1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <linux/sched/isolation.h>
57 #include <crypto/chacha.h>
58 #include <crypto/blake2s.h>
59 #ifdef CONFIG_VDSO_GETRANDOM
60 #include <vdso/getrandom.h>
61 #include <vdso/datapage.h>
62 #include <vdso/vsyscall.h>
63 #endif
64 #include <asm/archrandom.h>
65 #include <asm/processor.h>
66 #include <asm/irq.h>
67 #include <asm/irq_regs.h>
68 #include <asm/io.h>
69 
70 /*********************************************************************
71  *
72  * Initialization and readiness waiting.
73  *
74  * Much of the RNG infrastructure is devoted to various dependencies
75  * being able to wait until the RNG has collected enough entropy and
76  * is ready for safe consumption.
77  *
78  *********************************************************************/
79 
80 /*
81  * crng_init is protected by base_crng->lock, and only increases
82  * its value (from empty->early->ready).
83  */
84 static enum {
85 	CRNG_EMPTY = 0, /* Little to no entropy collected */
86 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
87 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
88 } crng_init __read_mostly = CRNG_EMPTY;
89 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
90 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
91 /* Various types of waiters for crng_init->CRNG_READY transition. */
92 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
93 static struct fasync_struct *fasync;
94 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
95 
96 /* Control how we warn userspace. */
97 static struct ratelimit_state urandom_warning =
98 	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
99 static int ratelimit_disable __read_mostly =
100 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
101 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
102 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
103 
104 /*
105  * Returns whether or not the input pool has been seeded and thus guaranteed
106  * to supply cryptographically secure random numbers. This applies to: the
107  * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
108  * u16,u32,u64,long} family of functions.
109  *
110  * Returns: true if the input pool has been seeded.
111  *          false if the input pool has not been seeded.
112  */
rng_is_initialized(void)113 bool rng_is_initialized(void)
114 {
115 	return crng_ready();
116 }
117 EXPORT_SYMBOL(rng_is_initialized);
118 
crng_set_ready(struct work_struct * work)119 static void __cold crng_set_ready(struct work_struct *work)
120 {
121 	static_branch_enable(&crng_is_ready);
122 }
123 
124 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
125 static void try_to_generate_entropy(void);
126 
127 /*
128  * Wait for the input pool to be seeded and thus guaranteed to supply
129  * cryptographically secure random numbers. This applies to: the /dev/urandom
130  * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
131  * long} family of functions. Using any of these functions without first
132  * calling this function forfeits the guarantee of security.
133  *
134  * Returns: 0 if the input pool has been seeded.
135  *          -ERESTARTSYS if the function was interrupted by a signal.
136  */
wait_for_random_bytes(void)137 int wait_for_random_bytes(void)
138 {
139 	while (!crng_ready()) {
140 		int ret;
141 
142 		try_to_generate_entropy();
143 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
144 		if (ret)
145 			return ret > 0 ? 0 : ret;
146 	}
147 	return 0;
148 }
149 EXPORT_SYMBOL(wait_for_random_bytes);
150 
151 /*
152  * Add a callback function that will be invoked when the crng is initialised,
153  * or immediately if it already has been. Only use this is you are absolutely
154  * sure it is required. Most users should instead be able to test
155  * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
156  */
execute_with_initialized_rng(struct notifier_block * nb)157 int __cold execute_with_initialized_rng(struct notifier_block *nb)
158 {
159 	unsigned long flags;
160 	int ret = 0;
161 
162 	spin_lock_irqsave(&random_ready_notifier.lock, flags);
163 	if (crng_ready())
164 		nb->notifier_call(nb, 0, NULL);
165 	else
166 		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
167 	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
168 	return ret;
169 }
170 
171 #define warn_unseeded_randomness() \
172 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
173 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
174 				__func__, (void *)_RET_IP_, crng_init)
175 
176 
177 /*********************************************************************
178  *
179  * Fast key erasure RNG, the "crng".
180  *
181  * These functions expand entropy from the entropy extractor into
182  * long streams for external consumption using the "fast key erasure"
183  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
184  *
185  * There are a few exported interfaces for use by other drivers:
186  *
187  *	void get_random_bytes(void *buf, size_t len)
188  *	u8 get_random_u8()
189  *	u16 get_random_u16()
190  *	u32 get_random_u32()
191  *	u32 get_random_u32_below(u32 ceil)
192  *	u32 get_random_u32_above(u32 floor)
193  *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
194  *	u64 get_random_u64()
195  *	unsigned long get_random_long()
196  *
197  * These interfaces will return the requested number of random bytes
198  * into the given buffer or as a return value. This is equivalent to
199  * a read from /dev/urandom. The u8, u16, u32, u64, long family of
200  * functions may be higher performance for one-off random integers,
201  * because they do a bit of buffering and do not invoke reseeding
202  * until the buffer is emptied.
203  *
204  *********************************************************************/
205 
206 enum {
207 	CRNG_RESEED_START_INTERVAL = HZ,
208 	CRNG_RESEED_INTERVAL = 60 * HZ
209 };
210 
211 static struct {
212 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
213 	unsigned long generation;
214 	spinlock_t lock;
215 } base_crng = {
216 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
217 };
218 
219 struct crng {
220 	u8 key[CHACHA_KEY_SIZE];
221 	unsigned long generation;
222 	local_lock_t lock;
223 };
224 
225 static DEFINE_PER_CPU(struct crng, crngs) = {
226 	.generation = ULONG_MAX,
227 	.lock = INIT_LOCAL_LOCK(crngs.lock),
228 };
229 
230 /*
231  * Return the interval until the next reseeding, which is normally
232  * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
233  * proportional to the uptime.
234  */
crng_reseed_interval(void)235 static unsigned int crng_reseed_interval(void)
236 {
237 	static bool early_boot = true;
238 
239 	if (unlikely(READ_ONCE(early_boot))) {
240 		time64_t uptime = ktime_get_seconds();
241 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
242 			WRITE_ONCE(early_boot, false);
243 		else
244 			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
245 				     (unsigned int)uptime / 2 * HZ);
246 	}
247 	return CRNG_RESEED_INTERVAL;
248 }
249 
250 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
251 static void extract_entropy(void *buf, size_t len);
252 
253 /* This extracts a new crng key from the input pool. */
crng_reseed(struct work_struct * work)254 static void crng_reseed(struct work_struct *work)
255 {
256 	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
257 	unsigned long flags;
258 	unsigned long next_gen;
259 	u8 key[CHACHA_KEY_SIZE];
260 
261 	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
262 	if (likely(system_unbound_wq))
263 		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
264 
265 	extract_entropy(key, sizeof(key));
266 
267 	/*
268 	 * We copy the new key into the base_crng, overwriting the old one,
269 	 * and update the generation counter. We avoid hitting ULONG_MAX,
270 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
271 	 * forces new CPUs that come online to always initialize.
272 	 */
273 	spin_lock_irqsave(&base_crng.lock, flags);
274 	memcpy(base_crng.key, key, sizeof(base_crng.key));
275 	next_gen = base_crng.generation + 1;
276 	if (next_gen == ULONG_MAX)
277 		++next_gen;
278 	WRITE_ONCE(base_crng.generation, next_gen);
279 #ifdef CONFIG_VDSO_GETRANDOM
280 	/* base_crng.generation's invalid value is ULONG_MAX, while
281 	 * _vdso_rng_data.generation's invalid value is 0, so add one to the
282 	 * former to arrive at the latter. Use smp_store_release so that this
283 	 * is ordered with the write above to base_crng.generation. Pairs with
284 	 * the smp_rmb() before the syscall in the vDSO code.
285 	 *
286 	 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
287 	 * operations are not supported on those architectures. This is safe
288 	 * because base_crng.generation is a 32-bit value. On big-endian
289 	 * architectures it will be stored in the upper 32 bits, but that's okay
290 	 * because the vDSO side only checks whether the value changed, without
291 	 * actually using or interpreting the value.
292 	 */
293 	smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation, next_gen + 1);
294 #endif
295 	if (!static_branch_likely(&crng_is_ready))
296 		crng_init = CRNG_READY;
297 	spin_unlock_irqrestore(&base_crng.lock, flags);
298 	memzero_explicit(key, sizeof(key));
299 }
300 
301 /*
302  * This generates a ChaCha block using the provided key, and then
303  * immediately overwrites that key with half the block. It returns
304  * the resultant ChaCha state to the user, along with the second
305  * half of the block containing 32 bytes of random data that may
306  * be used; random_data_len may not be greater than 32.
307  *
308  * The returned ChaCha state contains within it a copy of the old
309  * key value, at index 4, so the state should always be zeroed out
310  * immediately after using in order to maintain forward secrecy.
311  * If the state cannot be erased in a timely manner, then it is
312  * safer to set the random_data parameter to &chacha_state[4] so
313  * that this function overwrites it before returning.
314  */
crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)315 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
316 				  u32 chacha_state[CHACHA_STATE_WORDS],
317 				  u8 *random_data, size_t random_data_len)
318 {
319 	u8 first_block[CHACHA_BLOCK_SIZE];
320 
321 	BUG_ON(random_data_len > 32);
322 
323 	chacha_init_consts(chacha_state);
324 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
325 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
326 	chacha20_block(chacha_state, first_block);
327 
328 	memcpy(key, first_block, CHACHA_KEY_SIZE);
329 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
330 	memzero_explicit(first_block, sizeof(first_block));
331 }
332 
333 /*
334  * This function returns a ChaCha state that you may use for generating
335  * random data. It also returns up to 32 bytes on its own of random data
336  * that may be used; random_data_len may not be greater than 32.
337  */
crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)338 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
339 			    u8 *random_data, size_t random_data_len)
340 {
341 	unsigned long flags;
342 	struct crng *crng;
343 
344 	BUG_ON(random_data_len > 32);
345 
346 	/*
347 	 * For the fast path, we check whether we're ready, unlocked first, and
348 	 * then re-check once locked later. In the case where we're really not
349 	 * ready, we do fast key erasure with the base_crng directly, extracting
350 	 * when crng_init is CRNG_EMPTY.
351 	 */
352 	if (!crng_ready()) {
353 		bool ready;
354 
355 		spin_lock_irqsave(&base_crng.lock, flags);
356 		ready = crng_ready();
357 		if (!ready) {
358 			if (crng_init == CRNG_EMPTY)
359 				extract_entropy(base_crng.key, sizeof(base_crng.key));
360 			crng_fast_key_erasure(base_crng.key, chacha_state,
361 					      random_data, random_data_len);
362 		}
363 		spin_unlock_irqrestore(&base_crng.lock, flags);
364 		if (!ready)
365 			return;
366 	}
367 
368 	local_lock_irqsave(&crngs.lock, flags);
369 	crng = raw_cpu_ptr(&crngs);
370 
371 	/*
372 	 * If our per-cpu crng is older than the base_crng, then it means
373 	 * somebody reseeded the base_crng. In that case, we do fast key
374 	 * erasure on the base_crng, and use its output as the new key
375 	 * for our per-cpu crng. This brings us up to date with base_crng.
376 	 */
377 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
378 		spin_lock(&base_crng.lock);
379 		crng_fast_key_erasure(base_crng.key, chacha_state,
380 				      crng->key, sizeof(crng->key));
381 		crng->generation = base_crng.generation;
382 		spin_unlock(&base_crng.lock);
383 	}
384 
385 	/*
386 	 * Finally, when we've made it this far, our per-cpu crng has an up
387 	 * to date key, and we can do fast key erasure with it to produce
388 	 * some random data and a ChaCha state for the caller. All other
389 	 * branches of this function are "unlikely", so most of the time we
390 	 * should wind up here immediately.
391 	 */
392 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
393 	local_unlock_irqrestore(&crngs.lock, flags);
394 }
395 
_get_random_bytes(void * buf,size_t len)396 static void _get_random_bytes(void *buf, size_t len)
397 {
398 	u32 chacha_state[CHACHA_STATE_WORDS];
399 	u8 tmp[CHACHA_BLOCK_SIZE];
400 	size_t first_block_len;
401 
402 	if (!len)
403 		return;
404 
405 	first_block_len = min_t(size_t, 32, len);
406 	crng_make_state(chacha_state, buf, first_block_len);
407 	len -= first_block_len;
408 	buf += first_block_len;
409 
410 	while (len) {
411 		if (len < CHACHA_BLOCK_SIZE) {
412 			chacha20_block(chacha_state, tmp);
413 			memcpy(buf, tmp, len);
414 			memzero_explicit(tmp, sizeof(tmp));
415 			break;
416 		}
417 
418 		chacha20_block(chacha_state, buf);
419 		if (unlikely(chacha_state[12] == 0))
420 			++chacha_state[13];
421 		len -= CHACHA_BLOCK_SIZE;
422 		buf += CHACHA_BLOCK_SIZE;
423 	}
424 
425 	memzero_explicit(chacha_state, sizeof(chacha_state));
426 }
427 
428 /*
429  * This returns random bytes in arbitrary quantities. The quality of the
430  * random bytes is good as /dev/urandom. In order to ensure that the
431  * randomness provided by this function is okay, the function
432  * wait_for_random_bytes() should be called and return 0 at least once
433  * at any point prior.
434  */
get_random_bytes(void * buf,size_t len)435 void get_random_bytes(void *buf, size_t len)
436 {
437 	warn_unseeded_randomness();
438 	_get_random_bytes(buf, len);
439 }
440 EXPORT_SYMBOL(get_random_bytes);
441 
get_random_bytes_user(struct iov_iter * iter)442 static ssize_t get_random_bytes_user(struct iov_iter *iter)
443 {
444 	u32 chacha_state[CHACHA_STATE_WORDS];
445 	u8 block[CHACHA_BLOCK_SIZE];
446 	size_t ret = 0, copied;
447 
448 	if (unlikely(!iov_iter_count(iter)))
449 		return 0;
450 
451 	/*
452 	 * Immediately overwrite the ChaCha key at index 4 with random
453 	 * bytes, in case userspace causes copy_to_iter() below to sleep
454 	 * forever, so that we still retain forward secrecy in that case.
455 	 */
456 	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
457 	/*
458 	 * However, if we're doing a read of len <= 32, we don't need to
459 	 * use chacha_state after, so we can simply return those bytes to
460 	 * the user directly.
461 	 */
462 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
463 		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
464 		goto out_zero_chacha;
465 	}
466 
467 	for (;;) {
468 		chacha20_block(chacha_state, block);
469 		if (unlikely(chacha_state[12] == 0))
470 			++chacha_state[13];
471 
472 		copied = copy_to_iter(block, sizeof(block), iter);
473 		ret += copied;
474 		if (!iov_iter_count(iter) || copied != sizeof(block))
475 			break;
476 
477 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
478 		if (ret % PAGE_SIZE == 0) {
479 			if (signal_pending(current))
480 				break;
481 			cond_resched();
482 		}
483 	}
484 
485 	memzero_explicit(block, sizeof(block));
486 out_zero_chacha:
487 	memzero_explicit(chacha_state, sizeof(chacha_state));
488 	return ret ? ret : -EFAULT;
489 }
490 
491 /*
492  * Batched entropy returns random integers. The quality of the random
493  * number is good as /dev/urandom. In order to ensure that the randomness
494  * provided by this function is okay, the function wait_for_random_bytes()
495  * should be called and return 0 at least once at any point prior.
496  */
497 
498 #define DEFINE_BATCHED_ENTROPY(type)						\
499 struct batch_ ##type {								\
500 	/*									\
501 	 * We make this 1.5x a ChaCha block, so that we get the			\
502 	 * remaining 32 bytes from fast key erasure, plus one full		\
503 	 * block from the detached ChaCha state. We can increase		\
504 	 * the size of this later if needed so long as we keep the		\
505 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
506 	 */									\
507 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
508 	local_lock_t lock;							\
509 	unsigned long generation;						\
510 	unsigned int position;							\
511 };										\
512 										\
513 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
514 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
515 	.position = UINT_MAX							\
516 };										\
517 										\
518 type get_random_ ##type(void)							\
519 {										\
520 	type ret;								\
521 	unsigned long flags;							\
522 	struct batch_ ##type *batch;						\
523 	unsigned long next_gen;							\
524 										\
525 	warn_unseeded_randomness();						\
526 										\
527 	if  (!crng_ready()) {							\
528 		_get_random_bytes(&ret, sizeof(ret));				\
529 		return ret;							\
530 	}									\
531 										\
532 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
533 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
534 										\
535 	next_gen = READ_ONCE(base_crng.generation);				\
536 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
537 	    next_gen != batch->generation) {					\
538 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
539 		batch->position = 0;						\
540 		batch->generation = next_gen;					\
541 	}									\
542 										\
543 	ret = batch->entropy[batch->position];					\
544 	batch->entropy[batch->position] = 0;					\
545 	++batch->position;							\
546 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
547 	return ret;								\
548 }										\
549 EXPORT_SYMBOL(get_random_ ##type);
550 
551 DEFINE_BATCHED_ENTROPY(u8)
DEFINE_BATCHED_ENTROPY(u16)552 DEFINE_BATCHED_ENTROPY(u16)
553 DEFINE_BATCHED_ENTROPY(u32)
554 DEFINE_BATCHED_ENTROPY(u64)
555 
556 u32 __get_random_u32_below(u32 ceil)
557 {
558 	/*
559 	 * This is the slow path for variable ceil. It is still fast, most of
560 	 * the time, by doing traditional reciprocal multiplication and
561 	 * opportunistically comparing the lower half to ceil itself, before
562 	 * falling back to computing a larger bound, and then rejecting samples
563 	 * whose lower half would indicate a range indivisible by ceil. The use
564 	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
565 	 * in 32-bits.
566 	 */
567 	u32 rand = get_random_u32();
568 	u64 mult;
569 
570 	/*
571 	 * This function is technically undefined for ceil == 0, and in fact
572 	 * for the non-underscored constant version in the header, we build bug
573 	 * on that. But for the non-constant case, it's convenient to have that
574 	 * evaluate to being a straight call to get_random_u32(), so that
575 	 * get_random_u32_inclusive() can work over its whole range without
576 	 * undefined behavior.
577 	 */
578 	if (unlikely(!ceil))
579 		return rand;
580 
581 	mult = (u64)ceil * rand;
582 	if (unlikely((u32)mult < ceil)) {
583 		u32 bound = -ceil % ceil;
584 		while (unlikely((u32)mult < bound))
585 			mult = (u64)ceil * get_random_u32();
586 	}
587 	return mult >> 32;
588 }
589 EXPORT_SYMBOL(__get_random_u32_below);
590 
591 #ifdef CONFIG_SMP
592 /*
593  * This function is called when the CPU is coming up, with entry
594  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
595  */
random_prepare_cpu(unsigned int cpu)596 int __cold random_prepare_cpu(unsigned int cpu)
597 {
598 	/*
599 	 * When the cpu comes back online, immediately invalidate both
600 	 * the per-cpu crng and all batches, so that we serve fresh
601 	 * randomness.
602 	 */
603 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
604 	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
605 	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
606 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
607 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
608 	return 0;
609 }
610 #endif
611 
612 
613 /**********************************************************************
614  *
615  * Entropy accumulation and extraction routines.
616  *
617  * Callers may add entropy via:
618  *
619  *     static void mix_pool_bytes(const void *buf, size_t len)
620  *
621  * After which, if added entropy should be credited:
622  *
623  *     static void credit_init_bits(size_t bits)
624  *
625  * Finally, extract entropy via:
626  *
627  *     static void extract_entropy(void *buf, size_t len)
628  *
629  **********************************************************************/
630 
631 enum {
632 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
633 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
634 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
635 };
636 
637 static struct {
638 	struct blake2s_state hash;
639 	spinlock_t lock;
640 	unsigned int init_bits;
641 } input_pool = {
642 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
643 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
644 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
645 	.hash.outlen = BLAKE2S_HASH_SIZE,
646 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
647 };
648 
_mix_pool_bytes(const void * buf,size_t len)649 static void _mix_pool_bytes(const void *buf, size_t len)
650 {
651 	blake2s_update(&input_pool.hash, buf, len);
652 }
653 
654 /*
655  * This function adds bytes into the input pool. It does not
656  * update the initialization bit counter; the caller should call
657  * credit_init_bits if this is appropriate.
658  */
mix_pool_bytes(const void * buf,size_t len)659 static void mix_pool_bytes(const void *buf, size_t len)
660 {
661 	unsigned long flags;
662 
663 	spin_lock_irqsave(&input_pool.lock, flags);
664 	_mix_pool_bytes(buf, len);
665 	spin_unlock_irqrestore(&input_pool.lock, flags);
666 }
667 
668 /*
669  * This is an HKDF-like construction for using the hashed collected entropy
670  * as a PRF key, that's then expanded block-by-block.
671  */
extract_entropy(void * buf,size_t len)672 static void extract_entropy(void *buf, size_t len)
673 {
674 	unsigned long flags;
675 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
676 	struct {
677 		unsigned long rdseed[32 / sizeof(long)];
678 		size_t counter;
679 	} block;
680 	size_t i, longs;
681 
682 	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
683 		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
684 		if (longs) {
685 			i += longs;
686 			continue;
687 		}
688 		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
689 		if (longs) {
690 			i += longs;
691 			continue;
692 		}
693 		block.rdseed[i++] = random_get_entropy();
694 	}
695 
696 	spin_lock_irqsave(&input_pool.lock, flags);
697 
698 	/* seed = HASHPRF(last_key, entropy_input) */
699 	blake2s_final(&input_pool.hash, seed);
700 
701 	/* next_key = HASHPRF(seed, RDSEED || 0) */
702 	block.counter = 0;
703 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
704 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
705 
706 	spin_unlock_irqrestore(&input_pool.lock, flags);
707 	memzero_explicit(next_key, sizeof(next_key));
708 
709 	while (len) {
710 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
711 		/* output = HASHPRF(seed, RDSEED || ++counter) */
712 		++block.counter;
713 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
714 		len -= i;
715 		buf += i;
716 	}
717 
718 	memzero_explicit(seed, sizeof(seed));
719 	memzero_explicit(&block, sizeof(block));
720 }
721 
722 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
723 
_credit_init_bits(size_t bits)724 static void __cold _credit_init_bits(size_t bits)
725 {
726 	static DECLARE_WORK(set_ready, crng_set_ready);
727 	unsigned int new, orig, add;
728 	unsigned long flags;
729 
730 	if (!bits)
731 		return;
732 
733 	add = min_t(size_t, bits, POOL_BITS);
734 
735 	orig = READ_ONCE(input_pool.init_bits);
736 	do {
737 		new = min_t(unsigned int, POOL_BITS, orig + add);
738 	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
739 
740 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
741 		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
742 		if (static_key_initialized && system_unbound_wq)
743 			queue_work(system_unbound_wq, &set_ready);
744 		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
745 #ifdef CONFIG_VDSO_GETRANDOM
746 		WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready, true);
747 #endif
748 		wake_up_interruptible(&crng_init_wait);
749 		kill_fasync(&fasync, SIGIO, POLL_IN);
750 		pr_notice("crng init done\n");
751 		if (urandom_warning.missed)
752 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
753 				  urandom_warning.missed);
754 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
755 		spin_lock_irqsave(&base_crng.lock, flags);
756 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
757 		if (crng_init == CRNG_EMPTY) {
758 			extract_entropy(base_crng.key, sizeof(base_crng.key));
759 			crng_init = CRNG_EARLY;
760 		}
761 		spin_unlock_irqrestore(&base_crng.lock, flags);
762 	}
763 }
764 
765 
766 /**********************************************************************
767  *
768  * Entropy collection routines.
769  *
770  * The following exported functions are used for pushing entropy into
771  * the above entropy accumulation routines:
772  *
773  *	void add_device_randomness(const void *buf, size_t len);
774  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
775  *	void add_bootloader_randomness(const void *buf, size_t len);
776  *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
777  *	void add_interrupt_randomness(int irq);
778  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
779  *	void add_disk_randomness(struct gendisk *disk);
780  *
781  * add_device_randomness() adds data to the input pool that
782  * is likely to differ between two devices (or possibly even per boot).
783  * This would be things like MAC addresses or serial numbers, or the
784  * read-out of the RTC. This does *not* credit any actual entropy to
785  * the pool, but it initializes the pool to different values for devices
786  * that might otherwise be identical and have very little entropy
787  * available to them (particularly common in the embedded world).
788  *
789  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
790  * entropy as specified by the caller. If the entropy pool is full it will
791  * block until more entropy is needed.
792  *
793  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
794  * and device tree, and credits its input depending on whether or not the
795  * command line option 'random.trust_bootloader'.
796  *
797  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
798  * representing the current instance of a VM to the pool, without crediting,
799  * and then force-reseeds the crng so that it takes effect immediately.
800  *
801  * add_interrupt_randomness() uses the interrupt timing as random
802  * inputs to the entropy pool. Using the cycle counters and the irq source
803  * as inputs, it feeds the input pool roughly once a second or after 64
804  * interrupts, crediting 1 bit of entropy for whichever comes first.
805  *
806  * add_input_randomness() uses the input layer interrupt timing, as well
807  * as the event type information from the hardware.
808  *
809  * add_disk_randomness() uses what amounts to the seek time of block
810  * layer request events, on a per-disk_devt basis, as input to the
811  * entropy pool. Note that high-speed solid state drives with very low
812  * seek times do not make for good sources of entropy, as their seek
813  * times are usually fairly consistent.
814  *
815  * The last two routines try to estimate how many bits of entropy
816  * to credit. They do this by keeping track of the first and second
817  * order deltas of the event timings.
818  *
819  **********************************************************************/
820 
821 static bool trust_cpu __initdata = true;
822 static bool trust_bootloader __initdata = true;
parse_trust_cpu(char * arg)823 static int __init parse_trust_cpu(char *arg)
824 {
825 	return kstrtobool(arg, &trust_cpu);
826 }
parse_trust_bootloader(char * arg)827 static int __init parse_trust_bootloader(char *arg)
828 {
829 	return kstrtobool(arg, &trust_bootloader);
830 }
831 early_param("random.trust_cpu", parse_trust_cpu);
832 early_param("random.trust_bootloader", parse_trust_bootloader);
833 
random_pm_notification(struct notifier_block * nb,unsigned long action,void * data)834 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
835 {
836 	unsigned long flags, entropy = random_get_entropy();
837 
838 	/*
839 	 * Encode a representation of how long the system has been suspended,
840 	 * in a way that is distinct from prior system suspends.
841 	 */
842 	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
843 
844 	spin_lock_irqsave(&input_pool.lock, flags);
845 	_mix_pool_bytes(&action, sizeof(action));
846 	_mix_pool_bytes(stamps, sizeof(stamps));
847 	_mix_pool_bytes(&entropy, sizeof(entropy));
848 	spin_unlock_irqrestore(&input_pool.lock, flags);
849 
850 	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
851 	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
852 	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
853 		crng_reseed(NULL);
854 		pr_notice("crng reseeded on system resumption\n");
855 	}
856 	return 0;
857 }
858 
859 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
860 
861 /*
862  * This is called extremely early, before time keeping functionality is
863  * available, but arch randomness is. Interrupts are not yet enabled.
864  */
random_init_early(const char * command_line)865 void __init random_init_early(const char *command_line)
866 {
867 	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
868 	size_t i, longs, arch_bits;
869 
870 #if defined(LATENT_ENTROPY_PLUGIN)
871 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
872 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
873 #endif
874 
875 	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
876 		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
877 		if (longs) {
878 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
879 			i += longs;
880 			continue;
881 		}
882 		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
883 		if (longs) {
884 			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
885 			i += longs;
886 			continue;
887 		}
888 		arch_bits -= sizeof(*entropy) * 8;
889 		++i;
890 	}
891 
892 	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
893 	_mix_pool_bytes(command_line, strlen(command_line));
894 
895 	/* Reseed if already seeded by earlier phases. */
896 	if (crng_ready())
897 		crng_reseed(NULL);
898 	else if (trust_cpu)
899 		_credit_init_bits(arch_bits);
900 }
901 
902 /*
903  * This is called a little bit after the prior function, and now there is
904  * access to timestamps counters. Interrupts are not yet enabled.
905  */
random_init(void)906 void __init random_init(void)
907 {
908 	unsigned long entropy = random_get_entropy();
909 	ktime_t now = ktime_get_real();
910 
911 	_mix_pool_bytes(&now, sizeof(now));
912 	_mix_pool_bytes(&entropy, sizeof(entropy));
913 	add_latent_entropy();
914 
915 	/*
916 	 * If we were initialized by the cpu or bootloader before jump labels
917 	 * or workqueues are initialized, then we should enable the static
918 	 * branch here, where it's guaranteed that these have been initialized.
919 	 */
920 	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
921 		crng_set_ready(NULL);
922 
923 	/* Reseed if already seeded by earlier phases. */
924 	if (crng_ready())
925 		crng_reseed(NULL);
926 
927 	WARN_ON(register_pm_notifier(&pm_notifier));
928 
929 	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
930 		       "entropy collection will consequently suffer.");
931 }
932 
933 /*
934  * Add device- or boot-specific data to the input pool to help
935  * initialize it.
936  *
937  * None of this adds any entropy; it is meant to avoid the problem of
938  * the entropy pool having similar initial state across largely
939  * identical devices.
940  */
add_device_randomness(const void * buf,size_t len)941 void add_device_randomness(const void *buf, size_t len)
942 {
943 	unsigned long entropy = random_get_entropy();
944 	unsigned long flags;
945 
946 	spin_lock_irqsave(&input_pool.lock, flags);
947 	_mix_pool_bytes(&entropy, sizeof(entropy));
948 	_mix_pool_bytes(buf, len);
949 	spin_unlock_irqrestore(&input_pool.lock, flags);
950 }
951 EXPORT_SYMBOL(add_device_randomness);
952 
953 /*
954  * Interface for in-kernel drivers of true hardware RNGs. Those devices
955  * may produce endless random bits, so this function will sleep for
956  * some amount of time after, if the sleep_after parameter is true.
957  */
add_hwgenerator_randomness(const void * buf,size_t len,size_t entropy,bool sleep_after)958 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
959 {
960 	mix_pool_bytes(buf, len);
961 	credit_init_bits(entropy);
962 
963 	/*
964 	 * Throttle writing to once every reseed interval, unless we're not yet
965 	 * initialized or no entropy is credited.
966 	 */
967 	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
968 		schedule_timeout_interruptible(crng_reseed_interval());
969 }
970 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
971 
972 /*
973  * Handle random seed passed by bootloader, and credit it depending
974  * on the command line option 'random.trust_bootloader'.
975  */
add_bootloader_randomness(const void * buf,size_t len)976 void __init add_bootloader_randomness(const void *buf, size_t len)
977 {
978 	mix_pool_bytes(buf, len);
979 	if (trust_bootloader)
980 		credit_init_bits(len * 8);
981 }
982 
983 #if IS_ENABLED(CONFIG_VMGENID)
984 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
985 
986 /*
987  * Handle a new unique VM ID, which is unique, not secret, so we
988  * don't credit it, but we do immediately force a reseed after so
989  * that it's used by the crng posthaste.
990  */
add_vmfork_randomness(const void * unique_vm_id,size_t len)991 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
992 {
993 	add_device_randomness(unique_vm_id, len);
994 	if (crng_ready()) {
995 		crng_reseed(NULL);
996 		pr_notice("crng reseeded due to virtual machine fork\n");
997 	}
998 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
999 }
1000 #if IS_MODULE(CONFIG_VMGENID)
1001 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1002 #endif
1003 
register_random_vmfork_notifier(struct notifier_block * nb)1004 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1005 {
1006 	return blocking_notifier_chain_register(&vmfork_chain, nb);
1007 }
1008 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1009 
unregister_random_vmfork_notifier(struct notifier_block * nb)1010 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1011 {
1012 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1013 }
1014 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1015 #endif
1016 
1017 struct fast_pool {
1018 	unsigned long pool[4];
1019 	unsigned long last;
1020 	unsigned int count;
1021 	struct timer_list mix;
1022 };
1023 
1024 static void mix_interrupt_randomness(struct timer_list *work);
1025 
1026 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1027 #ifdef CONFIG_64BIT
1028 #define FASTMIX_PERM SIPHASH_PERMUTATION
1029 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1030 #else
1031 #define FASTMIX_PERM HSIPHASH_PERMUTATION
1032 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1033 #endif
1034 	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1035 };
1036 
1037 /*
1038  * This is [Half]SipHash-1-x, starting from an empty key. Because
1039  * the key is fixed, it assumes that its inputs are non-malicious,
1040  * and therefore this has no security on its own. s represents the
1041  * four-word SipHash state, while v represents a two-word input.
1042  */
fast_mix(unsigned long s[4],unsigned long v1,unsigned long v2)1043 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1044 {
1045 	s[3] ^= v1;
1046 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1047 	s[0] ^= v1;
1048 	s[3] ^= v2;
1049 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1050 	s[0] ^= v2;
1051 }
1052 
1053 #ifdef CONFIG_SMP
1054 /*
1055  * This function is called when the CPU has just come online, with
1056  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1057  */
random_online_cpu(unsigned int cpu)1058 int __cold random_online_cpu(unsigned int cpu)
1059 {
1060 	/*
1061 	 * During CPU shutdown and before CPU onlining, add_interrupt_
1062 	 * randomness() may schedule mix_interrupt_randomness(), and
1063 	 * set the MIX_INFLIGHT flag. However, because the worker can
1064 	 * be scheduled on a different CPU during this period, that
1065 	 * flag will never be cleared. For that reason, we zero out
1066 	 * the flag here, which runs just after workqueues are onlined
1067 	 * for the CPU again. This also has the effect of setting the
1068 	 * irq randomness count to zero so that new accumulated irqs
1069 	 * are fresh.
1070 	 */
1071 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1072 	return 0;
1073 }
1074 #endif
1075 
mix_interrupt_randomness(struct timer_list * work)1076 static void mix_interrupt_randomness(struct timer_list *work)
1077 {
1078 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1079 	/*
1080 	 * The size of the copied stack pool is explicitly 2 longs so that we
1081 	 * only ever ingest half of the siphash output each time, retaining
1082 	 * the other half as the next "key" that carries over. The entropy is
1083 	 * supposed to be sufficiently dispersed between bits so on average
1084 	 * we don't wind up "losing" some.
1085 	 */
1086 	unsigned long pool[2];
1087 	unsigned int count;
1088 
1089 	/* Check to see if we're running on the wrong CPU due to hotplug. */
1090 	local_irq_disable();
1091 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1092 		local_irq_enable();
1093 		return;
1094 	}
1095 
1096 	/*
1097 	 * Copy the pool to the stack so that the mixer always has a
1098 	 * consistent view, before we reenable irqs again.
1099 	 */
1100 	memcpy(pool, fast_pool->pool, sizeof(pool));
1101 	count = fast_pool->count;
1102 	fast_pool->count = 0;
1103 	fast_pool->last = jiffies;
1104 	local_irq_enable();
1105 
1106 	mix_pool_bytes(pool, sizeof(pool));
1107 	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1108 
1109 	memzero_explicit(pool, sizeof(pool));
1110 }
1111 
add_interrupt_randomness(int irq)1112 void add_interrupt_randomness(int irq)
1113 {
1114 	enum { MIX_INFLIGHT = 1U << 31 };
1115 	unsigned long entropy = random_get_entropy();
1116 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1117 	struct pt_regs *regs = get_irq_regs();
1118 	unsigned int new_count;
1119 
1120 	fast_mix(fast_pool->pool, entropy,
1121 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1122 	new_count = ++fast_pool->count;
1123 
1124 	if (new_count & MIX_INFLIGHT)
1125 		return;
1126 
1127 	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1128 		return;
1129 
1130 	fast_pool->count |= MIX_INFLIGHT;
1131 	if (!timer_pending(&fast_pool->mix)) {
1132 		fast_pool->mix.expires = jiffies;
1133 		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1134 	}
1135 }
1136 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1137 
1138 /* There is one of these per entropy source */
1139 struct timer_rand_state {
1140 	unsigned long last_time;
1141 	long last_delta, last_delta2;
1142 };
1143 
1144 /*
1145  * This function adds entropy to the entropy "pool" by using timing
1146  * delays. It uses the timer_rand_state structure to make an estimate
1147  * of how many bits of entropy this call has added to the pool. The
1148  * value "num" is also added to the pool; it should somehow describe
1149  * the type of event that just happened.
1150  */
add_timer_randomness(struct timer_rand_state * state,unsigned int num)1151 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1152 {
1153 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1154 	long delta, delta2, delta3;
1155 	unsigned int bits;
1156 
1157 	/*
1158 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1159 	 * sometime after, so mix into the fast pool.
1160 	 */
1161 	if (in_hardirq()) {
1162 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1163 	} else {
1164 		spin_lock_irqsave(&input_pool.lock, flags);
1165 		_mix_pool_bytes(&entropy, sizeof(entropy));
1166 		_mix_pool_bytes(&num, sizeof(num));
1167 		spin_unlock_irqrestore(&input_pool.lock, flags);
1168 	}
1169 
1170 	if (crng_ready())
1171 		return;
1172 
1173 	/*
1174 	 * Calculate number of bits of randomness we probably added.
1175 	 * We take into account the first, second and third-order deltas
1176 	 * in order to make our estimate.
1177 	 */
1178 	delta = now - READ_ONCE(state->last_time);
1179 	WRITE_ONCE(state->last_time, now);
1180 
1181 	delta2 = delta - READ_ONCE(state->last_delta);
1182 	WRITE_ONCE(state->last_delta, delta);
1183 
1184 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1185 	WRITE_ONCE(state->last_delta2, delta2);
1186 
1187 	if (delta < 0)
1188 		delta = -delta;
1189 	if (delta2 < 0)
1190 		delta2 = -delta2;
1191 	if (delta3 < 0)
1192 		delta3 = -delta3;
1193 	if (delta > delta2)
1194 		delta = delta2;
1195 	if (delta > delta3)
1196 		delta = delta3;
1197 
1198 	/*
1199 	 * delta is now minimum absolute delta. Round down by 1 bit
1200 	 * on general principles, and limit entropy estimate to 11 bits.
1201 	 */
1202 	bits = min(fls(delta >> 1), 11);
1203 
1204 	/*
1205 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1206 	 * will run after this, which uses a different crediting scheme of 1 bit
1207 	 * per every 64 interrupts. In order to let that function do accounting
1208 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1209 	 * and then subtract one to account for the extra one added.
1210 	 */
1211 	if (in_hardirq())
1212 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1213 	else
1214 		_credit_init_bits(bits);
1215 }
1216 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1217 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1218 {
1219 	static unsigned char last_value;
1220 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1221 
1222 	/* Ignore autorepeat and the like. */
1223 	if (value == last_value)
1224 		return;
1225 
1226 	last_value = value;
1227 	add_timer_randomness(&input_timer_state,
1228 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1229 }
1230 EXPORT_SYMBOL_GPL(add_input_randomness);
1231 
1232 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1233 void add_disk_randomness(struct gendisk *disk)
1234 {
1235 	if (!disk || !disk->random)
1236 		return;
1237 	/* First major is 1, so we get >= 0x200 here. */
1238 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1239 }
1240 EXPORT_SYMBOL_GPL(add_disk_randomness);
1241 
rand_initialize_disk(struct gendisk * disk)1242 void __cold rand_initialize_disk(struct gendisk *disk)
1243 {
1244 	struct timer_rand_state *state;
1245 
1246 	/*
1247 	 * If kzalloc returns null, we just won't use that entropy
1248 	 * source.
1249 	 */
1250 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1251 	if (state) {
1252 		state->last_time = INITIAL_JIFFIES;
1253 		disk->random = state;
1254 	}
1255 }
1256 #endif
1257 
1258 struct entropy_timer_state {
1259 	unsigned long entropy;
1260 	struct timer_list timer;
1261 	atomic_t samples;
1262 	unsigned int samples_per_bit;
1263 };
1264 
1265 /*
1266  * Each time the timer fires, we expect that we got an unpredictable jump in
1267  * the cycle counter. Even if the timer is running on another CPU, the timer
1268  * activity will be touching the stack of the CPU that is generating entropy.
1269  *
1270  * Note that we don't re-arm the timer in the timer itself - we are happy to be
1271  * scheduled away, since that just makes the load more complex, but we do not
1272  * want the timer to keep ticking unless the entropy loop is running.
1273  *
1274  * So the re-arming always happens in the entropy loop itself.
1275  */
entropy_timer(struct timer_list * timer)1276 static void __cold entropy_timer(struct timer_list *timer)
1277 {
1278 	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1279 	unsigned long entropy = random_get_entropy();
1280 
1281 	mix_pool_bytes(&entropy, sizeof(entropy));
1282 	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1283 		credit_init_bits(1);
1284 }
1285 
1286 /*
1287  * If we have an actual cycle counter, see if we can generate enough entropy
1288  * with timing noise.
1289  */
try_to_generate_entropy(void)1290 static void __cold try_to_generate_entropy(void)
1291 {
1292 	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1293 	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1294 	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1295 	unsigned int i, num_different = 0;
1296 	unsigned long last = random_get_entropy();
1297 	int cpu = -1;
1298 
1299 	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1300 		stack->entropy = random_get_entropy();
1301 		if (stack->entropy != last)
1302 			++num_different;
1303 		last = stack->entropy;
1304 	}
1305 	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1306 	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1307 		return;
1308 
1309 	atomic_set(&stack->samples, 0);
1310 	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1311 	while (!crng_ready() && !signal_pending(current)) {
1312 		/*
1313 		 * Check !timer_pending() and then ensure that any previous callback has finished
1314 		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1315 		 */
1316 		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1317 			struct cpumask timer_cpus;
1318 			unsigned int num_cpus;
1319 
1320 			/*
1321 			 * Preemption must be disabled here, both to read the current CPU number
1322 			 * and to avoid scheduling a timer on a dead CPU.
1323 			 */
1324 			preempt_disable();
1325 
1326 			/* Only schedule callbacks on timer CPUs that are online. */
1327 			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1328 			num_cpus = cpumask_weight(&timer_cpus);
1329 			/* In very bizarre case of misconfiguration, fallback to all online. */
1330 			if (unlikely(num_cpus == 0)) {
1331 				timer_cpus = *cpu_online_mask;
1332 				num_cpus = cpumask_weight(&timer_cpus);
1333 			}
1334 
1335 			/* Basic CPU round-robin, which avoids the current CPU. */
1336 			do {
1337 				cpu = cpumask_next(cpu, &timer_cpus);
1338 				if (cpu >= nr_cpu_ids)
1339 					cpu = cpumask_first(&timer_cpus);
1340 			} while (cpu == smp_processor_id() && num_cpus > 1);
1341 
1342 			/* Expiring the timer at `jiffies` means it's the next tick. */
1343 			stack->timer.expires = jiffies;
1344 
1345 			add_timer_on(&stack->timer, cpu);
1346 
1347 			preempt_enable();
1348 		}
1349 		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1350 		schedule();
1351 		stack->entropy = random_get_entropy();
1352 	}
1353 	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1354 
1355 	del_timer_sync(&stack->timer);
1356 	destroy_timer_on_stack(&stack->timer);
1357 }
1358 
1359 
1360 /**********************************************************************
1361  *
1362  * Userspace reader/writer interfaces.
1363  *
1364  * getrandom(2) is the primary modern interface into the RNG and should
1365  * be used in preference to anything else.
1366  *
1367  * Reading from /dev/random has the same functionality as calling
1368  * getrandom(2) with flags=0. In earlier versions, however, it had
1369  * vastly different semantics and should therefore be avoided, to
1370  * prevent backwards compatibility issues.
1371  *
1372  * Reading from /dev/urandom has the same functionality as calling
1373  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1374  * waiting for the RNG to be ready, it should not be used.
1375  *
1376  * Writing to either /dev/random or /dev/urandom adds entropy to
1377  * the input pool but does not credit it.
1378  *
1379  * Polling on /dev/random indicates when the RNG is initialized, on
1380  * the read side, and when it wants new entropy, on the write side.
1381  *
1382  * Both /dev/random and /dev/urandom have the same set of ioctls for
1383  * adding entropy, getting the entropy count, zeroing the count, and
1384  * reseeding the crng.
1385  *
1386  **********************************************************************/
1387 
SYSCALL_DEFINE3(getrandom,char __user *,ubuf,size_t,len,unsigned int,flags)1388 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1389 {
1390 	struct iov_iter iter;
1391 	int ret;
1392 
1393 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1394 		return -EINVAL;
1395 
1396 	/*
1397 	 * Requesting insecure and blocking randomness at the same time makes
1398 	 * no sense.
1399 	 */
1400 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1401 		return -EINVAL;
1402 
1403 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1404 		if (flags & GRND_NONBLOCK)
1405 			return -EAGAIN;
1406 		ret = wait_for_random_bytes();
1407 		if (unlikely(ret))
1408 			return ret;
1409 	}
1410 
1411 	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1412 	if (unlikely(ret))
1413 		return ret;
1414 	return get_random_bytes_user(&iter);
1415 }
1416 
random_poll(struct file * file,poll_table * wait)1417 static __poll_t random_poll(struct file *file, poll_table *wait)
1418 {
1419 	poll_wait(file, &crng_init_wait, wait);
1420 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1421 }
1422 
write_pool_user(struct iov_iter * iter)1423 static ssize_t write_pool_user(struct iov_iter *iter)
1424 {
1425 	u8 block[BLAKE2S_BLOCK_SIZE];
1426 	ssize_t ret = 0;
1427 	size_t copied;
1428 
1429 	if (unlikely(!iov_iter_count(iter)))
1430 		return 0;
1431 
1432 	for (;;) {
1433 		copied = copy_from_iter(block, sizeof(block), iter);
1434 		ret += copied;
1435 		mix_pool_bytes(block, copied);
1436 		if (!iov_iter_count(iter) || copied != sizeof(block))
1437 			break;
1438 
1439 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1440 		if (ret % PAGE_SIZE == 0) {
1441 			if (signal_pending(current))
1442 				break;
1443 			cond_resched();
1444 		}
1445 	}
1446 
1447 	memzero_explicit(block, sizeof(block));
1448 	return ret ? ret : -EFAULT;
1449 }
1450 
random_write_iter(struct kiocb * kiocb,struct iov_iter * iter)1451 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1452 {
1453 	return write_pool_user(iter);
1454 }
1455 
urandom_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1456 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1457 {
1458 	static int maxwarn = 10;
1459 
1460 	/*
1461 	 * Opportunistically attempt to initialize the RNG on platforms that
1462 	 * have fast cycle counters, but don't (for now) require it to succeed.
1463 	 */
1464 	if (!crng_ready())
1465 		try_to_generate_entropy();
1466 
1467 	if (!crng_ready()) {
1468 		if (!ratelimit_disable && maxwarn <= 0)
1469 			++urandom_warning.missed;
1470 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1471 			--maxwarn;
1472 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1473 				  current->comm, iov_iter_count(iter));
1474 		}
1475 	}
1476 
1477 	return get_random_bytes_user(iter);
1478 }
1479 
random_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1480 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1481 {
1482 	int ret;
1483 
1484 	if (!crng_ready() &&
1485 	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1486 	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1487 		return -EAGAIN;
1488 
1489 	ret = wait_for_random_bytes();
1490 	if (ret != 0)
1491 		return ret;
1492 	return get_random_bytes_user(iter);
1493 }
1494 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1495 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1496 {
1497 	int __user *p = (int __user *)arg;
1498 	int ent_count;
1499 
1500 	switch (cmd) {
1501 	case RNDGETENTCNT:
1502 		/* Inherently racy, no point locking. */
1503 		if (put_user(input_pool.init_bits, p))
1504 			return -EFAULT;
1505 		return 0;
1506 	case RNDADDTOENTCNT:
1507 		if (!capable(CAP_SYS_ADMIN))
1508 			return -EPERM;
1509 		if (get_user(ent_count, p))
1510 			return -EFAULT;
1511 		if (ent_count < 0)
1512 			return -EINVAL;
1513 		credit_init_bits(ent_count);
1514 		return 0;
1515 	case RNDADDENTROPY: {
1516 		struct iov_iter iter;
1517 		ssize_t ret;
1518 		int len;
1519 
1520 		if (!capable(CAP_SYS_ADMIN))
1521 			return -EPERM;
1522 		if (get_user(ent_count, p++))
1523 			return -EFAULT;
1524 		if (ent_count < 0)
1525 			return -EINVAL;
1526 		if (get_user(len, p++))
1527 			return -EFAULT;
1528 		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1529 		if (unlikely(ret))
1530 			return ret;
1531 		ret = write_pool_user(&iter);
1532 		if (unlikely(ret < 0))
1533 			return ret;
1534 		/* Since we're crediting, enforce that it was all written into the pool. */
1535 		if (unlikely(ret != len))
1536 			return -EFAULT;
1537 		credit_init_bits(ent_count);
1538 		return 0;
1539 	}
1540 	case RNDZAPENTCNT:
1541 	case RNDCLEARPOOL:
1542 		/* No longer has any effect. */
1543 		if (!capable(CAP_SYS_ADMIN))
1544 			return -EPERM;
1545 		return 0;
1546 	case RNDRESEEDCRNG:
1547 		if (!capable(CAP_SYS_ADMIN))
1548 			return -EPERM;
1549 		if (!crng_ready())
1550 			return -ENODATA;
1551 		crng_reseed(NULL);
1552 		return 0;
1553 	default:
1554 		return -EINVAL;
1555 	}
1556 }
1557 
random_fasync(int fd,struct file * filp,int on)1558 static int random_fasync(int fd, struct file *filp, int on)
1559 {
1560 	return fasync_helper(fd, filp, on, &fasync);
1561 }
1562 
1563 const struct file_operations random_fops = {
1564 	.read_iter = random_read_iter,
1565 	.write_iter = random_write_iter,
1566 	.poll = random_poll,
1567 	.unlocked_ioctl = random_ioctl,
1568 	.compat_ioctl = compat_ptr_ioctl,
1569 	.fasync = random_fasync,
1570 	.llseek = noop_llseek,
1571 	.splice_read = copy_splice_read,
1572 	.splice_write = iter_file_splice_write,
1573 };
1574 
1575 const struct file_operations urandom_fops = {
1576 	.read_iter = urandom_read_iter,
1577 	.write_iter = random_write_iter,
1578 	.unlocked_ioctl = random_ioctl,
1579 	.compat_ioctl = compat_ptr_ioctl,
1580 	.fasync = random_fasync,
1581 	.llseek = noop_llseek,
1582 	.splice_read = copy_splice_read,
1583 	.splice_write = iter_file_splice_write,
1584 };
1585 
1586 
1587 /********************************************************************
1588  *
1589  * Sysctl interface.
1590  *
1591  * These are partly unused legacy knobs with dummy values to not break
1592  * userspace and partly still useful things. They are usually accessible
1593  * in /proc/sys/kernel/random/ and are as follows:
1594  *
1595  * - boot_id - a UUID representing the current boot.
1596  *
1597  * - uuid - a random UUID, different each time the file is read.
1598  *
1599  * - poolsize - the number of bits of entropy that the input pool can
1600  *   hold, tied to the POOL_BITS constant.
1601  *
1602  * - entropy_avail - the number of bits of entropy currently in the
1603  *   input pool. Always <= poolsize.
1604  *
1605  * - write_wakeup_threshold - the amount of entropy in the input pool
1606  *   below which write polls to /dev/random will unblock, requesting
1607  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1608  *   to avoid breaking old userspaces, but writing to it does not
1609  *   change any behavior of the RNG.
1610  *
1611  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1612  *   It is writable to avoid breaking old userspaces, but writing
1613  *   to it does not change any behavior of the RNG.
1614  *
1615  ********************************************************************/
1616 
1617 #ifdef CONFIG_SYSCTL
1618 
1619 #include <linux/sysctl.h>
1620 
1621 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1622 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1623 static int sysctl_poolsize = POOL_BITS;
1624 static u8 sysctl_bootid[UUID_SIZE];
1625 
1626 /*
1627  * This function is used to return both the bootid UUID, and random
1628  * UUID. The difference is in whether table->data is NULL; if it is,
1629  * then a new UUID is generated and returned to the user.
1630  */
proc_do_uuid(const struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1631 static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1632 			size_t *lenp, loff_t *ppos)
1633 {
1634 	u8 tmp_uuid[UUID_SIZE], *uuid;
1635 	char uuid_string[UUID_STRING_LEN + 1];
1636 	struct ctl_table fake_table = {
1637 		.data = uuid_string,
1638 		.maxlen = UUID_STRING_LEN
1639 	};
1640 
1641 	if (write)
1642 		return -EPERM;
1643 
1644 	uuid = table->data;
1645 	if (!uuid) {
1646 		uuid = tmp_uuid;
1647 		generate_random_uuid(uuid);
1648 	} else {
1649 		static DEFINE_SPINLOCK(bootid_spinlock);
1650 
1651 		spin_lock(&bootid_spinlock);
1652 		if (!uuid[8])
1653 			generate_random_uuid(uuid);
1654 		spin_unlock(&bootid_spinlock);
1655 	}
1656 
1657 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1658 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1659 }
1660 
1661 /* The same as proc_dointvec, but writes don't change anything. */
proc_do_rointvec(const struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1662 static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1663 			    size_t *lenp, loff_t *ppos)
1664 {
1665 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1666 }
1667 
1668 static struct ctl_table random_table[] = {
1669 	{
1670 		.procname	= "poolsize",
1671 		.data		= &sysctl_poolsize,
1672 		.maxlen		= sizeof(int),
1673 		.mode		= 0444,
1674 		.proc_handler	= proc_dointvec,
1675 	},
1676 	{
1677 		.procname	= "entropy_avail",
1678 		.data		= &input_pool.init_bits,
1679 		.maxlen		= sizeof(int),
1680 		.mode		= 0444,
1681 		.proc_handler	= proc_dointvec,
1682 	},
1683 	{
1684 		.procname	= "write_wakeup_threshold",
1685 		.data		= &sysctl_random_write_wakeup_bits,
1686 		.maxlen		= sizeof(int),
1687 		.mode		= 0644,
1688 		.proc_handler	= proc_do_rointvec,
1689 	},
1690 	{
1691 		.procname	= "urandom_min_reseed_secs",
1692 		.data		= &sysctl_random_min_urandom_seed,
1693 		.maxlen		= sizeof(int),
1694 		.mode		= 0644,
1695 		.proc_handler	= proc_do_rointvec,
1696 	},
1697 	{
1698 		.procname	= "boot_id",
1699 		.data		= &sysctl_bootid,
1700 		.mode		= 0444,
1701 		.proc_handler	= proc_do_uuid,
1702 	},
1703 	{
1704 		.procname	= "uuid",
1705 		.mode		= 0444,
1706 		.proc_handler	= proc_do_uuid,
1707 	},
1708 };
1709 
1710 /*
1711  * random_init() is called before sysctl_init(),
1712  * so we cannot call register_sysctl_init() in random_init()
1713  */
random_sysctls_init(void)1714 static int __init random_sysctls_init(void)
1715 {
1716 	register_sysctl_init("kernel/random", random_table);
1717 	return 0;
1718 }
1719 device_initcall(random_sysctls_init);
1720 #endif
1721