1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4   * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5   */
6  #include <linux/kernel.h>
7  #include <linux/wait.h>
8  #include <linux/blkdev.h>
9  #include <linux/slab.h>
10  #include <linux/raid/md_p.h>
11  #include <linux/crc32c.h>
12  #include <linux/random.h>
13  #include <linux/kthread.h>
14  #include <linux/types.h>
15  #include "md.h"
16  #include "raid5.h"
17  #include "md-bitmap.h"
18  #include "raid5-log.h"
19  
20  /*
21   * metadata/data stored in disk with 4k size unit (a block) regardless
22   * underneath hardware sector size. only works with PAGE_SIZE == 4096
23   */
24  #define BLOCK_SECTORS (8)
25  #define BLOCK_SECTOR_SHIFT (3)
26  
27  /*
28   * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29   *
30   * In write through mode, the reclaim runs every log->max_free_space.
31   * This can prevent the recovery scans for too long
32   */
33  #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34  #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35  
36  /* wake up reclaim thread periodically */
37  #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38  /* start flush with these full stripes */
39  #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40  /* reclaim stripes in groups */
41  #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42  
43  /*
44   * We only need 2 bios per I/O unit to make progress, but ensure we
45   * have a few more available to not get too tight.
46   */
47  #define R5L_POOL_SIZE	4
48  
49  static char *r5c_journal_mode_str[] = {"write-through",
50  				       "write-back"};
51  /*
52   * raid5 cache state machine
53   *
54   * With the RAID cache, each stripe works in two phases:
55   *	- caching phase
56   *	- writing-out phase
57   *
58   * These two phases are controlled by bit STRIPE_R5C_CACHING:
59   *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60   *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61   *
62   * When there is no journal, or the journal is in write-through mode,
63   * the stripe is always in writing-out phase.
64   *
65   * For write-back journal, the stripe is sent to caching phase on write
66   * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67   * the write-out phase by clearing STRIPE_R5C_CACHING.
68   *
69   * Stripes in caching phase do not write the raid disks. Instead, all
70   * writes are committed from the log device. Therefore, a stripe in
71   * caching phase handles writes as:
72   *	- write to log device
73   *	- return IO
74   *
75   * Stripes in writing-out phase handle writes as:
76   *	- calculate parity
77   *	- write pending data and parity to journal
78   *	- write data and parity to raid disks
79   *	- return IO for pending writes
80   */
81  
82  struct r5l_log {
83  	struct md_rdev *rdev;
84  
85  	u32 uuid_checksum;
86  
87  	sector_t device_size;		/* log device size, round to
88  					 * BLOCK_SECTORS */
89  	sector_t max_free_space;	/* reclaim run if free space is at
90  					 * this size */
91  
92  	sector_t last_checkpoint;	/* log tail. where recovery scan
93  					 * starts from */
94  	u64 last_cp_seq;		/* log tail sequence */
95  
96  	sector_t log_start;		/* log head. where new data appends */
97  	u64 seq;			/* log head sequence */
98  
99  	sector_t next_checkpoint;
100  
101  	struct mutex io_mutex;
102  	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
103  
104  	spinlock_t io_list_lock;
105  	struct list_head running_ios;	/* io_units which are still running,
106  					 * and have not yet been completely
107  					 * written to the log */
108  	struct list_head io_end_ios;	/* io_units which have been completely
109  					 * written to the log but not yet written
110  					 * to the RAID */
111  	struct list_head flushing_ios;	/* io_units which are waiting for log
112  					 * cache flush */
113  	struct list_head finished_ios;	/* io_units which settle down in log disk */
114  	struct bio flush_bio;
115  
116  	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117  
118  	struct kmem_cache *io_kc;
119  	mempool_t io_pool;
120  	struct bio_set bs;
121  	mempool_t meta_pool;
122  
123  	struct md_thread __rcu *reclaim_thread;
124  	unsigned long reclaim_target;	/* number of space that need to be
125  					 * reclaimed.  if it's 0, reclaim spaces
126  					 * used by io_units which are in
127  					 * IO_UNIT_STRIPE_END state (eg, reclaim
128  					 * doesn't wait for specific io_unit
129  					 * switching to IO_UNIT_STRIPE_END
130  					 * state) */
131  	wait_queue_head_t iounit_wait;
132  
133  	struct list_head no_space_stripes; /* pending stripes, log has no space */
134  	spinlock_t no_space_stripes_lock;
135  
136  	bool need_cache_flush;
137  
138  	/* for r5c_cache */
139  	enum r5c_journal_mode r5c_journal_mode;
140  
141  	/* all stripes in r5cache, in the order of seq at sh->log_start */
142  	struct list_head stripe_in_journal_list;
143  
144  	spinlock_t stripe_in_journal_lock;
145  	atomic_t stripe_in_journal_count;
146  
147  	/* to submit async io_units, to fulfill ordering of flush */
148  	struct work_struct deferred_io_work;
149  	/* to disable write back during in degraded mode */
150  	struct work_struct disable_writeback_work;
151  
152  	/* to for chunk_aligned_read in writeback mode, details below */
153  	spinlock_t tree_lock;
154  	struct radix_tree_root big_stripe_tree;
155  };
156  
157  /*
158   * Enable chunk_aligned_read() with write back cache.
159   *
160   * Each chunk may contain more than one stripe (for example, a 256kB
161   * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162   * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163   * For each big_stripe, we count how many stripes of this big_stripe
164   * are in the write back cache. These data are tracked in a radix tree
165   * (big_stripe_tree). We use radix_tree item pointer as the counter.
166   * r5c_tree_index() is used to calculate keys for the radix tree.
167   *
168   * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169   * big_stripe of each chunk in the tree. If this big_stripe is in the
170   * tree, chunk_aligned_read() aborts. This look up is protected by
171   * rcu_read_lock().
172   *
173   * It is necessary to remember whether a stripe is counted in
174   * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175   * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176   * two flags are set, the stripe is counted in big_stripe_tree. This
177   * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178   * r5c_try_caching_write(); and moving clear_bit of
179   * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180   * r5c_finish_stripe_write_out().
181   */
182  
183  /*
184   * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185   * So it is necessary to left shift the counter by 2 bits before using it
186   * as data pointer of the tree.
187   */
188  #define R5C_RADIX_COUNT_SHIFT 2
189  
190  /*
191   * calculate key for big_stripe_tree
192   *
193   * sect: align_bi->bi_iter.bi_sector or sh->sector
194   */
r5c_tree_index(struct r5conf * conf,sector_t sect)195  static inline sector_t r5c_tree_index(struct r5conf *conf,
196  				      sector_t sect)
197  {
198  	sector_div(sect, conf->chunk_sectors);
199  	return sect;
200  }
201  
202  /*
203   * an IO range starts from a meta data block and end at the next meta data
204   * block. The io unit's the meta data block tracks data/parity followed it. io
205   * unit is written to log disk with normal write, as we always flush log disk
206   * first and then start move data to raid disks, there is no requirement to
207   * write io unit with FLUSH/FUA
208   */
209  struct r5l_io_unit {
210  	struct r5l_log *log;
211  
212  	struct page *meta_page;	/* store meta block */
213  	int meta_offset;	/* current offset in meta_page */
214  
215  	struct bio *current_bio;/* current_bio accepting new data */
216  
217  	atomic_t pending_stripe;/* how many stripes not flushed to raid */
218  	u64 seq;		/* seq number of the metablock */
219  	sector_t log_start;	/* where the io_unit starts */
220  	sector_t log_end;	/* where the io_unit ends */
221  	struct list_head log_sibling; /* log->running_ios */
222  	struct list_head stripe_list; /* stripes added to the io_unit */
223  
224  	int state;
225  	bool need_split_bio;
226  	struct bio *split_bio;
227  
228  	unsigned int has_flush:1;		/* include flush request */
229  	unsigned int has_fua:1;			/* include fua request */
230  	unsigned int has_null_flush:1;		/* include null flush request */
231  	unsigned int has_flush_payload:1;	/* include flush payload  */
232  	/*
233  	 * io isn't sent yet, flush/fua request can only be submitted till it's
234  	 * the first IO in running_ios list
235  	 */
236  	unsigned int io_deferred:1;
237  
238  	struct bio_list flush_barriers;   /* size == 0 flush bios */
239  };
240  
241  /* r5l_io_unit state */
242  enum r5l_io_unit_state {
243  	IO_UNIT_RUNNING = 0,	/* accepting new IO */
244  	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
245  				 * don't accepting new bio */
246  	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
247  	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
248  };
249  
r5c_is_writeback(struct r5l_log * log)250  bool r5c_is_writeback(struct r5l_log *log)
251  {
252  	return (log != NULL &&
253  		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254  }
255  
r5l_ring_add(struct r5l_log * log,sector_t start,sector_t inc)256  static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257  {
258  	start += inc;
259  	if (start >= log->device_size)
260  		start = start - log->device_size;
261  	return start;
262  }
263  
r5l_ring_distance(struct r5l_log * log,sector_t start,sector_t end)264  static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265  				  sector_t end)
266  {
267  	if (end >= start)
268  		return end - start;
269  	else
270  		return end + log->device_size - start;
271  }
272  
r5l_has_free_space(struct r5l_log * log,sector_t size)273  static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274  {
275  	sector_t used_size;
276  
277  	used_size = r5l_ring_distance(log, log->last_checkpoint,
278  					log->log_start);
279  
280  	return log->device_size > used_size + size;
281  }
282  
__r5l_set_io_unit_state(struct r5l_io_unit * io,enum r5l_io_unit_state state)283  static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284  				    enum r5l_io_unit_state state)
285  {
286  	if (WARN_ON(io->state >= state))
287  		return;
288  	io->state = state;
289  }
290  
291  static void
r5c_return_dev_pending_writes(struct r5conf * conf,struct r5dev * dev)292  r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293  {
294  	struct bio *wbi, *wbi2;
295  
296  	wbi = dev->written;
297  	dev->written = NULL;
298  	while (wbi && wbi->bi_iter.bi_sector <
299  	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300  		wbi2 = r5_next_bio(conf, wbi, dev->sector);
301  		md_write_end(conf->mddev);
302  		bio_endio(wbi);
303  		wbi = wbi2;
304  	}
305  }
306  
r5c_handle_cached_data_endio(struct r5conf * conf,struct stripe_head * sh,int disks)307  void r5c_handle_cached_data_endio(struct r5conf *conf,
308  				  struct stripe_head *sh, int disks)
309  {
310  	int i;
311  
312  	for (i = sh->disks; i--; ) {
313  		if (sh->dev[i].written) {
314  			set_bit(R5_UPTODATE, &sh->dev[i].flags);
315  			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316  			conf->mddev->bitmap_ops->endwrite(conf->mddev,
317  					sh->sector, RAID5_STRIPE_SECTORS(conf),
318  					!test_bit(STRIPE_DEGRADED, &sh->state),
319  					false);
320  		}
321  	}
322  }
323  
324  void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325  
326  /* Check whether we should flush some stripes to free up stripe cache */
r5c_check_stripe_cache_usage(struct r5conf * conf)327  void r5c_check_stripe_cache_usage(struct r5conf *conf)
328  {
329  	int total_cached;
330  	struct r5l_log *log = READ_ONCE(conf->log);
331  
332  	if (!r5c_is_writeback(log))
333  		return;
334  
335  	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
336  		atomic_read(&conf->r5c_cached_full_stripes);
337  
338  	/*
339  	 * The following condition is true for either of the following:
340  	 *   - stripe cache pressure high:
341  	 *          total_cached > 3/4 min_nr_stripes ||
342  	 *          empty_inactive_list_nr > 0
343  	 *   - stripe cache pressure moderate:
344  	 *          total_cached > 1/2 min_nr_stripes
345  	 */
346  	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
347  	    atomic_read(&conf->empty_inactive_list_nr) > 0)
348  		r5l_wake_reclaim(log, 0);
349  }
350  
351  /*
352   * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
353   * stripes in the cache
354   */
r5c_check_cached_full_stripe(struct r5conf * conf)355  void r5c_check_cached_full_stripe(struct r5conf *conf)
356  {
357  	struct r5l_log *log = READ_ONCE(conf->log);
358  
359  	if (!r5c_is_writeback(log))
360  		return;
361  
362  	/*
363  	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
364  	 * or a full stripe (chunk size / 4k stripes).
365  	 */
366  	if (atomic_read(&conf->r5c_cached_full_stripes) >=
367  	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
368  		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
369  		r5l_wake_reclaim(log, 0);
370  }
371  
372  /*
373   * Total log space (in sectors) needed to flush all data in cache
374   *
375   * To avoid deadlock due to log space, it is necessary to reserve log
376   * space to flush critical stripes (stripes that occupying log space near
377   * last_checkpoint). This function helps check how much log space is
378   * required to flush all cached stripes.
379   *
380   * To reduce log space requirements, two mechanisms are used to give cache
381   * flush higher priorities:
382   *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
383   *       stripes ALREADY in journal can be flushed w/o pending writes;
384   *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
385   *       can be delayed (r5l_add_no_space_stripe).
386   *
387   * In cache flush, the stripe goes through 1 and then 2. For a stripe that
388   * already passed 1, flushing it requires at most (conf->max_degraded + 1)
389   * pages of journal space. For stripes that has not passed 1, flushing it
390   * requires (conf->raid_disks + 1) pages of journal space. There are at
391   * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
392   * required to flush all cached stripes (in pages) is:
393   *
394   *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
395   *     (group_cnt + 1) * (raid_disks + 1)
396   * or
397   *     (stripe_in_journal_count) * (max_degraded + 1) +
398   *     (group_cnt + 1) * (raid_disks - max_degraded)
399   */
r5c_log_required_to_flush_cache(struct r5conf * conf)400  static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
401  {
402  	struct r5l_log *log = READ_ONCE(conf->log);
403  
404  	if (!r5c_is_writeback(log))
405  		return 0;
406  
407  	return BLOCK_SECTORS *
408  		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
409  		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
410  }
411  
412  /*
413   * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
414   *
415   * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
416   * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
417   * device is less than 2x of reclaim_required_space.
418   */
r5c_update_log_state(struct r5l_log * log)419  static inline void r5c_update_log_state(struct r5l_log *log)
420  {
421  	struct r5conf *conf = log->rdev->mddev->private;
422  	sector_t free_space;
423  	sector_t reclaim_space;
424  	bool wake_reclaim = false;
425  
426  	if (!r5c_is_writeback(log))
427  		return;
428  
429  	free_space = r5l_ring_distance(log, log->log_start,
430  				       log->last_checkpoint);
431  	reclaim_space = r5c_log_required_to_flush_cache(conf);
432  	if (free_space < 2 * reclaim_space)
433  		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
434  	else {
435  		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
436  			wake_reclaim = true;
437  		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
438  	}
439  	if (free_space < 3 * reclaim_space)
440  		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
441  	else
442  		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
443  
444  	if (wake_reclaim)
445  		r5l_wake_reclaim(log, 0);
446  }
447  
448  /*
449   * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
450   * This function should only be called in write-back mode.
451   */
r5c_make_stripe_write_out(struct stripe_head * sh)452  void r5c_make_stripe_write_out(struct stripe_head *sh)
453  {
454  	struct r5conf *conf = sh->raid_conf;
455  	struct r5l_log *log = READ_ONCE(conf->log);
456  
457  	BUG_ON(!r5c_is_writeback(log));
458  
459  	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
460  	clear_bit(STRIPE_R5C_CACHING, &sh->state);
461  
462  	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
463  		atomic_inc(&conf->preread_active_stripes);
464  }
465  
r5c_handle_data_cached(struct stripe_head * sh)466  static void r5c_handle_data_cached(struct stripe_head *sh)
467  {
468  	int i;
469  
470  	for (i = sh->disks; i--; )
471  		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
472  			set_bit(R5_InJournal, &sh->dev[i].flags);
473  			clear_bit(R5_LOCKED, &sh->dev[i].flags);
474  		}
475  	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
476  }
477  
478  /*
479   * this journal write must contain full parity,
480   * it may also contain some data pages
481   */
r5c_handle_parity_cached(struct stripe_head * sh)482  static void r5c_handle_parity_cached(struct stripe_head *sh)
483  {
484  	int i;
485  
486  	for (i = sh->disks; i--; )
487  		if (test_bit(R5_InJournal, &sh->dev[i].flags))
488  			set_bit(R5_Wantwrite, &sh->dev[i].flags);
489  }
490  
491  /*
492   * Setting proper flags after writing (or flushing) data and/or parity to the
493   * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
494   */
r5c_finish_cache_stripe(struct stripe_head * sh)495  static void r5c_finish_cache_stripe(struct stripe_head *sh)
496  {
497  	struct r5l_log *log = READ_ONCE(sh->raid_conf->log);
498  
499  	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
500  		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
501  		/*
502  		 * Set R5_InJournal for parity dev[pd_idx]. This means
503  		 * all data AND parity in the journal. For RAID 6, it is
504  		 * NOT necessary to set the flag for dev[qd_idx], as the
505  		 * two parities are written out together.
506  		 */
507  		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
508  	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
509  		r5c_handle_data_cached(sh);
510  	} else {
511  		r5c_handle_parity_cached(sh);
512  		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
513  	}
514  }
515  
r5l_io_run_stripes(struct r5l_io_unit * io)516  static void r5l_io_run_stripes(struct r5l_io_unit *io)
517  {
518  	struct stripe_head *sh, *next;
519  
520  	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
521  		list_del_init(&sh->log_list);
522  
523  		r5c_finish_cache_stripe(sh);
524  
525  		set_bit(STRIPE_HANDLE, &sh->state);
526  		raid5_release_stripe(sh);
527  	}
528  }
529  
r5l_log_run_stripes(struct r5l_log * log)530  static void r5l_log_run_stripes(struct r5l_log *log)
531  {
532  	struct r5l_io_unit *io, *next;
533  
534  	lockdep_assert_held(&log->io_list_lock);
535  
536  	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
537  		/* don't change list order */
538  		if (io->state < IO_UNIT_IO_END)
539  			break;
540  
541  		list_move_tail(&io->log_sibling, &log->finished_ios);
542  		r5l_io_run_stripes(io);
543  	}
544  }
545  
r5l_move_to_end_ios(struct r5l_log * log)546  static void r5l_move_to_end_ios(struct r5l_log *log)
547  {
548  	struct r5l_io_unit *io, *next;
549  
550  	lockdep_assert_held(&log->io_list_lock);
551  
552  	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
553  		/* don't change list order */
554  		if (io->state < IO_UNIT_IO_END)
555  			break;
556  		list_move_tail(&io->log_sibling, &log->io_end_ios);
557  	}
558  }
559  
560  static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
r5l_log_endio(struct bio * bio)561  static void r5l_log_endio(struct bio *bio)
562  {
563  	struct r5l_io_unit *io = bio->bi_private;
564  	struct r5l_io_unit *io_deferred;
565  	struct r5l_log *log = io->log;
566  	unsigned long flags;
567  	bool has_null_flush;
568  	bool has_flush_payload;
569  
570  	if (bio->bi_status)
571  		md_error(log->rdev->mddev, log->rdev);
572  
573  	bio_put(bio);
574  	mempool_free(io->meta_page, &log->meta_pool);
575  
576  	spin_lock_irqsave(&log->io_list_lock, flags);
577  	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
578  
579  	/*
580  	 * if the io doesn't not have null_flush or flush payload,
581  	 * it is not safe to access it after releasing io_list_lock.
582  	 * Therefore, it is necessary to check the condition with
583  	 * the lock held.
584  	 */
585  	has_null_flush = io->has_null_flush;
586  	has_flush_payload = io->has_flush_payload;
587  
588  	if (log->need_cache_flush && !list_empty(&io->stripe_list))
589  		r5l_move_to_end_ios(log);
590  	else
591  		r5l_log_run_stripes(log);
592  	if (!list_empty(&log->running_ios)) {
593  		/*
594  		 * FLUSH/FUA io_unit is deferred because of ordering, now we
595  		 * can dispatch it
596  		 */
597  		io_deferred = list_first_entry(&log->running_ios,
598  					       struct r5l_io_unit, log_sibling);
599  		if (io_deferred->io_deferred)
600  			schedule_work(&log->deferred_io_work);
601  	}
602  
603  	spin_unlock_irqrestore(&log->io_list_lock, flags);
604  
605  	if (log->need_cache_flush)
606  		md_wakeup_thread(log->rdev->mddev->thread);
607  
608  	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
609  	if (has_null_flush) {
610  		struct bio *bi;
611  
612  		WARN_ON(bio_list_empty(&io->flush_barriers));
613  		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
614  			bio_endio(bi);
615  			if (atomic_dec_and_test(&io->pending_stripe)) {
616  				__r5l_stripe_write_finished(io);
617  				return;
618  			}
619  		}
620  	}
621  	/* decrease pending_stripe for flush payload */
622  	if (has_flush_payload)
623  		if (atomic_dec_and_test(&io->pending_stripe))
624  			__r5l_stripe_write_finished(io);
625  }
626  
r5l_do_submit_io(struct r5l_log * log,struct r5l_io_unit * io)627  static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
628  {
629  	unsigned long flags;
630  
631  	spin_lock_irqsave(&log->io_list_lock, flags);
632  	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
633  	spin_unlock_irqrestore(&log->io_list_lock, flags);
634  
635  	/*
636  	 * In case of journal device failures, submit_bio will get error
637  	 * and calls endio, then active stripes will continue write
638  	 * process. Therefore, it is not necessary to check Faulty bit
639  	 * of journal device here.
640  	 *
641  	 * We can't check split_bio after current_bio is submitted. If
642  	 * io->split_bio is null, after current_bio is submitted, current_bio
643  	 * might already be completed and the io_unit is freed. We submit
644  	 * split_bio first to avoid the issue.
645  	 */
646  	if (io->split_bio) {
647  		if (io->has_flush)
648  			io->split_bio->bi_opf |= REQ_PREFLUSH;
649  		if (io->has_fua)
650  			io->split_bio->bi_opf |= REQ_FUA;
651  		submit_bio(io->split_bio);
652  	}
653  
654  	if (io->has_flush)
655  		io->current_bio->bi_opf |= REQ_PREFLUSH;
656  	if (io->has_fua)
657  		io->current_bio->bi_opf |= REQ_FUA;
658  	submit_bio(io->current_bio);
659  }
660  
661  /* deferred io_unit will be dispatched here */
r5l_submit_io_async(struct work_struct * work)662  static void r5l_submit_io_async(struct work_struct *work)
663  {
664  	struct r5l_log *log = container_of(work, struct r5l_log,
665  					   deferred_io_work);
666  	struct r5l_io_unit *io = NULL;
667  	unsigned long flags;
668  
669  	spin_lock_irqsave(&log->io_list_lock, flags);
670  	if (!list_empty(&log->running_ios)) {
671  		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
672  				      log_sibling);
673  		if (!io->io_deferred)
674  			io = NULL;
675  		else
676  			io->io_deferred = 0;
677  	}
678  	spin_unlock_irqrestore(&log->io_list_lock, flags);
679  	if (io)
680  		r5l_do_submit_io(log, io);
681  }
682  
r5c_disable_writeback_async(struct work_struct * work)683  static void r5c_disable_writeback_async(struct work_struct *work)
684  {
685  	struct r5l_log *log = container_of(work, struct r5l_log,
686  					   disable_writeback_work);
687  	struct mddev *mddev = log->rdev->mddev;
688  	struct r5conf *conf = mddev->private;
689  
690  	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
691  		return;
692  	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
693  		mdname(mddev));
694  
695  	/* wait superblock change before suspend */
696  	wait_event(mddev->sb_wait,
697  		   !READ_ONCE(conf->log) ||
698  		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
699  
700  	log = READ_ONCE(conf->log);
701  	if (log) {
702  		mddev_suspend(mddev, false);
703  		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
704  		mddev_resume(mddev);
705  	}
706  }
707  
r5l_submit_current_io(struct r5l_log * log)708  static void r5l_submit_current_io(struct r5l_log *log)
709  {
710  	struct r5l_io_unit *io = log->current_io;
711  	struct r5l_meta_block *block;
712  	unsigned long flags;
713  	u32 crc;
714  	bool do_submit = true;
715  
716  	if (!io)
717  		return;
718  
719  	block = page_address(io->meta_page);
720  	block->meta_size = cpu_to_le32(io->meta_offset);
721  	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
722  	block->checksum = cpu_to_le32(crc);
723  
724  	log->current_io = NULL;
725  	spin_lock_irqsave(&log->io_list_lock, flags);
726  	if (io->has_flush || io->has_fua) {
727  		if (io != list_first_entry(&log->running_ios,
728  					   struct r5l_io_unit, log_sibling)) {
729  			io->io_deferred = 1;
730  			do_submit = false;
731  		}
732  	}
733  	spin_unlock_irqrestore(&log->io_list_lock, flags);
734  	if (do_submit)
735  		r5l_do_submit_io(log, io);
736  }
737  
r5l_bio_alloc(struct r5l_log * log)738  static struct bio *r5l_bio_alloc(struct r5l_log *log)
739  {
740  	struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
741  					   REQ_OP_WRITE, GFP_NOIO, &log->bs);
742  
743  	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
744  
745  	return bio;
746  }
747  
r5_reserve_log_entry(struct r5l_log * log,struct r5l_io_unit * io)748  static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
749  {
750  	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
751  
752  	r5c_update_log_state(log);
753  	/*
754  	 * If we filled up the log device start from the beginning again,
755  	 * which will require a new bio.
756  	 *
757  	 * Note: for this to work properly the log size needs to me a multiple
758  	 * of BLOCK_SECTORS.
759  	 */
760  	if (log->log_start == 0)
761  		io->need_split_bio = true;
762  
763  	io->log_end = log->log_start;
764  }
765  
r5l_new_meta(struct r5l_log * log)766  static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
767  {
768  	struct r5l_io_unit *io;
769  	struct r5l_meta_block *block;
770  
771  	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
772  	if (!io)
773  		return NULL;
774  	memset(io, 0, sizeof(*io));
775  
776  	io->log = log;
777  	INIT_LIST_HEAD(&io->log_sibling);
778  	INIT_LIST_HEAD(&io->stripe_list);
779  	bio_list_init(&io->flush_barriers);
780  	io->state = IO_UNIT_RUNNING;
781  
782  	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
783  	block = page_address(io->meta_page);
784  	clear_page(block);
785  	block->magic = cpu_to_le32(R5LOG_MAGIC);
786  	block->version = R5LOG_VERSION;
787  	block->seq = cpu_to_le64(log->seq);
788  	block->position = cpu_to_le64(log->log_start);
789  
790  	io->log_start = log->log_start;
791  	io->meta_offset = sizeof(struct r5l_meta_block);
792  	io->seq = log->seq++;
793  
794  	io->current_bio = r5l_bio_alloc(log);
795  	io->current_bio->bi_end_io = r5l_log_endio;
796  	io->current_bio->bi_private = io;
797  	__bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
798  
799  	r5_reserve_log_entry(log, io);
800  
801  	spin_lock_irq(&log->io_list_lock);
802  	list_add_tail(&io->log_sibling, &log->running_ios);
803  	spin_unlock_irq(&log->io_list_lock);
804  
805  	return io;
806  }
807  
r5l_get_meta(struct r5l_log * log,unsigned int payload_size)808  static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
809  {
810  	if (log->current_io &&
811  	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
812  		r5l_submit_current_io(log);
813  
814  	if (!log->current_io) {
815  		log->current_io = r5l_new_meta(log);
816  		if (!log->current_io)
817  			return -ENOMEM;
818  	}
819  
820  	return 0;
821  }
822  
r5l_append_payload_meta(struct r5l_log * log,u16 type,sector_t location,u32 checksum1,u32 checksum2,bool checksum2_valid)823  static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
824  				    sector_t location,
825  				    u32 checksum1, u32 checksum2,
826  				    bool checksum2_valid)
827  {
828  	struct r5l_io_unit *io = log->current_io;
829  	struct r5l_payload_data_parity *payload;
830  
831  	payload = page_address(io->meta_page) + io->meta_offset;
832  	payload->header.type = cpu_to_le16(type);
833  	payload->header.flags = cpu_to_le16(0);
834  	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
835  				    (PAGE_SHIFT - 9));
836  	payload->location = cpu_to_le64(location);
837  	payload->checksum[0] = cpu_to_le32(checksum1);
838  	if (checksum2_valid)
839  		payload->checksum[1] = cpu_to_le32(checksum2);
840  
841  	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
842  		sizeof(__le32) * (1 + !!checksum2_valid);
843  }
844  
r5l_append_payload_page(struct r5l_log * log,struct page * page)845  static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
846  {
847  	struct r5l_io_unit *io = log->current_io;
848  
849  	if (io->need_split_bio) {
850  		BUG_ON(io->split_bio);
851  		io->split_bio = io->current_bio;
852  		io->current_bio = r5l_bio_alloc(log);
853  		bio_chain(io->current_bio, io->split_bio);
854  		io->need_split_bio = false;
855  	}
856  
857  	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
858  		BUG();
859  
860  	r5_reserve_log_entry(log, io);
861  }
862  
r5l_append_flush_payload(struct r5l_log * log,sector_t sect)863  static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
864  {
865  	struct mddev *mddev = log->rdev->mddev;
866  	struct r5conf *conf = mddev->private;
867  	struct r5l_io_unit *io;
868  	struct r5l_payload_flush *payload;
869  	int meta_size;
870  
871  	/*
872  	 * payload_flush requires extra writes to the journal.
873  	 * To avoid handling the extra IO in quiesce, just skip
874  	 * flush_payload
875  	 */
876  	if (conf->quiesce)
877  		return;
878  
879  	mutex_lock(&log->io_mutex);
880  	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
881  
882  	if (r5l_get_meta(log, meta_size)) {
883  		mutex_unlock(&log->io_mutex);
884  		return;
885  	}
886  
887  	/* current implementation is one stripe per flush payload */
888  	io = log->current_io;
889  	payload = page_address(io->meta_page) + io->meta_offset;
890  	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
891  	payload->header.flags = cpu_to_le16(0);
892  	payload->size = cpu_to_le32(sizeof(__le64));
893  	payload->flush_stripes[0] = cpu_to_le64(sect);
894  	io->meta_offset += meta_size;
895  	/* multiple flush payloads count as one pending_stripe */
896  	if (!io->has_flush_payload) {
897  		io->has_flush_payload = 1;
898  		atomic_inc(&io->pending_stripe);
899  	}
900  	mutex_unlock(&log->io_mutex);
901  }
902  
r5l_log_stripe(struct r5l_log * log,struct stripe_head * sh,int data_pages,int parity_pages)903  static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
904  			   int data_pages, int parity_pages)
905  {
906  	int i;
907  	int meta_size;
908  	int ret;
909  	struct r5l_io_unit *io;
910  
911  	meta_size =
912  		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
913  		 * data_pages) +
914  		sizeof(struct r5l_payload_data_parity) +
915  		sizeof(__le32) * parity_pages;
916  
917  	ret = r5l_get_meta(log, meta_size);
918  	if (ret)
919  		return ret;
920  
921  	io = log->current_io;
922  
923  	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
924  		io->has_flush = 1;
925  
926  	for (i = 0; i < sh->disks; i++) {
927  		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
928  		    test_bit(R5_InJournal, &sh->dev[i].flags))
929  			continue;
930  		if (i == sh->pd_idx || i == sh->qd_idx)
931  			continue;
932  		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
933  		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
934  			io->has_fua = 1;
935  			/*
936  			 * we need to flush journal to make sure recovery can
937  			 * reach the data with fua flag
938  			 */
939  			io->has_flush = 1;
940  		}
941  		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
942  					raid5_compute_blocknr(sh, i, 0),
943  					sh->dev[i].log_checksum, 0, false);
944  		r5l_append_payload_page(log, sh->dev[i].page);
945  	}
946  
947  	if (parity_pages == 2) {
948  		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
949  					sh->sector, sh->dev[sh->pd_idx].log_checksum,
950  					sh->dev[sh->qd_idx].log_checksum, true);
951  		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
952  		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
953  	} else if (parity_pages == 1) {
954  		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
955  					sh->sector, sh->dev[sh->pd_idx].log_checksum,
956  					0, false);
957  		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
958  	} else  /* Just writing data, not parity, in caching phase */
959  		BUG_ON(parity_pages != 0);
960  
961  	list_add_tail(&sh->log_list, &io->stripe_list);
962  	atomic_inc(&io->pending_stripe);
963  	sh->log_io = io;
964  
965  	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
966  		return 0;
967  
968  	if (sh->log_start == MaxSector) {
969  		BUG_ON(!list_empty(&sh->r5c));
970  		sh->log_start = io->log_start;
971  		spin_lock_irq(&log->stripe_in_journal_lock);
972  		list_add_tail(&sh->r5c,
973  			      &log->stripe_in_journal_list);
974  		spin_unlock_irq(&log->stripe_in_journal_lock);
975  		atomic_inc(&log->stripe_in_journal_count);
976  	}
977  	return 0;
978  }
979  
980  /* add stripe to no_space_stripes, and then wake up reclaim */
r5l_add_no_space_stripe(struct r5l_log * log,struct stripe_head * sh)981  static inline void r5l_add_no_space_stripe(struct r5l_log *log,
982  					   struct stripe_head *sh)
983  {
984  	spin_lock(&log->no_space_stripes_lock);
985  	list_add_tail(&sh->log_list, &log->no_space_stripes);
986  	spin_unlock(&log->no_space_stripes_lock);
987  }
988  
989  /*
990   * running in raid5d, where reclaim could wait for raid5d too (when it flushes
991   * data from log to raid disks), so we shouldn't wait for reclaim here
992   */
r5l_write_stripe(struct r5l_log * log,struct stripe_head * sh)993  int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
994  {
995  	struct r5conf *conf = sh->raid_conf;
996  	int write_disks = 0;
997  	int data_pages, parity_pages;
998  	int reserve;
999  	int i;
1000  	int ret = 0;
1001  	bool wake_reclaim = false;
1002  
1003  	if (!log)
1004  		return -EAGAIN;
1005  	/* Don't support stripe batch */
1006  	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1007  	    test_bit(STRIPE_SYNCING, &sh->state)) {
1008  		/* the stripe is written to log, we start writing it to raid */
1009  		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1010  		return -EAGAIN;
1011  	}
1012  
1013  	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1014  
1015  	for (i = 0; i < sh->disks; i++) {
1016  		void *addr;
1017  
1018  		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1019  		    test_bit(R5_InJournal, &sh->dev[i].flags))
1020  			continue;
1021  
1022  		write_disks++;
1023  		/* checksum is already calculated in last run */
1024  		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1025  			continue;
1026  		addr = kmap_atomic(sh->dev[i].page);
1027  		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1028  						    addr, PAGE_SIZE);
1029  		kunmap_atomic(addr);
1030  	}
1031  	parity_pages = 1 + !!(sh->qd_idx >= 0);
1032  	data_pages = write_disks - parity_pages;
1033  
1034  	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1035  	/*
1036  	 * The stripe must enter state machine again to finish the write, so
1037  	 * don't delay.
1038  	 */
1039  	clear_bit(STRIPE_DELAYED, &sh->state);
1040  	atomic_inc(&sh->count);
1041  
1042  	mutex_lock(&log->io_mutex);
1043  	/* meta + data */
1044  	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1045  
1046  	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1047  		if (!r5l_has_free_space(log, reserve)) {
1048  			r5l_add_no_space_stripe(log, sh);
1049  			wake_reclaim = true;
1050  		} else {
1051  			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1052  			if (ret) {
1053  				spin_lock_irq(&log->io_list_lock);
1054  				list_add_tail(&sh->log_list,
1055  					      &log->no_mem_stripes);
1056  				spin_unlock_irq(&log->io_list_lock);
1057  			}
1058  		}
1059  	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1060  		/*
1061  		 * log space critical, do not process stripes that are
1062  		 * not in cache yet (sh->log_start == MaxSector).
1063  		 */
1064  		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1065  		    sh->log_start == MaxSector) {
1066  			r5l_add_no_space_stripe(log, sh);
1067  			wake_reclaim = true;
1068  			reserve = 0;
1069  		} else if (!r5l_has_free_space(log, reserve)) {
1070  			if (sh->log_start == log->last_checkpoint)
1071  				BUG();
1072  			else
1073  				r5l_add_no_space_stripe(log, sh);
1074  		} else {
1075  			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1076  			if (ret) {
1077  				spin_lock_irq(&log->io_list_lock);
1078  				list_add_tail(&sh->log_list,
1079  					      &log->no_mem_stripes);
1080  				spin_unlock_irq(&log->io_list_lock);
1081  			}
1082  		}
1083  	}
1084  
1085  	mutex_unlock(&log->io_mutex);
1086  	if (wake_reclaim)
1087  		r5l_wake_reclaim(log, reserve);
1088  	return 0;
1089  }
1090  
r5l_write_stripe_run(struct r5l_log * log)1091  void r5l_write_stripe_run(struct r5l_log *log)
1092  {
1093  	if (!log)
1094  		return;
1095  	mutex_lock(&log->io_mutex);
1096  	r5l_submit_current_io(log);
1097  	mutex_unlock(&log->io_mutex);
1098  }
1099  
r5l_handle_flush_request(struct r5l_log * log,struct bio * bio)1100  int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1101  {
1102  	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1103  		/*
1104  		 * in write through (journal only)
1105  		 * we flush log disk cache first, then write stripe data to
1106  		 * raid disks. So if bio is finished, the log disk cache is
1107  		 * flushed already. The recovery guarantees we can recovery
1108  		 * the bio from log disk, so we don't need to flush again
1109  		 */
1110  		if (bio->bi_iter.bi_size == 0) {
1111  			bio_endio(bio);
1112  			return 0;
1113  		}
1114  		bio->bi_opf &= ~REQ_PREFLUSH;
1115  	} else {
1116  		/* write back (with cache) */
1117  		if (bio->bi_iter.bi_size == 0) {
1118  			mutex_lock(&log->io_mutex);
1119  			r5l_get_meta(log, 0);
1120  			bio_list_add(&log->current_io->flush_barriers, bio);
1121  			log->current_io->has_flush = 1;
1122  			log->current_io->has_null_flush = 1;
1123  			atomic_inc(&log->current_io->pending_stripe);
1124  			r5l_submit_current_io(log);
1125  			mutex_unlock(&log->io_mutex);
1126  			return 0;
1127  		}
1128  	}
1129  	return -EAGAIN;
1130  }
1131  
1132  /* This will run after log space is reclaimed */
r5l_run_no_space_stripes(struct r5l_log * log)1133  static void r5l_run_no_space_stripes(struct r5l_log *log)
1134  {
1135  	struct stripe_head *sh;
1136  
1137  	spin_lock(&log->no_space_stripes_lock);
1138  	while (!list_empty(&log->no_space_stripes)) {
1139  		sh = list_first_entry(&log->no_space_stripes,
1140  				      struct stripe_head, log_list);
1141  		list_del_init(&sh->log_list);
1142  		set_bit(STRIPE_HANDLE, &sh->state);
1143  		raid5_release_stripe(sh);
1144  	}
1145  	spin_unlock(&log->no_space_stripes_lock);
1146  }
1147  
1148  /*
1149   * calculate new last_checkpoint
1150   * for write through mode, returns log->next_checkpoint
1151   * for write back, returns log_start of first sh in stripe_in_journal_list
1152   */
r5c_calculate_new_cp(struct r5conf * conf)1153  static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1154  {
1155  	struct stripe_head *sh;
1156  	struct r5l_log *log = READ_ONCE(conf->log);
1157  	sector_t new_cp;
1158  	unsigned long flags;
1159  
1160  	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1161  		return log->next_checkpoint;
1162  
1163  	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1164  	if (list_empty(&log->stripe_in_journal_list)) {
1165  		/* all stripes flushed */
1166  		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1167  		return log->next_checkpoint;
1168  	}
1169  	sh = list_first_entry(&log->stripe_in_journal_list,
1170  			      struct stripe_head, r5c);
1171  	new_cp = sh->log_start;
1172  	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1173  	return new_cp;
1174  }
1175  
r5l_reclaimable_space(struct r5l_log * log)1176  static sector_t r5l_reclaimable_space(struct r5l_log *log)
1177  {
1178  	struct r5conf *conf = log->rdev->mddev->private;
1179  
1180  	return r5l_ring_distance(log, log->last_checkpoint,
1181  				 r5c_calculate_new_cp(conf));
1182  }
1183  
r5l_run_no_mem_stripe(struct r5l_log * log)1184  static void r5l_run_no_mem_stripe(struct r5l_log *log)
1185  {
1186  	struct stripe_head *sh;
1187  
1188  	lockdep_assert_held(&log->io_list_lock);
1189  
1190  	if (!list_empty(&log->no_mem_stripes)) {
1191  		sh = list_first_entry(&log->no_mem_stripes,
1192  				      struct stripe_head, log_list);
1193  		list_del_init(&sh->log_list);
1194  		set_bit(STRIPE_HANDLE, &sh->state);
1195  		raid5_release_stripe(sh);
1196  	}
1197  }
1198  
r5l_complete_finished_ios(struct r5l_log * log)1199  static bool r5l_complete_finished_ios(struct r5l_log *log)
1200  {
1201  	struct r5l_io_unit *io, *next;
1202  	bool found = false;
1203  
1204  	lockdep_assert_held(&log->io_list_lock);
1205  
1206  	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1207  		/* don't change list order */
1208  		if (io->state < IO_UNIT_STRIPE_END)
1209  			break;
1210  
1211  		log->next_checkpoint = io->log_start;
1212  
1213  		list_del(&io->log_sibling);
1214  		mempool_free(io, &log->io_pool);
1215  		r5l_run_no_mem_stripe(log);
1216  
1217  		found = true;
1218  	}
1219  
1220  	return found;
1221  }
1222  
__r5l_stripe_write_finished(struct r5l_io_unit * io)1223  static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1224  {
1225  	struct r5l_log *log = io->log;
1226  	struct r5conf *conf = log->rdev->mddev->private;
1227  	unsigned long flags;
1228  
1229  	spin_lock_irqsave(&log->io_list_lock, flags);
1230  	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1231  
1232  	if (!r5l_complete_finished_ios(log)) {
1233  		spin_unlock_irqrestore(&log->io_list_lock, flags);
1234  		return;
1235  	}
1236  
1237  	if (r5l_reclaimable_space(log) > log->max_free_space ||
1238  	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1239  		r5l_wake_reclaim(log, 0);
1240  
1241  	spin_unlock_irqrestore(&log->io_list_lock, flags);
1242  	wake_up(&log->iounit_wait);
1243  }
1244  
r5l_stripe_write_finished(struct stripe_head * sh)1245  void r5l_stripe_write_finished(struct stripe_head *sh)
1246  {
1247  	struct r5l_io_unit *io;
1248  
1249  	io = sh->log_io;
1250  	sh->log_io = NULL;
1251  
1252  	if (io && atomic_dec_and_test(&io->pending_stripe))
1253  		__r5l_stripe_write_finished(io);
1254  }
1255  
r5l_log_flush_endio(struct bio * bio)1256  static void r5l_log_flush_endio(struct bio *bio)
1257  {
1258  	struct r5l_log *log = container_of(bio, struct r5l_log,
1259  		flush_bio);
1260  	unsigned long flags;
1261  	struct r5l_io_unit *io;
1262  
1263  	if (bio->bi_status)
1264  		md_error(log->rdev->mddev, log->rdev);
1265  	bio_uninit(bio);
1266  
1267  	spin_lock_irqsave(&log->io_list_lock, flags);
1268  	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1269  		r5l_io_run_stripes(io);
1270  	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1271  	spin_unlock_irqrestore(&log->io_list_lock, flags);
1272  }
1273  
1274  /*
1275   * Starting dispatch IO to raid.
1276   * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1277   * broken meta in the middle of a log causes recovery can't find meta at the
1278   * head of log. If operations require meta at the head persistent in log, we
1279   * must make sure meta before it persistent in log too. A case is:
1280   *
1281   * stripe data/parity is in log, we start write stripe to raid disks. stripe
1282   * data/parity must be persistent in log before we do the write to raid disks.
1283   *
1284   * The solution is we restrictly maintain io_unit list order. In this case, we
1285   * only write stripes of an io_unit to raid disks till the io_unit is the first
1286   * one whose data/parity is in log.
1287   */
r5l_flush_stripe_to_raid(struct r5l_log * log)1288  void r5l_flush_stripe_to_raid(struct r5l_log *log)
1289  {
1290  	bool do_flush;
1291  
1292  	if (!log || !log->need_cache_flush)
1293  		return;
1294  
1295  	spin_lock_irq(&log->io_list_lock);
1296  	/* flush bio is running */
1297  	if (!list_empty(&log->flushing_ios)) {
1298  		spin_unlock_irq(&log->io_list_lock);
1299  		return;
1300  	}
1301  	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1302  	do_flush = !list_empty(&log->flushing_ios);
1303  	spin_unlock_irq(&log->io_list_lock);
1304  
1305  	if (!do_flush)
1306  		return;
1307  	bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1308  		  REQ_OP_WRITE | REQ_PREFLUSH);
1309  	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1310  	submit_bio(&log->flush_bio);
1311  }
1312  
1313  static void r5l_write_super(struct r5l_log *log, sector_t cp);
r5l_write_super_and_discard_space(struct r5l_log * log,sector_t end)1314  static void r5l_write_super_and_discard_space(struct r5l_log *log,
1315  	sector_t end)
1316  {
1317  	struct block_device *bdev = log->rdev->bdev;
1318  	struct mddev *mddev;
1319  
1320  	r5l_write_super(log, end);
1321  
1322  	if (!bdev_max_discard_sectors(bdev))
1323  		return;
1324  
1325  	mddev = log->rdev->mddev;
1326  	/*
1327  	 * Discard could zero data, so before discard we must make sure
1328  	 * superblock is updated to new log tail. Updating superblock (either
1329  	 * directly call md_update_sb() or depend on md thread) must hold
1330  	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1331  	 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1332  	 * for all IO finish, hence waiting for reclaim thread, while reclaim
1333  	 * thread is calling this function and waiting for reconfig mutex. So
1334  	 * there is a deadlock. We workaround this issue with a trylock.
1335  	 * FIXME: we could miss discard if we can't take reconfig mutex
1336  	 */
1337  	set_mask_bits(&mddev->sb_flags, 0,
1338  		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1339  	if (!mddev_trylock(mddev))
1340  		return;
1341  	md_update_sb(mddev, 1);
1342  	mddev_unlock(mddev);
1343  
1344  	/* discard IO error really doesn't matter, ignore it */
1345  	if (log->last_checkpoint < end) {
1346  		blkdev_issue_discard(bdev,
1347  				log->last_checkpoint + log->rdev->data_offset,
1348  				end - log->last_checkpoint, GFP_NOIO);
1349  	} else {
1350  		blkdev_issue_discard(bdev,
1351  				log->last_checkpoint + log->rdev->data_offset,
1352  				log->device_size - log->last_checkpoint,
1353  				GFP_NOIO);
1354  		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1355  				GFP_NOIO);
1356  	}
1357  }
1358  
1359  /*
1360   * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1361   * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1362   *
1363   * must hold conf->device_lock
1364   */
r5c_flush_stripe(struct r5conf * conf,struct stripe_head * sh)1365  static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1366  {
1367  	BUG_ON(list_empty(&sh->lru));
1368  	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1369  	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1370  
1371  	/*
1372  	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1373  	 * raid5_release_stripe() while holding conf->device_lock
1374  	 */
1375  	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1376  	lockdep_assert_held(&conf->device_lock);
1377  
1378  	list_del_init(&sh->lru);
1379  	atomic_inc(&sh->count);
1380  
1381  	set_bit(STRIPE_HANDLE, &sh->state);
1382  	atomic_inc(&conf->active_stripes);
1383  	r5c_make_stripe_write_out(sh);
1384  
1385  	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1386  		atomic_inc(&conf->r5c_flushing_partial_stripes);
1387  	else
1388  		atomic_inc(&conf->r5c_flushing_full_stripes);
1389  	raid5_release_stripe(sh);
1390  }
1391  
1392  /*
1393   * if num == 0, flush all full stripes
1394   * if num > 0, flush all full stripes. If less than num full stripes are
1395   *             flushed, flush some partial stripes until totally num stripes are
1396   *             flushed or there is no more cached stripes.
1397   */
r5c_flush_cache(struct r5conf * conf,int num)1398  void r5c_flush_cache(struct r5conf *conf, int num)
1399  {
1400  	int count;
1401  	struct stripe_head *sh, *next;
1402  
1403  	lockdep_assert_held(&conf->device_lock);
1404  	if (!READ_ONCE(conf->log))
1405  		return;
1406  
1407  	count = 0;
1408  	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1409  		r5c_flush_stripe(conf, sh);
1410  		count++;
1411  	}
1412  
1413  	if (count >= num)
1414  		return;
1415  	list_for_each_entry_safe(sh, next,
1416  				 &conf->r5c_partial_stripe_list, lru) {
1417  		r5c_flush_stripe(conf, sh);
1418  		if (++count >= num)
1419  			break;
1420  	}
1421  }
1422  
r5c_do_reclaim(struct r5conf * conf)1423  static void r5c_do_reclaim(struct r5conf *conf)
1424  {
1425  	struct r5l_log *log = READ_ONCE(conf->log);
1426  	struct stripe_head *sh;
1427  	int count = 0;
1428  	unsigned long flags;
1429  	int total_cached;
1430  	int stripes_to_flush;
1431  	int flushing_partial, flushing_full;
1432  
1433  	if (!r5c_is_writeback(log))
1434  		return;
1435  
1436  	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1437  	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1438  	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1439  		atomic_read(&conf->r5c_cached_full_stripes) -
1440  		flushing_full - flushing_partial;
1441  
1442  	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1443  	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1444  		/*
1445  		 * if stripe cache pressure high, flush all full stripes and
1446  		 * some partial stripes
1447  		 */
1448  		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1449  	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1450  		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1451  		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1452  		/*
1453  		 * if stripe cache pressure moderate, or if there is many full
1454  		 * stripes,flush all full stripes
1455  		 */
1456  		stripes_to_flush = 0;
1457  	else
1458  		/* no need to flush */
1459  		stripes_to_flush = -1;
1460  
1461  	if (stripes_to_flush >= 0) {
1462  		spin_lock_irqsave(&conf->device_lock, flags);
1463  		r5c_flush_cache(conf, stripes_to_flush);
1464  		spin_unlock_irqrestore(&conf->device_lock, flags);
1465  	}
1466  
1467  	/* if log space is tight, flush stripes on stripe_in_journal_list */
1468  	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1469  		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1470  		spin_lock(&conf->device_lock);
1471  		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1472  			/*
1473  			 * stripes on stripe_in_journal_list could be in any
1474  			 * state of the stripe_cache state machine. In this
1475  			 * case, we only want to flush stripe on
1476  			 * r5c_cached_full/partial_stripes. The following
1477  			 * condition makes sure the stripe is on one of the
1478  			 * two lists.
1479  			 */
1480  			if (!list_empty(&sh->lru) &&
1481  			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1482  			    atomic_read(&sh->count) == 0) {
1483  				r5c_flush_stripe(conf, sh);
1484  				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1485  					break;
1486  			}
1487  		}
1488  		spin_unlock(&conf->device_lock);
1489  		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1490  	}
1491  
1492  	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1493  		r5l_run_no_space_stripes(log);
1494  
1495  	md_wakeup_thread(conf->mddev->thread);
1496  }
1497  
r5l_do_reclaim(struct r5l_log * log)1498  static void r5l_do_reclaim(struct r5l_log *log)
1499  {
1500  	struct r5conf *conf = log->rdev->mddev->private;
1501  	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1502  	sector_t reclaimable;
1503  	sector_t next_checkpoint;
1504  	bool write_super;
1505  
1506  	spin_lock_irq(&log->io_list_lock);
1507  	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1508  		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1509  	/*
1510  	 * move proper io_unit to reclaim list. We should not change the order.
1511  	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1512  	 * shouldn't reuse space of an unreclaimable io_unit
1513  	 */
1514  	while (1) {
1515  		reclaimable = r5l_reclaimable_space(log);
1516  		if (reclaimable >= reclaim_target ||
1517  		    (list_empty(&log->running_ios) &&
1518  		     list_empty(&log->io_end_ios) &&
1519  		     list_empty(&log->flushing_ios) &&
1520  		     list_empty(&log->finished_ios)))
1521  			break;
1522  
1523  		md_wakeup_thread(log->rdev->mddev->thread);
1524  		wait_event_lock_irq(log->iounit_wait,
1525  				    r5l_reclaimable_space(log) > reclaimable,
1526  				    log->io_list_lock);
1527  	}
1528  
1529  	next_checkpoint = r5c_calculate_new_cp(conf);
1530  	spin_unlock_irq(&log->io_list_lock);
1531  
1532  	if (reclaimable == 0 || !write_super)
1533  		return;
1534  
1535  	/*
1536  	 * write_super will flush cache of each raid disk. We must write super
1537  	 * here, because the log area might be reused soon and we don't want to
1538  	 * confuse recovery
1539  	 */
1540  	r5l_write_super_and_discard_space(log, next_checkpoint);
1541  
1542  	mutex_lock(&log->io_mutex);
1543  	log->last_checkpoint = next_checkpoint;
1544  	r5c_update_log_state(log);
1545  	mutex_unlock(&log->io_mutex);
1546  
1547  	r5l_run_no_space_stripes(log);
1548  }
1549  
r5l_reclaim_thread(struct md_thread * thread)1550  static void r5l_reclaim_thread(struct md_thread *thread)
1551  {
1552  	struct mddev *mddev = thread->mddev;
1553  	struct r5conf *conf = mddev->private;
1554  	struct r5l_log *log = READ_ONCE(conf->log);
1555  
1556  	if (!log)
1557  		return;
1558  	r5c_do_reclaim(conf);
1559  	r5l_do_reclaim(log);
1560  }
1561  
r5l_wake_reclaim(struct r5l_log * log,sector_t space)1562  void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1563  {
1564  	unsigned long target;
1565  	unsigned long new = (unsigned long)space; /* overflow in theory */
1566  
1567  	if (!log)
1568  		return;
1569  
1570  	target = READ_ONCE(log->reclaim_target);
1571  	do {
1572  		if (new < target)
1573  			return;
1574  	} while (!try_cmpxchg(&log->reclaim_target, &target, new));
1575  	md_wakeup_thread(log->reclaim_thread);
1576  }
1577  
r5l_quiesce(struct r5l_log * log,int quiesce)1578  void r5l_quiesce(struct r5l_log *log, int quiesce)
1579  {
1580  	struct mddev *mddev = log->rdev->mddev;
1581  	struct md_thread *thread = rcu_dereference_protected(
1582  		log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
1583  
1584  	if (quiesce) {
1585  		/* make sure r5l_write_super_and_discard_space exits */
1586  		wake_up(&mddev->sb_wait);
1587  		kthread_park(thread->tsk);
1588  		r5l_wake_reclaim(log, MaxSector);
1589  		r5l_do_reclaim(log);
1590  	} else
1591  		kthread_unpark(thread->tsk);
1592  }
1593  
r5l_log_disk_error(struct r5conf * conf)1594  bool r5l_log_disk_error(struct r5conf *conf)
1595  {
1596  	struct r5l_log *log = READ_ONCE(conf->log);
1597  
1598  	/* don't allow write if journal disk is missing */
1599  	if (!log)
1600  		return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1601  	else
1602  		return test_bit(Faulty, &log->rdev->flags);
1603  }
1604  
1605  #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1606  
1607  struct r5l_recovery_ctx {
1608  	struct page *meta_page;		/* current meta */
1609  	sector_t meta_total_blocks;	/* total size of current meta and data */
1610  	sector_t pos;			/* recovery position */
1611  	u64 seq;			/* recovery position seq */
1612  	int data_parity_stripes;	/* number of data_parity stripes */
1613  	int data_only_stripes;		/* number of data_only stripes */
1614  	struct list_head cached_list;
1615  
1616  	/*
1617  	 * read ahead page pool (ra_pool)
1618  	 * in recovery, log is read sequentially. It is not efficient to
1619  	 * read every page with sync_page_io(). The read ahead page pool
1620  	 * reads multiple pages with one IO, so further log read can
1621  	 * just copy data from the pool.
1622  	 */
1623  	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1624  	struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1625  	sector_t pool_offset;	/* offset of first page in the pool */
1626  	int total_pages;	/* total allocated pages */
1627  	int valid_pages;	/* pages with valid data */
1628  };
1629  
r5l_recovery_allocate_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1630  static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1631  					    struct r5l_recovery_ctx *ctx)
1632  {
1633  	struct page *page;
1634  
1635  	ctx->valid_pages = 0;
1636  	ctx->total_pages = 0;
1637  	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1638  		page = alloc_page(GFP_KERNEL);
1639  
1640  		if (!page)
1641  			break;
1642  		ctx->ra_pool[ctx->total_pages] = page;
1643  		ctx->total_pages += 1;
1644  	}
1645  
1646  	if (ctx->total_pages == 0)
1647  		return -ENOMEM;
1648  
1649  	ctx->pool_offset = 0;
1650  	return 0;
1651  }
1652  
r5l_recovery_free_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1653  static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1654  					struct r5l_recovery_ctx *ctx)
1655  {
1656  	int i;
1657  
1658  	for (i = 0; i < ctx->total_pages; ++i)
1659  		put_page(ctx->ra_pool[i]);
1660  }
1661  
1662  /*
1663   * fetch ctx->valid_pages pages from offset
1664   * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1665   * However, if the offset is close to the end of the journal device,
1666   * ctx->valid_pages could be smaller than ctx->total_pages
1667   */
r5l_recovery_fetch_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx,sector_t offset)1668  static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1669  				      struct r5l_recovery_ctx *ctx,
1670  				      sector_t offset)
1671  {
1672  	struct bio bio;
1673  	int ret;
1674  
1675  	bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1676  		 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1677  	bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1678  
1679  	ctx->valid_pages = 0;
1680  	ctx->pool_offset = offset;
1681  
1682  	while (ctx->valid_pages < ctx->total_pages) {
1683  		__bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1684  			       0);
1685  		ctx->valid_pages += 1;
1686  
1687  		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1688  
1689  		if (offset == 0)  /* reached end of the device */
1690  			break;
1691  	}
1692  
1693  	ret = submit_bio_wait(&bio);
1694  	bio_uninit(&bio);
1695  	return ret;
1696  }
1697  
1698  /*
1699   * try read a page from the read ahead page pool, if the page is not in the
1700   * pool, call r5l_recovery_fetch_ra_pool
1701   */
r5l_recovery_read_page(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t offset)1702  static int r5l_recovery_read_page(struct r5l_log *log,
1703  				  struct r5l_recovery_ctx *ctx,
1704  				  struct page *page,
1705  				  sector_t offset)
1706  {
1707  	int ret;
1708  
1709  	if (offset < ctx->pool_offset ||
1710  	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1711  		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1712  		if (ret)
1713  			return ret;
1714  	}
1715  
1716  	BUG_ON(offset < ctx->pool_offset ||
1717  	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1718  
1719  	memcpy(page_address(page),
1720  	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1721  					 BLOCK_SECTOR_SHIFT]),
1722  	       PAGE_SIZE);
1723  	return 0;
1724  }
1725  
r5l_recovery_read_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1726  static int r5l_recovery_read_meta_block(struct r5l_log *log,
1727  					struct r5l_recovery_ctx *ctx)
1728  {
1729  	struct page *page = ctx->meta_page;
1730  	struct r5l_meta_block *mb;
1731  	u32 crc, stored_crc;
1732  	int ret;
1733  
1734  	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1735  	if (ret != 0)
1736  		return ret;
1737  
1738  	mb = page_address(page);
1739  	stored_crc = le32_to_cpu(mb->checksum);
1740  	mb->checksum = 0;
1741  
1742  	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1743  	    le64_to_cpu(mb->seq) != ctx->seq ||
1744  	    mb->version != R5LOG_VERSION ||
1745  	    le64_to_cpu(mb->position) != ctx->pos)
1746  		return -EINVAL;
1747  
1748  	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1749  	if (stored_crc != crc)
1750  		return -EINVAL;
1751  
1752  	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1753  		return -EINVAL;
1754  
1755  	ctx->meta_total_blocks = BLOCK_SECTORS;
1756  
1757  	return 0;
1758  }
1759  
1760  static void
r5l_recovery_create_empty_meta_block(struct r5l_log * log,struct page * page,sector_t pos,u64 seq)1761  r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1762  				     struct page *page,
1763  				     sector_t pos, u64 seq)
1764  {
1765  	struct r5l_meta_block *mb;
1766  
1767  	mb = page_address(page);
1768  	clear_page(mb);
1769  	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1770  	mb->version = R5LOG_VERSION;
1771  	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1772  	mb->seq = cpu_to_le64(seq);
1773  	mb->position = cpu_to_le64(pos);
1774  }
1775  
r5l_log_write_empty_meta_block(struct r5l_log * log,sector_t pos,u64 seq)1776  static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1777  					  u64 seq)
1778  {
1779  	struct page *page;
1780  	struct r5l_meta_block *mb;
1781  
1782  	page = alloc_page(GFP_KERNEL);
1783  	if (!page)
1784  		return -ENOMEM;
1785  	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1786  	mb = page_address(page);
1787  	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1788  					     mb, PAGE_SIZE));
1789  	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1790  			  REQ_SYNC | REQ_FUA, false)) {
1791  		__free_page(page);
1792  		return -EIO;
1793  	}
1794  	__free_page(page);
1795  	return 0;
1796  }
1797  
1798  /*
1799   * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1800   * to mark valid (potentially not flushed) data in the journal.
1801   *
1802   * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1803   * so there should not be any mismatch here.
1804   */
r5l_recovery_load_data(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1805  static void r5l_recovery_load_data(struct r5l_log *log,
1806  				   struct stripe_head *sh,
1807  				   struct r5l_recovery_ctx *ctx,
1808  				   struct r5l_payload_data_parity *payload,
1809  				   sector_t log_offset)
1810  {
1811  	struct mddev *mddev = log->rdev->mddev;
1812  	struct r5conf *conf = mddev->private;
1813  	int dd_idx;
1814  
1815  	raid5_compute_sector(conf,
1816  			     le64_to_cpu(payload->location), 0,
1817  			     &dd_idx, sh);
1818  	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1819  	sh->dev[dd_idx].log_checksum =
1820  		le32_to_cpu(payload->checksum[0]);
1821  	ctx->meta_total_blocks += BLOCK_SECTORS;
1822  
1823  	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1824  	set_bit(STRIPE_R5C_CACHING, &sh->state);
1825  }
1826  
r5l_recovery_load_parity(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1827  static void r5l_recovery_load_parity(struct r5l_log *log,
1828  				     struct stripe_head *sh,
1829  				     struct r5l_recovery_ctx *ctx,
1830  				     struct r5l_payload_data_parity *payload,
1831  				     sector_t log_offset)
1832  {
1833  	struct mddev *mddev = log->rdev->mddev;
1834  	struct r5conf *conf = mddev->private;
1835  
1836  	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1837  	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1838  	sh->dev[sh->pd_idx].log_checksum =
1839  		le32_to_cpu(payload->checksum[0]);
1840  	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1841  
1842  	if (sh->qd_idx >= 0) {
1843  		r5l_recovery_read_page(
1844  			log, ctx, sh->dev[sh->qd_idx].page,
1845  			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1846  		sh->dev[sh->qd_idx].log_checksum =
1847  			le32_to_cpu(payload->checksum[1]);
1848  		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1849  	}
1850  	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1851  }
1852  
r5l_recovery_reset_stripe(struct stripe_head * sh)1853  static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1854  {
1855  	int i;
1856  
1857  	sh->state = 0;
1858  	sh->log_start = MaxSector;
1859  	for (i = sh->disks; i--; )
1860  		sh->dev[i].flags = 0;
1861  }
1862  
1863  static void
r5l_recovery_replay_one_stripe(struct r5conf * conf,struct stripe_head * sh,struct r5l_recovery_ctx * ctx)1864  r5l_recovery_replay_one_stripe(struct r5conf *conf,
1865  			       struct stripe_head *sh,
1866  			       struct r5l_recovery_ctx *ctx)
1867  {
1868  	struct md_rdev *rdev, *rrdev;
1869  	int disk_index;
1870  	int data_count = 0;
1871  
1872  	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1873  		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1874  			continue;
1875  		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1876  			continue;
1877  		data_count++;
1878  	}
1879  
1880  	/*
1881  	 * stripes that only have parity must have been flushed
1882  	 * before the crash that we are now recovering from, so
1883  	 * there is nothing more to recovery.
1884  	 */
1885  	if (data_count == 0)
1886  		goto out;
1887  
1888  	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1889  		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1890  			continue;
1891  
1892  		/* in case device is broken */
1893  		rdev = conf->disks[disk_index].rdev;
1894  		if (rdev) {
1895  			atomic_inc(&rdev->nr_pending);
1896  			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1897  				     sh->dev[disk_index].page, REQ_OP_WRITE,
1898  				     false);
1899  			rdev_dec_pending(rdev, rdev->mddev);
1900  		}
1901  		rrdev = conf->disks[disk_index].replacement;
1902  		if (rrdev) {
1903  			atomic_inc(&rrdev->nr_pending);
1904  			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1905  				     sh->dev[disk_index].page, REQ_OP_WRITE,
1906  				     false);
1907  			rdev_dec_pending(rrdev, rrdev->mddev);
1908  		}
1909  	}
1910  	ctx->data_parity_stripes++;
1911  out:
1912  	r5l_recovery_reset_stripe(sh);
1913  }
1914  
1915  static struct stripe_head *
r5c_recovery_alloc_stripe(struct r5conf * conf,sector_t stripe_sect,int noblock)1916  r5c_recovery_alloc_stripe(
1917  		struct r5conf *conf,
1918  		sector_t stripe_sect,
1919  		int noblock)
1920  {
1921  	struct stripe_head *sh;
1922  
1923  	sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1924  				     noblock ? R5_GAS_NOBLOCK : 0);
1925  	if (!sh)
1926  		return NULL;  /* no more stripe available */
1927  
1928  	r5l_recovery_reset_stripe(sh);
1929  
1930  	return sh;
1931  }
1932  
1933  static struct stripe_head *
r5c_recovery_lookup_stripe(struct list_head * list,sector_t sect)1934  r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1935  {
1936  	struct stripe_head *sh;
1937  
1938  	list_for_each_entry(sh, list, lru)
1939  		if (sh->sector == sect)
1940  			return sh;
1941  	return NULL;
1942  }
1943  
1944  static void
r5c_recovery_drop_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1945  r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1946  			  struct r5l_recovery_ctx *ctx)
1947  {
1948  	struct stripe_head *sh, *next;
1949  
1950  	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1951  		r5l_recovery_reset_stripe(sh);
1952  		list_del_init(&sh->lru);
1953  		raid5_release_stripe(sh);
1954  	}
1955  }
1956  
1957  static void
r5c_recovery_replay_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1958  r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1959  			    struct r5l_recovery_ctx *ctx)
1960  {
1961  	struct stripe_head *sh, *next;
1962  
1963  	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1964  		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1965  			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1966  			list_del_init(&sh->lru);
1967  			raid5_release_stripe(sh);
1968  		}
1969  }
1970  
1971  /* if matches return 0; otherwise return -EINVAL */
1972  static int
r5l_recovery_verify_data_checksum(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t log_offset,__le32 log_checksum)1973  r5l_recovery_verify_data_checksum(struct r5l_log *log,
1974  				  struct r5l_recovery_ctx *ctx,
1975  				  struct page *page,
1976  				  sector_t log_offset, __le32 log_checksum)
1977  {
1978  	void *addr;
1979  	u32 checksum;
1980  
1981  	r5l_recovery_read_page(log, ctx, page, log_offset);
1982  	addr = kmap_atomic(page);
1983  	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1984  	kunmap_atomic(addr);
1985  	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1986  }
1987  
1988  /*
1989   * before loading data to stripe cache, we need verify checksum for all data,
1990   * if there is mismatch for any data page, we drop all data in the mata block
1991   */
1992  static int
r5l_recovery_verify_data_checksum_for_mb(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1993  r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1994  					 struct r5l_recovery_ctx *ctx)
1995  {
1996  	struct mddev *mddev = log->rdev->mddev;
1997  	struct r5conf *conf = mddev->private;
1998  	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1999  	sector_t mb_offset = sizeof(struct r5l_meta_block);
2000  	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2001  	struct page *page;
2002  	struct r5l_payload_data_parity *payload;
2003  	struct r5l_payload_flush *payload_flush;
2004  
2005  	page = alloc_page(GFP_KERNEL);
2006  	if (!page)
2007  		return -ENOMEM;
2008  
2009  	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2010  		payload = (void *)mb + mb_offset;
2011  		payload_flush = (void *)mb + mb_offset;
2012  
2013  		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2014  			if (r5l_recovery_verify_data_checksum(
2015  				    log, ctx, page, log_offset,
2016  				    payload->checksum[0]) < 0)
2017  				goto mismatch;
2018  		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2019  			if (r5l_recovery_verify_data_checksum(
2020  				    log, ctx, page, log_offset,
2021  				    payload->checksum[0]) < 0)
2022  				goto mismatch;
2023  			if (conf->max_degraded == 2 && /* q for RAID 6 */
2024  			    r5l_recovery_verify_data_checksum(
2025  				    log, ctx, page,
2026  				    r5l_ring_add(log, log_offset,
2027  						 BLOCK_SECTORS),
2028  				    payload->checksum[1]) < 0)
2029  				goto mismatch;
2030  		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2031  			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2032  		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2033  			goto mismatch;
2034  
2035  		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2036  			mb_offset += sizeof(struct r5l_payload_flush) +
2037  				le32_to_cpu(payload_flush->size);
2038  		} else {
2039  			/* DATA or PARITY payload */
2040  			log_offset = r5l_ring_add(log, log_offset,
2041  						  le32_to_cpu(payload->size));
2042  			mb_offset += sizeof(struct r5l_payload_data_parity) +
2043  				sizeof(__le32) *
2044  				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2045  		}
2046  
2047  	}
2048  
2049  	put_page(page);
2050  	return 0;
2051  
2052  mismatch:
2053  	put_page(page);
2054  	return -EINVAL;
2055  }
2056  
2057  /*
2058   * Analyze all data/parity pages in one meta block
2059   * Returns:
2060   * 0 for success
2061   * -EINVAL for unknown playload type
2062   * -EAGAIN for checksum mismatch of data page
2063   * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2064   */
2065  static int
r5c_recovery_analyze_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct list_head * cached_stripe_list)2066  r5c_recovery_analyze_meta_block(struct r5l_log *log,
2067  				struct r5l_recovery_ctx *ctx,
2068  				struct list_head *cached_stripe_list)
2069  {
2070  	struct mddev *mddev = log->rdev->mddev;
2071  	struct r5conf *conf = mddev->private;
2072  	struct r5l_meta_block *mb;
2073  	struct r5l_payload_data_parity *payload;
2074  	struct r5l_payload_flush *payload_flush;
2075  	int mb_offset;
2076  	sector_t log_offset;
2077  	sector_t stripe_sect;
2078  	struct stripe_head *sh;
2079  	int ret;
2080  
2081  	/*
2082  	 * for mismatch in data blocks, we will drop all data in this mb, but
2083  	 * we will still read next mb for other data with FLUSH flag, as
2084  	 * io_unit could finish out of order.
2085  	 */
2086  	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2087  	if (ret == -EINVAL)
2088  		return -EAGAIN;
2089  	else if (ret)
2090  		return ret;   /* -ENOMEM duo to alloc_page() failed */
2091  
2092  	mb = page_address(ctx->meta_page);
2093  	mb_offset = sizeof(struct r5l_meta_block);
2094  	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2095  
2096  	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2097  		int dd;
2098  
2099  		payload = (void *)mb + mb_offset;
2100  		payload_flush = (void *)mb + mb_offset;
2101  
2102  		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2103  			int i, count;
2104  
2105  			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2106  			for (i = 0; i < count; ++i) {
2107  				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2108  				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2109  								stripe_sect);
2110  				if (sh) {
2111  					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2112  					r5l_recovery_reset_stripe(sh);
2113  					list_del_init(&sh->lru);
2114  					raid5_release_stripe(sh);
2115  				}
2116  			}
2117  
2118  			mb_offset += sizeof(struct r5l_payload_flush) +
2119  				le32_to_cpu(payload_flush->size);
2120  			continue;
2121  		}
2122  
2123  		/* DATA or PARITY payload */
2124  		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2125  			raid5_compute_sector(
2126  				conf, le64_to_cpu(payload->location), 0, &dd,
2127  				NULL)
2128  			: le64_to_cpu(payload->location);
2129  
2130  		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2131  						stripe_sect);
2132  
2133  		if (!sh) {
2134  			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2135  			/*
2136  			 * cannot get stripe from raid5_get_active_stripe
2137  			 * try replay some stripes
2138  			 */
2139  			if (!sh) {
2140  				r5c_recovery_replay_stripes(
2141  					cached_stripe_list, ctx);
2142  				sh = r5c_recovery_alloc_stripe(
2143  					conf, stripe_sect, 1);
2144  			}
2145  			if (!sh) {
2146  				int new_size = conf->min_nr_stripes * 2;
2147  				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2148  					mdname(mddev),
2149  					new_size);
2150  				ret = raid5_set_cache_size(mddev, new_size);
2151  				if (conf->min_nr_stripes <= new_size / 2) {
2152  					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2153  						mdname(mddev),
2154  						ret,
2155  						new_size,
2156  						conf->min_nr_stripes,
2157  						conf->max_nr_stripes);
2158  					return -ENOMEM;
2159  				}
2160  				sh = r5c_recovery_alloc_stripe(
2161  					conf, stripe_sect, 0);
2162  			}
2163  			if (!sh) {
2164  				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2165  					mdname(mddev));
2166  				return -ENOMEM;
2167  			}
2168  			list_add_tail(&sh->lru, cached_stripe_list);
2169  		}
2170  
2171  		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2172  			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2173  			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2174  				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2175  				list_move_tail(&sh->lru, cached_stripe_list);
2176  			}
2177  			r5l_recovery_load_data(log, sh, ctx, payload,
2178  					       log_offset);
2179  		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2180  			r5l_recovery_load_parity(log, sh, ctx, payload,
2181  						 log_offset);
2182  		else
2183  			return -EINVAL;
2184  
2185  		log_offset = r5l_ring_add(log, log_offset,
2186  					  le32_to_cpu(payload->size));
2187  
2188  		mb_offset += sizeof(struct r5l_payload_data_parity) +
2189  			sizeof(__le32) *
2190  			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2191  	}
2192  
2193  	return 0;
2194  }
2195  
2196  /*
2197   * Load the stripe into cache. The stripe will be written out later by
2198   * the stripe cache state machine.
2199   */
r5c_recovery_load_one_stripe(struct r5l_log * log,struct stripe_head * sh)2200  static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2201  					 struct stripe_head *sh)
2202  {
2203  	struct r5dev *dev;
2204  	int i;
2205  
2206  	for (i = sh->disks; i--; ) {
2207  		dev = sh->dev + i;
2208  		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2209  			set_bit(R5_InJournal, &dev->flags);
2210  			set_bit(R5_UPTODATE, &dev->flags);
2211  		}
2212  	}
2213  }
2214  
2215  /*
2216   * Scan through the log for all to-be-flushed data
2217   *
2218   * For stripes with data and parity, namely Data-Parity stripe
2219   * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2220   *
2221   * For stripes with only data, namely Data-Only stripe
2222   * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2223   *
2224   * For a stripe, if we see data after parity, we should discard all previous
2225   * data and parity for this stripe, as these data are already flushed to
2226   * the array.
2227   *
2228   * At the end of the scan, we return the new journal_tail, which points to
2229   * first data-only stripe on the journal device, or next invalid meta block.
2230   */
r5c_recovery_flush_log(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2231  static int r5c_recovery_flush_log(struct r5l_log *log,
2232  				  struct r5l_recovery_ctx *ctx)
2233  {
2234  	struct stripe_head *sh;
2235  	int ret = 0;
2236  
2237  	/* scan through the log */
2238  	while (1) {
2239  		if (r5l_recovery_read_meta_block(log, ctx))
2240  			break;
2241  
2242  		ret = r5c_recovery_analyze_meta_block(log, ctx,
2243  						      &ctx->cached_list);
2244  		/*
2245  		 * -EAGAIN means mismatch in data block, in this case, we still
2246  		 * try scan the next metablock
2247  		 */
2248  		if (ret && ret != -EAGAIN)
2249  			break;   /* ret == -EINVAL or -ENOMEM */
2250  		ctx->seq++;
2251  		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2252  	}
2253  
2254  	if (ret == -ENOMEM) {
2255  		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2256  		return ret;
2257  	}
2258  
2259  	/* replay data-parity stripes */
2260  	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2261  
2262  	/* load data-only stripes to stripe cache */
2263  	list_for_each_entry(sh, &ctx->cached_list, lru) {
2264  		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2265  		r5c_recovery_load_one_stripe(log, sh);
2266  		ctx->data_only_stripes++;
2267  	}
2268  
2269  	return 0;
2270  }
2271  
2272  /*
2273   * we did a recovery. Now ctx.pos points to an invalid meta block. New
2274   * log will start here. but we can't let superblock point to last valid
2275   * meta block. The log might looks like:
2276   * | meta 1| meta 2| meta 3|
2277   * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2278   * superblock points to meta 1, we write a new valid meta 2n.  if crash
2279   * happens again, new recovery will start from meta 1. Since meta 2n is
2280   * valid now, recovery will think meta 3 is valid, which is wrong.
2281   * The solution is we create a new meta in meta2 with its seq == meta
2282   * 1's seq + 10000 and let superblock points to meta2. The same recovery
2283   * will not think meta 3 is a valid meta, because its seq doesn't match
2284   */
2285  
2286  /*
2287   * Before recovery, the log looks like the following
2288   *
2289   *   ---------------------------------------------
2290   *   |           valid log        | invalid log  |
2291   *   ---------------------------------------------
2292   *   ^
2293   *   |- log->last_checkpoint
2294   *   |- log->last_cp_seq
2295   *
2296   * Now we scan through the log until we see invalid entry
2297   *
2298   *   ---------------------------------------------
2299   *   |           valid log        | invalid log  |
2300   *   ---------------------------------------------
2301   *   ^                            ^
2302   *   |- log->last_checkpoint      |- ctx->pos
2303   *   |- log->last_cp_seq          |- ctx->seq
2304   *
2305   * From this point, we need to increase seq number by 10 to avoid
2306   * confusing next recovery.
2307   *
2308   *   ---------------------------------------------
2309   *   |           valid log        | invalid log  |
2310   *   ---------------------------------------------
2311   *   ^                              ^
2312   *   |- log->last_checkpoint        |- ctx->pos+1
2313   *   |- log->last_cp_seq            |- ctx->seq+10001
2314   *
2315   * However, it is not safe to start the state machine yet, because data only
2316   * parities are not yet secured in RAID. To save these data only parities, we
2317   * rewrite them from seq+11.
2318   *
2319   *   -----------------------------------------------------------------
2320   *   |           valid log        | data only stripes | invalid log  |
2321   *   -----------------------------------------------------------------
2322   *   ^                                                ^
2323   *   |- log->last_checkpoint                          |- ctx->pos+n
2324   *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2325   *
2326   * If failure happens again during this process, the recovery can safe start
2327   * again from log->last_checkpoint.
2328   *
2329   * Once data only stripes are rewritten to journal, we move log_tail
2330   *
2331   *   -----------------------------------------------------------------
2332   *   |     old log        |    data only stripes    | invalid log  |
2333   *   -----------------------------------------------------------------
2334   *                        ^                         ^
2335   *                        |- log->last_checkpoint   |- ctx->pos+n
2336   *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2337   *
2338   * Then we can safely start the state machine. If failure happens from this
2339   * point on, the recovery will start from new log->last_checkpoint.
2340   */
2341  static int
r5c_recovery_rewrite_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2342  r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2343  				       struct r5l_recovery_ctx *ctx)
2344  {
2345  	struct stripe_head *sh;
2346  	struct mddev *mddev = log->rdev->mddev;
2347  	struct page *page;
2348  	sector_t next_checkpoint = MaxSector;
2349  
2350  	page = alloc_page(GFP_KERNEL);
2351  	if (!page) {
2352  		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2353  		       mdname(mddev));
2354  		return -ENOMEM;
2355  	}
2356  
2357  	WARN_ON(list_empty(&ctx->cached_list));
2358  
2359  	list_for_each_entry(sh, &ctx->cached_list, lru) {
2360  		struct r5l_meta_block *mb;
2361  		int i;
2362  		int offset;
2363  		sector_t write_pos;
2364  
2365  		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2366  		r5l_recovery_create_empty_meta_block(log, page,
2367  						     ctx->pos, ctx->seq);
2368  		mb = page_address(page);
2369  		offset = le32_to_cpu(mb->meta_size);
2370  		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2371  
2372  		for (i = sh->disks; i--; ) {
2373  			struct r5dev *dev = &sh->dev[i];
2374  			struct r5l_payload_data_parity *payload;
2375  			void *addr;
2376  
2377  			if (test_bit(R5_InJournal, &dev->flags)) {
2378  				payload = (void *)mb + offset;
2379  				payload->header.type = cpu_to_le16(
2380  					R5LOG_PAYLOAD_DATA);
2381  				payload->size = cpu_to_le32(BLOCK_SECTORS);
2382  				payload->location = cpu_to_le64(
2383  					raid5_compute_blocknr(sh, i, 0));
2384  				addr = kmap_atomic(dev->page);
2385  				payload->checksum[0] = cpu_to_le32(
2386  					crc32c_le(log->uuid_checksum, addr,
2387  						  PAGE_SIZE));
2388  				kunmap_atomic(addr);
2389  				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2390  					     dev->page, REQ_OP_WRITE, false);
2391  				write_pos = r5l_ring_add(log, write_pos,
2392  							 BLOCK_SECTORS);
2393  				offset += sizeof(__le32) +
2394  					sizeof(struct r5l_payload_data_parity);
2395  
2396  			}
2397  		}
2398  		mb->meta_size = cpu_to_le32(offset);
2399  		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2400  						     mb, PAGE_SIZE));
2401  		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2402  			     REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2403  		sh->log_start = ctx->pos;
2404  		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2405  		atomic_inc(&log->stripe_in_journal_count);
2406  		ctx->pos = write_pos;
2407  		ctx->seq += 1;
2408  		next_checkpoint = sh->log_start;
2409  	}
2410  	log->next_checkpoint = next_checkpoint;
2411  	__free_page(page);
2412  	return 0;
2413  }
2414  
r5c_recovery_flush_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2415  static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2416  						 struct r5l_recovery_ctx *ctx)
2417  {
2418  	struct mddev *mddev = log->rdev->mddev;
2419  	struct r5conf *conf = mddev->private;
2420  	struct stripe_head *sh, *next;
2421  	bool cleared_pending = false;
2422  
2423  	if (ctx->data_only_stripes == 0)
2424  		return;
2425  
2426  	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2427  		cleared_pending = true;
2428  		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2429  	}
2430  	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2431  
2432  	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2433  		r5c_make_stripe_write_out(sh);
2434  		set_bit(STRIPE_HANDLE, &sh->state);
2435  		list_del_init(&sh->lru);
2436  		raid5_release_stripe(sh);
2437  	}
2438  
2439  	/* reuse conf->wait_for_quiescent in recovery */
2440  	wait_event(conf->wait_for_quiescent,
2441  		   atomic_read(&conf->active_stripes) == 0);
2442  
2443  	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2444  	if (cleared_pending)
2445  		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2446  }
2447  
r5l_recovery_log(struct r5l_log * log)2448  static int r5l_recovery_log(struct r5l_log *log)
2449  {
2450  	struct mddev *mddev = log->rdev->mddev;
2451  	struct r5l_recovery_ctx *ctx;
2452  	int ret;
2453  	sector_t pos;
2454  
2455  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2456  	if (!ctx)
2457  		return -ENOMEM;
2458  
2459  	ctx->pos = log->last_checkpoint;
2460  	ctx->seq = log->last_cp_seq;
2461  	INIT_LIST_HEAD(&ctx->cached_list);
2462  	ctx->meta_page = alloc_page(GFP_KERNEL);
2463  
2464  	if (!ctx->meta_page) {
2465  		ret =  -ENOMEM;
2466  		goto meta_page;
2467  	}
2468  
2469  	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2470  		ret = -ENOMEM;
2471  		goto ra_pool;
2472  	}
2473  
2474  	ret = r5c_recovery_flush_log(log, ctx);
2475  
2476  	if (ret)
2477  		goto error;
2478  
2479  	pos = ctx->pos;
2480  	ctx->seq += 10000;
2481  
2482  	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2483  		pr_info("md/raid:%s: starting from clean shutdown\n",
2484  			 mdname(mddev));
2485  	else
2486  		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2487  			 mdname(mddev), ctx->data_only_stripes,
2488  			 ctx->data_parity_stripes);
2489  
2490  	if (ctx->data_only_stripes == 0) {
2491  		log->next_checkpoint = ctx->pos;
2492  		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2493  		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2494  	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2495  		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2496  		       mdname(mddev));
2497  		ret =  -EIO;
2498  		goto error;
2499  	}
2500  
2501  	log->log_start = ctx->pos;
2502  	log->seq = ctx->seq;
2503  	log->last_checkpoint = pos;
2504  	r5l_write_super(log, pos);
2505  
2506  	r5c_recovery_flush_data_only_stripes(log, ctx);
2507  	ret = 0;
2508  error:
2509  	r5l_recovery_free_ra_pool(log, ctx);
2510  ra_pool:
2511  	__free_page(ctx->meta_page);
2512  meta_page:
2513  	kfree(ctx);
2514  	return ret;
2515  }
2516  
r5l_write_super(struct r5l_log * log,sector_t cp)2517  static void r5l_write_super(struct r5l_log *log, sector_t cp)
2518  {
2519  	struct mddev *mddev = log->rdev->mddev;
2520  
2521  	log->rdev->journal_tail = cp;
2522  	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2523  }
2524  
r5c_journal_mode_show(struct mddev * mddev,char * page)2525  static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2526  {
2527  	struct r5conf *conf;
2528  	int ret;
2529  
2530  	ret = mddev_lock(mddev);
2531  	if (ret)
2532  		return ret;
2533  
2534  	conf = mddev->private;
2535  	if (!conf || !conf->log)
2536  		goto out_unlock;
2537  
2538  	switch (conf->log->r5c_journal_mode) {
2539  	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2540  		ret = snprintf(
2541  			page, PAGE_SIZE, "[%s] %s\n",
2542  			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2543  			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2544  		break;
2545  	case R5C_JOURNAL_MODE_WRITE_BACK:
2546  		ret = snprintf(
2547  			page, PAGE_SIZE, "%s [%s]\n",
2548  			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2549  			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2550  		break;
2551  	default:
2552  		ret = 0;
2553  	}
2554  
2555  out_unlock:
2556  	mddev_unlock(mddev);
2557  	return ret;
2558  }
2559  
2560  /*
2561   * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2562   *
2563   * @mode as defined in 'enum r5c_journal_mode'.
2564   *
2565   */
r5c_journal_mode_set(struct mddev * mddev,int mode)2566  int r5c_journal_mode_set(struct mddev *mddev, int mode)
2567  {
2568  	struct r5conf *conf;
2569  
2570  	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2571  	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2572  		return -EINVAL;
2573  
2574  	conf = mddev->private;
2575  	if (!conf || !conf->log)
2576  		return -ENODEV;
2577  
2578  	if (raid5_calc_degraded(conf) > 0 &&
2579  	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2580  		return -EINVAL;
2581  
2582  	conf->log->r5c_journal_mode = mode;
2583  
2584  	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2585  		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2586  	return 0;
2587  }
2588  EXPORT_SYMBOL(r5c_journal_mode_set);
2589  
r5c_journal_mode_store(struct mddev * mddev,const char * page,size_t length)2590  static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2591  				      const char *page, size_t length)
2592  {
2593  	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2594  	size_t len = length;
2595  	int ret;
2596  
2597  	if (len < 2)
2598  		return -EINVAL;
2599  
2600  	if (page[len - 1] == '\n')
2601  		len--;
2602  
2603  	while (mode--)
2604  		if (strlen(r5c_journal_mode_str[mode]) == len &&
2605  		    !strncmp(page, r5c_journal_mode_str[mode], len))
2606  			break;
2607  	ret = mddev_suspend_and_lock(mddev);
2608  	if (ret)
2609  		return ret;
2610  	ret = r5c_journal_mode_set(mddev, mode);
2611  	mddev_unlock_and_resume(mddev);
2612  	return ret ?: length;
2613  }
2614  
2615  struct md_sysfs_entry
2616  r5c_journal_mode = __ATTR(journal_mode, 0644,
2617  			  r5c_journal_mode_show, r5c_journal_mode_store);
2618  
2619  /*
2620   * Try handle write operation in caching phase. This function should only
2621   * be called in write-back mode.
2622   *
2623   * If all outstanding writes can be handled in caching phase, returns 0
2624   * If writes requires write-out phase, call r5c_make_stripe_write_out()
2625   * and returns -EAGAIN
2626   */
r5c_try_caching_write(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)2627  int r5c_try_caching_write(struct r5conf *conf,
2628  			  struct stripe_head *sh,
2629  			  struct stripe_head_state *s,
2630  			  int disks)
2631  {
2632  	struct r5l_log *log = READ_ONCE(conf->log);
2633  	int i;
2634  	struct r5dev *dev;
2635  	int to_cache = 0;
2636  	void __rcu **pslot;
2637  	sector_t tree_index;
2638  	int ret;
2639  	uintptr_t refcount;
2640  
2641  	BUG_ON(!r5c_is_writeback(log));
2642  
2643  	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2644  		/*
2645  		 * There are two different scenarios here:
2646  		 *  1. The stripe has some data cached, and it is sent to
2647  		 *     write-out phase for reclaim
2648  		 *  2. The stripe is clean, and this is the first write
2649  		 *
2650  		 * For 1, return -EAGAIN, so we continue with
2651  		 * handle_stripe_dirtying().
2652  		 *
2653  		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2654  		 * write.
2655  		 */
2656  
2657  		/* case 1: anything injournal or anything in written */
2658  		if (s->injournal > 0 || s->written > 0)
2659  			return -EAGAIN;
2660  		/* case 2 */
2661  		set_bit(STRIPE_R5C_CACHING, &sh->state);
2662  	}
2663  
2664  	/*
2665  	 * When run in degraded mode, array is set to write-through mode.
2666  	 * This check helps drain pending write safely in the transition to
2667  	 * write-through mode.
2668  	 *
2669  	 * When a stripe is syncing, the write is also handled in write
2670  	 * through mode.
2671  	 */
2672  	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2673  		r5c_make_stripe_write_out(sh);
2674  		return -EAGAIN;
2675  	}
2676  
2677  	for (i = disks; i--; ) {
2678  		dev = &sh->dev[i];
2679  		/* if non-overwrite, use writing-out phase */
2680  		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2681  		    !test_bit(R5_InJournal, &dev->flags)) {
2682  			r5c_make_stripe_write_out(sh);
2683  			return -EAGAIN;
2684  		}
2685  	}
2686  
2687  	/* if the stripe is not counted in big_stripe_tree, add it now */
2688  	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2689  	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2690  		tree_index = r5c_tree_index(conf, sh->sector);
2691  		spin_lock(&log->tree_lock);
2692  		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2693  					       tree_index);
2694  		if (pslot) {
2695  			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2696  				pslot, &log->tree_lock) >>
2697  				R5C_RADIX_COUNT_SHIFT;
2698  			radix_tree_replace_slot(
2699  				&log->big_stripe_tree, pslot,
2700  				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2701  		} else {
2702  			/*
2703  			 * this radix_tree_insert can fail safely, so no
2704  			 * need to call radix_tree_preload()
2705  			 */
2706  			ret = radix_tree_insert(
2707  				&log->big_stripe_tree, tree_index,
2708  				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2709  			if (ret) {
2710  				spin_unlock(&log->tree_lock);
2711  				r5c_make_stripe_write_out(sh);
2712  				return -EAGAIN;
2713  			}
2714  		}
2715  		spin_unlock(&log->tree_lock);
2716  
2717  		/*
2718  		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2719  		 * counted in the radix tree
2720  		 */
2721  		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2722  		atomic_inc(&conf->r5c_cached_partial_stripes);
2723  	}
2724  
2725  	for (i = disks; i--; ) {
2726  		dev = &sh->dev[i];
2727  		if (dev->towrite) {
2728  			set_bit(R5_Wantwrite, &dev->flags);
2729  			set_bit(R5_Wantdrain, &dev->flags);
2730  			set_bit(R5_LOCKED, &dev->flags);
2731  			to_cache++;
2732  		}
2733  	}
2734  
2735  	if (to_cache) {
2736  		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2737  		/*
2738  		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2739  		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2740  		 * r5c_handle_data_cached()
2741  		 */
2742  		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2743  	}
2744  
2745  	return 0;
2746  }
2747  
2748  /*
2749   * free extra pages (orig_page) we allocated for prexor
2750   */
r5c_release_extra_page(struct stripe_head * sh)2751  void r5c_release_extra_page(struct stripe_head *sh)
2752  {
2753  	struct r5conf *conf = sh->raid_conf;
2754  	int i;
2755  	bool using_disk_info_extra_page;
2756  
2757  	using_disk_info_extra_page =
2758  		sh->dev[0].orig_page == conf->disks[0].extra_page;
2759  
2760  	for (i = sh->disks; i--; )
2761  		if (sh->dev[i].page != sh->dev[i].orig_page) {
2762  			struct page *p = sh->dev[i].orig_page;
2763  
2764  			sh->dev[i].orig_page = sh->dev[i].page;
2765  			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2766  
2767  			if (!using_disk_info_extra_page)
2768  				put_page(p);
2769  		}
2770  
2771  	if (using_disk_info_extra_page) {
2772  		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2773  		md_wakeup_thread(conf->mddev->thread);
2774  	}
2775  }
2776  
r5c_use_extra_page(struct stripe_head * sh)2777  void r5c_use_extra_page(struct stripe_head *sh)
2778  {
2779  	struct r5conf *conf = sh->raid_conf;
2780  	int i;
2781  	struct r5dev *dev;
2782  
2783  	for (i = sh->disks; i--; ) {
2784  		dev = &sh->dev[i];
2785  		if (dev->orig_page != dev->page)
2786  			put_page(dev->orig_page);
2787  		dev->orig_page = conf->disks[i].extra_page;
2788  	}
2789  }
2790  
2791  /*
2792   * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2793   * stripe is committed to RAID disks.
2794   */
r5c_finish_stripe_write_out(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)2795  void r5c_finish_stripe_write_out(struct r5conf *conf,
2796  				 struct stripe_head *sh,
2797  				 struct stripe_head_state *s)
2798  {
2799  	struct r5l_log *log = READ_ONCE(conf->log);
2800  	int i;
2801  	sector_t tree_index;
2802  	void __rcu **pslot;
2803  	uintptr_t refcount;
2804  
2805  	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2806  		return;
2807  
2808  	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2809  	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2810  
2811  	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2812  		return;
2813  
2814  	for (i = sh->disks; i--; ) {
2815  		clear_bit(R5_InJournal, &sh->dev[i].flags);
2816  		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2817  			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
2818  	}
2819  
2820  	/*
2821  	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2822  	 * We updated R5_InJournal, so we also update s->injournal.
2823  	 */
2824  	s->injournal = 0;
2825  
2826  	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2827  		if (atomic_dec_and_test(&conf->pending_full_writes))
2828  			md_wakeup_thread(conf->mddev->thread);
2829  
2830  	spin_lock_irq(&log->stripe_in_journal_lock);
2831  	list_del_init(&sh->r5c);
2832  	spin_unlock_irq(&log->stripe_in_journal_lock);
2833  	sh->log_start = MaxSector;
2834  
2835  	atomic_dec(&log->stripe_in_journal_count);
2836  	r5c_update_log_state(log);
2837  
2838  	/* stop counting this stripe in big_stripe_tree */
2839  	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2840  	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2841  		tree_index = r5c_tree_index(conf, sh->sector);
2842  		spin_lock(&log->tree_lock);
2843  		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2844  					       tree_index);
2845  		BUG_ON(pslot == NULL);
2846  		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2847  			pslot, &log->tree_lock) >>
2848  			R5C_RADIX_COUNT_SHIFT;
2849  		if (refcount == 1)
2850  			radix_tree_delete(&log->big_stripe_tree, tree_index);
2851  		else
2852  			radix_tree_replace_slot(
2853  				&log->big_stripe_tree, pslot,
2854  				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2855  		spin_unlock(&log->tree_lock);
2856  	}
2857  
2858  	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2859  		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2860  		atomic_dec(&conf->r5c_flushing_partial_stripes);
2861  		atomic_dec(&conf->r5c_cached_partial_stripes);
2862  	}
2863  
2864  	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2865  		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2866  		atomic_dec(&conf->r5c_flushing_full_stripes);
2867  		atomic_dec(&conf->r5c_cached_full_stripes);
2868  	}
2869  
2870  	r5l_append_flush_payload(log, sh->sector);
2871  	/* stripe is flused to raid disks, we can do resync now */
2872  	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2873  		set_bit(STRIPE_HANDLE, &sh->state);
2874  }
2875  
r5c_cache_data(struct r5l_log * log,struct stripe_head * sh)2876  int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2877  {
2878  	struct r5conf *conf = sh->raid_conf;
2879  	int pages = 0;
2880  	int reserve;
2881  	int i;
2882  	int ret = 0;
2883  
2884  	BUG_ON(!log);
2885  
2886  	for (i = 0; i < sh->disks; i++) {
2887  		void *addr;
2888  
2889  		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2890  			continue;
2891  		addr = kmap_atomic(sh->dev[i].page);
2892  		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2893  						    addr, PAGE_SIZE);
2894  		kunmap_atomic(addr);
2895  		pages++;
2896  	}
2897  	WARN_ON(pages == 0);
2898  
2899  	/*
2900  	 * The stripe must enter state machine again to call endio, so
2901  	 * don't delay.
2902  	 */
2903  	clear_bit(STRIPE_DELAYED, &sh->state);
2904  	atomic_inc(&sh->count);
2905  
2906  	mutex_lock(&log->io_mutex);
2907  	/* meta + data */
2908  	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2909  
2910  	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2911  	    sh->log_start == MaxSector)
2912  		r5l_add_no_space_stripe(log, sh);
2913  	else if (!r5l_has_free_space(log, reserve)) {
2914  		if (sh->log_start == log->last_checkpoint)
2915  			BUG();
2916  		else
2917  			r5l_add_no_space_stripe(log, sh);
2918  	} else {
2919  		ret = r5l_log_stripe(log, sh, pages, 0);
2920  		if (ret) {
2921  			spin_lock_irq(&log->io_list_lock);
2922  			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2923  			spin_unlock_irq(&log->io_list_lock);
2924  		}
2925  	}
2926  
2927  	mutex_unlock(&log->io_mutex);
2928  	return 0;
2929  }
2930  
2931  /* check whether this big stripe is in write back cache. */
r5c_big_stripe_cached(struct r5conf * conf,sector_t sect)2932  bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2933  {
2934  	struct r5l_log *log = READ_ONCE(conf->log);
2935  	sector_t tree_index;
2936  	void *slot;
2937  
2938  	if (!log)
2939  		return false;
2940  
2941  	tree_index = r5c_tree_index(conf, sect);
2942  	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2943  	return slot != NULL;
2944  }
2945  
r5l_load_log(struct r5l_log * log)2946  static int r5l_load_log(struct r5l_log *log)
2947  {
2948  	struct md_rdev *rdev = log->rdev;
2949  	struct page *page;
2950  	struct r5l_meta_block *mb;
2951  	sector_t cp = log->rdev->journal_tail;
2952  	u32 stored_crc, expected_crc;
2953  	bool create_super = false;
2954  	int ret = 0;
2955  
2956  	/* Make sure it's valid */
2957  	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2958  		cp = 0;
2959  	page = alloc_page(GFP_KERNEL);
2960  	if (!page)
2961  		return -ENOMEM;
2962  
2963  	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2964  		ret = -EIO;
2965  		goto ioerr;
2966  	}
2967  	mb = page_address(page);
2968  
2969  	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2970  	    mb->version != R5LOG_VERSION) {
2971  		create_super = true;
2972  		goto create;
2973  	}
2974  	stored_crc = le32_to_cpu(mb->checksum);
2975  	mb->checksum = 0;
2976  	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2977  	if (stored_crc != expected_crc) {
2978  		create_super = true;
2979  		goto create;
2980  	}
2981  	if (le64_to_cpu(mb->position) != cp) {
2982  		create_super = true;
2983  		goto create;
2984  	}
2985  create:
2986  	if (create_super) {
2987  		log->last_cp_seq = get_random_u32();
2988  		cp = 0;
2989  		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2990  		/*
2991  		 * Make sure super points to correct address. Log might have
2992  		 * data very soon. If super hasn't correct log tail address,
2993  		 * recovery can't find the log
2994  		 */
2995  		r5l_write_super(log, cp);
2996  	} else
2997  		log->last_cp_seq = le64_to_cpu(mb->seq);
2998  
2999  	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3000  	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3001  	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3002  		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3003  	log->last_checkpoint = cp;
3004  
3005  	__free_page(page);
3006  
3007  	if (create_super) {
3008  		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3009  		log->seq = log->last_cp_seq + 1;
3010  		log->next_checkpoint = cp;
3011  	} else
3012  		ret = r5l_recovery_log(log);
3013  
3014  	r5c_update_log_state(log);
3015  	return ret;
3016  ioerr:
3017  	__free_page(page);
3018  	return ret;
3019  }
3020  
r5l_start(struct r5l_log * log)3021  int r5l_start(struct r5l_log *log)
3022  {
3023  	int ret;
3024  
3025  	if (!log)
3026  		return 0;
3027  
3028  	ret = r5l_load_log(log);
3029  	if (ret) {
3030  		struct mddev *mddev = log->rdev->mddev;
3031  		struct r5conf *conf = mddev->private;
3032  
3033  		r5l_exit_log(conf);
3034  	}
3035  	return ret;
3036  }
3037  
r5c_update_on_rdev_error(struct mddev * mddev,struct md_rdev * rdev)3038  void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3039  {
3040  	struct r5conf *conf = mddev->private;
3041  	struct r5l_log *log = READ_ONCE(conf->log);
3042  
3043  	if (!log)
3044  		return;
3045  
3046  	if ((raid5_calc_degraded(conf) > 0 ||
3047  	     test_bit(Journal, &rdev->flags)) &&
3048  	    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3049  		schedule_work(&log->disable_writeback_work);
3050  }
3051  
r5l_init_log(struct r5conf * conf,struct md_rdev * rdev)3052  int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3053  {
3054  	struct r5l_log *log;
3055  	struct md_thread *thread;
3056  	int ret;
3057  
3058  	pr_debug("md/raid:%s: using device %pg as journal\n",
3059  		 mdname(conf->mddev), rdev->bdev);
3060  
3061  	if (PAGE_SIZE != 4096)
3062  		return -EINVAL;
3063  
3064  	/*
3065  	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3066  	 * raid_disks r5l_payload_data_parity.
3067  	 *
3068  	 * Write journal and cache does not work for very big array
3069  	 * (raid_disks > 203)
3070  	 */
3071  	if (sizeof(struct r5l_meta_block) +
3072  	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3073  	     conf->raid_disks) > PAGE_SIZE) {
3074  		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3075  		       mdname(conf->mddev), conf->raid_disks);
3076  		return -EINVAL;
3077  	}
3078  
3079  	log = kzalloc(sizeof(*log), GFP_KERNEL);
3080  	if (!log)
3081  		return -ENOMEM;
3082  	log->rdev = rdev;
3083  	log->need_cache_flush = bdev_write_cache(rdev->bdev);
3084  	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3085  				       sizeof(rdev->mddev->uuid));
3086  
3087  	mutex_init(&log->io_mutex);
3088  
3089  	spin_lock_init(&log->io_list_lock);
3090  	INIT_LIST_HEAD(&log->running_ios);
3091  	INIT_LIST_HEAD(&log->io_end_ios);
3092  	INIT_LIST_HEAD(&log->flushing_ios);
3093  	INIT_LIST_HEAD(&log->finished_ios);
3094  
3095  	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3096  	if (!log->io_kc)
3097  		goto io_kc;
3098  
3099  	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3100  	if (ret)
3101  		goto io_pool;
3102  
3103  	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3104  	if (ret)
3105  		goto io_bs;
3106  
3107  	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3108  	if (ret)
3109  		goto out_mempool;
3110  
3111  	spin_lock_init(&log->tree_lock);
3112  	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3113  
3114  	thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
3115  				    "reclaim");
3116  	if (!thread)
3117  		goto reclaim_thread;
3118  
3119  	thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3120  	rcu_assign_pointer(log->reclaim_thread, thread);
3121  
3122  	init_waitqueue_head(&log->iounit_wait);
3123  
3124  	INIT_LIST_HEAD(&log->no_mem_stripes);
3125  
3126  	INIT_LIST_HEAD(&log->no_space_stripes);
3127  	spin_lock_init(&log->no_space_stripes_lock);
3128  
3129  	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3130  	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3131  
3132  	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3133  	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3134  	spin_lock_init(&log->stripe_in_journal_lock);
3135  	atomic_set(&log->stripe_in_journal_count, 0);
3136  
3137  	WRITE_ONCE(conf->log, log);
3138  
3139  	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3140  	return 0;
3141  
3142  reclaim_thread:
3143  	mempool_exit(&log->meta_pool);
3144  out_mempool:
3145  	bioset_exit(&log->bs);
3146  io_bs:
3147  	mempool_exit(&log->io_pool);
3148  io_pool:
3149  	kmem_cache_destroy(log->io_kc);
3150  io_kc:
3151  	kfree(log);
3152  	return -EINVAL;
3153  }
3154  
r5l_exit_log(struct r5conf * conf)3155  void r5l_exit_log(struct r5conf *conf)
3156  {
3157  	struct r5l_log *log = conf->log;
3158  
3159  	md_unregister_thread(conf->mddev, &log->reclaim_thread);
3160  
3161  	/*
3162  	 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
3163  	 * ensure disable_writeback_work wakes up and exits.
3164  	 */
3165  	WRITE_ONCE(conf->log, NULL);
3166  	wake_up(&conf->mddev->sb_wait);
3167  	flush_work(&log->disable_writeback_work);
3168  
3169  	mempool_exit(&log->meta_pool);
3170  	bioset_exit(&log->bs);
3171  	mempool_exit(&log->io_pool);
3172  	kmem_cache_destroy(log->io_kc);
3173  	kfree(log);
3174  }
3175