1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3 
4 #include "pvr_vm.h"
5 
6 #include "pvr_device.h"
7 #include "pvr_drv.h"
8 #include "pvr_gem.h"
9 #include "pvr_mmu.h"
10 #include "pvr_rogue_fwif.h"
11 #include "pvr_rogue_heap_config.h"
12 
13 #include <drm/drm_exec.h>
14 #include <drm/drm_gem.h>
15 #include <drm/drm_gpuvm.h>
16 
17 #include <linux/bug.h>
18 #include <linux/container_of.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/gfp_types.h>
22 #include <linux/kref.h>
23 #include <linux/mutex.h>
24 #include <linux/stddef.h>
25 
26 /**
27  * DOC: Memory context
28  *
29  * This is the "top level" datatype in the VM code. It's exposed in the public
30  * API as an opaque handle.
31  */
32 
33 /**
34  * struct pvr_vm_context - Context type used to represent a single VM.
35  */
36 struct pvr_vm_context {
37 	/**
38 	 * @pvr_dev: The PowerVR device to which this context is bound.
39 	 * This binding is immutable for the life of the context.
40 	 */
41 	struct pvr_device *pvr_dev;
42 
43 	/** @mmu_ctx: The context for binding to physical memory. */
44 	struct pvr_mmu_context *mmu_ctx;
45 
46 	/** @gpuvm_mgr: GPUVM object associated with this context. */
47 	struct drm_gpuvm gpuvm_mgr;
48 
49 	/** @lock: Global lock on this VM. */
50 	struct mutex lock;
51 
52 	/**
53 	 * @fw_mem_ctx_obj: Firmware object representing firmware memory
54 	 * context.
55 	 */
56 	struct pvr_fw_object *fw_mem_ctx_obj;
57 
58 	/** @ref_count: Reference count of object. */
59 	struct kref ref_count;
60 
61 	/**
62 	 * @dummy_gem: GEM object to enable VM reservation. All private BOs
63 	 * should use the @dummy_gem.resv and not their own _resv field.
64 	 */
65 	struct drm_gem_object dummy_gem;
66 };
67 
68 static inline
to_pvr_vm_context(struct drm_gpuvm * gpuvm)69 struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm)
70 {
71 	return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr);
72 }
73 
pvr_vm_context_get(struct pvr_vm_context * vm_ctx)74 struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx)
75 {
76 	if (vm_ctx)
77 		kref_get(&vm_ctx->ref_count);
78 
79 	return vm_ctx;
80 }
81 
82 /**
83  * pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the
84  *                                     page table structure behind a VM context.
85  * @vm_ctx: Target VM context.
86  */
pvr_vm_get_page_table_root_addr(struct pvr_vm_context * vm_ctx)87 dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx)
88 {
89 	return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx);
90 }
91 
92 /**
93  * pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context.
94  * @vm_ctx: Target VM context.
95  *
96  * This is used to allow private BOs to share a dma_resv for faster fence
97  * updates.
98  *
99  * Returns: The dma_resv pointer.
100  */
pvr_vm_get_dma_resv(struct pvr_vm_context * vm_ctx)101 struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx)
102 {
103 	return vm_ctx->dummy_gem.resv;
104 }
105 
106 /**
107  * DOC: Memory mappings
108  */
109 
110 /**
111  * struct pvr_vm_gpuva - Wrapper type representing a single VM mapping.
112  */
113 struct pvr_vm_gpuva {
114 	/** @base: The wrapped drm_gpuva object. */
115 	struct drm_gpuva base;
116 };
117 
118 #define to_pvr_vm_gpuva(va) container_of_const(va, struct pvr_vm_gpuva, base)
119 
120 enum pvr_vm_bind_type {
121 	PVR_VM_BIND_TYPE_MAP,
122 	PVR_VM_BIND_TYPE_UNMAP,
123 };
124 
125 /**
126  * struct pvr_vm_bind_op - Context of a map/unmap operation.
127  */
128 struct pvr_vm_bind_op {
129 	/** @type: Map or unmap. */
130 	enum pvr_vm_bind_type type;
131 
132 	/** @pvr_obj: Object associated with mapping (map only). */
133 	struct pvr_gem_object *pvr_obj;
134 
135 	/**
136 	 * @vm_ctx: VM context where the mapping will be created or destroyed.
137 	 */
138 	struct pvr_vm_context *vm_ctx;
139 
140 	/** @mmu_op_ctx: MMU op context. */
141 	struct pvr_mmu_op_context *mmu_op_ctx;
142 
143 	/** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */
144 	struct drm_gpuvm_bo *gpuvm_bo;
145 
146 	/**
147 	 * @new_va: Prealloced VA mapping object (init in callback).
148 	 * Used when creating a mapping.
149 	 */
150 	struct pvr_vm_gpuva *new_va;
151 
152 	/**
153 	 * @prev_va: Prealloced VA mapping object (init in callback).
154 	 * Used when a mapping or unmapping operation overlaps an existing
155 	 * mapping and splits away the beginning into a new mapping.
156 	 */
157 	struct pvr_vm_gpuva *prev_va;
158 
159 	/**
160 	 * @next_va: Prealloced VA mapping object (init in callback).
161 	 * Used when a mapping or unmapping operation overlaps an existing
162 	 * mapping and splits away the end into a new mapping.
163 	 */
164 	struct pvr_vm_gpuva *next_va;
165 
166 	/** @offset: Offset into @pvr_obj to begin mapping from. */
167 	u64 offset;
168 
169 	/** @device_addr: Device-virtual address at the start of the mapping. */
170 	u64 device_addr;
171 
172 	/** @size: Size of the desired mapping. */
173 	u64 size;
174 };
175 
176 /**
177  * pvr_vm_bind_op_exec() - Execute a single bind op.
178  * @bind_op: Bind op context.
179  *
180  * Returns:
181  *  * 0 on success,
182  *  * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or
183  *    a callback function.
184  */
pvr_vm_bind_op_exec(struct pvr_vm_bind_op * bind_op)185 static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op)
186 {
187 	switch (bind_op->type) {
188 	case PVR_VM_BIND_TYPE_MAP:
189 		return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr,
190 					bind_op, bind_op->device_addr,
191 					bind_op->size,
192 					gem_from_pvr_gem(bind_op->pvr_obj),
193 					bind_op->offset);
194 
195 	case PVR_VM_BIND_TYPE_UNMAP:
196 		return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr,
197 					  bind_op, bind_op->device_addr,
198 					  bind_op->size);
199 	}
200 
201 	/*
202 	 * This shouldn't happen unless something went wrong
203 	 * in drm_sched.
204 	 */
205 	WARN_ON(1);
206 	return -EINVAL;
207 }
208 
pvr_vm_bind_op_fini(struct pvr_vm_bind_op * bind_op)209 static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op)
210 {
211 	drm_gpuvm_bo_put(bind_op->gpuvm_bo);
212 
213 	kfree(bind_op->new_va);
214 	kfree(bind_op->prev_va);
215 	kfree(bind_op->next_va);
216 
217 	if (bind_op->pvr_obj)
218 		pvr_gem_object_put(bind_op->pvr_obj);
219 
220 	if (bind_op->mmu_op_ctx)
221 		pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx);
222 }
223 
224 static int
pvr_vm_bind_op_map_init(struct pvr_vm_bind_op * bind_op,struct pvr_vm_context * vm_ctx,struct pvr_gem_object * pvr_obj,u64 offset,u64 device_addr,u64 size)225 pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op,
226 			struct pvr_vm_context *vm_ctx,
227 			struct pvr_gem_object *pvr_obj, u64 offset,
228 			u64 device_addr, u64 size)
229 {
230 	struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj);
231 	const bool is_user = vm_ctx != vm_ctx->pvr_dev->kernel_vm_ctx;
232 	const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj);
233 	struct sg_table *sgt;
234 	u64 offset_plus_size;
235 	int err;
236 
237 	if (check_add_overflow(offset, size, &offset_plus_size))
238 		return -EINVAL;
239 
240 	if (is_user &&
241 	    !pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) {
242 		return -EINVAL;
243 	}
244 
245 	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) ||
246 	    offset & ~PAGE_MASK || size & ~PAGE_MASK ||
247 	    offset >= pvr_obj_size || offset_plus_size > pvr_obj_size)
248 		return -EINVAL;
249 
250 	bind_op->type = PVR_VM_BIND_TYPE_MAP;
251 
252 	dma_resv_lock(obj->resv, NULL);
253 	bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj);
254 	dma_resv_unlock(obj->resv);
255 	if (IS_ERR(bind_op->gpuvm_bo))
256 		return PTR_ERR(bind_op->gpuvm_bo);
257 
258 	bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL);
259 	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
260 	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
261 	if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) {
262 		err = -ENOMEM;
263 		goto err_bind_op_fini;
264 	}
265 
266 	/* Pin pages so they're ready for use. */
267 	sgt = pvr_gem_object_get_pages_sgt(pvr_obj);
268 	err = PTR_ERR_OR_ZERO(sgt);
269 	if (err)
270 		goto err_bind_op_fini;
271 
272 	bind_op->mmu_op_ctx =
273 		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size);
274 	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
275 	if (err) {
276 		bind_op->mmu_op_ctx = NULL;
277 		goto err_bind_op_fini;
278 	}
279 
280 	bind_op->pvr_obj = pvr_obj;
281 	bind_op->vm_ctx = vm_ctx;
282 	bind_op->device_addr = device_addr;
283 	bind_op->size = size;
284 	bind_op->offset = offset;
285 
286 	return 0;
287 
288 err_bind_op_fini:
289 	pvr_vm_bind_op_fini(bind_op);
290 
291 	return err;
292 }
293 
294 static int
pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op * bind_op,struct pvr_vm_context * vm_ctx,u64 device_addr,u64 size)295 pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op,
296 			  struct pvr_vm_context *vm_ctx, u64 device_addr,
297 			  u64 size)
298 {
299 	int err;
300 
301 	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size))
302 		return -EINVAL;
303 
304 	bind_op->type = PVR_VM_BIND_TYPE_UNMAP;
305 
306 	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
307 	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
308 	if (!bind_op->prev_va || !bind_op->next_va) {
309 		err = -ENOMEM;
310 		goto err_bind_op_fini;
311 	}
312 
313 	bind_op->mmu_op_ctx =
314 		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0);
315 	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
316 	if (err) {
317 		bind_op->mmu_op_ctx = NULL;
318 		goto err_bind_op_fini;
319 	}
320 
321 	bind_op->vm_ctx = vm_ctx;
322 	bind_op->device_addr = device_addr;
323 	bind_op->size = size;
324 
325 	return 0;
326 
327 err_bind_op_fini:
328 	pvr_vm_bind_op_fini(bind_op);
329 
330 	return err;
331 }
332 
333 /**
334  * pvr_vm_gpuva_map() - Insert a mapping into a memory context.
335  * @op: gpuva op containing the remap details.
336  * @op_ctx: Operation context.
337  *
338  * Context: Called by drm_gpuvm_sm_map following a successful mapping while
339  * @op_ctx.vm_ctx mutex is held.
340  *
341  * Return:
342  *  * 0 on success, or
343  *  * Any error returned by pvr_mmu_map().
344  */
345 static int
pvr_vm_gpuva_map(struct drm_gpuva_op * op,void * op_ctx)346 pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx)
347 {
348 	struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj);
349 	struct pvr_vm_bind_op *ctx = op_ctx;
350 	int err;
351 
352 	if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK)
353 		return -EINVAL;
354 
355 	err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags,
356 			  op->map.va.addr);
357 	if (err)
358 		return err;
359 
360 	drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map);
361 	drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo);
362 	ctx->new_va = NULL;
363 
364 	return 0;
365 }
366 
367 /**
368  * pvr_vm_gpuva_unmap() - Remove a mapping from a memory context.
369  * @op: gpuva op containing the unmap details.
370  * @op_ctx: Operation context.
371  *
372  * Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while
373  * @op_ctx.vm_ctx mutex is held.
374  *
375  * Return:
376  *  * 0 on success, or
377  *  * Any error returned by pvr_mmu_unmap().
378  */
379 static int
pvr_vm_gpuva_unmap(struct drm_gpuva_op * op,void * op_ctx)380 pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx)
381 {
382 	struct pvr_vm_bind_op *ctx = op_ctx;
383 
384 	int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr,
385 				op->unmap.va->va.range);
386 
387 	if (err)
388 		return err;
389 
390 	drm_gpuva_unmap(&op->unmap);
391 	drm_gpuva_unlink(op->unmap.va);
392 	kfree(to_pvr_vm_gpuva(op->unmap.va));
393 
394 	return 0;
395 }
396 
397 /**
398  * pvr_vm_gpuva_remap() - Remap a mapping within a memory context.
399  * @op: gpuva op containing the remap details.
400  * @op_ctx: Operation context.
401  *
402  * Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a
403  * mapping or unmapping operation causes a region to be split. The
404  * @op_ctx.vm_ctx mutex is held.
405  *
406  * Return:
407  *  * 0 on success, or
408  *  * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap().
409  */
410 static int
pvr_vm_gpuva_remap(struct drm_gpuva_op * op,void * op_ctx)411 pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx)
412 {
413 	struct pvr_vm_bind_op *ctx = op_ctx;
414 	u64 va_start = 0, va_range = 0;
415 	int err;
416 
417 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range);
418 	err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range);
419 	if (err)
420 		return err;
421 
422 	/* No actual remap required: the page table tree depth is fixed to 3,
423 	 * and we use 4k page table entries only for now.
424 	 */
425 	drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap);
426 
427 	if (op->remap.prev) {
428 		pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj));
429 		drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo);
430 		ctx->prev_va = NULL;
431 	}
432 
433 	if (op->remap.next) {
434 		pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj));
435 		drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo);
436 		ctx->next_va = NULL;
437 	}
438 
439 	drm_gpuva_unlink(op->remap.unmap->va);
440 	kfree(to_pvr_vm_gpuva(op->remap.unmap->va));
441 
442 	return 0;
443 }
444 
445 /*
446  * Public API
447  *
448  * For an overview of these functions, see *DOC: Public API* in "pvr_vm.h".
449  */
450 
451 /**
452  * pvr_device_addr_is_valid() - Tests whether a device-virtual address
453  *                              is valid.
454  * @device_addr: Virtual device address to test.
455  *
456  * Return:
457  *  * %true if @device_addr is within the valid range for a device page
458  *    table and is aligned to the device page size, or
459  *  * %false otherwise.
460  */
461 bool
pvr_device_addr_is_valid(u64 device_addr)462 pvr_device_addr_is_valid(u64 device_addr)
463 {
464 	return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 &&
465 	       (device_addr & ~PVR_DEVICE_PAGE_MASK) == 0;
466 }
467 
468 /**
469  * pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual
470  * address and associated size are both valid.
471  * @vm_ctx: Target VM context.
472  * @device_addr: Virtual device address to test.
473  * @size: Size of the range based at @device_addr to test.
474  *
475  * Calling pvr_device_addr_is_valid() twice (once on @size, and again on
476  * @device_addr + @size) to verify a device-virtual address range initially
477  * seems intuitive, but it produces a false-negative when the address range
478  * is right at the end of device-virtual address space.
479  *
480  * This function catches that corner case, as well as checking that
481  * @size is non-zero.
482  *
483  * Return:
484  *  * %true if @device_addr is device page aligned; @size is device page
485  *    aligned; the range specified by @device_addr and @size is within the
486  *    bounds of the device-virtual address space, and @size is non-zero, or
487  *  * %false otherwise.
488  */
489 bool
pvr_device_addr_and_size_are_valid(struct pvr_vm_context * vm_ctx,u64 device_addr,u64 size)490 pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx,
491 				   u64 device_addr, u64 size)
492 {
493 	return pvr_device_addr_is_valid(device_addr) &&
494 	       drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) &&
495 	       size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 &&
496 	       (device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE);
497 }
498 
pvr_gpuvm_free(struct drm_gpuvm * gpuvm)499 static void pvr_gpuvm_free(struct drm_gpuvm *gpuvm)
500 {
501 	kfree(to_pvr_vm_context(gpuvm));
502 }
503 
504 static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
505 	.vm_free = pvr_gpuvm_free,
506 	.sm_step_map = pvr_vm_gpuva_map,
507 	.sm_step_remap = pvr_vm_gpuva_remap,
508 	.sm_step_unmap = pvr_vm_gpuva_unmap,
509 };
510 
511 static void
fw_mem_context_init(void * cpu_ptr,void * priv)512 fw_mem_context_init(void *cpu_ptr, void *priv)
513 {
514 	struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
515 	struct pvr_vm_context *vm_ctx = priv;
516 
517 	fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
518 	fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
519 }
520 
521 /**
522  * pvr_vm_create_context() - Create a new VM context.
523  * @pvr_dev: Target PowerVR device.
524  * @is_userspace_context: %true if this context is for userspace. This will
525  *                        create a firmware memory context for the VM context
526  *                        and disable warnings when tearing down mappings.
527  *
528  * Return:
529  *  * A handle to the newly-minted VM context on success,
530  *  * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is
531  *    missing or has an unsupported value,
532  *  * -%ENOMEM if allocation of the structure behind the opaque handle fails,
533  *    or
534  *  * Any error encountered while setting up internal structures.
535  */
536 struct pvr_vm_context *
pvr_vm_create_context(struct pvr_device * pvr_dev,bool is_userspace_context)537 pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
538 {
539 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
540 
541 	struct pvr_vm_context *vm_ctx;
542 	u16 device_addr_bits;
543 
544 	int err;
545 
546 	err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits,
547 				&device_addr_bits);
548 	if (err) {
549 		drm_err(drm_dev,
550 			"Failed to get device virtual address space bits\n");
551 		return ERR_PTR(err);
552 	}
553 
554 	if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) {
555 		drm_err(drm_dev,
556 			"Device has unsupported virtual address space size\n");
557 		return ERR_PTR(-EINVAL);
558 	}
559 
560 	vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL);
561 	if (!vm_ctx)
562 		return ERR_PTR(-ENOMEM);
563 
564 	vm_ctx->pvr_dev = pvr_dev;
565 
566 	vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev);
567 	err = PTR_ERR_OR_ZERO(vm_ctx->mmu_ctx);
568 	if (err)
569 		goto err_free;
570 
571 	if (is_userspace_context) {
572 		err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
573 					   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
574 					   fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);
575 
576 		if (err)
577 			goto err_page_table_destroy;
578 	}
579 
580 	drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0);
581 	drm_gpuvm_init(&vm_ctx->gpuvm_mgr,
582 		       is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM",
583 		       0, &pvr_dev->base, &vm_ctx->dummy_gem,
584 		       0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops);
585 
586 	mutex_init(&vm_ctx->lock);
587 	kref_init(&vm_ctx->ref_count);
588 
589 	return vm_ctx;
590 
591 err_page_table_destroy:
592 	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
593 
594 err_free:
595 	kfree(vm_ctx);
596 
597 	return ERR_PTR(err);
598 }
599 
600 /**
601  * pvr_vm_unmap_all() - Unmap all mappings associated with a VM context.
602  * @vm_ctx: Target VM context.
603  *
604  * This function ensures that no mappings are left dangling by unmapping them
605  * all in order of ascending device-virtual address.
606  */
607 void
pvr_vm_unmap_all(struct pvr_vm_context * vm_ctx)608 pvr_vm_unmap_all(struct pvr_vm_context *vm_ctx)
609 {
610 	WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start,
611 			     vm_ctx->gpuvm_mgr.mm_range));
612 }
613 
614 /**
615  * pvr_vm_context_release() - Teardown a VM context.
616  * @ref_count: Pointer to reference counter of the VM context.
617  *
618  * This function also ensures that no mappings are left dangling by calling
619  * pvr_vm_unmap_all.
620  */
621 static void
pvr_vm_context_release(struct kref * ref_count)622 pvr_vm_context_release(struct kref *ref_count)
623 {
624 	struct pvr_vm_context *vm_ctx =
625 		container_of(ref_count, struct pvr_vm_context, ref_count);
626 
627 	if (vm_ctx->fw_mem_ctx_obj)
628 		pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);
629 
630 	pvr_vm_unmap_all(vm_ctx);
631 
632 	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
633 	drm_gem_private_object_fini(&vm_ctx->dummy_gem);
634 	mutex_destroy(&vm_ctx->lock);
635 
636 	drm_gpuvm_put(&vm_ctx->gpuvm_mgr);
637 }
638 
639 /**
640  * pvr_vm_context_lookup() - Look up VM context from handle
641  * @pvr_file: Pointer to pvr_file structure.
642  * @handle: Object handle.
643  *
644  * Takes reference on VM context object. Call pvr_vm_context_put() to release.
645  *
646  * Returns:
647  *  * The requested object on success, or
648  *  * %NULL on failure (object does not exist in list, or is not a VM context)
649  */
650 struct pvr_vm_context *
pvr_vm_context_lookup(struct pvr_file * pvr_file,u32 handle)651 pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle)
652 {
653 	struct pvr_vm_context *vm_ctx;
654 
655 	xa_lock(&pvr_file->vm_ctx_handles);
656 	vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle);
657 	if (vm_ctx)
658 		kref_get(&vm_ctx->ref_count);
659 
660 	xa_unlock(&pvr_file->vm_ctx_handles);
661 
662 	return vm_ctx;
663 }
664 
665 /**
666  * pvr_vm_context_put() - Release a reference on a VM context
667  * @vm_ctx: Target VM context.
668  *
669  * Returns:
670  *  * %true if the VM context was destroyed, or
671  *  * %false if there are any references still remaining.
672  */
673 bool
pvr_vm_context_put(struct pvr_vm_context * vm_ctx)674 pvr_vm_context_put(struct pvr_vm_context *vm_ctx)
675 {
676 	if (vm_ctx)
677 		return kref_put(&vm_ctx->ref_count, pvr_vm_context_release);
678 
679 	return true;
680 }
681 
682 /**
683  * pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the
684  * given file.
685  * @pvr_file: Pointer to pvr_file structure.
686  *
687  * Removes all vm_contexts associated with @pvr_file from the device VM context
688  * list and drops initial references. vm_contexts will then be destroyed once
689  * all outstanding references are dropped.
690  */
pvr_destroy_vm_contexts_for_file(struct pvr_file * pvr_file)691 void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file)
692 {
693 	struct pvr_vm_context *vm_ctx;
694 	unsigned long handle;
695 
696 	xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) {
697 		/* vm_ctx is not used here because that would create a race with xa_erase */
698 		pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle));
699 	}
700 }
701 
702 static int
pvr_vm_lock_extra(struct drm_gpuvm_exec * vm_exec)703 pvr_vm_lock_extra(struct drm_gpuvm_exec *vm_exec)
704 {
705 	struct pvr_vm_bind_op *bind_op = vm_exec->extra.priv;
706 	struct pvr_gem_object *pvr_obj = bind_op->pvr_obj;
707 
708 	/* Unmap operations don't have an object to lock. */
709 	if (!pvr_obj)
710 		return 0;
711 
712 	/* Acquire lock on the GEM being mapped. */
713 	return drm_exec_lock_obj(&vm_exec->exec, gem_from_pvr_gem(pvr_obj));
714 }
715 
716 /**
717  * pvr_vm_map() - Map a section of physical memory into a section of
718  * device-virtual memory.
719  * @vm_ctx: Target VM context.
720  * @pvr_obj: Target PowerVR memory object.
721  * @pvr_obj_offset: Offset into @pvr_obj to map from.
722  * @device_addr: Virtual device address at the start of the requested mapping.
723  * @size: Size of the requested mapping.
724  *
725  * No handle is returned to represent the mapping. Instead, callers should
726  * remember @device_addr and use that as a handle.
727  *
728  * Return:
729  *  * 0 on success,
730  *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
731  *    address; the region specified by @pvr_obj_offset and @size does not fall
732  *    entirely within @pvr_obj, or any part of the specified region of @pvr_obj
733  *    is not device-virtual page-aligned,
734  *  * Any error encountered while performing internal operations required to
735  *    destroy the mapping (returned from pvr_vm_gpuva_map or
736  *    pvr_vm_gpuva_remap).
737  */
738 int
pvr_vm_map(struct pvr_vm_context * vm_ctx,struct pvr_gem_object * pvr_obj,u64 pvr_obj_offset,u64 device_addr,u64 size)739 pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
740 	   u64 pvr_obj_offset, u64 device_addr, u64 size)
741 {
742 	struct pvr_vm_bind_op bind_op = {0};
743 	struct drm_gpuvm_exec vm_exec = {
744 		.vm = &vm_ctx->gpuvm_mgr,
745 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
746 			 DRM_EXEC_IGNORE_DUPLICATES,
747 		.extra = {
748 			.fn = pvr_vm_lock_extra,
749 			.priv = &bind_op,
750 		},
751 	};
752 
753 	int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj,
754 					  pvr_obj_offset, device_addr,
755 					  size);
756 
757 	if (err)
758 		return err;
759 
760 	pvr_gem_object_get(pvr_obj);
761 
762 	err = drm_gpuvm_exec_lock(&vm_exec);
763 	if (err)
764 		goto err_cleanup;
765 
766 	err = pvr_vm_bind_op_exec(&bind_op);
767 
768 	drm_gpuvm_exec_unlock(&vm_exec);
769 
770 err_cleanup:
771 	pvr_vm_bind_op_fini(&bind_op);
772 
773 	return err;
774 }
775 
776 /**
777  * pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory.
778  * @vm_ctx: Target VM context.
779  * @device_addr: Virtual device address at the start of the target mapping.
780  * @size: Size of the target mapping.
781  *
782  * Return:
783  *  * 0 on success,
784  *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
785  *    address,
786  *  * Any error encountered while performing internal operations required to
787  *    destroy the mapping (returned from pvr_vm_gpuva_unmap or
788  *    pvr_vm_gpuva_remap).
789  */
790 int
pvr_vm_unmap(struct pvr_vm_context * vm_ctx,u64 device_addr,u64 size)791 pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size)
792 {
793 	struct pvr_vm_bind_op bind_op = {0};
794 	struct drm_gpuvm_exec vm_exec = {
795 		.vm = &vm_ctx->gpuvm_mgr,
796 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
797 			 DRM_EXEC_IGNORE_DUPLICATES,
798 		.extra = {
799 			.fn = pvr_vm_lock_extra,
800 			.priv = &bind_op,
801 		},
802 	};
803 
804 	int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, device_addr,
805 					    size);
806 	if (err)
807 		return err;
808 
809 	err = drm_gpuvm_exec_lock(&vm_exec);
810 	if (err)
811 		goto err_cleanup;
812 
813 	err = pvr_vm_bind_op_exec(&bind_op);
814 
815 	drm_gpuvm_exec_unlock(&vm_exec);
816 
817 err_cleanup:
818 	pvr_vm_bind_op_fini(&bind_op);
819 
820 	return err;
821 }
822 
823 /* Static data areas are determined by firmware. */
824 static const struct drm_pvr_static_data_area static_data_areas[] = {
825 	{
826 		.area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE,
827 		.location_heap_id = DRM_PVR_HEAP_GENERAL,
828 		.offset = 0,
829 		.size = 128,
830 	},
831 	{
832 		.area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC,
833 		.location_heap_id = DRM_PVR_HEAP_GENERAL,
834 		.offset = 128,
835 		.size = 1024,
836 	},
837 	{
838 		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
839 		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
840 		.offset = 0,
841 		.size = 128,
842 	},
843 	{
844 		.area_usage = DRM_PVR_STATIC_DATA_AREA_EOT,
845 		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
846 		.offset = 128,
847 		.size = 128,
848 	},
849 	{
850 		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
851 		.location_heap_id = DRM_PVR_HEAP_USC_CODE,
852 		.offset = 0,
853 		.size = 128,
854 	},
855 };
856 
857 #define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE)
858 
859 /*
860  * The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding
861  * static data area for each heap.
862  */
863 static const struct drm_pvr_heap pvr_heaps[] = {
864 	[DRM_PVR_HEAP_GENERAL] = {
865 		.base = ROGUE_GENERAL_HEAP_BASE,
866 		.size = ROGUE_GENERAL_HEAP_SIZE,
867 		.flags = 0,
868 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
869 	},
870 	[DRM_PVR_HEAP_PDS_CODE_DATA] = {
871 		.base = ROGUE_PDSCODEDATA_HEAP_BASE,
872 		.size = ROGUE_PDSCODEDATA_HEAP_SIZE,
873 		.flags = 0,
874 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
875 	},
876 	[DRM_PVR_HEAP_USC_CODE] = {
877 		.base = ROGUE_USCCODE_HEAP_BASE,
878 		.size = ROGUE_USCCODE_HEAP_SIZE,
879 		.flags = 0,
880 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
881 	},
882 	[DRM_PVR_HEAP_RGNHDR] = {
883 		.base = ROGUE_RGNHDR_HEAP_BASE,
884 		.size = ROGUE_RGNHDR_HEAP_SIZE,
885 		.flags = 0,
886 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
887 	},
888 	[DRM_PVR_HEAP_VIS_TEST] = {
889 		.base = ROGUE_VISTEST_HEAP_BASE,
890 		.size = ROGUE_VISTEST_HEAP_SIZE,
891 		.flags = 0,
892 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
893 	},
894 	[DRM_PVR_HEAP_TRANSFER_FRAG] = {
895 		.base = ROGUE_TRANSFER_FRAG_HEAP_BASE,
896 		.size = ROGUE_TRANSFER_FRAG_HEAP_SIZE,
897 		.flags = 0,
898 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
899 	},
900 };
901 
902 int
pvr_static_data_areas_get(const struct pvr_device * pvr_dev,struct drm_pvr_ioctl_dev_query_args * args)903 pvr_static_data_areas_get(const struct pvr_device *pvr_dev,
904 			  struct drm_pvr_ioctl_dev_query_args *args)
905 {
906 	struct drm_pvr_dev_query_static_data_areas query = {0};
907 	int err;
908 
909 	if (!args->pointer) {
910 		args->size = sizeof(struct drm_pvr_dev_query_static_data_areas);
911 		return 0;
912 	}
913 
914 	err = PVR_UOBJ_GET(query, args->size, args->pointer);
915 	if (err < 0)
916 		return err;
917 
918 	if (!query.static_data_areas.array) {
919 		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
920 		query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area);
921 		goto copy_out;
922 	}
923 
924 	if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas))
925 		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
926 
927 	err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas);
928 	if (err < 0)
929 		return err;
930 
931 copy_out:
932 	err = PVR_UOBJ_SET(args->pointer, args->size, query);
933 	if (err < 0)
934 		return err;
935 
936 	args->size = sizeof(query);
937 	return 0;
938 }
939 
940 int
pvr_heap_info_get(const struct pvr_device * pvr_dev,struct drm_pvr_ioctl_dev_query_args * args)941 pvr_heap_info_get(const struct pvr_device *pvr_dev,
942 		  struct drm_pvr_ioctl_dev_query_args *args)
943 {
944 	struct drm_pvr_dev_query_heap_info query = {0};
945 	u64 dest;
946 	int err;
947 
948 	if (!args->pointer) {
949 		args->size = sizeof(struct drm_pvr_dev_query_heap_info);
950 		return 0;
951 	}
952 
953 	err = PVR_UOBJ_GET(query, args->size, args->pointer);
954 	if (err < 0)
955 		return err;
956 
957 	if (!query.heaps.array) {
958 		query.heaps.count = ARRAY_SIZE(pvr_heaps);
959 		query.heaps.stride = sizeof(struct drm_pvr_heap);
960 		goto copy_out;
961 	}
962 
963 	if (query.heaps.count > ARRAY_SIZE(pvr_heaps))
964 		query.heaps.count = ARRAY_SIZE(pvr_heaps);
965 
966 	/* Region header heap is only present if BRN63142 is present. */
967 	dest = query.heaps.array;
968 	for (size_t i = 0; i < query.heaps.count; i++) {
969 		struct drm_pvr_heap heap = pvr_heaps[i];
970 
971 		if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142))
972 			heap.size = 0;
973 
974 		err = PVR_UOBJ_SET(dest, query.heaps.stride, heap);
975 		if (err < 0)
976 			return err;
977 
978 		dest += query.heaps.stride;
979 	}
980 
981 copy_out:
982 	err = PVR_UOBJ_SET(args->pointer, args->size, query);
983 	if (err < 0)
984 		return err;
985 
986 	args->size = sizeof(query);
987 	return 0;
988 }
989 
990 /**
991  * pvr_heap_contains_range() - Determine if a given heap contains the specified
992  *                             device-virtual address range.
993  * @pvr_heap: Target heap.
994  * @start: Inclusive start of the target range.
995  * @end: Inclusive end of the target range.
996  *
997  * It is an error to call this function with values of @start and @end that do
998  * not satisfy the condition @start <= @end.
999  */
1000 static __always_inline bool
pvr_heap_contains_range(const struct drm_pvr_heap * pvr_heap,u64 start,u64 end)1001 pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end)
1002 {
1003 	return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size;
1004 }
1005 
1006 /**
1007  * pvr_find_heap_containing() - Find a heap which contains the specified
1008  *                              device-virtual address range.
1009  * @pvr_dev: Target PowerVR device.
1010  * @start: Start of the target range.
1011  * @size: Size of the target range.
1012  *
1013  * Return:
1014  *  * A pointer to a constant instance of struct drm_pvr_heap representing the
1015  *    heap containing the entire range specified by @start and @size on
1016  *    success, or
1017  *  * %NULL if no such heap exists.
1018  */
1019 const struct drm_pvr_heap *
pvr_find_heap_containing(struct pvr_device * pvr_dev,u64 start,u64 size)1020 pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size)
1021 {
1022 	u64 end;
1023 
1024 	if (check_add_overflow(start, size - 1, &end))
1025 		return NULL;
1026 
1027 	/*
1028 	 * There are no guarantees about the order of address ranges in
1029 	 * &pvr_heaps, so iterate over the entire array for a heap whose
1030 	 * range completely encompasses the given range.
1031 	 */
1032 	for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) {
1033 		/* Filter heaps that present only with an associated quirk */
1034 		if (heap_id == DRM_PVR_HEAP_RGNHDR &&
1035 		    !PVR_HAS_QUIRK(pvr_dev, 63142)) {
1036 			continue;
1037 		}
1038 
1039 		if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end))
1040 			return &pvr_heaps[heap_id];
1041 	}
1042 
1043 	return NULL;
1044 }
1045 
1046 /**
1047  * pvr_vm_find_gem_object() - Look up a buffer object from a given
1048  *                            device-virtual address.
1049  * @vm_ctx: [IN] Target VM context.
1050  * @device_addr: [IN] Virtual device address at the start of the required
1051  *               object.
1052  * @mapped_offset_out: [OUT] Pointer to location to write offset of the start
1053  *                     of the mapped region within the buffer object. May be
1054  *                     %NULL if this information is not required.
1055  * @mapped_size_out: [OUT] Pointer to location to write size of the mapped
1056  *                   region. May be %NULL if this information is not required.
1057  *
1058  * If successful, a reference will be taken on the buffer object. The caller
1059  * must drop the reference with pvr_gem_object_put().
1060  *
1061  * Return:
1062  *  * The PowerVR buffer object mapped at @device_addr if one exists, or
1063  *  * %NULL otherwise.
1064  */
1065 struct pvr_gem_object *
pvr_vm_find_gem_object(struct pvr_vm_context * vm_ctx,u64 device_addr,u64 * mapped_offset_out,u64 * mapped_size_out)1066 pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr,
1067 		       u64 *mapped_offset_out, u64 *mapped_size_out)
1068 {
1069 	struct pvr_gem_object *pvr_obj;
1070 	struct drm_gpuva *va;
1071 
1072 	mutex_lock(&vm_ctx->lock);
1073 
1074 	va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1);
1075 	if (!va)
1076 		goto err_unlock;
1077 
1078 	pvr_obj = gem_to_pvr_gem(va->gem.obj);
1079 	pvr_gem_object_get(pvr_obj);
1080 
1081 	if (mapped_offset_out)
1082 		*mapped_offset_out = va->gem.offset;
1083 	if (mapped_size_out)
1084 		*mapped_size_out = va->va.range;
1085 
1086 	mutex_unlock(&vm_ctx->lock);
1087 
1088 	return pvr_obj;
1089 
1090 err_unlock:
1091 	mutex_unlock(&vm_ctx->lock);
1092 
1093 	return NULL;
1094 }
1095 
1096 /**
1097  * pvr_vm_get_fw_mem_context: Get object representing firmware memory context
1098  * @vm_ctx: Target VM context.
1099  *
1100  * Returns:
1101  *  * FW object representing firmware memory context, or
1102  *  * %NULL if this VM context does not have a firmware memory context.
1103  */
1104 struct pvr_fw_object *
pvr_vm_get_fw_mem_context(struct pvr_vm_context * vm_ctx)1105 pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx)
1106 {
1107 	return vm_ctx->fw_mem_ctx_obj;
1108 }
1109