1  /*
2   * Copyright (c) 2007, 2020 Oracle and/or its affiliates.
3   *
4   * This software is available to you under a choice of one of two
5   * licenses.  You may choose to be licensed under the terms of the GNU
6   * General Public License (GPL) Version 2, available from the file
7   * COPYING in the main directory of this source tree, or the
8   * OpenIB.org BSD license below:
9   *
10   *     Redistribution and use in source and binary forms, with or
11   *     without modification, are permitted provided that the following
12   *     conditions are met:
13   *
14   *      - Redistributions of source code must retain the above
15   *        copyright notice, this list of conditions and the following
16   *        disclaimer.
17   *
18   *      - Redistributions in binary form must reproduce the above
19   *        copyright notice, this list of conditions and the following
20   *        disclaimer in the documentation and/or other materials
21   *        provided with the distribution.
22   *
23   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30   * SOFTWARE.
31   *
32   */
33  #include <linux/pagemap.h>
34  #include <linux/slab.h>
35  #include <linux/rbtree.h>
36  #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37  
38  #include "rds.h"
39  
40  /*
41   * XXX
42   *  - build with sparse
43   *  - should we detect duplicate keys on a socket?  hmm.
44   *  - an rdma is an mlock, apply rlimit?
45   */
46  
47  /*
48   * get the number of pages by looking at the page indices that the start and
49   * end addresses fall in.
50   *
51   * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
52   * causes the address to wrap or overflows an unsigned int.  This comes
53   * from being stored in the 'length' member of 'struct scatterlist'.
54   */
rds_pages_in_vec(struct rds_iovec * vec)55  static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56  {
57  	if ((vec->addr + vec->bytes <= vec->addr) ||
58  	    (vec->bytes > (u64)UINT_MAX))
59  		return 0;
60  
61  	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62  		(vec->addr >> PAGE_SHIFT);
63  }
64  
rds_mr_tree_walk(struct rb_root * root,u64 key,struct rds_mr * insert)65  static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66  				       struct rds_mr *insert)
67  {
68  	struct rb_node **p = &root->rb_node;
69  	struct rb_node *parent = NULL;
70  	struct rds_mr *mr;
71  
72  	while (*p) {
73  		parent = *p;
74  		mr = rb_entry(parent, struct rds_mr, r_rb_node);
75  
76  		if (key < mr->r_key)
77  			p = &(*p)->rb_left;
78  		else if (key > mr->r_key)
79  			p = &(*p)->rb_right;
80  		else
81  			return mr;
82  	}
83  
84  	if (insert) {
85  		rb_link_node(&insert->r_rb_node, parent, p);
86  		rb_insert_color(&insert->r_rb_node, root);
87  		kref_get(&insert->r_kref);
88  	}
89  	return NULL;
90  }
91  
92  /*
93   * Destroy the transport-specific part of a MR.
94   */
rds_destroy_mr(struct rds_mr * mr)95  static void rds_destroy_mr(struct rds_mr *mr)
96  {
97  	struct rds_sock *rs = mr->r_sock;
98  	void *trans_private = NULL;
99  	unsigned long flags;
100  
101  	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102  		 mr->r_key, kref_read(&mr->r_kref));
103  
104  	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
105  	if (!RB_EMPTY_NODE(&mr->r_rb_node))
106  		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
107  	trans_private = mr->r_trans_private;
108  	mr->r_trans_private = NULL;
109  	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
110  
111  	if (trans_private)
112  		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
113  }
114  
__rds_put_mr_final(struct kref * kref)115  void __rds_put_mr_final(struct kref *kref)
116  {
117  	struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref);
118  
119  	rds_destroy_mr(mr);
120  	kfree(mr);
121  }
122  
123  /*
124   * By the time this is called we can't have any more ioctls called on
125   * the socket so we don't need to worry about racing with others.
126   */
rds_rdma_drop_keys(struct rds_sock * rs)127  void rds_rdma_drop_keys(struct rds_sock *rs)
128  {
129  	struct rds_mr *mr;
130  	struct rb_node *node;
131  	unsigned long flags;
132  
133  	/* Release any MRs associated with this socket */
134  	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
135  	while ((node = rb_first(&rs->rs_rdma_keys))) {
136  		mr = rb_entry(node, struct rds_mr, r_rb_node);
137  		if (mr->r_trans == rs->rs_transport)
138  			mr->r_invalidate = 0;
139  		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
140  		RB_CLEAR_NODE(&mr->r_rb_node);
141  		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
142  		kref_put(&mr->r_kref, __rds_put_mr_final);
143  		spin_lock_irqsave(&rs->rs_rdma_lock, flags);
144  	}
145  	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
146  
147  	if (rs->rs_transport && rs->rs_transport->flush_mrs)
148  		rs->rs_transport->flush_mrs();
149  }
150  
151  /*
152   * Helper function to pin user pages.
153   */
rds_pin_pages(unsigned long user_addr,unsigned int nr_pages,struct page ** pages,int write)154  static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
155  			struct page **pages, int write)
156  {
157  	unsigned int gup_flags = FOLL_LONGTERM;
158  	int ret;
159  
160  	if (write)
161  		gup_flags |= FOLL_WRITE;
162  
163  	ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages);
164  	if (ret >= 0 && ret < nr_pages) {
165  		unpin_user_pages(pages, ret);
166  		ret = -EFAULT;
167  	}
168  
169  	return ret;
170  }
171  
__rds_rdma_map(struct rds_sock * rs,struct rds_get_mr_args * args,u64 * cookie_ret,struct rds_mr ** mr_ret,struct rds_conn_path * cp)172  static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
173  			  u64 *cookie_ret, struct rds_mr **mr_ret,
174  			  struct rds_conn_path *cp)
175  {
176  	struct rds_mr *mr = NULL, *found;
177  	struct scatterlist *sg = NULL;
178  	unsigned int nr_pages;
179  	struct page **pages = NULL;
180  	void *trans_private;
181  	unsigned long flags;
182  	rds_rdma_cookie_t cookie;
183  	unsigned int nents = 0;
184  	int need_odp = 0;
185  	long i;
186  	int ret;
187  
188  	if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
189  		ret = -ENOTCONN; /* XXX not a great errno */
190  		goto out;
191  	}
192  
193  	if (!rs->rs_transport->get_mr) {
194  		ret = -EOPNOTSUPP;
195  		goto out;
196  	}
197  
198  	/* If the combination of the addr and size requested for this memory
199  	 * region causes an integer overflow, return error.
200  	 */
201  	if (((args->vec.addr + args->vec.bytes) < args->vec.addr) ||
202  	    PAGE_ALIGN(args->vec.addr + args->vec.bytes) <
203  		    (args->vec.addr + args->vec.bytes)) {
204  		ret = -EINVAL;
205  		goto out;
206  	}
207  
208  	if (!can_do_mlock()) {
209  		ret = -EPERM;
210  		goto out;
211  	}
212  
213  	nr_pages = rds_pages_in_vec(&args->vec);
214  	if (nr_pages == 0) {
215  		ret = -EINVAL;
216  		goto out;
217  	}
218  
219  	/* Restrict the size of mr irrespective of underlying transport
220  	 * To account for unaligned mr regions, subtract one from nr_pages
221  	 */
222  	if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
223  		ret = -EMSGSIZE;
224  		goto out;
225  	}
226  
227  	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
228  		args->vec.addr, args->vec.bytes, nr_pages);
229  
230  	/* XXX clamp nr_pages to limit the size of this alloc? */
231  	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
232  	if (!pages) {
233  		ret = -ENOMEM;
234  		goto out;
235  	}
236  
237  	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
238  	if (!mr) {
239  		ret = -ENOMEM;
240  		goto out;
241  	}
242  
243  	kref_init(&mr->r_kref);
244  	RB_CLEAR_NODE(&mr->r_rb_node);
245  	mr->r_trans = rs->rs_transport;
246  	mr->r_sock = rs;
247  
248  	if (args->flags & RDS_RDMA_USE_ONCE)
249  		mr->r_use_once = 1;
250  	if (args->flags & RDS_RDMA_INVALIDATE)
251  		mr->r_invalidate = 1;
252  	if (args->flags & RDS_RDMA_READWRITE)
253  		mr->r_write = 1;
254  
255  	/*
256  	 * Pin the pages that make up the user buffer and transfer the page
257  	 * pointers to the mr's sg array.  We check to see if we've mapped
258  	 * the whole region after transferring the partial page references
259  	 * to the sg array so that we can have one page ref cleanup path.
260  	 *
261  	 * For now we have no flag that tells us whether the mapping is
262  	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
263  	 * the zero page.
264  	 */
265  	ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
266  	if (ret == -EOPNOTSUPP) {
267  		need_odp = 1;
268  	} else if (ret <= 0) {
269  		goto out;
270  	} else {
271  		nents = ret;
272  		sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL);
273  		if (!sg) {
274  			ret = -ENOMEM;
275  			goto out;
276  		}
277  		WARN_ON(!nents);
278  		sg_init_table(sg, nents);
279  
280  		/* Stick all pages into the scatterlist */
281  		for (i = 0 ; i < nents; i++)
282  			sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
283  
284  		rdsdebug("RDS: trans_private nents is %u\n", nents);
285  	}
286  	/* Obtain a transport specific MR. If this succeeds, the
287  	 * s/g list is now owned by the MR.
288  	 * Note that dma_map() implies that pending writes are
289  	 * flushed to RAM, so no dma_sync is needed here. */
290  	trans_private = rs->rs_transport->get_mr(
291  		sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL,
292  		args->vec.addr, args->vec.bytes,
293  		need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED);
294  
295  	if (IS_ERR(trans_private)) {
296  		/* In ODP case, we don't GUP pages, so don't need
297  		 * to release anything.
298  		 */
299  		if (!need_odp) {
300  			unpin_user_pages(pages, nr_pages);
301  			kfree(sg);
302  		}
303  		ret = PTR_ERR(trans_private);
304  		/* Trigger connection so that its ready for the next retry */
305  		if (ret == -ENODEV && cp)
306  			rds_conn_connect_if_down(cp->cp_conn);
307  		goto out;
308  	}
309  
310  	mr->r_trans_private = trans_private;
311  
312  	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
313  	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
314  
315  	/* The user may pass us an unaligned address, but we can only
316  	 * map page aligned regions. So we keep the offset, and build
317  	 * a 64bit cookie containing <R_Key, offset> and pass that
318  	 * around. */
319  	if (need_odp)
320  		cookie = rds_rdma_make_cookie(mr->r_key, 0);
321  	else
322  		cookie = rds_rdma_make_cookie(mr->r_key,
323  					      args->vec.addr & ~PAGE_MASK);
324  	if (cookie_ret)
325  		*cookie_ret = cookie;
326  
327  	if (args->cookie_addr &&
328  	    put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) {
329  		if (!need_odp) {
330  			unpin_user_pages(pages, nr_pages);
331  			kfree(sg);
332  		}
333  		ret = -EFAULT;
334  		goto out;
335  	}
336  
337  	/* Inserting the new MR into the rbtree bumps its
338  	 * reference count. */
339  	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
340  	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
341  	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
342  
343  	BUG_ON(found && found != mr);
344  
345  	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
346  	if (mr_ret) {
347  		kref_get(&mr->r_kref);
348  		*mr_ret = mr;
349  	}
350  
351  	ret = 0;
352  out:
353  	kfree(pages);
354  	if (mr)
355  		kref_put(&mr->r_kref, __rds_put_mr_final);
356  	return ret;
357  }
358  
rds_get_mr(struct rds_sock * rs,sockptr_t optval,int optlen)359  int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
360  {
361  	struct rds_get_mr_args args;
362  
363  	if (optlen != sizeof(struct rds_get_mr_args))
364  		return -EINVAL;
365  
366  	if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args)))
367  		return -EFAULT;
368  
369  	return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
370  }
371  
rds_get_mr_for_dest(struct rds_sock * rs,sockptr_t optval,int optlen)372  int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen)
373  {
374  	struct rds_get_mr_for_dest_args args;
375  	struct rds_get_mr_args new_args;
376  
377  	if (optlen != sizeof(struct rds_get_mr_for_dest_args))
378  		return -EINVAL;
379  
380  	if (copy_from_sockptr(&args, optval,
381  			   sizeof(struct rds_get_mr_for_dest_args)))
382  		return -EFAULT;
383  
384  	/*
385  	 * Initially, just behave like get_mr().
386  	 * TODO: Implement get_mr as wrapper around this
387  	 *	 and deprecate it.
388  	 */
389  	new_args.vec = args.vec;
390  	new_args.cookie_addr = args.cookie_addr;
391  	new_args.flags = args.flags;
392  
393  	return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
394  }
395  
396  /*
397   * Free the MR indicated by the given R_Key
398   */
rds_free_mr(struct rds_sock * rs,sockptr_t optval,int optlen)399  int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
400  {
401  	struct rds_free_mr_args args;
402  	struct rds_mr *mr;
403  	unsigned long flags;
404  
405  	if (optlen != sizeof(struct rds_free_mr_args))
406  		return -EINVAL;
407  
408  	if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args)))
409  		return -EFAULT;
410  
411  	/* Special case - a null cookie means flush all unused MRs */
412  	if (args.cookie == 0) {
413  		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
414  			return -EINVAL;
415  		rs->rs_transport->flush_mrs();
416  		return 0;
417  	}
418  
419  	/* Look up the MR given its R_key and remove it from the rbtree
420  	 * so nobody else finds it.
421  	 * This should also prevent races with rds_rdma_unuse.
422  	 */
423  	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
424  	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
425  	if (mr) {
426  		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
427  		RB_CLEAR_NODE(&mr->r_rb_node);
428  		if (args.flags & RDS_RDMA_INVALIDATE)
429  			mr->r_invalidate = 1;
430  	}
431  	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
432  
433  	if (!mr)
434  		return -EINVAL;
435  
436  	kref_put(&mr->r_kref, __rds_put_mr_final);
437  	return 0;
438  }
439  
440  /*
441   * This is called when we receive an extension header that
442   * tells us this MR was used. It allows us to implement
443   * use_once semantics
444   */
rds_rdma_unuse(struct rds_sock * rs,u32 r_key,int force)445  void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
446  {
447  	struct rds_mr *mr;
448  	unsigned long flags;
449  	int zot_me = 0;
450  
451  	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
452  	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
453  	if (!mr) {
454  		pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
455  			 r_key);
456  		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
457  		return;
458  	}
459  
460  	/* Get a reference so that the MR won't go away before calling
461  	 * sync_mr() below.
462  	 */
463  	kref_get(&mr->r_kref);
464  
465  	/* If it is going to be freed, remove it from the tree now so
466  	 * that no other thread can find it and free it.
467  	 */
468  	if (mr->r_use_once || force) {
469  		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
470  		RB_CLEAR_NODE(&mr->r_rb_node);
471  		zot_me = 1;
472  	}
473  	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
474  
475  	/* May have to issue a dma_sync on this memory region.
476  	 * Note we could avoid this if the operation was a RDMA READ,
477  	 * but at this point we can't tell. */
478  	if (mr->r_trans->sync_mr)
479  		mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
480  
481  	/* Release the reference held above. */
482  	kref_put(&mr->r_kref, __rds_put_mr_final);
483  
484  	/* If the MR was marked as invalidate, this will
485  	 * trigger an async flush. */
486  	if (zot_me)
487  		kref_put(&mr->r_kref, __rds_put_mr_final);
488  }
489  
rds_rdma_free_op(struct rm_rdma_op * ro)490  void rds_rdma_free_op(struct rm_rdma_op *ro)
491  {
492  	unsigned int i;
493  
494  	if (ro->op_odp_mr) {
495  		kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final);
496  	} else {
497  		for (i = 0; i < ro->op_nents; i++) {
498  			struct page *page = sg_page(&ro->op_sg[i]);
499  
500  			/* Mark page dirty if it was possibly modified, which
501  			 * is the case for a RDMA_READ which copies from remote
502  			 * to local memory
503  			 */
504  			unpin_user_pages_dirty_lock(&page, 1, !ro->op_write);
505  		}
506  	}
507  
508  	kfree(ro->op_notifier);
509  	ro->op_notifier = NULL;
510  	ro->op_active = 0;
511  	ro->op_odp_mr = NULL;
512  }
513  
rds_atomic_free_op(struct rm_atomic_op * ao)514  void rds_atomic_free_op(struct rm_atomic_op *ao)
515  {
516  	struct page *page = sg_page(ao->op_sg);
517  
518  	/* Mark page dirty if it was possibly modified, which
519  	 * is the case for a RDMA_READ which copies from remote
520  	 * to local memory */
521  	unpin_user_pages_dirty_lock(&page, 1, true);
522  
523  	kfree(ao->op_notifier);
524  	ao->op_notifier = NULL;
525  	ao->op_active = 0;
526  }
527  
528  
529  /*
530   * Count the number of pages needed to describe an incoming iovec array.
531   */
rds_rdma_pages(struct rds_iovec iov[],int nr_iovecs)532  static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
533  {
534  	int tot_pages = 0;
535  	unsigned int nr_pages;
536  	unsigned int i;
537  
538  	/* figure out the number of pages in the vector */
539  	for (i = 0; i < nr_iovecs; i++) {
540  		nr_pages = rds_pages_in_vec(&iov[i]);
541  		if (nr_pages == 0)
542  			return -EINVAL;
543  
544  		tot_pages += nr_pages;
545  
546  		/*
547  		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
548  		 * so tot_pages cannot overflow without first going negative.
549  		 */
550  		if (tot_pages < 0)
551  			return -EINVAL;
552  	}
553  
554  	return tot_pages;
555  }
556  
rds_rdma_extra_size(struct rds_rdma_args * args,struct rds_iov_vector * iov)557  int rds_rdma_extra_size(struct rds_rdma_args *args,
558  			struct rds_iov_vector *iov)
559  {
560  	struct rds_iovec *vec;
561  	struct rds_iovec __user *local_vec;
562  	int tot_pages = 0;
563  	unsigned int nr_pages;
564  	unsigned int i;
565  
566  	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
567  
568  	if (args->nr_local == 0)
569  		return -EINVAL;
570  
571  	if (args->nr_local > UIO_MAXIOV)
572  		return -EMSGSIZE;
573  
574  	iov->iov = kcalloc(args->nr_local,
575  			   sizeof(struct rds_iovec),
576  			   GFP_KERNEL);
577  	if (!iov->iov)
578  		return -ENOMEM;
579  
580  	vec = &iov->iov[0];
581  
582  	if (copy_from_user(vec, local_vec, args->nr_local *
583  			   sizeof(struct rds_iovec)))
584  		return -EFAULT;
585  	iov->len = args->nr_local;
586  
587  	/* figure out the number of pages in the vector */
588  	for (i = 0; i < args->nr_local; i++, vec++) {
589  
590  		nr_pages = rds_pages_in_vec(vec);
591  		if (nr_pages == 0)
592  			return -EINVAL;
593  
594  		tot_pages += nr_pages;
595  
596  		/*
597  		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
598  		 * so tot_pages cannot overflow without first going negative.
599  		 */
600  		if (tot_pages < 0)
601  			return -EINVAL;
602  	}
603  
604  	return tot_pages * sizeof(struct scatterlist);
605  }
606  
607  /*
608   * The application asks for a RDMA transfer.
609   * Extract all arguments and set up the rdma_op
610   */
rds_cmsg_rdma_args(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg,struct rds_iov_vector * vec)611  int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
612  		       struct cmsghdr *cmsg,
613  		       struct rds_iov_vector *vec)
614  {
615  	struct rds_rdma_args *args;
616  	struct rm_rdma_op *op = &rm->rdma;
617  	int nr_pages;
618  	unsigned int nr_bytes;
619  	struct page **pages = NULL;
620  	struct rds_iovec *iovs;
621  	unsigned int i, j;
622  	int ret = 0;
623  	bool odp_supported = true;
624  
625  	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
626  	    || rm->rdma.op_active)
627  		return -EINVAL;
628  
629  	args = CMSG_DATA(cmsg);
630  
631  	if (ipv6_addr_any(&rs->rs_bound_addr)) {
632  		ret = -ENOTCONN; /* XXX not a great errno */
633  		goto out_ret;
634  	}
635  
636  	if (args->nr_local > UIO_MAXIOV) {
637  		ret = -EMSGSIZE;
638  		goto out_ret;
639  	}
640  
641  	if (vec->len != args->nr_local) {
642  		ret = -EINVAL;
643  		goto out_ret;
644  	}
645  	/* odp-mr is not supported for multiple requests within one message */
646  	if (args->nr_local != 1)
647  		odp_supported = false;
648  
649  	iovs = vec->iov;
650  
651  	nr_pages = rds_rdma_pages(iovs, args->nr_local);
652  	if (nr_pages < 0) {
653  		ret = -EINVAL;
654  		goto out_ret;
655  	}
656  
657  	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
658  	if (!pages) {
659  		ret = -ENOMEM;
660  		goto out_ret;
661  	}
662  
663  	op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
664  	op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
665  	op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
666  	op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
667  	op->op_active = 1;
668  	op->op_recverr = rs->rs_recverr;
669  	op->op_odp_mr = NULL;
670  
671  	WARN_ON(!nr_pages);
672  	op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
673  	if (IS_ERR(op->op_sg)) {
674  		ret = PTR_ERR(op->op_sg);
675  		goto out_pages;
676  	}
677  
678  	if (op->op_notify || op->op_recverr) {
679  		/* We allocate an uninitialized notifier here, because
680  		 * we don't want to do that in the completion handler. We
681  		 * would have to use GFP_ATOMIC there, and don't want to deal
682  		 * with failed allocations.
683  		 */
684  		op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
685  		if (!op->op_notifier) {
686  			ret = -ENOMEM;
687  			goto out_pages;
688  		}
689  		op->op_notifier->n_user_token = args->user_token;
690  		op->op_notifier->n_status = RDS_RDMA_SUCCESS;
691  	}
692  
693  	/* The cookie contains the R_Key of the remote memory region, and
694  	 * optionally an offset into it. This is how we implement RDMA into
695  	 * unaligned memory.
696  	 * When setting up the RDMA, we need to add that offset to the
697  	 * destination address (which is really an offset into the MR)
698  	 * FIXME: We may want to move this into ib_rdma.c
699  	 */
700  	op->op_rkey = rds_rdma_cookie_key(args->cookie);
701  	op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
702  
703  	nr_bytes = 0;
704  
705  	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
706  	       (unsigned long long)args->nr_local,
707  	       (unsigned long long)args->remote_vec.addr,
708  	       op->op_rkey);
709  
710  	for (i = 0; i < args->nr_local; i++) {
711  		struct rds_iovec *iov = &iovs[i];
712  		/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
713  		unsigned int nr = rds_pages_in_vec(iov);
714  
715  		rs->rs_user_addr = iov->addr;
716  		rs->rs_user_bytes = iov->bytes;
717  
718  		/* If it's a WRITE operation, we want to pin the pages for reading.
719  		 * If it's a READ operation, we need to pin the pages for writing.
720  		 */
721  		ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
722  		if ((!odp_supported && ret <= 0) ||
723  		    (odp_supported && ret <= 0 && ret != -EOPNOTSUPP))
724  			goto out_pages;
725  
726  		if (ret == -EOPNOTSUPP) {
727  			struct rds_mr *local_odp_mr;
728  
729  			if (!rs->rs_transport->get_mr) {
730  				ret = -EOPNOTSUPP;
731  				goto out_pages;
732  			}
733  			local_odp_mr =
734  				kzalloc(sizeof(*local_odp_mr), GFP_KERNEL);
735  			if (!local_odp_mr) {
736  				ret = -ENOMEM;
737  				goto out_pages;
738  			}
739  			RB_CLEAR_NODE(&local_odp_mr->r_rb_node);
740  			kref_init(&local_odp_mr->r_kref);
741  			local_odp_mr->r_trans = rs->rs_transport;
742  			local_odp_mr->r_sock = rs;
743  			local_odp_mr->r_trans_private =
744  				rs->rs_transport->get_mr(
745  					NULL, 0, rs, &local_odp_mr->r_key, NULL,
746  					iov->addr, iov->bytes, ODP_VIRTUAL);
747  			if (IS_ERR(local_odp_mr->r_trans_private)) {
748  				ret = PTR_ERR(local_odp_mr->r_trans_private);
749  				rdsdebug("get_mr ret %d %p\"", ret,
750  					 local_odp_mr->r_trans_private);
751  				kfree(local_odp_mr);
752  				ret = -EOPNOTSUPP;
753  				goto out_pages;
754  			}
755  			rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
756  				 local_odp_mr, local_odp_mr->r_trans_private);
757  			op->op_odp_mr = local_odp_mr;
758  			op->op_odp_addr = iov->addr;
759  		}
760  
761  		rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
762  			 nr_bytes, nr, iov->bytes, iov->addr);
763  
764  		nr_bytes += iov->bytes;
765  
766  		for (j = 0; j < nr; j++) {
767  			unsigned int offset = iov->addr & ~PAGE_MASK;
768  			struct scatterlist *sg;
769  
770  			sg = &op->op_sg[op->op_nents + j];
771  			sg_set_page(sg, pages[j],
772  					min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
773  					offset);
774  
775  			sg_dma_len(sg) = sg->length;
776  			rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
777  			       sg->offset, sg->length, iov->addr, iov->bytes);
778  
779  			iov->addr += sg->length;
780  			iov->bytes -= sg->length;
781  		}
782  
783  		op->op_nents += nr;
784  	}
785  
786  	if (nr_bytes > args->remote_vec.bytes) {
787  		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
788  				nr_bytes,
789  				(unsigned int) args->remote_vec.bytes);
790  		ret = -EINVAL;
791  		goto out_pages;
792  	}
793  	op->op_bytes = nr_bytes;
794  	ret = 0;
795  
796  out_pages:
797  	kfree(pages);
798  out_ret:
799  	if (ret)
800  		rds_rdma_free_op(op);
801  	else
802  		rds_stats_inc(s_send_rdma);
803  
804  	return ret;
805  }
806  
807  /*
808   * The application wants us to pass an RDMA destination (aka MR)
809   * to the remote
810   */
rds_cmsg_rdma_dest(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)811  int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
812  			  struct cmsghdr *cmsg)
813  {
814  	unsigned long flags;
815  	struct rds_mr *mr;
816  	u32 r_key;
817  	int err = 0;
818  
819  	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
820  	    rm->m_rdma_cookie != 0)
821  		return -EINVAL;
822  
823  	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
824  
825  	/* We are reusing a previously mapped MR here. Most likely, the
826  	 * application has written to the buffer, so we need to explicitly
827  	 * flush those writes to RAM. Otherwise the HCA may not see them
828  	 * when doing a DMA from that buffer.
829  	 */
830  	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
831  
832  	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
833  	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
834  	if (!mr)
835  		err = -EINVAL;	/* invalid r_key */
836  	else
837  		kref_get(&mr->r_kref);
838  	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
839  
840  	if (mr) {
841  		mr->r_trans->sync_mr(mr->r_trans_private,
842  				     DMA_TO_DEVICE);
843  		rm->rdma.op_rdma_mr = mr;
844  	}
845  	return err;
846  }
847  
848  /*
849   * The application passes us an address range it wants to enable RDMA
850   * to/from. We map the area, and save the <R_Key,offset> pair
851   * in rm->m_rdma_cookie. This causes it to be sent along to the peer
852   * in an extension header.
853   */
rds_cmsg_rdma_map(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)854  int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
855  			  struct cmsghdr *cmsg)
856  {
857  	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
858  	    rm->m_rdma_cookie != 0)
859  		return -EINVAL;
860  
861  	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
862  			      &rm->rdma.op_rdma_mr, rm->m_conn_path);
863  }
864  
865  /*
866   * Fill in rds_message for an atomic request.
867   */
rds_cmsg_atomic(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)868  int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
869  		    struct cmsghdr *cmsg)
870  {
871  	struct page *page = NULL;
872  	struct rds_atomic_args *args;
873  	int ret = 0;
874  
875  	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
876  	 || rm->atomic.op_active)
877  		return -EINVAL;
878  
879  	args = CMSG_DATA(cmsg);
880  
881  	/* Nonmasked & masked cmsg ops converted to masked hw ops */
882  	switch (cmsg->cmsg_type) {
883  	case RDS_CMSG_ATOMIC_FADD:
884  		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
885  		rm->atomic.op_m_fadd.add = args->fadd.add;
886  		rm->atomic.op_m_fadd.nocarry_mask = 0;
887  		break;
888  	case RDS_CMSG_MASKED_ATOMIC_FADD:
889  		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
890  		rm->atomic.op_m_fadd.add = args->m_fadd.add;
891  		rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
892  		break;
893  	case RDS_CMSG_ATOMIC_CSWP:
894  		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
895  		rm->atomic.op_m_cswp.compare = args->cswp.compare;
896  		rm->atomic.op_m_cswp.swap = args->cswp.swap;
897  		rm->atomic.op_m_cswp.compare_mask = ~0;
898  		rm->atomic.op_m_cswp.swap_mask = ~0;
899  		break;
900  	case RDS_CMSG_MASKED_ATOMIC_CSWP:
901  		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
902  		rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
903  		rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
904  		rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
905  		rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
906  		break;
907  	default:
908  		BUG(); /* should never happen */
909  	}
910  
911  	rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
912  	rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
913  	rm->atomic.op_active = 1;
914  	rm->atomic.op_recverr = rs->rs_recverr;
915  	rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
916  	if (IS_ERR(rm->atomic.op_sg)) {
917  		ret = PTR_ERR(rm->atomic.op_sg);
918  		goto err;
919  	}
920  
921  	/* verify 8 byte-aligned */
922  	if (args->local_addr & 0x7) {
923  		ret = -EFAULT;
924  		goto err;
925  	}
926  
927  	ret = rds_pin_pages(args->local_addr, 1, &page, 1);
928  	if (ret != 1)
929  		goto err;
930  	ret = 0;
931  
932  	sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
933  
934  	if (rm->atomic.op_notify || rm->atomic.op_recverr) {
935  		/* We allocate an uninitialized notifier here, because
936  		 * we don't want to do that in the completion handler. We
937  		 * would have to use GFP_ATOMIC there, and don't want to deal
938  		 * with failed allocations.
939  		 */
940  		rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
941  		if (!rm->atomic.op_notifier) {
942  			ret = -ENOMEM;
943  			goto err;
944  		}
945  
946  		rm->atomic.op_notifier->n_user_token = args->user_token;
947  		rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
948  	}
949  
950  	rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
951  	rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
952  
953  	return ret;
954  err:
955  	if (page)
956  		unpin_user_page(page);
957  	rm->atomic.op_active = 0;
958  	kfree(rm->atomic.op_notifier);
959  
960  	return ret;
961  }
962