293   *
4294   * NOTE:
4295   * Prior to calling add Tx LAN queue:
4296   * Initialize the following as part of the Tx queue context:
4297   * Completion queue ID if the queue uses Completion queue, Quanta profile,
4298   * Cache profile and Packet shaper profile.
4299   *
4300   * After add Tx LAN queue AQ command is completed:
4301   * Interrupts should be associated with specific queues,
4302   * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4303   * flow.
4304   */
4305  static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4306  ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4307  		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4308  		   struct ice_sq_cd *cd)
4309  {
4310  	struct ice_aqc_add_tx_qgrp *list;
4311  	struct ice_aqc_add_txqs *cmd;
4312  	struct ice_aq_desc desc;
4313  	u16 i, sum_size = 0;
4314  
4315  	cmd = &desc.params.add_txqs;
4316  
4317  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4318  
4319  	if (!qg_list)
4320  		return -EINVAL;
4321  
4322  	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4323  		return -EINVAL;
4324  
4325  	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4326  		sum_size += struct_size(list, txqs, list->num_txqs);
4327  		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4328  						      list->num_txqs);
4329  	}
4330  
4331  	if (buf_size != sum_size)
4332  		return -EINVAL;
4333  
4334  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4335  
4336  	cmd->num_qgrps = num_qgrps;
4337  
4338  	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4339  }
4340  
4341  /**
4342   * ice_aq_dis_lan_txq
4343   * @hw: pointer to the hardware structure
4344   * @num_qgrps: number of groups in the list
4345   * @qg_list: the list of groups to disable
4346   * @buf_size: the total size of the qg_list buffer in bytes
4347   * @rst_src: if called due to reset, specifies the reset source
4348   * @vmvf_num: the relative VM or VF number that is undergoing the reset
4349   * @cd: pointer to command details structure or NULL
4350   *
4351   * Disable LAN Tx queue (0x0C31)
4352   */
4353  static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4354  ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4355  		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4356  		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4357  		   struct ice_sq_cd *cd)
4358  {
4359  	struct ice_aqc_dis_txq_item *item;
4360  	struct ice_aqc_dis_txqs *cmd;
4361  	struct ice_aq_desc desc;
4362  	u16 vmvf_and_timeout;
4363  	u16 i, sz = 0;
4364  	int status;
4365  
4366  	cmd = &desc.params.dis_txqs;
4367  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4368  
4369  	/* qg_list can be NULL only in VM/VF reset flow */
4370  	if (!qg_list && !rst_src)
4371  		return -EINVAL;
4372  
4373  	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4374  		return -EINVAL;
4375  
4376  	cmd->num_entries = num_qgrps;
4377  
4378  	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4379  
4380  	switch (rst_src) {
4381  	case ICE_VM_RESET:
4382  		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4383  		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4384  		break;
4385  	case ICE_VF_RESET:
4386  		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4387  		/* In this case, FW expects vmvf_num to be absolute VF ID */
4388  		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4389  				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4390  		break;
4391  	case ICE_NO_RESET:
4392  	default:
4393  		break;
4394  	}
4395  
4396  	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4397  
4398  	/* flush pipe on time out */
4399  	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4400  	/* If no queue group info, we are in a reset flow. Issue the AQ */
4401  	if (!qg_list)
4402  		goto do_aq;
4403  
4404  	/* set RD bit to indicate that command buffer is provided by the driver
4405  	 * and it needs to be read by the firmware
4406  	 */
4407  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4408  
4409  	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4410  		u16 item_size = struct_size(item, q_id, item->num_qs);
4411  
4412  		/* If the num of queues is even, add 2 bytes of padding */
4413  		if ((item->num_qs % 2) == 0)
4414  			item_size += 2;
4415  
4416  		sz += item_size;
4417  
4418  		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4419  	}
4420  
4421  	if (buf_size != sz)
4422  		return -EINVAL;
4423  
4424  do_aq:
4425  	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4426  	if (status) {
4427  		if (!qg_list)
4428  			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4429  				  vmvf_num, hw->adminq.sq_last_status);
4430  		else
4431  			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4432  				  le16_to_cpu(qg_list[0].q_id[0]),
4433  				  hw->adminq.sq_last_status);
4434  	}
4435  	return status;
4436  }
4437  
4438  /**
4439   * ice_aq_cfg_lan_txq
4440   * @hw: pointer to the hardware structure
4441   * @buf: buffer for command
4442   * @buf_size: size of buffer in bytes
4443   * @num_qs: number of queues being configured
4444   * @oldport: origination lport
4445   * @newport: destination lport
4446   * @cd: pointer to command details structure or NULL
4447   *
4448   * Move/Configure LAN Tx queue (0x0C32)
4449   *
4450   * There is a better AQ command to use for moving nodes, so only coding
4451   * this one for configuring the node.
4452   */
4453  int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,struct ice_sq_cd * cd)4454  ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4455  		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4456  		   struct ice_sq_cd *cd)
4457  {
4458  	struct ice_aqc_cfg_txqs *cmd;
4459  	struct ice_aq_desc desc;
4460  	int status;
4461  
4462  	cmd = &desc.params.cfg_txqs;
4463  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4464  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4465  
4466  	if (!buf)
4467  		return -EINVAL;
4468  
4469  	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4470  	cmd->num_qs = num_qs;
4471  	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4472  	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4473  	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4474  	cmd->blocked_cgds = 0;
4475  
4476  	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4477  	if (status)
4478  		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4479  			  hw->adminq.sq_last_status);
4480  	return status;
4481  }
4482  
4483  /**
4484   * ice_aq_add_rdma_qsets
4485   * @hw: pointer to the hardware structure
4486   * @num_qset_grps: Number of RDMA Qset groups
4487   * @qset_list: list of Qset groups to be added
4488   * @buf_size: size of buffer for indirect command
4489   * @cd: pointer to command details structure or NULL
4490   *
4491   * Add Tx RDMA Qsets (0x0C33)
4492   */
4493  static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4494  ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4495  		      struct ice_aqc_add_rdma_qset_data *qset_list,
4496  		      u16 buf_size, struct ice_sq_cd *cd)
4497  {
4498  	struct ice_aqc_add_rdma_qset_data *list;
4499  	struct ice_aqc_add_rdma_qset *cmd;
4500  	struct ice_aq_desc desc;
4501  	u16 i, sum_size = 0;
4502  
4503  	cmd = &desc.params.add_rdma_qset;
4504  
4505  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4506  
4507  	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4508  		return -EINVAL;
4509  
4510  	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4511  		u16 num_qsets = le16_to_cpu(list->num_qsets);
4512  
4513  		sum_size += struct_size(list, rdma_qsets, num_qsets);
4514  		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4515  							     num_qsets);
4516  	}
4517  
4518  	if (buf_size != sum_size)
4519  		return -EINVAL;
4520  
4521  	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4522  
4523  	cmd->num_qset_grps = num_qset_grps;
4524  
4525  	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4526  }
4527  
4528  /* End of FW Admin Queue command wrappers */
4529  
4530  /**
4531   * ice_pack_ctx_byte - write a byte to a packed context structure
4532   * @src_ctx: unpacked source context structure
4533   * @dest_ctx: packed destination context data
4534   * @ce_info: context element description
4535   */
ice_pack_ctx_byte(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4536  static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4537  			      const struct ice_ctx_ele *ce_info)
4538  {
4539  	u8 src_byte, dest_byte, mask;
4540  	u8 *from, *dest;
4541  	u16 shift_width;
4542  
4543  	/* copy from the next struct field */
4544  	from = src_ctx + ce_info->offset;
4545  
4546  	/* prepare the bits and mask */
4547  	shift_width = ce_info->lsb % 8;
4548  	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4549  
4550  	src_byte = *from;
4551  	src_byte <<= shift_width;
4552  	src_byte &= mask;
4553  
4554  	/* get the current bits from the target bit string */
4555  	dest = dest_ctx + (ce_info->lsb / 8);
4556  
4557  	memcpy(&dest_byte, dest, sizeof(dest_byte));
4558  
4559  	dest_byte &= ~mask;	/* get the bits not changing */
4560  	dest_byte |= src_byte;	/* add in the new bits */
4561  
4562  	/* put it all back */
4563  	memcpy(dest, &dest_byte, sizeof(dest_byte));
4564  }
4565  
4566  /**
4567   * ice_pack_ctx_word - write a word to a packed context structure
4568   * @src_ctx: unpacked source context structure
4569   * @dest_ctx: packed destination context data
4570   * @ce_info: context element description
4571   */
ice_pack_ctx_word(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4572  static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4573  			      const struct ice_ctx_ele *ce_info)
4574  {
4575  	u16 src_word, mask;
4576  	__le16 dest_word;
4577  	u8 *from, *dest;
4578  	u16 shift_width;
4579  
4580  	/* copy from the next struct field */
4581  	from = src_ctx + ce_info->offset;
4582  
4583  	/* prepare the bits and mask */
4584  	shift_width = ce_info->lsb % 8;
4585  	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4586  
4587  	/* don't swizzle the bits until after the mask because the mask bits
4588  	 * will be in a different bit position on big endian machines
4589  	 */
4590  	src_word = *(u16 *)from;
4591  	src_word <<= shift_width;
4592  	src_word &= mask;
4593  
4594  	/* get the current bits from the target bit string */
4595  	dest = dest_ctx + (ce_info->lsb / 8);
4596  
4597  	memcpy(&dest_word, dest, sizeof(dest_word));
4598  
4599  	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4600  	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4601  
4602  	/* put it all back */
4603  	memcpy(dest, &dest_word, sizeof(dest_word));
4604  }
4605  
4606  /**
4607   * ice_pack_ctx_dword - write a dword to a packed context structure
4608   * @src_ctx: unpacked source context structure
4609   * @dest_ctx: packed destination context data
4610   * @ce_info: context element description
4611   */
ice_pack_ctx_dword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4612  static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4613  			       const struct ice_ctx_ele *ce_info)
4614  {
4615  	u32 src_dword, mask;
4616  	__le32 dest_dword;
4617  	u8 *from, *dest;
4618  	u16 shift_width;
4619  
4620  	/* copy from the next struct field */
4621  	from = src_ctx + ce_info->offset;
4622  
4623  	/* prepare the bits and mask */
4624  	shift_width = ce_info->lsb % 8;
4625  	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4626  
4627  	/* don't swizzle the bits until after the mask because the mask bits
4628  	 * will be in a different bit position on big endian machines
4629  	 */
4630  	src_dword = *(u32 *)from;
4631  	src_dword <<= shift_width;
4632  	src_dword &= mask;
4633  
4634  	/* get the current bits from the target bit string */
4635  	dest = dest_ctx + (ce_info->lsb / 8);
4636  
4637  	memcpy(&dest_dword, dest, sizeof(dest_dword));
4638  
4639  	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4640  	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4641  
4642  	/* put it all back */
4643  	memcpy(dest, &dest_dword, sizeof(dest_dword));
4644  }
4645  
4646  /**
4647   * ice_pack_ctx_qword - write a qword to a packed context structure
4648   * @src_ctx: unpacked source context structure
4649   * @dest_ctx: packed destination context data
4650   * @ce_info: context element description
4651   */
ice_pack_ctx_qword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4652  static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4653  			       const struct ice_ctx_ele *ce_info)
4654  {
4655  	u64 src_qword, mask;
4656  	__le64 dest_qword;
4657  	u8 *from, *dest;
4658  	u16 shift_width;
4659  
4660  	/* copy from the next struct field */
4661  	from = src_ctx + ce_info->offset;
4662  
4663  	/* prepare the bits and mask */
4664  	shift_width = ce_info->lsb % 8;
4665  	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4666  
4667  	/* don't swizzle the bits until after the mask because the mask bits
4668  	 * will be in a different bit position on big endian machines
4669  	 */
4670  	src_qword = *(u64 *)from;
4671  	src_qword <<= shift_width;
4672  	src_qword &= mask;
4673  
4674  	/* get the current bits from the target bit string */
4675  	dest = dest_ctx + (ce_info->lsb / 8);
4676  
4677  	memcpy(&dest_qword, dest, sizeof(dest_qword));
4678  
4679  	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4680  	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4681  
4682  	/* put it all back */
4683  	memcpy(dest, &dest_qword, sizeof(dest_qword));
4684  }
4685  
4686  /**
4687   * ice_set_ctx - set context bits in packed structure
4688   * @hw: pointer to the hardware structure
4689   * @src_ctx:  pointer to a generic non-packed context structure
4690   * @dest_ctx: pointer to memory for the packed structure
4691   * @ce_info: List of Rx context elements
4692   */
ice_set_ctx(struct ice_hw * hw,u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4693  int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4694  		const struct ice_ctx_ele *ce_info)
4695  {
4696  	int f;
4697  
4698  	for (f = 0; ce_info[f].width; f++) {
4699  		/* We have to deal with each element of the FW response
4700  		 * using the correct size so that we are correct regardless
4701  		 * of the endianness of the machine.
4702  		 */
4703  		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4704  			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4705  				  f, ce_info[f].width, ce_info[f].size_of);
4706  			continue;
4707  		}
4708  		switch (ce_info[f].size_of) {
4709  		case sizeof(u8):
4710  			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4711  			break;
4712  		case sizeof(u16):
4713  			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4714  			break;
4715  		case sizeof(u32):
4716  			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4717  			break;
4718  		case sizeof(u64):
4719  			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4720  			break;
4721  		default:
4722  			return -EINVAL;
4723  		}
4724  	}
4725  
4726  	return 0;
4727  }
4728  
4729  /**
4730   * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4731   * @hw: pointer to the HW struct
4732   * @vsi_handle: software VSI handle
4733   * @tc: TC number
4734   * @q_handle: software queue handle
4735   */
4736  struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4737  ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4738  {
4739  	struct ice_vsi_ctx *vsi;
4740  	struct ice_q_ctx *q_ctx;
4741  
4742  	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4743  	if (!vsi)
4744  		return NULL;
4745  	if (q_handle >= vsi->num_lan_q_entries[tc])
4746  		return NULL;
4747  	if (!vsi->lan_q_ctx[tc])
4748  		return NULL;
4749  	q_ctx = vsi->lan_q_ctx[tc];
4750  	return &q_ctx[q_handle];
4751  }
4752  
4753  /**
4754   * ice_ena_vsi_txq
4755   * @pi: port information structure
4756   * @vsi_handle: software VSI handle
4757   * @tc: TC number
4758   * @q_handle: software queue handle
4759   * @num_qgrps: Number of added queue groups
4760   * @buf: list of queue groups to be added
4761   * @buf_size: size of buffer for indirect command
4762   * @cd: pointer to command details structure or NULL
4763   *
4764   * This function adds one LAN queue
4765   */
4766  int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4767  ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4768  		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4769  		struct ice_sq_cd *cd)
4770  {
4771  	struct ice_aqc_txsched_elem_data node = { 0 };
4772  	struct ice_sched_node *parent;
4773  	struct ice_q_ctx *q_ctx;
4774  	struct ice_hw *hw;
4775  	int status;
4776  
4777  	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4778  		return -EIO;
4779  
4780  	if (num_qgrps > 1 || buf->num_txqs > 1)
4781  		return -ENOSPC;
4782  
4783  	hw = pi->hw;
4784  
4785  	if (!ice_is_vsi_valid(hw, vsi_handle))
4786  		return -EINVAL;
4787  
4788  	mutex_lock(&pi->sched_lock);
4789  
4790  	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4791  	if (!q_ctx) {
4792  		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4793  			  q_handle);
4794  		status = -EINVAL;
4795  		goto ena_txq_exit;
4796  	}
4797  
4798  	/* find a parent node */
4799  	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4800  					    ICE_SCHED_NODE_OWNER_LAN);
4801  	if (!parent) {
4802  		status = -EINVAL;
4803  		goto ena_txq_exit;
4804  	}
4805  
4806  	buf->parent_teid = parent->info.node_teid;
4807  	node.parent_teid = parent->info.node_teid;
4808  	/* Mark that the values in the "generic" section as valid. The default
4809  	 * value in the "generic" section is zero. This means that :
4810  	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4811  	 * - 0 priority among siblings, indicated by Bit 1-3.
4812  	 * - WFQ, indicated by Bit 4.
4813  	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4814  	 * Bit 5-6.
4815  	 * - Bit 7 is reserved.
4816  	 * Without setting the generic section as valid in valid_sections, the
4817  	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4818  	 */
4819  	buf->txqs[0].info.valid_sections =
4820  		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4821  		ICE_AQC_ELEM_VALID_EIR;
4822  	buf->txqs[0].info.generic = 0;
4823  	buf->txqs[0].info.cir_bw.bw_profile_idx =
4824  		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4825  	buf->txqs[0].info.cir_bw.bw_alloc =
4826  		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4827  	buf->txqs[0].info.eir_bw.bw_profile_idx =
4828  		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4829  	buf->txqs[0].info.eir_bw.bw_alloc =
4830  		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4831  
4832  	/* add the LAN queue */
4833  	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4834  	if (status) {
4835  		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4836  			  le16_to_cpu(buf->txqs[0].txq_id),
4837  			  hw->adminq.sq_last_status);
4838  		goto ena_txq_exit;
4839  	}
4840  
4841  	node.node_teid = buf->txqs[0].q_teid;
4842  	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4843  	q_ctx->q_handle = q_handle;
4844  	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4845  
4846  	/* add a leaf node into scheduler tree queue layer */
4847  	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4848  	if (!status)
4849  		status = ice_sched_replay_q_bw(pi, q_ctx);
4850  
4851  ena_txq_exit:
4852  	mutex_unlock(&pi->sched_lock);
4853  	return status;
4854  }
4855  
4856  /**
4857   * ice_dis_vsi_txq
4858   * @pi: port information structure
4859   * @vsi_handle: software VSI handle
4860   * @tc: TC number
4861   * @num_queues: number of queues
4862   * @q_handles: pointer to software queue handle array
4863   * @q_ids: pointer to the q_id array
4864   * @q_teids: pointer to queue node teids
4865   * @rst_src: if called due to reset, specifies the reset source
4866   * @vmvf_num: the relative VM or VF number that is undergoing the reset
4867   * @cd: pointer to command details structure or NULL
4868   *
4869   * This function removes queues and their corresponding nodes in SW DB
4870   */
4871  int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4872  ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4873  		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4874  		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4875  		struct ice_sq_cd *cd)
4876  {
4877  	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4878  	u16 i, buf_size = __struct_size(qg_list);
4879  	struct ice_q_ctx *q_ctx;
4880  	int status = -ENOENT;
4881  	struct ice_hw *hw;
4882  
4883  	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4884  		return -EIO;
4885  
4886  	hw = pi->hw;
4887  
4888  	if (!num_queues) {
4889  		/* if queue is disabled already yet the disable queue command
4890  		 * has to be sent to complete the VF reset, then call
4891  		 * ice_aq_dis_lan_txq without any queue information
4892  		 */
4893  		if (rst_src)
4894  			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4895  						  vmvf_num, NULL);
4896  		return -EIO;
4897  	}
4898  
4899  	mutex_lock(&pi->sched_lock);
4900  
4901  	for (i = 0; i < num_queues; i++) {
4902  		struct ice_sched_node *node;
4903  
4904  		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4905  		if (!node)
4906  			continue;
4907  		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4908  		if (!q_ctx) {
4909  			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4910  				  q_handles[i]);
4911  			continue;
4912  		}
4913  		if (q_ctx->q_handle != q_handles[i]) {
4914  			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4915  				  q_ctx->q_handle, q_handles[i]);
4916  			continue;
4917  		}
4918  		qg_list->parent_teid = node->info.parent_teid;
4919  		qg_list->num_qs = 1;
4920  		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4921  		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4922  					    vmvf_num, cd);
4923  
4924  		if (status)
4925  			break;
4926  		ice_free_sched_node(pi, node);
4927  		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4928  		q_ctx->q_teid = ICE_INVAL_TEID;
4929  	}
4930  	mutex_unlock(&pi->sched_lock);
4931  	return status;
4932  }
4933  
4934  /**
4935   * ice_cfg_vsi_qs - configure the new/existing VSI queues
4936   * @pi: port information structure
4937   * @vsi_handle: software VSI handle
4938   * @tc_bitmap: TC bitmap
4939   * @maxqs: max queues array per TC
4940   * @owner: LAN or RDMA
4941   *
4942   * This function adds/updates the VSI queues per TC.
4943   */
4944  static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)4945  ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4946  	       u16 *maxqs, u8 owner)
4947  {
4948  	int status = 0;
4949  	u8 i;
4950  
4951  	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4952  		return -EIO;
4953  
4954  	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4955  		return -EINVAL;
4956  
4957  	mutex_lock(&pi->sched_lock);
4958  
4959  	ice_for_each_traffic_class(i) {
4960  		/* configuration is possible only if TC node is present */
4961  		if (!ice_sched_get_tc_node(pi, i))
4962  			continue;
4963  
4964  		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4965  					   ice_is_tc_ena(tc_bitmap, i));
4966  		if (status)
4967  			break;
4968  	}
4969  
4970  	mutex_unlock(&pi->sched_lock);
4971  	return status;
4972  }
4973  
4974  /**
4975   * ice_cfg_vsi_lan - configure VSI LAN queues
4976   * @pi: port information structure
4977   * @vsi_handle: software VSI handle
4978   * @tc_bitmap: TC bitmap
4979   * @max_lanqs: max LAN queues array per TC
4980   *
4981   * This function adds/updates the VSI LAN queues per TC.
4982   */
4983  int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)4984  ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4985  		u16 *max_lanqs)
4986  {
4987  	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4988  			      ICE_SCHED_NODE_OWNER_LAN);
4989  }
4990  
4991  /**
4992   * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4993   * @pi: port information structure
4994   * @vsi_handle: software VSI handle
4995   * @tc_bitmap: TC bitmap
4996   * @max_rdmaqs: max RDMA queues array per TC
4997   *
4998   * This function adds/updates the VSI RDMA queues per TC.
4999   */
5000  int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)5001  ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5002  		 u16 *max_rdmaqs)
5003  {
5004  	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5005  			      ICE_SCHED_NODE_OWNER_RDMA);
5006  }
5007  
5008  /**
5009   * ice_ena_vsi_rdma_qset
5010   * @pi: port information structure
5011   * @vsi_handle: software VSI handle
5012   * @tc: TC number
5013   * @rdma_qset: pointer to RDMA Qset
5014   * @num_qsets: number of RDMA Qsets
5015   * @qset_teid: pointer to Qset node TEIDs
5016   *
5017   * This function adds RDMA Qset
5018   */
5019  int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)5020  ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5021  		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5022  {
5023  	struct ice_aqc_txsched_elem_data node = { 0 };
5024  	struct ice_aqc_add_rdma_qset_data *buf;
5025  	struct ice_sched_node *parent;
5026  	struct ice_hw *hw;
5027  	u16 i, buf_size;
5028  	int ret;
5029  
5030  	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5031  		return -EIO;
5032  	hw = pi->hw;
5033  
5034  	if (!ice_is_vsi_valid(hw, vsi_handle))
5035  		return -EINVAL;
5036  
5037  	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5038  	buf = kzalloc(buf_size, GFP_KERNEL);
5039  	if (!buf)
5040  		return -ENOMEM;
5041  	mutex_lock(&pi->sched_lock);
5042  
5043  	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5044  					    ICE_SCHED_NODE_OWNER_RDMA);
5045  	if (!parent) {
5046  		ret = -EINVAL;
5047  		goto rdma_error_exit;
5048  	}
5049  	buf->parent_teid = parent->info.node_teid;
5050  	node.parent_teid = parent->info.node_teid;
5051  
5052  	buf->num_qsets = cpu_to_le16(num_qsets);
5053  	for (i = 0; i < num_qsets; i++) {
5054  		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5055  		buf->rdma_qsets[i].info.valid_sections =
5056  			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5057  			ICE_AQC_ELEM_VALID_EIR;
5058  		buf->rdma_qsets[i].info.generic = 0;
5059  		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5060  			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5061  		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5062  			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5063  		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5064  			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5065  		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5066  			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5067  	}
5068  	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5069  	if (ret) {
5070  		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5071  		goto rdma_error_exit;
5072  	}
5073  	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5074  	for (i = 0; i < num_qsets; i++) {
5075  		node.node_teid = buf->rdma_qsets[i].qset_teid;
5076  		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5077  					 &node, NULL);
5078  		if (ret)
5079  			break;
5080  		qset_teid[i] = le32_to_cpu(node.node_teid);
5081  	}
5082  rdma_error_exit:
5083  	mutex_unlock(&pi->sched_lock);
5084  	kfree(buf);
5085  	return ret;
5086  }
5087  
5088  /**
5089   * ice_dis_vsi_rdma_qset - free RDMA resources
5090   * @pi: port_info struct
5091   * @count: number of RDMA Qsets to free
5092   * @qset_teid: TEID of Qset node
5093   * @q_id: list of queue IDs being disabled
5094   */
5095  int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)5096  ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5097  		      u16 *q_id)
5098  {
5099  	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5100  	u16 qg_size = __struct_size(qg_list);
5101  	struct ice_hw *hw;
5102  	int status = 0;
5103  	int i;
5104  
5105  	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5106  		return -EIO;
5107  
5108  	hw = pi->hw;
5109  
5110  	mutex_lock(&pi->sched_lock);
5111  
5112  	for (i = 0; i < count; i++) {
5113  		struct ice_sched_node *node;
5114  
5115  		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5116  		if (!node)
5117  			continue;
5118  
5119  		qg_list->parent_teid = node->info.parent_teid;
5120  		qg_list->num_qs = 1;
5121  		qg_list->q_id[0] =
5122  			cpu_to_le16(q_id[i] |
5123  				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5124  
5125  		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5126  					    ICE_NO_RESET, 0, NULL);
5127  		if (status)
5128  			break;
5129  
5130  		ice_free_sched_node(pi, node);
5131  	}
5132  
5133  	mutex_unlock(&pi->sched_lock);
5134  	return status;
5135  }
5136  
5137  /**
5138   * ice_aq_get_cgu_abilities - get cgu abilities
5139   * @hw: pointer to the HW struct
5140   * @abilities: CGU abilities
5141   *
5142   * Get CGU abilities (0x0C61)
5143   * Return: 0 on success or negative value on failure.
5144   */
5145  int
ice_aq_get_cgu_abilities(struct ice_hw * hw,struct ice_aqc_get_cgu_abilities * abilities)5146  ice_aq_get_cgu_abilities(struct ice_hw *hw,
5147  			 struct ice_aqc_get_cgu_abilities *abilities)
5148  {
5149  	struct ice_aq_desc desc;
5150  
5151  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5152  	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5153  }
5154  
5155  /**
5156   * ice_aq_set_input_pin_cfg - set input pin config
5157   * @hw: pointer to the HW struct
5158   * @input_idx: Input index
5159   * @flags1: Input flags
5160   * @flags2: Input flags
5161   * @freq: Frequency in Hz
5162   * @phase_delay: Delay in ps
5163   *
5164   * Set CGU input config (0x0C62)
5165   * Return: 0 on success or negative value on failure.
5166   */
5167  int
ice_aq_set_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 flags1,u8 flags2,u32 freq,s32 phase_delay)5168  ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5169  			 u32 freq, s32 phase_delay)
5170  {
5171  	struct ice_aqc_set_cgu_input_config *cmd;
5172  	struct ice_aq_desc desc;
5173  
5174  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5175  	cmd = &desc.params.set_cgu_input_config;
5176  	cmd->input_idx = input_idx;
5177  	cmd->flags1 = flags1;
5178  	cmd->flags2 = flags2;
5179  	cmd->freq = cpu_to_le32(freq);
5180  	cmd->phase_delay = cpu_to_le32(phase_delay);
5181  
5182  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5183  }
5184  
5185  /**
5186   * ice_aq_get_input_pin_cfg - get input pin config
5187   * @hw: pointer to the HW struct
5188   * @input_idx: Input index
5189   * @status: Pin status
5190   * @type: Pin type
5191   * @flags1: Input flags
5192   * @flags2: Input flags
5193   * @freq: Frequency in Hz
5194   * @phase_delay: Delay in ps
5195   *
5196   * Get CGU input config (0x0C63)
5197   * Return: 0 on success or negative value on failure.
5198   */
5199  int
ice_aq_get_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 * status,u8 * type,u8 * flags1,u8 * flags2,u32 * freq,s32 * phase_delay)5200  ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5201  			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5202  {
5203  	struct ice_aqc_get_cgu_input_config *cmd;
5204  	struct ice_aq_desc desc;
5205  	int ret;
5206  
5207  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5208  	cmd = &desc.params.get_cgu_input_config;
5209  	cmd->input_idx = input_idx;
5210  
5211  	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5212  	if (!ret) {
5213  		if (status)
5214  			*status = cmd->status;
5215  		if (type)
5216  			*type = cmd->type;
5217  		if (flags1)
5218  			*flags1 = cmd->flags1;
5219  		if (flags2)
5220  			*flags2 = cmd->flags2;
5221  		if (freq)
5222  			*freq = le32_to_cpu(cmd->freq);
5223  		if (phase_delay)
5224  			*phase_delay = le32_to_cpu(cmd->phase_delay);
5225  	}
5226  
5227  	return ret;
5228  }
5229  
5230  /**
5231   * ice_aq_set_output_pin_cfg - set output pin config
5232   * @hw: pointer to the HW struct
5233   * @output_idx: Output index
5234   * @flags: Output flags
5235   * @src_sel: Index of DPLL block
5236   * @freq: Output frequency
5237   * @phase_delay: Output phase compensation
5238   *
5239   * Set CGU output config (0x0C64)
5240   * Return: 0 on success or negative value on failure.
5241   */
5242  int
ice_aq_set_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 flags,u8 src_sel,u32 freq,s32 phase_delay)5243  ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5244  			  u8 src_sel, u32 freq, s32 phase_delay)
5245  {
5246  	struct ice_aqc_set_cgu_output_config *cmd;
5247  	struct ice_aq_desc desc;
5248  
5249  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5250  	cmd = &desc.params.set_cgu_output_config;
5251  	cmd->output_idx = output_idx;
5252  	cmd->flags = flags;
5253  	cmd->src_sel = src_sel;
5254  	cmd->freq = cpu_to_le32(freq);
5255  	cmd->phase_delay = cpu_to_le32(phase_delay);
5256  
5257  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5258  }
5259  
5260  /**
5261   * ice_aq_get_output_pin_cfg - get output pin config
5262   * @hw: pointer to the HW struct
5263   * @output_idx: Output index
5264   * @flags: Output flags
5265   * @src_sel: Internal DPLL source
5266   * @freq: Output frequency
5267   * @src_freq: Source frequency
5268   *
5269   * Get CGU output config (0x0C65)
5270   * Return: 0 on success or negative value on failure.
5271   */
5272  int
ice_aq_get_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 * flags,u8 * src_sel,u32 * freq,u32 * src_freq)5273  ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5274  			  u8 *src_sel, u32 *freq, u32 *src_freq)
5275  {
5276  	struct ice_aqc_get_cgu_output_config *cmd;
5277  	struct ice_aq_desc desc;
5278  	int ret;
5279  
5280  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5281  	cmd = &desc.params.get_cgu_output_config;
5282  	cmd->output_idx = output_idx;
5283  
5284  	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5285  	if (!ret) {
5286  		if (flags)
5287  			*flags = cmd->flags;
5288  		if (src_sel)
5289  			*src_sel = cmd->src_sel;
5290  		if (freq)
5291  			*freq = le32_to_cpu(cmd->freq);
5292  		if (src_freq)
5293  			*src_freq = le32_to_cpu(cmd->src_freq);
5294  	}
5295  
5296  	return ret;
5297  }
5298  
5299  /**
5300   * ice_aq_get_cgu_dpll_status - get dpll status
5301   * @hw: pointer to the HW struct
5302   * @dpll_num: DPLL index
5303   * @ref_state: Reference clock state
5304   * @config: current DPLL config
5305   * @dpll_state: current DPLL state
5306   * @phase_offset: Phase offset in ns
5307   * @eec_mode: EEC_mode
5308   *
5309   * Get CGU DPLL status (0x0C66)
5310   * Return: 0 on success or negative value on failure.
5311   */
5312  int
ice_aq_get_cgu_dpll_status(struct ice_hw * hw,u8 dpll_num,u8 * ref_state,u8 * dpll_state,u8 * config,s64 * phase_offset,u8 * eec_mode)5313  ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5314  			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5315  			   u8 *eec_mode)
5316  {
5317  	struct ice_aqc_get_cgu_dpll_status *cmd;
5318  	struct ice_aq_desc desc;
5319  	int status;
5320  
5321  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5322  	cmd = &desc.params.get_cgu_dpll_status;
5323  	cmd->dpll_num = dpll_num;
5324  
5325  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5326  	if (!status) {
5327  		*ref_state = cmd->ref_state;
5328  		*dpll_state = cmd->dpll_state;
5329  		*config = cmd->config;
5330  		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5331  		*phase_offset <<= 32;
5332  		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5333  		*phase_offset = sign_extend64(*phase_offset, 47);
5334  		*eec_mode = cmd->eec_mode;
5335  	}
5336  
5337  	return status;
5338  }
5339  
5340  /**
5341   * ice_aq_set_cgu_dpll_config - set dpll config
5342   * @hw: pointer to the HW struct
5343   * @dpll_num: DPLL index
5344   * @ref_state: Reference clock state
5345   * @config: DPLL config
5346   * @eec_mode: EEC mode
5347   *
5348   * Set CGU DPLL config (0x0C67)
5349   * Return: 0 on success or negative value on failure.
5350   */
5351  int
ice_aq_set_cgu_dpll_config(struct ice_hw * hw,u8 dpll_num,u8 ref_state,u8 config,u8 eec_mode)5352  ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5353  			   u8 config, u8 eec_mode)
5354  {
5355  	struct ice_aqc_set_cgu_dpll_config *cmd;
5356  	struct ice_aq_desc desc;
5357  
5358  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5359  	cmd = &desc.params.set_cgu_dpll_config;
5360  	cmd->dpll_num = dpll_num;
5361  	cmd->ref_state = ref_state;
5362  	cmd->config = config;
5363  	cmd->eec_mode = eec_mode;
5364  
5365  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5366  }
5367  
5368  /**
5369   * ice_aq_set_cgu_ref_prio - set input reference priority
5370   * @hw: pointer to the HW struct
5371   * @dpll_num: DPLL index
5372   * @ref_idx: Reference pin index
5373   * @ref_priority: Reference input priority
5374   *
5375   * Set CGU reference priority (0x0C68)
5376   * Return: 0 on success or negative value on failure.
5377   */
5378  int
ice_aq_set_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 ref_priority)5379  ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5380  			u8 ref_priority)
5381  {
5382  	struct ice_aqc_set_cgu_ref_prio *cmd;
5383  	struct ice_aq_desc desc;
5384  
5385  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5386  	cmd = &desc.params.set_cgu_ref_prio;
5387  	cmd->dpll_num = dpll_num;
5388  	cmd->ref_idx = ref_idx;
5389  	cmd->ref_priority = ref_priority;
5390  
5391  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5392  }
5393  
5394  /**
5395   * ice_aq_get_cgu_ref_prio - get input reference priority
5396   * @hw: pointer to the HW struct
5397   * @dpll_num: DPLL index
5398   * @ref_idx: Reference pin index
5399   * @ref_prio: Reference input priority
5400   *
5401   * Get CGU reference priority (0x0C69)
5402   * Return: 0 on success or negative value on failure.
5403   */
5404  int
ice_aq_get_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 * ref_prio)5405  ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5406  			u8 *ref_prio)
5407  {
5408  	struct ice_aqc_get_cgu_ref_prio *cmd;
5409  	struct ice_aq_desc desc;
5410  	int status;
5411  
5412  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5413  	cmd = &desc.params.get_cgu_ref_prio;
5414  	cmd->dpll_num = dpll_num;
5415  	cmd->ref_idx = ref_idx;
5416  
5417  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5418  	if (!status)
5419  		*ref_prio = cmd->ref_priority;
5420  
5421  	return status;
5422  }
5423  
5424  /**
5425   * ice_aq_get_cgu_info - get cgu info
5426   * @hw: pointer to the HW struct
5427   * @cgu_id: CGU ID
5428   * @cgu_cfg_ver: CGU config version
5429   * @cgu_fw_ver: CGU firmware version
5430   *
5431   * Get CGU info (0x0C6A)
5432   * Return: 0 on success or negative value on failure.
5433   */
5434  int
ice_aq_get_cgu_info(struct ice_hw * hw,u32 * cgu_id,u32 * cgu_cfg_ver,u32 * cgu_fw_ver)5435  ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5436  		    u32 *cgu_fw_ver)
5437  {
5438  	struct ice_aqc_get_cgu_info *cmd;
5439  	struct ice_aq_desc desc;
5440  	int status;
5441  
5442  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5443  	cmd = &desc.params.get_cgu_info;
5444  
5445  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5446  	if (!status) {
5447  		*cgu_id = le32_to_cpu(cmd->cgu_id);
5448  		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5449  		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5450  	}
5451  
5452  	return status;
5453  }
5454  
5455  /**
5456   * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5457   * @hw: pointer to the HW struct
5458   * @phy_output: PHY reference clock output pin
5459   * @enable: GPIO state to be applied
5460   * @freq: PHY output frequency
5461   *
5462   * Set phy recovered clock as reference (0x0630)
5463   * Return: 0 on success or negative value on failure.
5464   */
5465  int
ice_aq_set_phy_rec_clk_out(struct ice_hw * hw,u8 phy_output,bool enable,u32 * freq)5466  ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5467  			   u32 *freq)
5468  {
5469  	struct ice_aqc_set_phy_rec_clk_out *cmd;
5470  	struct ice_aq_desc desc;
5471  	int status;
5472  
5473  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5474  	cmd = &desc.params.set_phy_rec_clk_out;
5475  	cmd->phy_output = phy_output;
5476  	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5477  	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5478  	cmd->freq = cpu_to_le32(*freq);
5479  
5480  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5481  	if (!status)
5482  		*freq = le32_to_cpu(cmd->freq);
5483  
5484  	return status;
5485  }
5486  
5487  /**
5488   * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5489   * @hw: pointer to the HW struct
5490   * @phy_output: PHY reference clock output pin
5491   * @port_num: Port number
5492   * @flags: PHY flags
5493   * @node_handle: PHY output frequency
5494   *
5495   * Get PHY recovered clock output info (0x0631)
5496   * Return: 0 on success or negative value on failure.
5497   */
5498  int
ice_aq_get_phy_rec_clk_out(struct ice_hw * hw,u8 * phy_output,u8 * port_num,u8 * flags,u16 * node_handle)5499  ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5500  			   u8 *flags, u16 *node_handle)
5501  {
5502  	struct ice_aqc_get_phy_rec_clk_out *cmd;
5503  	struct ice_aq_desc desc;
5504  	int status;
5505  
5506  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5507  	cmd = &desc.params.get_phy_rec_clk_out;
5508  	cmd->phy_output = *phy_output;
5509  
5510  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5511  	if (!status) {
5512  		*phy_output = cmd->phy_output;
5513  		if (port_num)
5514  			*port_num = cmd->port_num;
5515  		if (flags)
5516  			*flags = cmd->flags;
5517  		if (node_handle)
5518  			*node_handle = le16_to_cpu(cmd->node_handle);
5519  	}
5520  
5521  	return status;
5522  }
5523  
5524  /**
5525   * ice_aq_get_sensor_reading
5526   * @hw: pointer to the HW struct
5527   * @data: pointer to data to be read from the sensor
5528   *
5529   * Get sensor reading (0x0632)
5530   */
ice_aq_get_sensor_reading(struct ice_hw * hw,struct ice_aqc_get_sensor_reading_resp * data)5531  int ice_aq_get_sensor_reading(struct ice_hw *hw,
5532  			      struct ice_aqc_get_sensor_reading_resp *data)
5533  {
5534  	struct ice_aqc_get_sensor_reading *cmd;
5535  	struct ice_aq_desc desc;
5536  	int status;
5537  
5538  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5539  	cmd = &desc.params.get_sensor_reading;
5540  #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5541  #define ICE_INTERNAL_TEMP_SENSOR	0
5542  	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5543  	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5544  
5545  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5546  	if (!status)
5547  		memcpy(data, &desc.params.get_sensor_reading_resp,
5548  		       sizeof(*data));
5549  
5550  	return status;
5551  }
5552  
5553  /**
5554   * ice_replay_pre_init - replay pre initialization
5555   * @hw: pointer to the HW struct
5556   *
5557   * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5558   */
ice_replay_pre_init(struct ice_hw * hw)5559  static int ice_replay_pre_init(struct ice_hw *hw)
5560  {
5561  	struct ice_switch_info *sw = hw->switch_info;
5562  	u8 i;
5563  
5564  	/* Delete old entries from replay filter list head if there is any */
5565  	ice_rm_all_sw_replay_rule_info(hw);
5566  	/* In start of replay, move entries into replay_rules list, it
5567  	 * will allow adding rules entries back to filt_rules list,
5568  	 * which is operational list.
5569  	 */
5570  	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5571  		list_replace_init(&sw->recp_list[i].filt_rules,
5572  				  &sw->recp_list[i].filt_replay_rules);
5573  	ice_sched_replay_agg_vsi_preinit(hw);
5574  
5575  	return 0;
5576  }
5577  
5578  /**
5579   * ice_replay_vsi - replay VSI configuration
5580   * @hw: pointer to the HW struct
5581   * @vsi_handle: driver VSI handle
5582   *
5583   * Restore all VSI configuration after reset. It is required to call this
5584   * function with main VSI first.
5585   */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5586  int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5587  {
5588  	int status;
5589  
5590  	if (!ice_is_vsi_valid(hw, vsi_handle))
5591  		return -EINVAL;
5592  
5593  	/* Replay pre-initialization if there is any */
5594  	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5595  		status = ice_replay_pre_init(hw);
5596  		if (status)
5597  			return status;
5598  	}
5599  	/* Replay per VSI all RSS configurations */
5600  	status = ice_replay_rss_cfg(hw, vsi_handle);
5601  	if (status)
5602  		return status;
5603  	/* Replay per VSI all filters */
5604  	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5605  	if (!status)
5606  		status = ice_replay_vsi_agg(hw, vsi_handle);
5607  	return status;
5608  }
5609  
5610  /**
5611   * ice_replay_post - post replay configuration cleanup
5612   * @hw: pointer to the HW struct
5613   *
5614   * Post replay cleanup.
5615   */
ice_replay_post(struct ice_hw * hw)5616  void ice_replay_post(struct ice_hw *hw)
5617  {
5618  	/* Delete old entries from replay filter list head */
5619  	ice_rm_all_sw_replay_rule_info(hw);
5620  	ice_sched_replay_agg(hw);
5621  }
5622  
5623  /**
5624   * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5625   * @hw: ptr to the hardware info
5626   * @reg: offset of 64 bit HW register to read from
5627   * @prev_stat_loaded: bool to specify if previous stats are loaded
5628   * @prev_stat: ptr to previous loaded stat value
5629   * @cur_stat: ptr to current stat value
5630   */
5631  void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5632  ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5633  		  u64 *prev_stat, u64 *cur_stat)
5634  {
5635  	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5636  
5637  	/* device stats are not reset at PFR, they likely will not be zeroed
5638  	 * when the driver starts. Thus, save the value from the first read
5639  	 * without adding to the statistic value so that we report stats which
5640  	 * count up from zero.
5641  	 */
5642  	if (!prev_stat_loaded) {
5643  		*prev_stat = new_data;
5644  		return;
5645  	}
5646  
5647  	/* Calculate the difference between the new and old values, and then
5648  	 * add it to the software stat value.
5649  	 */
5650  	if (new_data >= *prev_stat)
5651  		*cur_stat += new_data - *prev_stat;
5652  	else
5653  		/* to manage the potential roll-over */
5654  		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5655  
5656  	/* Update the previously stored value to prepare for next read */
5657  	*prev_stat = new_data;
5658  }
5659  
5660  /**
5661   * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5662   * @hw: ptr to the hardware info
5663   * @reg: offset of HW register to read from
5664   * @prev_stat_loaded: bool to specify if previous stats are loaded
5665   * @prev_stat: ptr to previous loaded stat value
5666   * @cur_stat: ptr to current stat value
5667   */
5668  void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5669  ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5670  		  u64 *prev_stat, u64 *cur_stat)
5671  {
5672  	u32 new_data;
5673  
5674  	new_data = rd32(hw, reg);
5675  
5676  	/* device stats are not reset at PFR, they likely will not be zeroed
5677  	 * when the driver starts. Thus, save the value from the first read
5678  	 * without adding to the statistic value so that we report stats which
5679  	 * count up from zero.
5680  	 */
5681  	if (!prev_stat_loaded) {
5682  		*prev_stat = new_data;
5683  		return;
5684  	}
5685  
5686  	/* Calculate the difference between the new and old values, and then
5687  	 * add it to the software stat value.
5688  	 */
5689  	if (new_data >= *prev_stat)
5690  		*cur_stat += new_data - *prev_stat;
5691  	else
5692  		/* to manage the potential roll-over */
5693  		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5694  
5695  	/* Update the previously stored value to prepare for next read */
5696  	*prev_stat = new_data;
5697  }
5698  
5699  /**
5700   * ice_sched_query_elem - query element information from HW
5701   * @hw: pointer to the HW struct
5702   * @node_teid: node TEID to be queried
5703   * @buf: buffer to element information
5704   *
5705   * This function queries HW element information
5706   */
5707  int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5708  ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5709  		     struct ice_aqc_txsched_elem_data *buf)
5710  {
5711  	u16 buf_size, num_elem_ret = 0;
5712  	int status;
5713  
5714  	buf_size = sizeof(*buf);
5715  	memset(buf, 0, buf_size);
5716  	buf->node_teid = cpu_to_le32(node_teid);
5717  	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5718  					  NULL);
5719  	if (status || num_elem_ret != 1)
5720  		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5721  	return status;
5722  }
5723  
5724  /**
5725   * ice_aq_read_i2c
5726   * @hw: pointer to the hw struct
5727   * @topo_addr: topology address for a device to communicate with
5728   * @bus_addr: 7-bit I2C bus address
5729   * @addr: I2C memory address (I2C offset) with up to 16 bits
5730   * @params: I2C parameters: bit [7] - Repeated start,
5731   *			    bits [6:5] data offset size,
5732   *			    bit [4] - I2C address type,
5733   *			    bits [3:0] - data size to read (0-16 bytes)
5734   * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5735   * @cd: pointer to command details structure or NULL
5736   *
5737   * Read I2C (0x06E2)
5738   */
5739  int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5740  ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5741  		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5742  		struct ice_sq_cd *cd)
5743  {
5744  	struct ice_aq_desc desc = { 0 };
5745  	struct ice_aqc_i2c *cmd;
5746  	u8 data_size;
5747  	int status;
5748  
5749  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5750  	cmd = &desc.params.read_write_i2c;
5751  
5752  	if (!data)
5753  		return -EINVAL;
5754  
5755  	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5756  
5757  	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5758  	cmd->topo_addr = topo_addr;
5759  	cmd->i2c_params = params;
5760  	cmd->i2c_addr = addr;
5761  
5762  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5763  	if (!status) {
5764  		struct ice_aqc_read_i2c_resp *resp;
5765  		u8 i;
5766  
5767  		resp = &desc.params.read_i2c_resp;
5768  		for (i = 0; i < data_size; i++) {
5769  			*data = resp->i2c_data[i];
5770  			data++;
5771  		}
5772  	}
5773  
5774  	return status;
5775  }
5776  
5777  /**
5778   * ice_aq_write_i2c
5779   * @hw: pointer to the hw struct
5780   * @topo_addr: topology address for a device to communicate with
5781   * @bus_addr: 7-bit I2C bus address
5782   * @addr: I2C memory address (I2C offset) with up to 16 bits
5783   * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5784   * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5785   * @cd: pointer to command details structure or NULL
5786   *
5787   * Write I2C (0x06E3)
5788   *
5789   * * Return:
5790   * * 0             - Successful write to the i2c device
5791   * * -EINVAL       - Data size greater than 4 bytes
5792   * * -EIO          - FW error
5793   */
5794  int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)5795  ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5796  		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5797  		 struct ice_sq_cd *cd)
5798  {
5799  	struct ice_aq_desc desc = { 0 };
5800  	struct ice_aqc_i2c *cmd;
5801  	u8 data_size;
5802  
5803  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5804  	cmd = &desc.params.read_write_i2c;
5805  
5806  	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5807  
5808  	/* data_size limited to 4 */
5809  	if (data_size > 4)
5810  		return -EINVAL;
5811  
5812  	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5813  	cmd->topo_addr = topo_addr;
5814  	cmd->i2c_params = params;
5815  	cmd->i2c_addr = addr;
5816  
5817  	memcpy(cmd->i2c_data, data, data_size);
5818  
5819  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5820  }
5821  
5822  /**
5823   * ice_aq_set_gpio
5824   * @hw: pointer to the hw struct
5825   * @gpio_ctrl_handle: GPIO controller node handle
5826   * @pin_idx: IO Number of the GPIO that needs to be set
5827   * @value: SW provide IO value to set in the LSB
5828   * @cd: pointer to command details structure or NULL
5829   *
5830   * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5831   */
5832  int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)5833  ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5834  		struct ice_sq_cd *cd)
5835  {
5836  	struct ice_aqc_gpio *cmd;
5837  	struct ice_aq_desc desc;
5838  
5839  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5840  	cmd = &desc.params.read_write_gpio;
5841  	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5842  	cmd->gpio_num = pin_idx;
5843  	cmd->gpio_val = value ? 1 : 0;
5844  
5845  	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5846  }
5847  
5848  /**
5849   * ice_aq_get_gpio
5850   * @hw: pointer to the hw struct
5851   * @gpio_ctrl_handle: GPIO controller node handle
5852   * @pin_idx: IO Number of the GPIO that needs to be set
5853   * @value: IO value read
5854   * @cd: pointer to command details structure or NULL
5855   *
5856   * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5857   * the topology
5858   */
5859  int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)5860  ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5861  		bool *value, struct ice_sq_cd *cd)
5862  {
5863  	struct ice_aqc_gpio *cmd;
5864  	struct ice_aq_desc desc;
5865  	int status;
5866  
5867  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5868  	cmd = &desc.params.read_write_gpio;
5869  	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5870  	cmd->gpio_num = pin_idx;
5871  
5872  	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5873  	if (status)
5874  		return status;
5875  
5876  	*value = !!cmd->gpio_val;
5877  	return 0;
5878  }
5879  
5880  /**
5881   * ice_is_fw_api_min_ver
5882   * @hw: pointer to the hardware structure
5883   * @maj: major version
5884   * @min: minor version
5885   * @patch: patch version
5886   *
5887   * Checks if the firmware API is minimum version
5888   */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)5889  static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5890  {
5891  	if (hw->api_maj_ver == maj) {
5892  		if (hw->api_min_ver > min)
5893  			return true;
5894  		if (hw->api_min_ver == min && hw->api_patch >= patch)
5895  			return true;
5896  	} else if (hw->api_maj_ver > maj) {
5897  		return true;
5898  	}
5899  
5900  	return false;
5901  }
5902  
5903  /**
5904   * ice_fw_supports_link_override
5905   * @hw: pointer to the hardware structure
5906   *
5907   * Checks if the firmware supports link override
5908   */
ice_fw_supports_link_override(struct ice_hw * hw)5909  bool ice_fw_supports_link_override(struct ice_hw *hw)
5910  {
5911  	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5912  				     ICE_FW_API_LINK_OVERRIDE_MIN,
5913  				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5914  }
5915  
5916  /**
5917   * ice_get_link_default_override
5918   * @ldo: pointer to the link default override struct
5919   * @pi: pointer to the port info struct
5920   *
5921   * Gets the link default override for a port
5922   */
5923  int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)5924  ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5925  			      struct ice_port_info *pi)
5926  {
5927  	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5928  	struct ice_hw *hw = pi->hw;
5929  	int status;
5930  
5931  	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5932  					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5933  	if (status) {
5934  		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5935  		return status;
5936  	}
5937  
5938  	/* Each port has its own config; calculate for our port */
5939  	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5940  		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5941  
5942  	/* link options first */
5943  	status = ice_read_sr_word(hw, tlv_start, &buf);
5944  	if (status) {
5945  		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5946  		return status;
5947  	}
5948  	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5949  	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5950  		ICE_LINK_OVERRIDE_PHY_CFG_S;
5951  
5952  	/* link PHY config */
5953  	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5954  	status = ice_read_sr_word(hw, offset, &buf);
5955  	if (status) {
5956  		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5957  		return status;
5958  	}
5959  	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5960  
5961  	/* PHY types low */
5962  	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5963  	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5964  		status = ice_read_sr_word(hw, (offset + i), &buf);
5965  		if (status) {
5966  			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5967  			return status;
5968  		}
5969  		/* shift 16 bits at a time to fill 64 bits */
5970  		ldo->phy_type_low |= ((u64)buf << (i * 16));
5971  	}
5972  
5973  	/* PHY types high */
5974  	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5975  		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5976  	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5977  		status = ice_read_sr_word(hw, (offset + i), &buf);
5978  		if (status) {
5979  			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5980  			return status;
5981  		}
5982  		/* shift 16 bits at a time to fill 64 bits */
5983  		ldo->phy_type_high |= ((u64)buf << (i * 16));
5984  	}
5985  
5986  	return status;
5987  }
5988  
5989  /**
5990   * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5991   * @caps: get PHY capability data
5992   */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)5993  bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5994  {
5995  	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5996  	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5997  				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5998  				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5999  		return true;
6000  
6001  	return false;
6002  }
6003  
6004  /**
6005   * ice_aq_set_lldp_mib - Set the LLDP MIB
6006   * @hw: pointer to the HW struct
6007   * @mib_type: Local, Remote or both Local and Remote MIBs
6008   * @buf: pointer to the caller-supplied buffer to store the MIB block
6009   * @buf_size: size of the buffer (in bytes)
6010   * @cd: pointer to command details structure or NULL
6011   *
6012   * Set the LLDP MIB. (0x0A08)
6013   */
6014  int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)6015  ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6016  		    struct ice_sq_cd *cd)
6017  {
6018  	struct ice_aqc_lldp_set_local_mib *cmd;
6019  	struct ice_aq_desc desc;
6020  
6021  	cmd = &desc.params.lldp_set_mib;
6022  
6023  	if (buf_size == 0 || !buf)
6024  		return -EINVAL;
6025  
6026  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6027  
6028  	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6029  	desc.datalen = cpu_to_le16(buf_size);
6030  
6031  	cmd->type = mib_type;
6032  	cmd->length = cpu_to_le16(buf_size);
6033  
6034  	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6035  }
6036  
6037  /**
6038   * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6039   * @hw: pointer to HW struct
6040   */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)6041  bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6042  {
6043  	if (hw->mac_type != ICE_MAC_E810)
6044  		return false;
6045  
6046  	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6047  				     ICE_FW_API_LLDP_FLTR_MIN,
6048  				     ICE_FW_API_LLDP_FLTR_PATCH);
6049  }
6050  
6051  /**
6052   * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6053   * @hw: pointer to HW struct
6054   * @vsi_num: absolute HW index for VSI
6055   * @add: boolean for if adding or removing a filter
6056   */
6057  int
ice_lldp_fltr_add_remove(struct ice_hw * hw,u16 vsi_num,bool add)6058  ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6059  {
6060  	struct ice_aqc_lldp_filter_ctrl *cmd;
6061  	struct ice_aq_desc desc;
6062  
6063  	cmd = &desc.params.lldp_filter_ctrl;
6064  
6065  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6066  
6067  	if (add)
6068  		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6069  	else
6070  		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6071  
6072  	cmd->vsi_num = cpu_to_le16(vsi_num);
6073  
6074  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6075  }
6076  
6077  /**
6078   * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6079   * @hw: pointer to HW struct
6080   */
ice_lldp_execute_pending_mib(struct ice_hw * hw)6081  int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6082  {
6083  	struct ice_aq_desc desc;
6084  
6085  	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6086  
6087  	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6088  }
6089  
6090  /**
6091   * ice_fw_supports_report_dflt_cfg
6092   * @hw: pointer to the hardware structure
6093   *
6094   * Checks if the firmware supports report default configuration
6095   */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)6096  bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6097  {
6098  	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6099  				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6100  				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6101  }
6102  
6103  /* each of the indexes into the following array match the speed of a return
6104   * value from the list of AQ returned speeds like the range:
6105   * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6106   * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6107   * array. The array is defined as 15 elements long because the link_speed
6108   * returned by the firmware is a 16 bit * value, but is indexed
6109   * by [fls(speed) - 1]
6110   */
6111  static const u32 ice_aq_to_link_speed[] = {
6112  	SPEED_10,	/* BIT(0) */
6113  	SPEED_100,
6114  	SPEED_1000,
6115  	SPEED_2500,
6116  	SPEED_5000,
6117  	SPEED_10000,
6118  	SPEED_20000,
6119  	SPEED_25000,
6120  	SPEED_40000,
6121  	SPEED_50000,
6122  	SPEED_100000,	/* BIT(10) */
6123  	SPEED_200000,
6124  };
6125  
6126  /**
6127   * ice_get_link_speed - get integer speed from table
6128   * @index: array index from fls(aq speed) - 1
6129   *
6130   * Returns: u32 value containing integer speed
6131   */
ice_get_link_speed(u16 index)6132  u32 ice_get_link_speed(u16 index)
6133  {
6134  	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6135  		return 0;
6136  
6137  	return ice_aq_to_link_speed[index];
6138  }
6139