1  // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2  /*
3   * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4   * Copyright 2016-2019 NXP
5   *
6   */
7  
8  #include <asm/cacheflush.h>
9  #include <linux/io.h>
10  #include <linux/slab.h>
11  #include <linux/spinlock.h>
12  #include <soc/fsl/dpaa2-global.h>
13  
14  #include "qbman-portal.h"
15  
16  /* All QBMan command and result structures use this "valid bit" encoding */
17  #define QB_VALID_BIT ((u32)0x80)
18  
19  /* QBMan portal management command codes */
20  #define QBMAN_MC_ACQUIRE       0x30
21  #define QBMAN_WQCHAN_CONFIGURE 0x46
22  
23  /* CINH register offsets */
24  #define QBMAN_CINH_SWP_EQCR_PI      0x800
25  #define QBMAN_CINH_SWP_EQCR_CI	    0x840
26  #define QBMAN_CINH_SWP_EQAR    0x8c0
27  #define QBMAN_CINH_SWP_CR_RT        0x900
28  #define QBMAN_CINH_SWP_VDQCR_RT     0x940
29  #define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
30  #define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
31  #define QBMAN_CINH_SWP_DQPI    0xa00
32  #define QBMAN_CINH_SWP_DQRR_ITR     0xa80
33  #define QBMAN_CINH_SWP_DCAP    0xac0
34  #define QBMAN_CINH_SWP_SDQCR   0xb00
35  #define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
36  #define QBMAN_CINH_SWP_RCR_PI       0xc00
37  #define QBMAN_CINH_SWP_RAR     0xcc0
38  #define QBMAN_CINH_SWP_ISR     0xe00
39  #define QBMAN_CINH_SWP_IER     0xe40
40  #define QBMAN_CINH_SWP_ISDR    0xe80
41  #define QBMAN_CINH_SWP_IIR     0xec0
42  #define QBMAN_CINH_SWP_ITPR    0xf40
43  
44  /* CENA register offsets */
45  #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
46  #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
47  #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
48  #define QBMAN_CENA_SWP_CR      0x600
49  #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
50  #define QBMAN_CENA_SWP_VDQCR   0x780
51  #define QBMAN_CENA_SWP_EQCR_CI 0x840
52  #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
53  
54  /* CENA register offsets in memory-backed mode */
55  #define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
56  #define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
57  #define QBMAN_CENA_SWP_CR_MEM       0x1600
58  #define QBMAN_CENA_SWP_RR_MEM       0x1680
59  #define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
60  
61  /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
62  #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
63  
64  /* Define token used to determine if response written to memory is valid */
65  #define QMAN_DQ_TOKEN_VALID 1
66  
67  /* SDQCR attribute codes */
68  #define QB_SDQCR_FC_SHIFT   29
69  #define QB_SDQCR_FC_MASK    0x1
70  #define QB_SDQCR_DCT_SHIFT  24
71  #define QB_SDQCR_DCT_MASK   0x3
72  #define QB_SDQCR_TOK_SHIFT  16
73  #define QB_SDQCR_TOK_MASK   0xff
74  #define QB_SDQCR_SRC_SHIFT  0
75  #define QB_SDQCR_SRC_MASK   0xffff
76  
77  /* opaque token for static dequeues */
78  #define QMAN_SDQCR_TOKEN    0xbb
79  
80  #define QBMAN_EQCR_DCA_IDXMASK          0x0f
81  #define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
82  
83  #define EQ_DESC_SIZE_WITHOUT_FD 29
84  #define EQ_DESC_SIZE_FD_START 32
85  
86  enum qbman_sdqcr_dct {
87  	qbman_sdqcr_dct_null = 0,
88  	qbman_sdqcr_dct_prio_ics,
89  	qbman_sdqcr_dct_active_ics,
90  	qbman_sdqcr_dct_active
91  };
92  
93  enum qbman_sdqcr_fc {
94  	qbman_sdqcr_fc_one = 0,
95  	qbman_sdqcr_fc_up_to_3 = 1
96  };
97  
98  /* Internal Function declaration */
99  static int qbman_swp_enqueue_direct(struct qbman_swp *s,
100  				    const struct qbman_eq_desc *d,
101  				    const struct dpaa2_fd *fd);
102  static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
103  				      const struct qbman_eq_desc *d,
104  				      const struct dpaa2_fd *fd);
105  static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
106  					     const struct qbman_eq_desc *d,
107  					     const struct dpaa2_fd *fd,
108  					     uint32_t *flags,
109  					     int num_frames);
110  static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
111  					       const struct qbman_eq_desc *d,
112  					       const struct dpaa2_fd *fd,
113  					       uint32_t *flags,
114  					       int num_frames);
115  static int
116  qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
117  				       const struct qbman_eq_desc *d,
118  				       const struct dpaa2_fd *fd,
119  				       int num_frames);
120  static
121  int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
122  					     const struct qbman_eq_desc *d,
123  					     const struct dpaa2_fd *fd,
124  					     int num_frames);
125  static int qbman_swp_pull_direct(struct qbman_swp *s,
126  				 struct qbman_pull_desc *d);
127  static int qbman_swp_pull_mem_back(struct qbman_swp *s,
128  				   struct qbman_pull_desc *d);
129  
130  const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
131  const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
132  
133  static int qbman_swp_release_direct(struct qbman_swp *s,
134  				    const struct qbman_release_desc *d,
135  				    const u64 *buffers,
136  				    unsigned int num_buffers);
137  static int qbman_swp_release_mem_back(struct qbman_swp *s,
138  				      const struct qbman_release_desc *d,
139  				      const u64 *buffers,
140  				      unsigned int num_buffers);
141  
142  /* Function pointers */
143  int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
144  			     const struct qbman_eq_desc *d,
145  			     const struct dpaa2_fd *fd)
146  	= qbman_swp_enqueue_direct;
147  
148  int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
149  				      const struct qbman_eq_desc *d,
150  				      const struct dpaa2_fd *fd,
151  				      uint32_t *flags,
152  					     int num_frames)
153  	= qbman_swp_enqueue_multiple_direct;
154  
155  int
156  (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
157  				       const struct qbman_eq_desc *d,
158  				       const struct dpaa2_fd *fd,
159  				       int num_frames)
160  	= qbman_swp_enqueue_multiple_desc_direct;
161  
162  int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
163  			= qbman_swp_pull_direct;
164  
165  const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
166  			= qbman_swp_dqrr_next_direct;
167  
168  int (*qbman_swp_release_ptr)(struct qbman_swp *s,
169  			     const struct qbman_release_desc *d,
170  			     const u64 *buffers,
171  			     unsigned int num_buffers)
172  			= qbman_swp_release_direct;
173  
174  /* Portal Access */
175  
qbman_read_register(struct qbman_swp * p,u32 offset)176  static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
177  {
178  	return readl_relaxed(p->addr_cinh + offset);
179  }
180  
qbman_write_register(struct qbman_swp * p,u32 offset,u32 value)181  static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
182  					u32 value)
183  {
184  	writel_relaxed(value, p->addr_cinh + offset);
185  }
186  
qbman_get_cmd(struct qbman_swp * p,u32 offset)187  static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
188  {
189  	return p->addr_cena + offset;
190  }
191  
192  #define QBMAN_CINH_SWP_CFG   0xd00
193  
194  #define SWP_CFG_DQRR_MF_SHIFT 20
195  #define SWP_CFG_EST_SHIFT     16
196  #define SWP_CFG_CPBS_SHIFT    15
197  #define SWP_CFG_WN_SHIFT      14
198  #define SWP_CFG_RPM_SHIFT     12
199  #define SWP_CFG_DCM_SHIFT     10
200  #define SWP_CFG_EPM_SHIFT     8
201  #define SWP_CFG_VPM_SHIFT     7
202  #define SWP_CFG_CPM_SHIFT     6
203  #define SWP_CFG_SD_SHIFT      5
204  #define SWP_CFG_SP_SHIFT      4
205  #define SWP_CFG_SE_SHIFT      3
206  #define SWP_CFG_DP_SHIFT      2
207  #define SWP_CFG_DE_SHIFT      1
208  #define SWP_CFG_EP_SHIFT      0
209  
qbman_set_swp_cfg(u8 max_fill,u8 wn,u8 est,u8 rpm,u8 dcm,u8 epm,int sd,int sp,int se,int dp,int de,int ep)210  static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
211  				    u8 epm, int sd, int sp, int se,
212  				    int dp, int de, int ep)
213  {
214  	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
215  		est << SWP_CFG_EST_SHIFT |
216  		wn << SWP_CFG_WN_SHIFT |
217  		rpm << SWP_CFG_RPM_SHIFT |
218  		dcm << SWP_CFG_DCM_SHIFT |
219  		epm << SWP_CFG_EPM_SHIFT |
220  		sd << SWP_CFG_SD_SHIFT |
221  		sp << SWP_CFG_SP_SHIFT |
222  		se << SWP_CFG_SE_SHIFT |
223  		dp << SWP_CFG_DP_SHIFT |
224  		de << SWP_CFG_DE_SHIFT |
225  		ep << SWP_CFG_EP_SHIFT);
226  }
227  
228  #define QMAN_RT_MODE	   0x00000100
229  
qm_cyc_diff(u8 ringsize,u8 first,u8 last)230  static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
231  {
232  	/* 'first' is included, 'last' is excluded */
233  	if (first <= last)
234  		return last - first;
235  	else
236  		return (2 * ringsize) - (first - last);
237  }
238  
239  /**
240   * qbman_swp_init() - Create a functional object representing the given
241   *                    QBMan portal descriptor.
242   * @d: the given qbman swp descriptor
243   *
244   * Return qbman_swp portal for success, NULL if the object cannot
245   * be created.
246   */
qbman_swp_init(const struct qbman_swp_desc * d)247  struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
248  {
249  	struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
250  	u32 reg;
251  	u32 mask_size;
252  	u32 eqcr_pi;
253  
254  	if (!p)
255  		return NULL;
256  
257  	spin_lock_init(&p->access_spinlock);
258  
259  	p->desc = d;
260  	p->mc.valid_bit = QB_VALID_BIT;
261  	p->sdq = 0;
262  	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
263  	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
264  	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
265  	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
266  		p->mr.valid_bit = QB_VALID_BIT;
267  
268  	atomic_set(&p->vdq.available, 1);
269  	p->vdq.valid_bit = QB_VALID_BIT;
270  	p->dqrr.next_idx = 0;
271  	p->dqrr.valid_bit = QB_VALID_BIT;
272  
273  	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
274  		p->dqrr.dqrr_size = 4;
275  		p->dqrr.reset_bug = 1;
276  	} else {
277  		p->dqrr.dqrr_size = 8;
278  		p->dqrr.reset_bug = 0;
279  	}
280  
281  	p->addr_cena = d->cena_bar;
282  	p->addr_cinh = d->cinh_bar;
283  
284  	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
285  
286  		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
287  			1, /* Writes Non-cacheable */
288  			0, /* EQCR_CI stashing threshold */
289  			3, /* RPM: RCR in array mode */
290  			2, /* DCM: Discrete consumption ack */
291  			2, /* EPM: EQCR in ring mode */
292  			1, /* mem stashing drop enable enable */
293  			1, /* mem stashing priority enable */
294  			1, /* mem stashing enable */
295  			1, /* dequeue stashing priority enable */
296  			0, /* dequeue stashing enable enable */
297  			0); /* EQCR_CI stashing priority enable */
298  	} else {
299  		memset(p->addr_cena, 0, 64 * 1024);
300  		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
301  			1, /* Writes Non-cacheable */
302  			1, /* EQCR_CI stashing threshold */
303  			3, /* RPM: RCR in array mode */
304  			2, /* DCM: Discrete consumption ack */
305  			0, /* EPM: EQCR in ring mode */
306  			1, /* mem stashing drop enable */
307  			1, /* mem stashing priority enable */
308  			1, /* mem stashing enable */
309  			1, /* dequeue stashing priority enable */
310  			0, /* dequeue stashing enable */
311  			0); /* EQCR_CI stashing priority enable */
312  		reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
313  		       1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
314  		       1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
315  	}
316  
317  	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
318  	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
319  	if (!reg) {
320  		pr_err("qbman: the portal is not enabled!\n");
321  		kfree(p);
322  		return NULL;
323  	}
324  
325  	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
326  		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
327  		qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
328  	}
329  	/*
330  	 * SDQCR needs to be initialized to 0 when no channels are
331  	 * being dequeued from or else the QMan HW will indicate an
332  	 * error.  The values that were calculated above will be
333  	 * applied when dequeues from a specific channel are enabled.
334  	 */
335  	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
336  
337  	p->eqcr.pi_ring_size = 8;
338  	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
339  		p->eqcr.pi_ring_size = 32;
340  		qbman_swp_enqueue_ptr =
341  			qbman_swp_enqueue_mem_back;
342  		qbman_swp_enqueue_multiple_ptr =
343  			qbman_swp_enqueue_multiple_mem_back;
344  		qbman_swp_enqueue_multiple_desc_ptr =
345  			qbman_swp_enqueue_multiple_desc_mem_back;
346  		qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
347  		qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
348  		qbman_swp_release_ptr = qbman_swp_release_mem_back;
349  	}
350  
351  	for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
352  		p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
353  	eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
354  	p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
355  	p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
356  	p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
357  			& p->eqcr.pi_ci_mask;
358  	p->eqcr.available = p->eqcr.pi_ring_size;
359  
360  	/* Initialize the software portal with a irq timeout period of 0us */
361  	qbman_swp_set_irq_coalescing(p, p->dqrr.dqrr_size - 1, 0);
362  
363  	return p;
364  }
365  
366  /**
367   * qbman_swp_finish() - Create and destroy a functional object representing
368   *                      the given QBMan portal descriptor.
369   * @p: the qbman_swp object to be destroyed
370   */
qbman_swp_finish(struct qbman_swp * p)371  void qbman_swp_finish(struct qbman_swp *p)
372  {
373  	kfree(p);
374  }
375  
376  /**
377   * qbman_swp_interrupt_read_status()
378   * @p: the given software portal
379   *
380   * Return the value in the SWP_ISR register.
381   */
qbman_swp_interrupt_read_status(struct qbman_swp * p)382  u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
383  {
384  	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
385  }
386  
387  /**
388   * qbman_swp_interrupt_clear_status()
389   * @p: the given software portal
390   * @mask: The mask to clear in SWP_ISR register
391   */
qbman_swp_interrupt_clear_status(struct qbman_swp * p,u32 mask)392  void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
393  {
394  	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
395  }
396  
397  /**
398   * qbman_swp_interrupt_get_trigger() - read interrupt enable register
399   * @p: the given software portal
400   *
401   * Return the value in the SWP_IER register.
402   */
qbman_swp_interrupt_get_trigger(struct qbman_swp * p)403  u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
404  {
405  	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
406  }
407  
408  /**
409   * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
410   * @p: the given software portal
411   * @mask: The mask of bits to enable in SWP_IER
412   */
qbman_swp_interrupt_set_trigger(struct qbman_swp * p,u32 mask)413  void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
414  {
415  	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
416  }
417  
418  /**
419   * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
420   * @p: the given software portal object
421   *
422   * Return the value in the SWP_IIR register.
423   */
qbman_swp_interrupt_get_inhibit(struct qbman_swp * p)424  int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
425  {
426  	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
427  }
428  
429  /**
430   * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
431   * @p: the given software portal object
432   * @inhibit: whether to inhibit the IRQs
433   */
qbman_swp_interrupt_set_inhibit(struct qbman_swp * p,int inhibit)434  void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
435  {
436  	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
437  }
438  
439  /*
440   * Different management commands all use this common base layer of code to issue
441   * commands and poll for results.
442   */
443  
444  /*
445   * Returns a pointer to where the caller should fill in their management command
446   * (caller should ignore the verb byte)
447   */
qbman_swp_mc_start(struct qbman_swp * p)448  void *qbman_swp_mc_start(struct qbman_swp *p)
449  {
450  	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
451  		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
452  	else
453  		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
454  }
455  
456  /*
457   * Commits merges in the caller-supplied command verb (which should not include
458   * the valid-bit) and submits the command to hardware
459   */
qbman_swp_mc_submit(struct qbman_swp * p,void * cmd,u8 cmd_verb)460  void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
461  {
462  	u8 *v = cmd;
463  
464  	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
465  		dma_wmb();
466  		*v = cmd_verb | p->mc.valid_bit;
467  	} else {
468  		*v = cmd_verb | p->mc.valid_bit;
469  		dma_wmb();
470  		qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
471  	}
472  }
473  
474  /*
475   * Checks for a completed response (returns non-NULL if only if the response
476   * is complete).
477   */
qbman_swp_mc_result(struct qbman_swp * p)478  void *qbman_swp_mc_result(struct qbman_swp *p)
479  {
480  	u32 *ret, verb;
481  
482  	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
483  		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
484  		/* Remove the valid-bit - command completed if the rest
485  		 * is non-zero.
486  		 */
487  		verb = ret[0] & ~QB_VALID_BIT;
488  		if (!verb)
489  			return NULL;
490  		p->mc.valid_bit ^= QB_VALID_BIT;
491  	} else {
492  		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
493  		/* Command completed if the valid bit is toggled */
494  		if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
495  			return NULL;
496  		/* Command completed if the rest is non-zero */
497  		verb = ret[0] & ~QB_VALID_BIT;
498  		if (!verb)
499  			return NULL;
500  		p->mr.valid_bit ^= QB_VALID_BIT;
501  	}
502  
503  	return ret;
504  }
505  
506  #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
507  enum qb_enqueue_commands {
508  	enqueue_empty = 0,
509  	enqueue_response_always = 1,
510  	enqueue_rejects_to_fq = 2
511  };
512  
513  #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
514  #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
515  #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
516  #define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
517  
518  /*
519   * qbman_eq_desc_clear() - Clear the contents of a descriptor to
520   *                         default/starting state.
521   */
qbman_eq_desc_clear(struct qbman_eq_desc * d)522  void qbman_eq_desc_clear(struct qbman_eq_desc *d)
523  {
524  	memset(d, 0, sizeof(*d));
525  }
526  
527  /**
528   * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
529   * @d:                the enqueue descriptor.
530   * @respond_success:  1 = enqueue with response always; 0 = enqueue with
531   *                    rejections returned on a FQ.
532   */
qbman_eq_desc_set_no_orp(struct qbman_eq_desc * d,int respond_success)533  void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
534  {
535  	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
536  	if (respond_success)
537  		d->verb |= enqueue_response_always;
538  	else
539  		d->verb |= enqueue_rejects_to_fq;
540  }
541  
542  /*
543   * Exactly one of the following descriptor "targets" should be set. (Calling any
544   * one of these will replace the effect of any prior call to one of these.)
545   *   -enqueue to a frame queue
546   *   -enqueue to a queuing destination
547   */
548  
549  /**
550   * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
551   * @d:    the enqueue descriptor
552   * @fqid: the id of the frame queue to be enqueued
553   */
qbman_eq_desc_set_fq(struct qbman_eq_desc * d,u32 fqid)554  void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
555  {
556  	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
557  	d->tgtid = cpu_to_le32(fqid);
558  }
559  
560  /**
561   * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
562   * @d:       the enqueue descriptor
563   * @qdid:    the id of the queuing destination to be enqueued
564   * @qd_bin:  the queuing destination bin
565   * @qd_prio: the queuing destination priority
566   */
qbman_eq_desc_set_qd(struct qbman_eq_desc * d,u32 qdid,u32 qd_bin,u32 qd_prio)567  void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
568  			  u32 qd_bin, u32 qd_prio)
569  {
570  	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
571  	d->tgtid = cpu_to_le32(qdid);
572  	d->qdbin = cpu_to_le16(qd_bin);
573  	d->qpri = qd_prio;
574  }
575  
576  #define EQAR_IDX(eqar)     ((eqar) & 0x7)
577  #define EQAR_VB(eqar)      ((eqar) & 0x80)
578  #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
579  
580  #define QB_RT_BIT ((u32)0x100)
581  /**
582   * qbman_swp_enqueue_direct() - Issue an enqueue command
583   * @s:  the software portal used for enqueue
584   * @d:  the enqueue descriptor
585   * @fd: the frame descriptor to be enqueued
586   *
587   * Please note that 'fd' should only be NULL if the "action" of the
588   * descriptor is "orp_hole" or "orp_nesn".
589   *
590   * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
591   */
592  static
qbman_swp_enqueue_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd)593  int qbman_swp_enqueue_direct(struct qbman_swp *s,
594  			     const struct qbman_eq_desc *d,
595  			     const struct dpaa2_fd *fd)
596  {
597  	int flags = 0;
598  	int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
599  
600  	if (ret >= 0)
601  		ret = 0;
602  	else
603  		ret = -EBUSY;
604  	return  ret;
605  }
606  
607  /**
608   * qbman_swp_enqueue_mem_back() - Issue an enqueue command
609   * @s:  the software portal used for enqueue
610   * @d:  the enqueue descriptor
611   * @fd: the frame descriptor to be enqueued
612   *
613   * Please note that 'fd' should only be NULL if the "action" of the
614   * descriptor is "orp_hole" or "orp_nesn".
615   *
616   * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
617   */
618  static
qbman_swp_enqueue_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd)619  int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
620  			       const struct qbman_eq_desc *d,
621  			       const struct dpaa2_fd *fd)
622  {
623  	int flags = 0;
624  	int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
625  
626  	if (ret >= 0)
627  		ret = 0;
628  	else
629  		ret = -EBUSY;
630  	return  ret;
631  }
632  
633  /**
634   * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
635   * using one enqueue descriptor
636   * @s:  the software portal used for enqueue
637   * @d:  the enqueue descriptor
638   * @fd: table pointer of frame descriptor table to be enqueued
639   * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
640   * @num_frames: number of fd to be enqueued
641   *
642   * Return the number of fd enqueued, or a negative error number.
643   */
644  static
qbman_swp_enqueue_multiple_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,uint32_t * flags,int num_frames)645  int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
646  				      const struct qbman_eq_desc *d,
647  				      const struct dpaa2_fd *fd,
648  				      uint32_t *flags,
649  				      int num_frames)
650  {
651  	uint32_t *p = NULL;
652  	const uint32_t *cl = (uint32_t *)d;
653  	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
654  	int i, num_enqueued = 0;
655  
656  	spin_lock(&s->access_spinlock);
657  	half_mask = (s->eqcr.pi_ci_mask>>1);
658  	full_mask = s->eqcr.pi_ci_mask;
659  
660  	if (!s->eqcr.available) {
661  		eqcr_ci = s->eqcr.ci;
662  		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
663  		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
664  		s->eqcr.ci &= full_mask;
665  
666  		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
667  					eqcr_ci, s->eqcr.ci);
668  		if (!s->eqcr.available) {
669  			spin_unlock(&s->access_spinlock);
670  			return 0;
671  		}
672  	}
673  
674  	eqcr_pi = s->eqcr.pi;
675  	num_enqueued = (s->eqcr.available < num_frames) ?
676  			s->eqcr.available : num_frames;
677  	s->eqcr.available -= num_enqueued;
678  	/* Fill in the EQCR ring */
679  	for (i = 0; i < num_enqueued; i++) {
680  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
681  		/* Skip copying the verb */
682  		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
683  		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
684  		       &fd[i], sizeof(*fd));
685  		eqcr_pi++;
686  	}
687  
688  	dma_wmb();
689  
690  	/* Set the verb byte, have to substitute in the valid-bit */
691  	eqcr_pi = s->eqcr.pi;
692  	for (i = 0; i < num_enqueued; i++) {
693  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
694  		p[0] = cl[0] | s->eqcr.pi_vb;
695  		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
696  			struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
697  
698  			eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
699  				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
700  		}
701  		eqcr_pi++;
702  		if (!(eqcr_pi & half_mask))
703  			s->eqcr.pi_vb ^= QB_VALID_BIT;
704  	}
705  
706  	/* Flush all the cacheline without load/store in between */
707  	eqcr_pi = s->eqcr.pi;
708  	for (i = 0; i < num_enqueued; i++)
709  		eqcr_pi++;
710  	s->eqcr.pi = eqcr_pi & full_mask;
711  	spin_unlock(&s->access_spinlock);
712  
713  	return num_enqueued;
714  }
715  
716  /**
717   * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
718   * using one enqueue descriptor
719   * @s:  the software portal used for enqueue
720   * @d:  the enqueue descriptor
721   * @fd: table pointer of frame descriptor table to be enqueued
722   * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
723   * @num_frames: number of fd to be enqueued
724   *
725   * Return the number of fd enqueued, or a negative error number.
726   */
727  static
qbman_swp_enqueue_multiple_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,uint32_t * flags,int num_frames)728  int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
729  					const struct qbman_eq_desc *d,
730  					const struct dpaa2_fd *fd,
731  					uint32_t *flags,
732  					int num_frames)
733  {
734  	uint32_t *p = NULL;
735  	const uint32_t *cl = (uint32_t *)(d);
736  	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
737  	int i, num_enqueued = 0;
738  	unsigned long irq_flags;
739  
740  	spin_lock_irqsave(&s->access_spinlock, irq_flags);
741  
742  	half_mask = (s->eqcr.pi_ci_mask>>1);
743  	full_mask = s->eqcr.pi_ci_mask;
744  	if (!s->eqcr.available) {
745  		eqcr_ci = s->eqcr.ci;
746  		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
747  		s->eqcr.ci &= full_mask;
748  		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
749  					eqcr_ci, s->eqcr.ci);
750  		if (!s->eqcr.available) {
751  			spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
752  			return 0;
753  		}
754  	}
755  
756  	eqcr_pi = s->eqcr.pi;
757  	num_enqueued = (s->eqcr.available < num_frames) ?
758  			s->eqcr.available : num_frames;
759  	s->eqcr.available -= num_enqueued;
760  	/* Fill in the EQCR ring */
761  	for (i = 0; i < num_enqueued; i++) {
762  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
763  		/* Skip copying the verb */
764  		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
765  		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
766  		       &fd[i], sizeof(*fd));
767  		eqcr_pi++;
768  	}
769  
770  	/* Set the verb byte, have to substitute in the valid-bit */
771  	eqcr_pi = s->eqcr.pi;
772  	for (i = 0; i < num_enqueued; i++) {
773  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
774  		p[0] = cl[0] | s->eqcr.pi_vb;
775  		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
776  			struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
777  
778  			eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
779  				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
780  		}
781  		eqcr_pi++;
782  		if (!(eqcr_pi & half_mask))
783  			s->eqcr.pi_vb ^= QB_VALID_BIT;
784  	}
785  	s->eqcr.pi = eqcr_pi & full_mask;
786  
787  	dma_wmb();
788  	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
789  				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
790  	spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
791  
792  	return num_enqueued;
793  }
794  
795  /**
796   * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
797   * using multiple enqueue descriptor
798   * @s:  the software portal used for enqueue
799   * @d:  table of minimal enqueue descriptor
800   * @fd: table pointer of frame descriptor table to be enqueued
801   * @num_frames: number of fd to be enqueued
802   *
803   * Return the number of fd enqueued, or a negative error number.
804   */
805  static
qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,int num_frames)806  int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
807  					   const struct qbman_eq_desc *d,
808  					   const struct dpaa2_fd *fd,
809  					   int num_frames)
810  {
811  	uint32_t *p;
812  	const uint32_t *cl;
813  	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
814  	int i, num_enqueued = 0;
815  
816  	half_mask = (s->eqcr.pi_ci_mask>>1);
817  	full_mask = s->eqcr.pi_ci_mask;
818  	if (!s->eqcr.available) {
819  		eqcr_ci = s->eqcr.ci;
820  		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
821  		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
822  		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
823  					eqcr_ci, s->eqcr.ci);
824  		if (!s->eqcr.available)
825  			return 0;
826  	}
827  
828  	eqcr_pi = s->eqcr.pi;
829  	num_enqueued = (s->eqcr.available < num_frames) ?
830  			s->eqcr.available : num_frames;
831  	s->eqcr.available -= num_enqueued;
832  	/* Fill in the EQCR ring */
833  	for (i = 0; i < num_enqueued; i++) {
834  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
835  		cl = (uint32_t *)(&d[i]);
836  		/* Skip copying the verb */
837  		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
838  		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
839  		       &fd[i], sizeof(*fd));
840  		eqcr_pi++;
841  	}
842  
843  	dma_wmb();
844  
845  	/* Set the verb byte, have to substitute in the valid-bit */
846  	eqcr_pi = s->eqcr.pi;
847  	for (i = 0; i < num_enqueued; i++) {
848  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
849  		cl = (uint32_t *)(&d[i]);
850  		p[0] = cl[0] | s->eqcr.pi_vb;
851  		eqcr_pi++;
852  		if (!(eqcr_pi & half_mask))
853  			s->eqcr.pi_vb ^= QB_VALID_BIT;
854  	}
855  
856  	/* Flush all the cacheline without load/store in between */
857  	eqcr_pi = s->eqcr.pi;
858  	for (i = 0; i < num_enqueued; i++)
859  		eqcr_pi++;
860  	s->eqcr.pi = eqcr_pi & full_mask;
861  
862  	return num_enqueued;
863  }
864  
865  /**
866   * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
867   * using multiple enqueue descriptor
868   * @s:  the software portal used for enqueue
869   * @d:  table of minimal enqueue descriptor
870   * @fd: table pointer of frame descriptor table to be enqueued
871   * @num_frames: number of fd to be enqueued
872   *
873   * Return the number of fd enqueued, or a negative error number.
874   */
875  static
qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,int num_frames)876  int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
877  					   const struct qbman_eq_desc *d,
878  					   const struct dpaa2_fd *fd,
879  					   int num_frames)
880  {
881  	uint32_t *p;
882  	const uint32_t *cl;
883  	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
884  	int i, num_enqueued = 0;
885  
886  	half_mask = (s->eqcr.pi_ci_mask>>1);
887  	full_mask = s->eqcr.pi_ci_mask;
888  	if (!s->eqcr.available) {
889  		eqcr_ci = s->eqcr.ci;
890  		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
891  		s->eqcr.ci &= full_mask;
892  		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
893  					eqcr_ci, s->eqcr.ci);
894  		if (!s->eqcr.available)
895  			return 0;
896  	}
897  
898  	eqcr_pi = s->eqcr.pi;
899  	num_enqueued = (s->eqcr.available < num_frames) ?
900  			s->eqcr.available : num_frames;
901  	s->eqcr.available -= num_enqueued;
902  	/* Fill in the EQCR ring */
903  	for (i = 0; i < num_enqueued; i++) {
904  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
905  		cl = (uint32_t *)(&d[i]);
906  		/* Skip copying the verb */
907  		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
908  		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
909  		       &fd[i], sizeof(*fd));
910  		eqcr_pi++;
911  	}
912  
913  	/* Set the verb byte, have to substitute in the valid-bit */
914  	eqcr_pi = s->eqcr.pi;
915  	for (i = 0; i < num_enqueued; i++) {
916  		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
917  		cl = (uint32_t *)(&d[i]);
918  		p[0] = cl[0] | s->eqcr.pi_vb;
919  		eqcr_pi++;
920  		if (!(eqcr_pi & half_mask))
921  			s->eqcr.pi_vb ^= QB_VALID_BIT;
922  	}
923  
924  	s->eqcr.pi = eqcr_pi & full_mask;
925  
926  	dma_wmb();
927  	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
928  				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
929  
930  	return num_enqueued;
931  }
932  
933  /* Static (push) dequeue */
934  
935  /**
936   * qbman_swp_push_get() - Get the push dequeue setup
937   * @s:           the software portal object
938   * @channel_idx: the channel index to query
939   * @enabled:     returned boolean to show whether the push dequeue is enabled
940   *               for the given channel
941   */
qbman_swp_push_get(struct qbman_swp * s,u8 channel_idx,int * enabled)942  void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
943  {
944  	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
945  
946  	WARN_ON(channel_idx > 15);
947  	*enabled = src | (1 << channel_idx);
948  }
949  
950  /**
951   * qbman_swp_push_set() - Enable or disable push dequeue
952   * @s:           the software portal object
953   * @channel_idx: the channel index (0 to 15)
954   * @enable:      enable or disable push dequeue
955   */
qbman_swp_push_set(struct qbman_swp * s,u8 channel_idx,int enable)956  void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
957  {
958  	u16 dqsrc;
959  
960  	WARN_ON(channel_idx > 15);
961  	if (enable)
962  		s->sdq |= 1 << channel_idx;
963  	else
964  		s->sdq &= ~(1 << channel_idx);
965  
966  	/* Read make the complete src map.  If no channels are enabled
967  	 * the SDQCR must be 0 or else QMan will assert errors
968  	 */
969  	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
970  	if (dqsrc != 0)
971  		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
972  	else
973  		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
974  }
975  
976  #define QB_VDQCR_VERB_DCT_SHIFT    0
977  #define QB_VDQCR_VERB_DT_SHIFT     2
978  #define QB_VDQCR_VERB_RLS_SHIFT    4
979  #define QB_VDQCR_VERB_WAE_SHIFT    5
980  
981  enum qb_pull_dt_e {
982  	qb_pull_dt_channel,
983  	qb_pull_dt_workqueue,
984  	qb_pull_dt_framequeue
985  };
986  
987  /**
988   * qbman_pull_desc_clear() - Clear the contents of a descriptor to
989   *                           default/starting state
990   * @d: the pull dequeue descriptor to be cleared
991   */
qbman_pull_desc_clear(struct qbman_pull_desc * d)992  void qbman_pull_desc_clear(struct qbman_pull_desc *d)
993  {
994  	memset(d, 0, sizeof(*d));
995  }
996  
997  /**
998   * qbman_pull_desc_set_storage()- Set the pull dequeue storage
999   * @d:            the pull dequeue descriptor to be set
1000   * @storage:      the pointer of the memory to store the dequeue result
1001   * @storage_phys: the physical address of the storage memory
1002   * @stash:        to indicate whether write allocate is enabled
1003   *
1004   * If not called, or if called with 'storage' as NULL, the result pull dequeues
1005   * will produce results to DQRR. If 'storage' is non-NULL, then results are
1006   * produced to the given memory location (using the DMA address which
1007   * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1008   * those writes to main-memory express a cache-warming attribute.
1009   */
qbman_pull_desc_set_storage(struct qbman_pull_desc * d,struct dpaa2_dq * storage,dma_addr_t storage_phys,int stash)1010  void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1011  				 struct dpaa2_dq *storage,
1012  				 dma_addr_t storage_phys,
1013  				 int stash)
1014  {
1015  	/* save the virtual address */
1016  	d->rsp_addr_virt = (u64)(uintptr_t)storage;
1017  
1018  	if (!storage) {
1019  		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1020  		return;
1021  	}
1022  	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1023  	if (stash)
1024  		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1025  	else
1026  		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1027  
1028  	d->rsp_addr = cpu_to_le64(storage_phys);
1029  }
1030  
1031  /**
1032   * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1033   * @d:         the pull dequeue descriptor to be set
1034   * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1035   */
qbman_pull_desc_set_numframes(struct qbman_pull_desc * d,u8 numframes)1036  void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1037  {
1038  	d->numf = numframes - 1;
1039  }
1040  
1041  /*
1042   * Exactly one of the following descriptor "actions" should be set. (Calling any
1043   * one of these will replace the effect of any prior call to one of these.)
1044   * - pull dequeue from the given frame queue (FQ)
1045   * - pull dequeue from any FQ in the given work queue (WQ)
1046   * - pull dequeue from any FQ in any WQ in the given channel
1047   */
1048  
1049  /**
1050   * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1051   * @d:    the pull dequeue descriptor to be set
1052   * @fqid: the frame queue index of the given FQ
1053   */
qbman_pull_desc_set_fq(struct qbman_pull_desc * d,u32 fqid)1054  void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1055  {
1056  	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1057  	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1058  	d->dq_src = cpu_to_le32(fqid);
1059  }
1060  
1061  /**
1062   * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1063   * @d:    the pull dequeue descriptor to be set
1064   * @wqid: composed of channel id and wqid within the channel
1065   * @dct:  the dequeue command type
1066   */
qbman_pull_desc_set_wq(struct qbman_pull_desc * d,u32 wqid,enum qbman_pull_type_e dct)1067  void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1068  			    enum qbman_pull_type_e dct)
1069  {
1070  	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1071  	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1072  	d->dq_src = cpu_to_le32(wqid);
1073  }
1074  
1075  /**
1076   * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1077   *                                 dequeues
1078   * @d:    the pull dequeue descriptor to be set
1079   * @chid: the channel id to be dequeued
1080   * @dct:  the dequeue command type
1081   */
qbman_pull_desc_set_channel(struct qbman_pull_desc * d,u32 chid,enum qbman_pull_type_e dct)1082  void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1083  				 enum qbman_pull_type_e dct)
1084  {
1085  	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1086  	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1087  	d->dq_src = cpu_to_le32(chid);
1088  }
1089  
1090  /**
1091   * qbman_swp_pull_direct() - Issue the pull dequeue command
1092   * @s: the software portal object
1093   * @d: the software portal descriptor which has been configured with
1094   *     the set of qbman_pull_desc_set_*() calls
1095   *
1096   * Return 0 for success, and -EBUSY if the software portal is not ready
1097   * to do pull dequeue.
1098   */
1099  static
qbman_swp_pull_direct(struct qbman_swp * s,struct qbman_pull_desc * d)1100  int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1101  {
1102  	struct qbman_pull_desc *p;
1103  
1104  	if (!atomic_dec_and_test(&s->vdq.available)) {
1105  		atomic_inc(&s->vdq.available);
1106  		return -EBUSY;
1107  	}
1108  	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1109  	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1110  		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1111  	else
1112  		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1113  	p->numf = d->numf;
1114  	p->tok = QMAN_DQ_TOKEN_VALID;
1115  	p->dq_src = d->dq_src;
1116  	p->rsp_addr = d->rsp_addr;
1117  	p->rsp_addr_virt = d->rsp_addr_virt;
1118  	dma_wmb();
1119  	/* Set the verb byte, have to substitute in the valid-bit */
1120  	p->verb = d->verb | s->vdq.valid_bit;
1121  	s->vdq.valid_bit ^= QB_VALID_BIT;
1122  
1123  	return 0;
1124  }
1125  
1126  /**
1127   * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1128   * @s: the software portal object
1129   * @d: the software portal descriptor which has been configured with
1130   *     the set of qbman_pull_desc_set_*() calls
1131   *
1132   * Return 0 for success, and -EBUSY if the software portal is not ready
1133   * to do pull dequeue.
1134   */
1135  static
qbman_swp_pull_mem_back(struct qbman_swp * s,struct qbman_pull_desc * d)1136  int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1137  {
1138  	struct qbman_pull_desc *p;
1139  
1140  	if (!atomic_dec_and_test(&s->vdq.available)) {
1141  		atomic_inc(&s->vdq.available);
1142  		return -EBUSY;
1143  	}
1144  	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1145  	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1146  		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1147  	else
1148  		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1149  	p->numf = d->numf;
1150  	p->tok = QMAN_DQ_TOKEN_VALID;
1151  	p->dq_src = d->dq_src;
1152  	p->rsp_addr = d->rsp_addr;
1153  	p->rsp_addr_virt = d->rsp_addr_virt;
1154  
1155  	/* Set the verb byte, have to substitute in the valid-bit */
1156  	p->verb = d->verb | s->vdq.valid_bit;
1157  	s->vdq.valid_bit ^= QB_VALID_BIT;
1158  	dma_wmb();
1159  	qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1160  
1161  	return 0;
1162  }
1163  
1164  #define QMAN_DQRR_PI_MASK   0xf
1165  
1166  /**
1167   * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1168   * @s: the software portal object
1169   *
1170   * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1171   * only once, so repeated calls can return a sequence of DQRR entries, without
1172   * requiring they be consumed immediately or in any particular order.
1173   */
qbman_swp_dqrr_next_direct(struct qbman_swp * s)1174  const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1175  {
1176  	u32 verb;
1177  	u32 response_verb;
1178  	u32 flags;
1179  	struct dpaa2_dq *p;
1180  
1181  	/* Before using valid-bit to detect if something is there, we have to
1182  	 * handle the case of the DQRR reset bug...
1183  	 */
1184  	if (unlikely(s->dqrr.reset_bug)) {
1185  		/*
1186  		 * We pick up new entries by cache-inhibited producer index,
1187  		 * which means that a non-coherent mapping would require us to
1188  		 * invalidate and read *only* once that PI has indicated that
1189  		 * there's an entry here. The first trip around the DQRR ring
1190  		 * will be much less efficient than all subsequent trips around
1191  		 * it...
1192  		 */
1193  		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1194  			QMAN_DQRR_PI_MASK;
1195  
1196  		/* there are new entries if pi != next_idx */
1197  		if (pi == s->dqrr.next_idx)
1198  			return NULL;
1199  
1200  		/*
1201  		 * if next_idx is/was the last ring index, and 'pi' is
1202  		 * different, we can disable the workaround as all the ring
1203  		 * entries have now been DMA'd to so valid-bit checking is
1204  		 * repaired. Note: this logic needs to be based on next_idx
1205  		 * (which increments one at a time), rather than on pi (which
1206  		 * can burst and wrap-around between our snapshots of it).
1207  		 */
1208  		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1209  			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1210  				 s->dqrr.next_idx, pi);
1211  			s->dqrr.reset_bug = 0;
1212  		}
1213  		prefetch(qbman_get_cmd(s,
1214  				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1215  	}
1216  
1217  	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1218  	verb = p->dq.verb;
1219  
1220  	/*
1221  	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1222  	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1223  	 * check, because we've already determined that a new entry is available
1224  	 * and we've invalidated the cacheline before reading it, so the
1225  	 * valid-bit behaviour is repaired and should tell us what we already
1226  	 * knew from reading PI.
1227  	 */
1228  	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1229  		prefetch(qbman_get_cmd(s,
1230  				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1231  		return NULL;
1232  	}
1233  	/*
1234  	 * There's something there. Move "next_idx" attention to the next ring
1235  	 * entry (and prefetch it) before returning what we found.
1236  	 */
1237  	s->dqrr.next_idx++;
1238  	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1239  	if (!s->dqrr.next_idx)
1240  		s->dqrr.valid_bit ^= QB_VALID_BIT;
1241  
1242  	/*
1243  	 * If this is the final response to a volatile dequeue command
1244  	 * indicate that the vdq is available
1245  	 */
1246  	flags = p->dq.stat;
1247  	response_verb = verb & QBMAN_RESULT_MASK;
1248  	if ((response_verb == QBMAN_RESULT_DQ) &&
1249  	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1250  	    (flags & DPAA2_DQ_STAT_EXPIRED))
1251  		atomic_inc(&s->vdq.available);
1252  
1253  	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1254  
1255  	return p;
1256  }
1257  
1258  /**
1259   * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1260   * @s: the software portal object
1261   *
1262   * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1263   * only once, so repeated calls can return a sequence of DQRR entries, without
1264   * requiring they be consumed immediately or in any particular order.
1265   */
qbman_swp_dqrr_next_mem_back(struct qbman_swp * s)1266  const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1267  {
1268  	u32 verb;
1269  	u32 response_verb;
1270  	u32 flags;
1271  	struct dpaa2_dq *p;
1272  
1273  	/* Before using valid-bit to detect if something is there, we have to
1274  	 * handle the case of the DQRR reset bug...
1275  	 */
1276  	if (unlikely(s->dqrr.reset_bug)) {
1277  		/*
1278  		 * We pick up new entries by cache-inhibited producer index,
1279  		 * which means that a non-coherent mapping would require us to
1280  		 * invalidate and read *only* once that PI has indicated that
1281  		 * there's an entry here. The first trip around the DQRR ring
1282  		 * will be much less efficient than all subsequent trips around
1283  		 * it...
1284  		 */
1285  		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1286  			QMAN_DQRR_PI_MASK;
1287  
1288  		/* there are new entries if pi != next_idx */
1289  		if (pi == s->dqrr.next_idx)
1290  			return NULL;
1291  
1292  		/*
1293  		 * if next_idx is/was the last ring index, and 'pi' is
1294  		 * different, we can disable the workaround as all the ring
1295  		 * entries have now been DMA'd to so valid-bit checking is
1296  		 * repaired. Note: this logic needs to be based on next_idx
1297  		 * (which increments one at a time), rather than on pi (which
1298  		 * can burst and wrap-around between our snapshots of it).
1299  		 */
1300  		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1301  			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1302  				 s->dqrr.next_idx, pi);
1303  			s->dqrr.reset_bug = 0;
1304  		}
1305  		prefetch(qbman_get_cmd(s,
1306  				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1307  	}
1308  
1309  	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1310  	verb = p->dq.verb;
1311  
1312  	/*
1313  	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1314  	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1315  	 * check, because we've already determined that a new entry is available
1316  	 * and we've invalidated the cacheline before reading it, so the
1317  	 * valid-bit behaviour is repaired and should tell us what we already
1318  	 * knew from reading PI.
1319  	 */
1320  	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1321  		prefetch(qbman_get_cmd(s,
1322  				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1323  		return NULL;
1324  	}
1325  	/*
1326  	 * There's something there. Move "next_idx" attention to the next ring
1327  	 * entry (and prefetch it) before returning what we found.
1328  	 */
1329  	s->dqrr.next_idx++;
1330  	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1331  	if (!s->dqrr.next_idx)
1332  		s->dqrr.valid_bit ^= QB_VALID_BIT;
1333  
1334  	/*
1335  	 * If this is the final response to a volatile dequeue command
1336  	 * indicate that the vdq is available
1337  	 */
1338  	flags = p->dq.stat;
1339  	response_verb = verb & QBMAN_RESULT_MASK;
1340  	if ((response_verb == QBMAN_RESULT_DQ) &&
1341  	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1342  	    (flags & DPAA2_DQ_STAT_EXPIRED))
1343  		atomic_inc(&s->vdq.available);
1344  
1345  	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1346  
1347  	return p;
1348  }
1349  
1350  /**
1351   * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
1352   *                             qbman_swp_dqrr_next().
1353   * @s: the software portal object
1354   * @dq: the DQRR entry to be consumed
1355   */
qbman_swp_dqrr_consume(struct qbman_swp * s,const struct dpaa2_dq * dq)1356  void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1357  {
1358  	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1359  }
1360  
1361  /**
1362   * qbman_result_has_new_result() - Check and get the dequeue response from the
1363   *                                 dq storage memory set in pull dequeue command
1364   * @s: the software portal object
1365   * @dq: the dequeue result read from the memory
1366   *
1367   * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1368   * dequeue result.
1369   *
1370   * Only used for user-provided storage of dequeue results, not DQRR. For
1371   * efficiency purposes, the driver will perform any required endianness
1372   * conversion to ensure that the user's dequeue result storage is in host-endian
1373   * format. As such, once the user has called qbman_result_has_new_result() and
1374   * been returned a valid dequeue result, they should not call it again on
1375   * the same memory location (except of course if another dequeue command has
1376   * been executed to produce a new result to that location).
1377   */
qbman_result_has_new_result(struct qbman_swp * s,const struct dpaa2_dq * dq)1378  int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1379  {
1380  	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1381  		return 0;
1382  
1383  	/*
1384  	 * Set token to be 0 so we will detect change back to 1
1385  	 * next time the looping is traversed. Const is cast away here
1386  	 * as we want users to treat the dequeue responses as read only.
1387  	 */
1388  	((struct dpaa2_dq *)dq)->dq.tok = 0;
1389  
1390  	/*
1391  	 * Determine whether VDQCR is available based on whether the
1392  	 * current result is sitting in the first storage location of
1393  	 * the busy command.
1394  	 */
1395  	if (s->vdq.storage == dq) {
1396  		s->vdq.storage = NULL;
1397  		atomic_inc(&s->vdq.available);
1398  	}
1399  
1400  	return 1;
1401  }
1402  
1403  /**
1404   * qbman_release_desc_clear() - Clear the contents of a descriptor to
1405   *                              default/starting state.
1406   * @d: the pull dequeue descriptor to be cleared
1407   */
qbman_release_desc_clear(struct qbman_release_desc * d)1408  void qbman_release_desc_clear(struct qbman_release_desc *d)
1409  {
1410  	memset(d, 0, sizeof(*d));
1411  	d->verb = 1 << 5; /* Release Command Valid */
1412  }
1413  
1414  /**
1415   * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1416   * @d:    the pull dequeue descriptor to be set
1417   * @bpid: the bpid value to be set
1418   */
qbman_release_desc_set_bpid(struct qbman_release_desc * d,u16 bpid)1419  void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1420  {
1421  	d->bpid = cpu_to_le16(bpid);
1422  }
1423  
1424  /**
1425   * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1426   * interrupt source should be asserted after the release command is completed.
1427   * @d:      the pull dequeue descriptor to be set
1428   * @enable: enable (1) or disable (0) value
1429   */
qbman_release_desc_set_rcdi(struct qbman_release_desc * d,int enable)1430  void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1431  {
1432  	if (enable)
1433  		d->verb |= 1 << 6;
1434  	else
1435  		d->verb &= ~(1 << 6);
1436  }
1437  
1438  #define RAR_IDX(rar)     ((rar) & 0x7)
1439  #define RAR_VB(rar)      ((rar) & 0x80)
1440  #define RAR_SUCCESS(rar) ((rar) & 0x100)
1441  
1442  /**
1443   * qbman_swp_release_direct() - Issue a buffer release command
1444   * @s:           the software portal object
1445   * @d:           the release descriptor
1446   * @buffers:     a pointer pointing to the buffer address to be released
1447   * @num_buffers: number of buffers to be released,  must be less than 8
1448   *
1449   * Return 0 for success, -EBUSY if the release command ring is not ready.
1450   */
qbman_swp_release_direct(struct qbman_swp * s,const struct qbman_release_desc * d,const u64 * buffers,unsigned int num_buffers)1451  int qbman_swp_release_direct(struct qbman_swp *s,
1452  			     const struct qbman_release_desc *d,
1453  			     const u64 *buffers, unsigned int num_buffers)
1454  {
1455  	int i;
1456  	struct qbman_release_desc *p;
1457  	u32 rar;
1458  
1459  	if (!num_buffers || (num_buffers > 7))
1460  		return -EINVAL;
1461  
1462  	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1463  	if (!RAR_SUCCESS(rar))
1464  		return -EBUSY;
1465  
1466  	/* Start the release command */
1467  	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1468  
1469  	/* Copy the caller's buffer pointers to the command */
1470  	for (i = 0; i < num_buffers; i++)
1471  		p->buf[i] = cpu_to_le64(buffers[i]);
1472  	p->bpid = d->bpid;
1473  
1474  	/*
1475  	 * Set the verb byte, have to substitute in the valid-bit
1476  	 * and the number of buffers.
1477  	 */
1478  	dma_wmb();
1479  	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1480  
1481  	return 0;
1482  }
1483  
1484  /**
1485   * qbman_swp_release_mem_back() - Issue a buffer release command
1486   * @s:           the software portal object
1487   * @d:           the release descriptor
1488   * @buffers:     a pointer pointing to the buffer address to be released
1489   * @num_buffers: number of buffers to be released,  must be less than 8
1490   *
1491   * Return 0 for success, -EBUSY if the release command ring is not ready.
1492   */
qbman_swp_release_mem_back(struct qbman_swp * s,const struct qbman_release_desc * d,const u64 * buffers,unsigned int num_buffers)1493  int qbman_swp_release_mem_back(struct qbman_swp *s,
1494  			       const struct qbman_release_desc *d,
1495  			       const u64 *buffers, unsigned int num_buffers)
1496  {
1497  	int i;
1498  	struct qbman_release_desc *p;
1499  	u32 rar;
1500  
1501  	if (!num_buffers || (num_buffers > 7))
1502  		return -EINVAL;
1503  
1504  	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1505  	if (!RAR_SUCCESS(rar))
1506  		return -EBUSY;
1507  
1508  	/* Start the release command */
1509  	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1510  
1511  	/* Copy the caller's buffer pointers to the command */
1512  	for (i = 0; i < num_buffers; i++)
1513  		p->buf[i] = cpu_to_le64(buffers[i]);
1514  	p->bpid = d->bpid;
1515  
1516  	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1517  	dma_wmb();
1518  	qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1519  			     RAR_IDX(rar)  * 4, QMAN_RT_MODE);
1520  
1521  	return 0;
1522  }
1523  
1524  struct qbman_acquire_desc {
1525  	u8 verb;
1526  	u8 reserved;
1527  	__le16 bpid;
1528  	u8 num;
1529  	u8 reserved2[59];
1530  };
1531  
1532  struct qbman_acquire_rslt {
1533  	u8 verb;
1534  	u8 rslt;
1535  	__le16 reserved;
1536  	u8 num;
1537  	u8 reserved2[3];
1538  	__le64 buf[7];
1539  };
1540  
1541  /**
1542   * qbman_swp_acquire() - Issue a buffer acquire command
1543   * @s:           the software portal object
1544   * @bpid:        the buffer pool index
1545   * @buffers:     a pointer pointing to the acquired buffer addresses
1546   * @num_buffers: number of buffers to be acquired, must be less than 8
1547   *
1548   * Return 0 for success, or negative error code if the acquire command
1549   * fails.
1550   */
qbman_swp_acquire(struct qbman_swp * s,u16 bpid,u64 * buffers,unsigned int num_buffers)1551  int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1552  		      unsigned int num_buffers)
1553  {
1554  	struct qbman_acquire_desc *p;
1555  	struct qbman_acquire_rslt *r;
1556  	int i;
1557  
1558  	if (!num_buffers || (num_buffers > 7))
1559  		return -EINVAL;
1560  
1561  	/* Start the management command */
1562  	p = qbman_swp_mc_start(s);
1563  
1564  	if (!p)
1565  		return -EBUSY;
1566  
1567  	/* Encode the caller-provided attributes */
1568  	p->bpid = cpu_to_le16(bpid);
1569  	p->num = num_buffers;
1570  
1571  	/* Complete the management command */
1572  	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1573  	if (unlikely(!r)) {
1574  		pr_err("qbman: acquire from BPID %d failed, no response\n",
1575  		       bpid);
1576  		return -EIO;
1577  	}
1578  
1579  	/* Decode the outcome */
1580  	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1581  
1582  	/* Determine success or failure */
1583  	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1584  		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1585  		       bpid, r->rslt);
1586  		return -EIO;
1587  	}
1588  
1589  	WARN_ON(r->num > num_buffers);
1590  
1591  	/* Copy the acquired buffers to the caller's array */
1592  	for (i = 0; i < r->num; i++)
1593  		buffers[i] = le64_to_cpu(r->buf[i]);
1594  
1595  	return (int)r->num;
1596  }
1597  
1598  struct qbman_alt_fq_state_desc {
1599  	u8 verb;
1600  	u8 reserved[3];
1601  	__le32 fqid;
1602  	u8 reserved2[56];
1603  };
1604  
1605  struct qbman_alt_fq_state_rslt {
1606  	u8 verb;
1607  	u8 rslt;
1608  	u8 reserved[62];
1609  };
1610  
1611  #define ALT_FQ_FQID_MASK 0x00FFFFFF
1612  
qbman_swp_alt_fq_state(struct qbman_swp * s,u32 fqid,u8 alt_fq_verb)1613  int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1614  			   u8 alt_fq_verb)
1615  {
1616  	struct qbman_alt_fq_state_desc *p;
1617  	struct qbman_alt_fq_state_rslt *r;
1618  
1619  	/* Start the management command */
1620  	p = qbman_swp_mc_start(s);
1621  	if (!p)
1622  		return -EBUSY;
1623  
1624  	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1625  
1626  	/* Complete the management command */
1627  	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1628  	if (unlikely(!r)) {
1629  		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1630  		       alt_fq_verb);
1631  		return -EIO;
1632  	}
1633  
1634  	/* Decode the outcome */
1635  	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1636  
1637  	/* Determine success or failure */
1638  	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1639  		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1640  		       fqid, r->verb, r->rslt);
1641  		return -EIO;
1642  	}
1643  
1644  	return 0;
1645  }
1646  
1647  struct qbman_cdan_ctrl_desc {
1648  	u8 verb;
1649  	u8 reserved;
1650  	__le16 ch;
1651  	u8 we;
1652  	u8 ctrl;
1653  	__le16 reserved2;
1654  	__le64 cdan_ctx;
1655  	u8 reserved3[48];
1656  
1657  };
1658  
1659  struct qbman_cdan_ctrl_rslt {
1660  	u8 verb;
1661  	u8 rslt;
1662  	__le16 ch;
1663  	u8 reserved[60];
1664  };
1665  
qbman_swp_CDAN_set(struct qbman_swp * s,u16 channelid,u8 we_mask,u8 cdan_en,u64 ctx)1666  int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1667  		       u8 we_mask, u8 cdan_en,
1668  		       u64 ctx)
1669  {
1670  	struct qbman_cdan_ctrl_desc *p = NULL;
1671  	struct qbman_cdan_ctrl_rslt *r = NULL;
1672  
1673  	/* Start the management command */
1674  	p = qbman_swp_mc_start(s);
1675  	if (!p)
1676  		return -EBUSY;
1677  
1678  	/* Encode the caller-provided attributes */
1679  	p->ch = cpu_to_le16(channelid);
1680  	p->we = we_mask;
1681  	if (cdan_en)
1682  		p->ctrl = 1;
1683  	else
1684  		p->ctrl = 0;
1685  	p->cdan_ctx = cpu_to_le64(ctx);
1686  
1687  	/* Complete the management command */
1688  	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1689  	if (unlikely(!r)) {
1690  		pr_err("qbman: wqchan config failed, no response\n");
1691  		return -EIO;
1692  	}
1693  
1694  	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1695  
1696  	/* Determine success or failure */
1697  	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1698  		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1699  		       channelid, r->rslt);
1700  		return -EIO;
1701  	}
1702  
1703  	return 0;
1704  }
1705  
1706  #define QBMAN_RESPONSE_VERB_MASK	0x7f
1707  #define QBMAN_FQ_QUERY_NP		0x45
1708  #define QBMAN_BP_QUERY			0x32
1709  
1710  struct qbman_fq_query_desc {
1711  	u8 verb;
1712  	u8 reserved[3];
1713  	__le32 fqid;
1714  	u8 reserved2[56];
1715  };
1716  
qbman_fq_query_state(struct qbman_swp * s,u32 fqid,struct qbman_fq_query_np_rslt * r)1717  int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1718  			 struct qbman_fq_query_np_rslt *r)
1719  {
1720  	struct qbman_fq_query_desc *p;
1721  	void *resp;
1722  
1723  	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1724  	if (!p)
1725  		return -EBUSY;
1726  
1727  	/* FQID is a 24 bit value */
1728  	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1729  	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1730  	if (!resp) {
1731  		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1732  		       fqid);
1733  		return -EIO;
1734  	}
1735  	*r = *(struct qbman_fq_query_np_rslt *)resp;
1736  	/* Decode the outcome */
1737  	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1738  
1739  	/* Determine success or failure */
1740  	if (r->rslt != QBMAN_MC_RSLT_OK) {
1741  		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1742  		       p->fqid, r->rslt);
1743  		return -EIO;
1744  	}
1745  
1746  	return 0;
1747  }
1748  
qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt * r)1749  u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1750  {
1751  	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1752  }
1753  
qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt * r)1754  u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1755  {
1756  	return le32_to_cpu(r->byte_cnt);
1757  }
1758  
1759  struct qbman_bp_query_desc {
1760  	u8 verb;
1761  	u8 reserved;
1762  	__le16 bpid;
1763  	u8 reserved2[60];
1764  };
1765  
qbman_bp_query(struct qbman_swp * s,u16 bpid,struct qbman_bp_query_rslt * r)1766  int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1767  		   struct qbman_bp_query_rslt *r)
1768  {
1769  	struct qbman_bp_query_desc *p;
1770  	void *resp;
1771  
1772  	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1773  	if (!p)
1774  		return -EBUSY;
1775  
1776  	p->bpid = cpu_to_le16(bpid);
1777  	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1778  	if (!resp) {
1779  		pr_err("qbman: Query BPID %d fields failed, no response\n",
1780  		       bpid);
1781  		return -EIO;
1782  	}
1783  	*r = *(struct qbman_bp_query_rslt *)resp;
1784  	/* Decode the outcome */
1785  	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1786  
1787  	/* Determine success or failure */
1788  	if (r->rslt != QBMAN_MC_RSLT_OK) {
1789  		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1790  		       bpid, r->rslt);
1791  		return -EIO;
1792  	}
1793  
1794  	return 0;
1795  }
1796  
qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt * a)1797  u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1798  {
1799  	return le32_to_cpu(a->fill);
1800  }
1801  
1802  /**
1803   * qbman_swp_set_irq_coalescing() - Set new IRQ coalescing values
1804   * @p: the software portal object
1805   * @irq_threshold: interrupt threshold
1806   * @irq_holdoff: interrupt holdoff (timeout) period in us
1807   *
1808   * Return 0 for success, or negative error code on error.
1809   */
qbman_swp_set_irq_coalescing(struct qbman_swp * p,u32 irq_threshold,u32 irq_holdoff)1810  int qbman_swp_set_irq_coalescing(struct qbman_swp *p, u32 irq_threshold,
1811  				 u32 irq_holdoff)
1812  {
1813  	u32 itp, max_holdoff;
1814  
1815  	/* Convert irq_holdoff value from usecs to 256 QBMAN clock cycles
1816  	 * increments. This depends on the QBMAN internal frequency.
1817  	 */
1818  	itp = (irq_holdoff * 1000) / p->desc->qman_256_cycles_per_ns;
1819  	if (itp > 4096) {
1820  		max_holdoff = (p->desc->qman_256_cycles_per_ns * 4096) / 1000;
1821  		pr_err("irq_holdoff must be <= %uus\n", max_holdoff);
1822  		return -EINVAL;
1823  	}
1824  
1825  	if (irq_threshold >= p->dqrr.dqrr_size) {
1826  		pr_err("irq_threshold must be < %u\n", p->dqrr.dqrr_size - 1);
1827  		return -EINVAL;
1828  	}
1829  
1830  	p->irq_threshold = irq_threshold;
1831  	p->irq_holdoff = irq_holdoff;
1832  
1833  	qbman_write_register(p, QBMAN_CINH_SWP_DQRR_ITR, irq_threshold);
1834  	qbman_write_register(p, QBMAN_CINH_SWP_ITPR, itp);
1835  
1836  	return 0;
1837  }
1838  
1839  /**
1840   * qbman_swp_get_irq_coalescing() - Get the current IRQ coalescing parameters
1841   * @p: the software portal object
1842   * @irq_threshold: interrupt threshold (an IRQ is generated when there are more
1843   * DQRR entries in the portal than the threshold)
1844   * @irq_holdoff: interrupt holdoff (timeout) period in us
1845   */
qbman_swp_get_irq_coalescing(struct qbman_swp * p,u32 * irq_threshold,u32 * irq_holdoff)1846  void qbman_swp_get_irq_coalescing(struct qbman_swp *p, u32 *irq_threshold,
1847  				  u32 *irq_holdoff)
1848  {
1849  	if (irq_threshold)
1850  		*irq_threshold = p->irq_threshold;
1851  	if (irq_holdoff)
1852  		*irq_holdoff = p->irq_holdoff;
1853  }
1854