1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
set_max_mapnr(unsigned long limit)50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
set_max_mapnr(unsigned long limit)55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
totalram_pages(void)59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
totalram_pages_inc(void)64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
totalram_pages_dec(void)69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
totalram_pages_add(long count)74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107 
108 #include <asm/page.h>
109 #include <asm/processor.h>
110 
111 #ifndef __pa_symbol
112 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
113 #endif
114 
115 #ifndef page_to_virt
116 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
117 #endif
118 
119 #ifndef lm_alias
120 #define lm_alias(x)	__va(__pa_symbol(x))
121 #endif
122 
123 /*
124  * To prevent common memory management code establishing
125  * a zero page mapping on a read fault.
126  * This macro should be defined within <asm/pgtable.h>.
127  * s390 does this to prevent multiplexing of hardware bits
128  * related to the physical page in case of virtualization.
129  */
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X)	(0)
132 #endif
133 
134 /*
135  * On some architectures it is expensive to call memset() for small sizes.
136  * If an architecture decides to implement their own version of
137  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138  * define their own version of this macro in <asm/pgtable.h>
139  */
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142  * or reduces below 56. The idea that compiler optimizes out switch()
143  * statement, and only leaves move/store instructions. Also the compiler can
144  * combine write statements if they are both assignments and can be reordered,
145  * this can result in several of the writes here being dropped.
146  */
147 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)148 static inline void __mm_zero_struct_page(struct page *page)
149 {
150 	unsigned long *_pp = (void *)page;
151 
152 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 	BUILD_BUG_ON(sizeof(struct page) & 7);
154 	BUILD_BUG_ON(sizeof(struct page) < 56);
155 	BUILD_BUG_ON(sizeof(struct page) > 96);
156 
157 	switch (sizeof(struct page)) {
158 	case 96:
159 		_pp[11] = 0;
160 		fallthrough;
161 	case 88:
162 		_pp[10] = 0;
163 		fallthrough;
164 	case 80:
165 		_pp[9] = 0;
166 		fallthrough;
167 	case 72:
168 		_pp[8] = 0;
169 		fallthrough;
170 	case 64:
171 		_pp[7] = 0;
172 		fallthrough;
173 	case 56:
174 		_pp[6] = 0;
175 		_pp[5] = 0;
176 		_pp[4] = 0;
177 		_pp[3] = 0;
178 		_pp[2] = 0;
179 		_pp[1] = 0;
180 		_pp[0] = 0;
181 	}
182 }
183 #else
184 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
185 #endif
186 
187 /*
188  * Default maximum number of active map areas, this limits the number of vmas
189  * per mm struct. Users can overwrite this number by sysctl but there is a
190  * problem.
191  *
192  * When a program's coredump is generated as ELF format, a section is created
193  * per a vma. In ELF, the number of sections is represented in unsigned short.
194  * This means the number of sections should be smaller than 65535 at coredump.
195  * Because the kernel adds some informative sections to a image of program at
196  * generating coredump, we need some margin. The number of extra sections is
197  * 1-3 now and depends on arch. We use "5" as safe margin, here.
198  *
199  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200  * not a hard limit any more. Although some userspace tools can be surprised by
201  * that.
202  */
203 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
204 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205 
206 extern int sysctl_max_map_count;
207 
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
210 
211 extern int sysctl_overcommit_memory;
212 extern int sysctl_overcommit_ratio;
213 extern unsigned long sysctl_overcommit_kbytes;
214 
215 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
220 		loff_t *);
221 
222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
225 #else
226 #define nth_page(page,n) ((page) + (n))
227 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
228 #endif
229 
230 /* to align the pointer to the (next) page boundary */
231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232 
233 /* to align the pointer to the (prev) page boundary */
234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235 
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238 
lru_to_folio(struct list_head * head)239 static inline struct folio *lru_to_folio(struct list_head *head)
240 {
241 	return list_entry((head)->prev, struct folio, lru);
242 }
243 
244 void setup_initial_init_mm(void *start_code, void *end_code,
245 			   void *end_data, void *brk);
246 
247 /*
248  * Linux kernel virtual memory manager primitives.
249  * The idea being to have a "virtual" mm in the same way
250  * we have a virtual fs - giving a cleaner interface to the
251  * mm details, and allowing different kinds of memory mappings
252  * (from shared memory to executable loading to arbitrary
253  * mmap() functions).
254  */
255 
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 /* Use only if VMA has no other users */
260 void __vm_area_free(struct vm_area_struct *vma);
261 
262 #ifndef CONFIG_MMU
263 extern struct rb_root nommu_region_tree;
264 extern struct rw_semaphore nommu_region_sem;
265 
266 extern unsigned int kobjsize(const void *objp);
267 #endif
268 
269 /*
270  * vm_flags in vm_area_struct, see mm_types.h.
271  * When changing, update also include/trace/events/mmflags.h
272  */
273 #define VM_NONE		0x00000000
274 
275 #define VM_READ		0x00000001	/* currently active flags */
276 #define VM_WRITE	0x00000002
277 #define VM_EXEC		0x00000004
278 #define VM_SHARED	0x00000008
279 
280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
282 #define VM_MAYWRITE	0x00000020
283 #define VM_MAYEXEC	0x00000040
284 #define VM_MAYSHARE	0x00000080
285 
286 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
287 #ifdef CONFIG_MMU
288 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
289 #else /* CONFIG_MMU */
290 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291 #define VM_UFFD_MISSING	0
292 #endif /* CONFIG_MMU */
293 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
294 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
295 
296 #define VM_LOCKED	0x00002000
297 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
298 
299 					/* Used by sys_madvise() */
300 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
301 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
302 
303 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
307 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
308 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
309 #define VM_SYNC		0x00800000	/* Synchronous page faults */
310 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
311 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
312 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
313 
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
316 #else
317 # define VM_SOFTDIRTY	0
318 #endif
319 
320 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
324 
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
333 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
334 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
335 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
336 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
337 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
338 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
339 
340 #ifdef CONFIG_ARCH_HAS_PKEYS
341 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
342 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
343 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
344 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
345 #if CONFIG_ARCH_PKEY_BITS > 3
346 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
347 #else
348 # define VM_PKEY_BIT3  0
349 #endif
350 #if CONFIG_ARCH_PKEY_BITS > 4
351 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
352 #else
353 # define VM_PKEY_BIT4  0
354 #endif
355 #endif /* CONFIG_ARCH_HAS_PKEYS */
356 
357 #ifdef CONFIG_X86_USER_SHADOW_STACK
358 /*
359  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
360  * support core mm.
361  *
362  * These VMAs will get a single end guard page. This helps userspace protect
363  * itself from attacks. A single page is enough for current shadow stack archs
364  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
365  * for more details on the guard size.
366  */
367 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
368 #else
369 # define VM_SHADOW_STACK	VM_NONE
370 #endif
371 
372 #if defined(CONFIG_X86)
373 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
374 #elif defined(CONFIG_PPC64)
375 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
376 #elif defined(CONFIG_PARISC)
377 # define VM_GROWSUP	VM_ARCH_1
378 #elif defined(CONFIG_SPARC64)
379 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
380 # define VM_ARCH_CLEAR	VM_SPARC_ADI
381 #elif defined(CONFIG_ARM64)
382 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
383 # define VM_ARCH_CLEAR	VM_ARM64_BTI
384 #elif !defined(CONFIG_MMU)
385 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
386 #endif
387 
388 #if defined(CONFIG_ARM64_MTE)
389 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
390 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
391 #else
392 # define VM_MTE		VM_NONE
393 # define VM_MTE_ALLOWED	VM_NONE
394 #endif
395 
396 #ifndef VM_GROWSUP
397 # define VM_GROWSUP	VM_NONE
398 #endif
399 
400 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
401 # define VM_UFFD_MINOR_BIT	38
402 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
403 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
404 # define VM_UFFD_MINOR		VM_NONE
405 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
406 
407 /*
408  * This flag is used to connect VFIO to arch specific KVM code. It
409  * indicates that the memory under this VMA is safe for use with any
410  * non-cachable memory type inside KVM. Some VFIO devices, on some
411  * platforms, are thought to be unsafe and can cause machine crashes
412  * if KVM does not lock down the memory type.
413  */
414 #ifdef CONFIG_64BIT
415 #define VM_ALLOW_ANY_UNCACHED_BIT	39
416 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
417 #else
418 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
419 #endif
420 
421 #ifdef CONFIG_64BIT
422 #define VM_DROPPABLE_BIT	40
423 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
424 #elif defined(CONFIG_PPC32)
425 #define VM_DROPPABLE		VM_ARCH_1
426 #else
427 #define VM_DROPPABLE		VM_NONE
428 #endif
429 
430 #ifdef CONFIG_64BIT
431 /* VM is sealed, in vm_flags */
432 #define VM_SEALED	_BITUL(63)
433 #endif
434 
435 /* Bits set in the VMA until the stack is in its final location */
436 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
437 
438 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
439 
440 /* Common data flag combinations */
441 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
442 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
443 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
444 				 VM_MAYWRITE | VM_MAYEXEC)
445 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
446 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
447 
448 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
449 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
450 #endif
451 
452 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
453 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
454 #endif
455 
456 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
457 
458 #ifdef CONFIG_STACK_GROWSUP
459 #define VM_STACK	VM_GROWSUP
460 #define VM_STACK_EARLY	VM_GROWSDOWN
461 #else
462 #define VM_STACK	VM_GROWSDOWN
463 #define VM_STACK_EARLY	0
464 #endif
465 
466 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
467 
468 /* VMA basic access permission flags */
469 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
470 
471 
472 /*
473  * Special vmas that are non-mergable, non-mlock()able.
474  */
475 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
476 
477 /* This mask prevents VMA from being scanned with khugepaged */
478 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
479 
480 /* This mask defines which mm->def_flags a process can inherit its parent */
481 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
482 
483 /* This mask represents all the VMA flag bits used by mlock */
484 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
485 
486 /* Arch-specific flags to clear when updating VM flags on protection change */
487 #ifndef VM_ARCH_CLEAR
488 # define VM_ARCH_CLEAR	VM_NONE
489 #endif
490 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
491 
492 /*
493  * mapping from the currently active vm_flags protection bits (the
494  * low four bits) to a page protection mask..
495  */
496 
497 /*
498  * The default fault flags that should be used by most of the
499  * arch-specific page fault handlers.
500  */
501 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
502 			     FAULT_FLAG_KILLABLE | \
503 			     FAULT_FLAG_INTERRUPTIBLE)
504 
505 /**
506  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
507  * @flags: Fault flags.
508  *
509  * This is mostly used for places where we want to try to avoid taking
510  * the mmap_lock for too long a time when waiting for another condition
511  * to change, in which case we can try to be polite to release the
512  * mmap_lock in the first round to avoid potential starvation of other
513  * processes that would also want the mmap_lock.
514  *
515  * Return: true if the page fault allows retry and this is the first
516  * attempt of the fault handling; false otherwise.
517  */
fault_flag_allow_retry_first(enum fault_flag flags)518 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
519 {
520 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
521 	    (!(flags & FAULT_FLAG_TRIED));
522 }
523 
524 #define FAULT_FLAG_TRACE \
525 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
526 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
527 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
528 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
529 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
530 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
531 	{ FAULT_FLAG_USER,		"USER" }, \
532 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
533 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
534 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
535 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
536 
537 /*
538  * vm_fault is filled by the pagefault handler and passed to the vma's
539  * ->fault function. The vma's ->fault is responsible for returning a bitmask
540  * of VM_FAULT_xxx flags that give details about how the fault was handled.
541  *
542  * MM layer fills up gfp_mask for page allocations but fault handler might
543  * alter it if its implementation requires a different allocation context.
544  *
545  * pgoff should be used in favour of virtual_address, if possible.
546  */
547 struct vm_fault {
548 	const struct {
549 		struct vm_area_struct *vma;	/* Target VMA */
550 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
551 		pgoff_t pgoff;			/* Logical page offset based on vma */
552 		unsigned long address;		/* Faulting virtual address - masked */
553 		unsigned long real_address;	/* Faulting virtual address - unmasked */
554 	};
555 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
556 					 * XXX: should really be 'const' */
557 	pmd_t *pmd;			/* Pointer to pmd entry matching
558 					 * the 'address' */
559 	pud_t *pud;			/* Pointer to pud entry matching
560 					 * the 'address'
561 					 */
562 	union {
563 		pte_t orig_pte;		/* Value of PTE at the time of fault */
564 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
565 					 * used by PMD fault only.
566 					 */
567 	};
568 
569 	struct page *cow_page;		/* Page handler may use for COW fault */
570 	struct page *page;		/* ->fault handlers should return a
571 					 * page here, unless VM_FAULT_NOPAGE
572 					 * is set (which is also implied by
573 					 * VM_FAULT_ERROR).
574 					 */
575 	/* These three entries are valid only while holding ptl lock */
576 	pte_t *pte;			/* Pointer to pte entry matching
577 					 * the 'address'. NULL if the page
578 					 * table hasn't been allocated.
579 					 */
580 	spinlock_t *ptl;		/* Page table lock.
581 					 * Protects pte page table if 'pte'
582 					 * is not NULL, otherwise pmd.
583 					 */
584 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
585 					 * vm_ops->map_pages() sets up a page
586 					 * table from atomic context.
587 					 * do_fault_around() pre-allocates
588 					 * page table to avoid allocation from
589 					 * atomic context.
590 					 */
591 };
592 
593 /*
594  * These are the virtual MM functions - opening of an area, closing and
595  * unmapping it (needed to keep files on disk up-to-date etc), pointer
596  * to the functions called when a no-page or a wp-page exception occurs.
597  */
598 struct vm_operations_struct {
599 	void (*open)(struct vm_area_struct * area);
600 	/**
601 	 * @close: Called when the VMA is being removed from the MM.
602 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
603 	 */
604 	void (*close)(struct vm_area_struct * area);
605 	/* Called any time before splitting to check if it's allowed */
606 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
607 	int (*mremap)(struct vm_area_struct *area);
608 	/*
609 	 * Called by mprotect() to make driver-specific permission
610 	 * checks before mprotect() is finalised.   The VMA must not
611 	 * be modified.  Returns 0 if mprotect() can proceed.
612 	 */
613 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
614 			unsigned long end, unsigned long newflags);
615 	vm_fault_t (*fault)(struct vm_fault *vmf);
616 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
617 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
618 			pgoff_t start_pgoff, pgoff_t end_pgoff);
619 	unsigned long (*pagesize)(struct vm_area_struct * area);
620 
621 	/* notification that a previously read-only page is about to become
622 	 * writable, if an error is returned it will cause a SIGBUS */
623 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
624 
625 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
626 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
627 
628 	/* called by access_process_vm when get_user_pages() fails, typically
629 	 * for use by special VMAs. See also generic_access_phys() for a generic
630 	 * implementation useful for any iomem mapping.
631 	 */
632 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
633 		      void *buf, int len, int write);
634 
635 	/* Called by the /proc/PID/maps code to ask the vma whether it
636 	 * has a special name.  Returning non-NULL will also cause this
637 	 * vma to be dumped unconditionally. */
638 	const char *(*name)(struct vm_area_struct *vma);
639 
640 #ifdef CONFIG_NUMA
641 	/*
642 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
643 	 * to hold the policy upon return.  Caller should pass NULL @new to
644 	 * remove a policy and fall back to surrounding context--i.e. do not
645 	 * install a MPOL_DEFAULT policy, nor the task or system default
646 	 * mempolicy.
647 	 */
648 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
649 
650 	/*
651 	 * get_policy() op must add reference [mpol_get()] to any policy at
652 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
653 	 * in mm/mempolicy.c will do this automatically.
654 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
655 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
656 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
657 	 * must return NULL--i.e., do not "fallback" to task or system default
658 	 * policy.
659 	 */
660 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
661 					unsigned long addr, pgoff_t *ilx);
662 #endif
663 	/*
664 	 * Called by vm_normal_page() for special PTEs to find the
665 	 * page for @addr.  This is useful if the default behavior
666 	 * (using pte_page()) would not find the correct page.
667 	 */
668 	struct page *(*find_special_page)(struct vm_area_struct *vma,
669 					  unsigned long addr);
670 };
671 
672 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)673 static inline void vma_numab_state_init(struct vm_area_struct *vma)
674 {
675 	vma->numab_state = NULL;
676 }
vma_numab_state_free(struct vm_area_struct * vma)677 static inline void vma_numab_state_free(struct vm_area_struct *vma)
678 {
679 	kfree(vma->numab_state);
680 }
681 #else
vma_numab_state_init(struct vm_area_struct * vma)682 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)683 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
684 #endif /* CONFIG_NUMA_BALANCING */
685 
686 #ifdef CONFIG_PER_VMA_LOCK
687 /*
688  * Try to read-lock a vma. The function is allowed to occasionally yield false
689  * locked result to avoid performance overhead, in which case we fall back to
690  * using mmap_lock. The function should never yield false unlocked result.
691  */
vma_start_read(struct vm_area_struct * vma)692 static inline bool vma_start_read(struct vm_area_struct *vma)
693 {
694 	/*
695 	 * Check before locking. A race might cause false locked result.
696 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
697 	 * ACQUIRE semantics, because this is just a lockless check whose result
698 	 * we don't rely on for anything - the mm_lock_seq read against which we
699 	 * need ordering is below.
700 	 */
701 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
702 		return false;
703 
704 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
705 		return false;
706 
707 	/*
708 	 * Overflow might produce false locked result.
709 	 * False unlocked result is impossible because we modify and check
710 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
711 	 * modification invalidates all existing locks.
712 	 *
713 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
714 	 * racing with vma_end_write_all(), we only start reading from the VMA
715 	 * after it has been unlocked.
716 	 * This pairs with RELEASE semantics in vma_end_write_all().
717 	 */
718 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
719 		up_read(&vma->vm_lock->lock);
720 		return false;
721 	}
722 	return true;
723 }
724 
vma_end_read(struct vm_area_struct * vma)725 static inline void vma_end_read(struct vm_area_struct *vma)
726 {
727 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
728 	up_read(&vma->vm_lock->lock);
729 	rcu_read_unlock();
730 }
731 
732 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,int * mm_lock_seq)733 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
734 {
735 	mmap_assert_write_locked(vma->vm_mm);
736 
737 	/*
738 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
739 	 * mm->mm_lock_seq can't be concurrently modified.
740 	 */
741 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
742 	return (vma->vm_lock_seq == *mm_lock_seq);
743 }
744 
745 /*
746  * Begin writing to a VMA.
747  * Exclude concurrent readers under the per-VMA lock until the currently
748  * write-locked mmap_lock is dropped or downgraded.
749  */
vma_start_write(struct vm_area_struct * vma)750 static inline void vma_start_write(struct vm_area_struct *vma)
751 {
752 	int mm_lock_seq;
753 
754 	if (__is_vma_write_locked(vma, &mm_lock_seq))
755 		return;
756 
757 	down_write(&vma->vm_lock->lock);
758 	/*
759 	 * We should use WRITE_ONCE() here because we can have concurrent reads
760 	 * from the early lockless pessimistic check in vma_start_read().
761 	 * We don't really care about the correctness of that early check, but
762 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
763 	 */
764 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
765 	up_write(&vma->vm_lock->lock);
766 }
767 
vma_assert_write_locked(struct vm_area_struct * vma)768 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
769 {
770 	int mm_lock_seq;
771 
772 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
773 }
774 
vma_assert_locked(struct vm_area_struct * vma)775 static inline void vma_assert_locked(struct vm_area_struct *vma)
776 {
777 	if (!rwsem_is_locked(&vma->vm_lock->lock))
778 		vma_assert_write_locked(vma);
779 }
780 
vma_mark_detached(struct vm_area_struct * vma,bool detached)781 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
782 {
783 	/* When detaching vma should be write-locked */
784 	if (detached)
785 		vma_assert_write_locked(vma);
786 	vma->detached = detached;
787 }
788 
release_fault_lock(struct vm_fault * vmf)789 static inline void release_fault_lock(struct vm_fault *vmf)
790 {
791 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
792 		vma_end_read(vmf->vma);
793 	else
794 		mmap_read_unlock(vmf->vma->vm_mm);
795 }
796 
assert_fault_locked(struct vm_fault * vmf)797 static inline void assert_fault_locked(struct vm_fault *vmf)
798 {
799 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
800 		vma_assert_locked(vmf->vma);
801 	else
802 		mmap_assert_locked(vmf->vma->vm_mm);
803 }
804 
805 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
806 					  unsigned long address);
807 
808 #else /* CONFIG_PER_VMA_LOCK */
809 
vma_start_read(struct vm_area_struct * vma)810 static inline bool vma_start_read(struct vm_area_struct *vma)
811 		{ return false; }
vma_end_read(struct vm_area_struct * vma)812 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)813 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)814 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
815 		{ mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)816 static inline void vma_mark_detached(struct vm_area_struct *vma,
817 				     bool detached) {}
818 
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)819 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
820 		unsigned long address)
821 {
822 	return NULL;
823 }
824 
vma_assert_locked(struct vm_area_struct * vma)825 static inline void vma_assert_locked(struct vm_area_struct *vma)
826 {
827 	mmap_assert_locked(vma->vm_mm);
828 }
829 
release_fault_lock(struct vm_fault * vmf)830 static inline void release_fault_lock(struct vm_fault *vmf)
831 {
832 	mmap_read_unlock(vmf->vma->vm_mm);
833 }
834 
assert_fault_locked(struct vm_fault * vmf)835 static inline void assert_fault_locked(struct vm_fault *vmf)
836 {
837 	mmap_assert_locked(vmf->vma->vm_mm);
838 }
839 
840 #endif /* CONFIG_PER_VMA_LOCK */
841 
842 extern const struct vm_operations_struct vma_dummy_vm_ops;
843 
844 /*
845  * WARNING: vma_init does not initialize vma->vm_lock.
846  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
847  */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)848 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
849 {
850 	memset(vma, 0, sizeof(*vma));
851 	vma->vm_mm = mm;
852 	vma->vm_ops = &vma_dummy_vm_ops;
853 	INIT_LIST_HEAD(&vma->anon_vma_chain);
854 	vma_mark_detached(vma, false);
855 	vma_numab_state_init(vma);
856 }
857 
858 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)859 static inline void vm_flags_init(struct vm_area_struct *vma,
860 				 vm_flags_t flags)
861 {
862 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
863 }
864 
865 /*
866  * Use when VMA is part of the VMA tree and modifications need coordination
867  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
868  * it should be locked explicitly beforehand.
869  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)870 static inline void vm_flags_reset(struct vm_area_struct *vma,
871 				  vm_flags_t flags)
872 {
873 	vma_assert_write_locked(vma);
874 	vm_flags_init(vma, flags);
875 }
876 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)877 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
878 				       vm_flags_t flags)
879 {
880 	vma_assert_write_locked(vma);
881 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
882 }
883 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)884 static inline void vm_flags_set(struct vm_area_struct *vma,
885 				vm_flags_t flags)
886 {
887 	vma_start_write(vma);
888 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
889 }
890 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)891 static inline void vm_flags_clear(struct vm_area_struct *vma,
892 				  vm_flags_t flags)
893 {
894 	vma_start_write(vma);
895 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
896 }
897 
898 /*
899  * Use only if VMA is not part of the VMA tree or has no other users and
900  * therefore needs no locking.
901  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)902 static inline void __vm_flags_mod(struct vm_area_struct *vma,
903 				  vm_flags_t set, vm_flags_t clear)
904 {
905 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
906 }
907 
908 /*
909  * Use only when the order of set/clear operations is unimportant, otherwise
910  * use vm_flags_{set|clear} explicitly.
911  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)912 static inline void vm_flags_mod(struct vm_area_struct *vma,
913 				vm_flags_t set, vm_flags_t clear)
914 {
915 	vma_start_write(vma);
916 	__vm_flags_mod(vma, set, clear);
917 }
918 
vma_set_anonymous(struct vm_area_struct * vma)919 static inline void vma_set_anonymous(struct vm_area_struct *vma)
920 {
921 	vma->vm_ops = NULL;
922 }
923 
vma_is_anonymous(struct vm_area_struct * vma)924 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
925 {
926 	return !vma->vm_ops;
927 }
928 
929 /*
930  * Indicate if the VMA is a heap for the given task; for
931  * /proc/PID/maps that is the heap of the main task.
932  */
vma_is_initial_heap(const struct vm_area_struct * vma)933 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
934 {
935 	return vma->vm_start < vma->vm_mm->brk &&
936 		vma->vm_end > vma->vm_mm->start_brk;
937 }
938 
939 /*
940  * Indicate if the VMA is a stack for the given task; for
941  * /proc/PID/maps that is the stack of the main task.
942  */
vma_is_initial_stack(const struct vm_area_struct * vma)943 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
944 {
945 	/*
946 	 * We make no effort to guess what a given thread considers to be
947 	 * its "stack".  It's not even well-defined for programs written
948 	 * languages like Go.
949 	 */
950 	return vma->vm_start <= vma->vm_mm->start_stack &&
951 		vma->vm_end >= vma->vm_mm->start_stack;
952 }
953 
vma_is_temporary_stack(struct vm_area_struct * vma)954 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
955 {
956 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
957 
958 	if (!maybe_stack)
959 		return false;
960 
961 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
962 						VM_STACK_INCOMPLETE_SETUP)
963 		return true;
964 
965 	return false;
966 }
967 
vma_is_foreign(struct vm_area_struct * vma)968 static inline bool vma_is_foreign(struct vm_area_struct *vma)
969 {
970 	if (!current->mm)
971 		return true;
972 
973 	if (current->mm != vma->vm_mm)
974 		return true;
975 
976 	return false;
977 }
978 
vma_is_accessible(struct vm_area_struct * vma)979 static inline bool vma_is_accessible(struct vm_area_struct *vma)
980 {
981 	return vma->vm_flags & VM_ACCESS_FLAGS;
982 }
983 
is_shared_maywrite(vm_flags_t vm_flags)984 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
985 {
986 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
987 		(VM_SHARED | VM_MAYWRITE);
988 }
989 
vma_is_shared_maywrite(struct vm_area_struct * vma)990 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
991 {
992 	return is_shared_maywrite(vma->vm_flags);
993 }
994 
995 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)996 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
997 {
998 	return mas_find(&vmi->mas, max - 1);
999 }
1000 
vma_next(struct vma_iterator * vmi)1001 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1002 {
1003 	/*
1004 	 * Uses mas_find() to get the first VMA when the iterator starts.
1005 	 * Calling mas_next() could skip the first entry.
1006 	 */
1007 	return mas_find(&vmi->mas, ULONG_MAX);
1008 }
1009 
1010 static inline
vma_iter_next_range(struct vma_iterator * vmi)1011 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1012 {
1013 	return mas_next_range(&vmi->mas, ULONG_MAX);
1014 }
1015 
1016 
vma_prev(struct vma_iterator * vmi)1017 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1018 {
1019 	return mas_prev(&vmi->mas, 0);
1020 }
1021 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1022 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1023 			unsigned long start, unsigned long end, gfp_t gfp)
1024 {
1025 	__mas_set_range(&vmi->mas, start, end - 1);
1026 	mas_store_gfp(&vmi->mas, NULL, gfp);
1027 	if (unlikely(mas_is_err(&vmi->mas)))
1028 		return -ENOMEM;
1029 
1030 	return 0;
1031 }
1032 
1033 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1034 static inline void vma_iter_free(struct vma_iterator *vmi)
1035 {
1036 	mas_destroy(&vmi->mas);
1037 }
1038 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1039 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1040 				      struct vm_area_struct *vma)
1041 {
1042 	vmi->mas.index = vma->vm_start;
1043 	vmi->mas.last = vma->vm_end - 1;
1044 	mas_store(&vmi->mas, vma);
1045 	if (unlikely(mas_is_err(&vmi->mas)))
1046 		return -ENOMEM;
1047 
1048 	return 0;
1049 }
1050 
vma_iter_invalidate(struct vma_iterator * vmi)1051 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1052 {
1053 	mas_pause(&vmi->mas);
1054 }
1055 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1056 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1057 {
1058 	mas_set(&vmi->mas, addr);
1059 }
1060 
1061 #define for_each_vma(__vmi, __vma)					\
1062 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1063 
1064 /* The MM code likes to work with exclusive end addresses */
1065 #define for_each_vma_range(__vmi, __vma, __end)				\
1066 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1067 
1068 #ifdef CONFIG_SHMEM
1069 /*
1070  * The vma_is_shmem is not inline because it is used only by slow
1071  * paths in userfault.
1072  */
1073 bool vma_is_shmem(struct vm_area_struct *vma);
1074 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1075 #else
vma_is_shmem(struct vm_area_struct * vma)1076 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1077 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1078 #endif
1079 
1080 int vma_is_stack_for_current(struct vm_area_struct *vma);
1081 
1082 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1083 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1084 
1085 struct mmu_gather;
1086 struct inode;
1087 
1088 /*
1089  * compound_order() can be called without holding a reference, which means
1090  * that niceties like page_folio() don't work.  These callers should be
1091  * prepared to handle wild return values.  For example, PG_head may be
1092  * set before the order is initialised, or this may be a tail page.
1093  * See compaction.c for some good examples.
1094  */
compound_order(struct page * page)1095 static inline unsigned int compound_order(struct page *page)
1096 {
1097 	struct folio *folio = (struct folio *)page;
1098 
1099 	if (!test_bit(PG_head, &folio->flags))
1100 		return 0;
1101 	return folio->_flags_1 & 0xff;
1102 }
1103 
1104 /**
1105  * folio_order - The allocation order of a folio.
1106  * @folio: The folio.
1107  *
1108  * A folio is composed of 2^order pages.  See get_order() for the definition
1109  * of order.
1110  *
1111  * Return: The order of the folio.
1112  */
folio_order(const struct folio * folio)1113 static inline unsigned int folio_order(const struct folio *folio)
1114 {
1115 	if (!folio_test_large(folio))
1116 		return 0;
1117 	return folio->_flags_1 & 0xff;
1118 }
1119 
1120 #include <linux/huge_mm.h>
1121 
1122 /*
1123  * Methods to modify the page usage count.
1124  *
1125  * What counts for a page usage:
1126  * - cache mapping   (page->mapping)
1127  * - private data    (page->private)
1128  * - page mapped in a task's page tables, each mapping
1129  *   is counted separately
1130  *
1131  * Also, many kernel routines increase the page count before a critical
1132  * routine so they can be sure the page doesn't go away from under them.
1133  */
1134 
1135 /*
1136  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1137  */
put_page_testzero(struct page * page)1138 static inline int put_page_testzero(struct page *page)
1139 {
1140 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1141 	return page_ref_dec_and_test(page);
1142 }
1143 
folio_put_testzero(struct folio * folio)1144 static inline int folio_put_testzero(struct folio *folio)
1145 {
1146 	return put_page_testzero(&folio->page);
1147 }
1148 
1149 /*
1150  * Try to grab a ref unless the page has a refcount of zero, return false if
1151  * that is the case.
1152  * This can be called when MMU is off so it must not access
1153  * any of the virtual mappings.
1154  */
get_page_unless_zero(struct page * page)1155 static inline bool get_page_unless_zero(struct page *page)
1156 {
1157 	return page_ref_add_unless(page, 1, 0);
1158 }
1159 
folio_get_nontail_page(struct page * page)1160 static inline struct folio *folio_get_nontail_page(struct page *page)
1161 {
1162 	if (unlikely(!get_page_unless_zero(page)))
1163 		return NULL;
1164 	return (struct folio *)page;
1165 }
1166 
1167 extern int page_is_ram(unsigned long pfn);
1168 
1169 enum {
1170 	REGION_INTERSECTS,
1171 	REGION_DISJOINT,
1172 	REGION_MIXED,
1173 };
1174 
1175 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1176 		      unsigned long desc);
1177 
1178 /* Support for virtually mapped pages */
1179 struct page *vmalloc_to_page(const void *addr);
1180 unsigned long vmalloc_to_pfn(const void *addr);
1181 
1182 /*
1183  * Determine if an address is within the vmalloc range
1184  *
1185  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1186  * is no special casing required.
1187  */
1188 #ifdef CONFIG_MMU
1189 extern bool is_vmalloc_addr(const void *x);
1190 extern int is_vmalloc_or_module_addr(const void *x);
1191 #else
is_vmalloc_addr(const void * x)1192 static inline bool is_vmalloc_addr(const void *x)
1193 {
1194 	return false;
1195 }
is_vmalloc_or_module_addr(const void * x)1196 static inline int is_vmalloc_or_module_addr(const void *x)
1197 {
1198 	return 0;
1199 }
1200 #endif
1201 
1202 /*
1203  * How many times the entire folio is mapped as a single unit (eg by a
1204  * PMD or PUD entry).  This is probably not what you want, except for
1205  * debugging purposes or implementation of other core folio_*() primitives.
1206  */
folio_entire_mapcount(const struct folio * folio)1207 static inline int folio_entire_mapcount(const struct folio *folio)
1208 {
1209 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1210 	return atomic_read(&folio->_entire_mapcount) + 1;
1211 }
1212 
folio_large_mapcount(const struct folio * folio)1213 static inline int folio_large_mapcount(const struct folio *folio)
1214 {
1215 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1216 	return atomic_read(&folio->_large_mapcount) + 1;
1217 }
1218 
1219 /**
1220  * folio_mapcount() - Number of mappings of this folio.
1221  * @folio: The folio.
1222  *
1223  * The folio mapcount corresponds to the number of present user page table
1224  * entries that reference any part of a folio. Each such present user page
1225  * table entry must be paired with exactly on folio reference.
1226  *
1227  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1228  * exactly once.
1229  *
1230  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1231  * references the entire folio counts exactly once, even when such special
1232  * page table entries are comprised of multiple ordinary page table entries.
1233  *
1234  * Will report 0 for pages which cannot be mapped into userspace, such as
1235  * slab, page tables and similar.
1236  *
1237  * Return: The number of times this folio is mapped.
1238  */
folio_mapcount(const struct folio * folio)1239 static inline int folio_mapcount(const struct folio *folio)
1240 {
1241 	int mapcount;
1242 
1243 	if (likely(!folio_test_large(folio))) {
1244 		mapcount = atomic_read(&folio->_mapcount) + 1;
1245 		if (page_mapcount_is_type(mapcount))
1246 			mapcount = 0;
1247 		return mapcount;
1248 	}
1249 	return folio_large_mapcount(folio);
1250 }
1251 
1252 /**
1253  * folio_mapped - Is this folio mapped into userspace?
1254  * @folio: The folio.
1255  *
1256  * Return: True if any page in this folio is referenced by user page tables.
1257  */
folio_mapped(const struct folio * folio)1258 static inline bool folio_mapped(const struct folio *folio)
1259 {
1260 	return folio_mapcount(folio) >= 1;
1261 }
1262 
1263 /*
1264  * Return true if this page is mapped into pagetables.
1265  * For compound page it returns true if any sub-page of compound page is mapped,
1266  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1267  */
page_mapped(const struct page * page)1268 static inline bool page_mapped(const struct page *page)
1269 {
1270 	return folio_mapped(page_folio(page));
1271 }
1272 
virt_to_head_page(const void * x)1273 static inline struct page *virt_to_head_page(const void *x)
1274 {
1275 	struct page *page = virt_to_page(x);
1276 
1277 	return compound_head(page);
1278 }
1279 
virt_to_folio(const void * x)1280 static inline struct folio *virt_to_folio(const void *x)
1281 {
1282 	struct page *page = virt_to_page(x);
1283 
1284 	return page_folio(page);
1285 }
1286 
1287 void __folio_put(struct folio *folio);
1288 
1289 void put_pages_list(struct list_head *pages);
1290 
1291 void split_page(struct page *page, unsigned int order);
1292 void folio_copy(struct folio *dst, struct folio *src);
1293 int folio_mc_copy(struct folio *dst, struct folio *src);
1294 
1295 unsigned long nr_free_buffer_pages(void);
1296 
1297 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1298 static inline unsigned long page_size(struct page *page)
1299 {
1300 	return PAGE_SIZE << compound_order(page);
1301 }
1302 
1303 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1304 static inline unsigned int page_shift(struct page *page)
1305 {
1306 	return PAGE_SHIFT + compound_order(page);
1307 }
1308 
1309 /**
1310  * thp_order - Order of a transparent huge page.
1311  * @page: Head page of a transparent huge page.
1312  */
thp_order(struct page * page)1313 static inline unsigned int thp_order(struct page *page)
1314 {
1315 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1316 	return compound_order(page);
1317 }
1318 
1319 /**
1320  * thp_size - Size of a transparent huge page.
1321  * @page: Head page of a transparent huge page.
1322  *
1323  * Return: Number of bytes in this page.
1324  */
thp_size(struct page * page)1325 static inline unsigned long thp_size(struct page *page)
1326 {
1327 	return PAGE_SIZE << thp_order(page);
1328 }
1329 
1330 #ifdef CONFIG_MMU
1331 /*
1332  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1333  * servicing faults for write access.  In the normal case, do always want
1334  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1335  * that do not have writing enabled, when used by access_process_vm.
1336  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1337 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1338 {
1339 	if (likely(vma->vm_flags & VM_WRITE))
1340 		pte = pte_mkwrite(pte, vma);
1341 	return pte;
1342 }
1343 
1344 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1345 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1346 		struct page *page, unsigned int nr, unsigned long addr);
1347 
1348 vm_fault_t finish_fault(struct vm_fault *vmf);
1349 #endif
1350 
1351 /*
1352  * Multiple processes may "see" the same page. E.g. for untouched
1353  * mappings of /dev/null, all processes see the same page full of
1354  * zeroes, and text pages of executables and shared libraries have
1355  * only one copy in memory, at most, normally.
1356  *
1357  * For the non-reserved pages, page_count(page) denotes a reference count.
1358  *   page_count() == 0 means the page is free. page->lru is then used for
1359  *   freelist management in the buddy allocator.
1360  *   page_count() > 0  means the page has been allocated.
1361  *
1362  * Pages are allocated by the slab allocator in order to provide memory
1363  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1364  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1365  * unless a particular usage is carefully commented. (the responsibility of
1366  * freeing the kmalloc memory is the caller's, of course).
1367  *
1368  * A page may be used by anyone else who does a __get_free_page().
1369  * In this case, page_count still tracks the references, and should only
1370  * be used through the normal accessor functions. The top bits of page->flags
1371  * and page->virtual store page management information, but all other fields
1372  * are unused and could be used privately, carefully. The management of this
1373  * page is the responsibility of the one who allocated it, and those who have
1374  * subsequently been given references to it.
1375  *
1376  * The other pages (we may call them "pagecache pages") are completely
1377  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1378  * The following discussion applies only to them.
1379  *
1380  * A pagecache page contains an opaque `private' member, which belongs to the
1381  * page's address_space. Usually, this is the address of a circular list of
1382  * the page's disk buffers. PG_private must be set to tell the VM to call
1383  * into the filesystem to release these pages.
1384  *
1385  * A page may belong to an inode's memory mapping. In this case, page->mapping
1386  * is the pointer to the inode, and page->index is the file offset of the page,
1387  * in units of PAGE_SIZE.
1388  *
1389  * If pagecache pages are not associated with an inode, they are said to be
1390  * anonymous pages. These may become associated with the swapcache, and in that
1391  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1392  *
1393  * In either case (swapcache or inode backed), the pagecache itself holds one
1394  * reference to the page. Setting PG_private should also increment the
1395  * refcount. The each user mapping also has a reference to the page.
1396  *
1397  * The pagecache pages are stored in a per-mapping radix tree, which is
1398  * rooted at mapping->i_pages, and indexed by offset.
1399  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1400  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1401  *
1402  * All pagecache pages may be subject to I/O:
1403  * - inode pages may need to be read from disk,
1404  * - inode pages which have been modified and are MAP_SHARED may need
1405  *   to be written back to the inode on disk,
1406  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1407  *   modified may need to be swapped out to swap space and (later) to be read
1408  *   back into memory.
1409  */
1410 
1411 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1412 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1413 
1414 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
put_devmap_managed_folio_refs(struct folio * folio,int refs)1415 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1416 {
1417 	if (!static_branch_unlikely(&devmap_managed_key))
1418 		return false;
1419 	if (!folio_is_zone_device(folio))
1420 		return false;
1421 	return __put_devmap_managed_folio_refs(folio, refs);
1422 }
1423 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_folio_refs(struct folio * folio,int refs)1424 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1425 {
1426 	return false;
1427 }
1428 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1429 
1430 /* 127: arbitrary random number, small enough to assemble well */
1431 #define folio_ref_zero_or_close_to_overflow(folio) \
1432 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1433 
1434 /**
1435  * folio_get - Increment the reference count on a folio.
1436  * @folio: The folio.
1437  *
1438  * Context: May be called in any context, as long as you know that
1439  * you have a refcount on the folio.  If you do not already have one,
1440  * folio_try_get() may be the right interface for you to use.
1441  */
folio_get(struct folio * folio)1442 static inline void folio_get(struct folio *folio)
1443 {
1444 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1445 	folio_ref_inc(folio);
1446 }
1447 
get_page(struct page * page)1448 static inline void get_page(struct page *page)
1449 {
1450 	folio_get(page_folio(page));
1451 }
1452 
try_get_page(struct page * page)1453 static inline __must_check bool try_get_page(struct page *page)
1454 {
1455 	page = compound_head(page);
1456 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1457 		return false;
1458 	page_ref_inc(page);
1459 	return true;
1460 }
1461 
1462 /**
1463  * folio_put - Decrement the reference count on a folio.
1464  * @folio: The folio.
1465  *
1466  * If the folio's reference count reaches zero, the memory will be
1467  * released back to the page allocator and may be used by another
1468  * allocation immediately.  Do not access the memory or the struct folio
1469  * after calling folio_put() unless you can be sure that it wasn't the
1470  * last reference.
1471  *
1472  * Context: May be called in process or interrupt context, but not in NMI
1473  * context.  May be called while holding a spinlock.
1474  */
folio_put(struct folio * folio)1475 static inline void folio_put(struct folio *folio)
1476 {
1477 	if (folio_put_testzero(folio))
1478 		__folio_put(folio);
1479 }
1480 
1481 /**
1482  * folio_put_refs - Reduce the reference count on a folio.
1483  * @folio: The folio.
1484  * @refs: The amount to subtract from the folio's reference count.
1485  *
1486  * If the folio's reference count reaches zero, the memory will be
1487  * released back to the page allocator and may be used by another
1488  * allocation immediately.  Do not access the memory or the struct folio
1489  * after calling folio_put_refs() unless you can be sure that these weren't
1490  * the last references.
1491  *
1492  * Context: May be called in process or interrupt context, but not in NMI
1493  * context.  May be called while holding a spinlock.
1494  */
folio_put_refs(struct folio * folio,int refs)1495 static inline void folio_put_refs(struct folio *folio, int refs)
1496 {
1497 	if (folio_ref_sub_and_test(folio, refs))
1498 		__folio_put(folio);
1499 }
1500 
1501 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1502 
1503 /*
1504  * union release_pages_arg - an array of pages or folios
1505  *
1506  * release_pages() releases a simple array of multiple pages, and
1507  * accepts various different forms of said page array: either
1508  * a regular old boring array of pages, an array of folios, or
1509  * an array of encoded page pointers.
1510  *
1511  * The transparent union syntax for this kind of "any of these
1512  * argument types" is all kinds of ugly, so look away.
1513  */
1514 typedef union {
1515 	struct page **pages;
1516 	struct folio **folios;
1517 	struct encoded_page **encoded_pages;
1518 } release_pages_arg __attribute__ ((__transparent_union__));
1519 
1520 void release_pages(release_pages_arg, int nr);
1521 
1522 /**
1523  * folios_put - Decrement the reference count on an array of folios.
1524  * @folios: The folios.
1525  *
1526  * Like folio_put(), but for a batch of folios.  This is more efficient
1527  * than writing the loop yourself as it will optimise the locks which need
1528  * to be taken if the folios are freed.  The folios batch is returned
1529  * empty and ready to be reused for another batch; there is no need to
1530  * reinitialise it.
1531  *
1532  * Context: May be called in process or interrupt context, but not in NMI
1533  * context.  May be called while holding a spinlock.
1534  */
folios_put(struct folio_batch * folios)1535 static inline void folios_put(struct folio_batch *folios)
1536 {
1537 	folios_put_refs(folios, NULL);
1538 }
1539 
put_page(struct page * page)1540 static inline void put_page(struct page *page)
1541 {
1542 	struct folio *folio = page_folio(page);
1543 
1544 	/*
1545 	 * For some devmap managed pages we need to catch refcount transition
1546 	 * from 2 to 1:
1547 	 */
1548 	if (put_devmap_managed_folio_refs(folio, 1))
1549 		return;
1550 	folio_put(folio);
1551 }
1552 
1553 /*
1554  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1555  * the page's refcount so that two separate items are tracked: the original page
1556  * reference count, and also a new count of how many pin_user_pages() calls were
1557  * made against the page. ("gup-pinned" is another term for the latter).
1558  *
1559  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1560  * distinct from normal pages. As such, the unpin_user_page() call (and its
1561  * variants) must be used in order to release gup-pinned pages.
1562  *
1563  * Choice of value:
1564  *
1565  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1566  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1567  * simpler, due to the fact that adding an even power of two to the page
1568  * refcount has the effect of using only the upper N bits, for the code that
1569  * counts up using the bias value. This means that the lower bits are left for
1570  * the exclusive use of the original code that increments and decrements by one
1571  * (or at least, by much smaller values than the bias value).
1572  *
1573  * Of course, once the lower bits overflow into the upper bits (and this is
1574  * OK, because subtraction recovers the original values), then visual inspection
1575  * no longer suffices to directly view the separate counts. However, for normal
1576  * applications that don't have huge page reference counts, this won't be an
1577  * issue.
1578  *
1579  * Locking: the lockless algorithm described in folio_try_get_rcu()
1580  * provides safe operation for get_user_pages(), folio_mkclean() and
1581  * other calls that race to set up page table entries.
1582  */
1583 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1584 
1585 void unpin_user_page(struct page *page);
1586 void unpin_folio(struct folio *folio);
1587 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1588 				 bool make_dirty);
1589 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1590 				      bool make_dirty);
1591 void unpin_user_pages(struct page **pages, unsigned long npages);
1592 void unpin_user_folio(struct folio *folio, unsigned long npages);
1593 void unpin_folios(struct folio **folios, unsigned long nfolios);
1594 
is_cow_mapping(vm_flags_t flags)1595 static inline bool is_cow_mapping(vm_flags_t flags)
1596 {
1597 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1598 }
1599 
1600 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1601 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1602 {
1603 	/*
1604 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1605 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1606 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1607 	 * underlying memory if ptrace is active, so this is only possible if
1608 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1609 	 * write permissions later.
1610 	 */
1611 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1612 }
1613 #endif
1614 
1615 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1616 #define SECTION_IN_PAGE_FLAGS
1617 #endif
1618 
1619 /*
1620  * The identification function is mainly used by the buddy allocator for
1621  * determining if two pages could be buddies. We are not really identifying
1622  * the zone since we could be using the section number id if we do not have
1623  * node id available in page flags.
1624  * We only guarantee that it will return the same value for two combinable
1625  * pages in a zone.
1626  */
page_zone_id(struct page * page)1627 static inline int page_zone_id(struct page *page)
1628 {
1629 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1630 }
1631 
1632 #ifdef NODE_NOT_IN_PAGE_FLAGS
1633 int page_to_nid(const struct page *page);
1634 #else
page_to_nid(const struct page * page)1635 static inline int page_to_nid(const struct page *page)
1636 {
1637 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1638 }
1639 #endif
1640 
folio_nid(const struct folio * folio)1641 static inline int folio_nid(const struct folio *folio)
1642 {
1643 	return page_to_nid(&folio->page);
1644 }
1645 
1646 #ifdef CONFIG_NUMA_BALANCING
1647 /* page access time bits needs to hold at least 4 seconds */
1648 #define PAGE_ACCESS_TIME_MIN_BITS	12
1649 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1650 #define PAGE_ACCESS_TIME_BUCKETS				\
1651 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1652 #else
1653 #define PAGE_ACCESS_TIME_BUCKETS	0
1654 #endif
1655 
1656 #define PAGE_ACCESS_TIME_MASK				\
1657 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1658 
cpu_pid_to_cpupid(int cpu,int pid)1659 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1660 {
1661 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1662 }
1663 
cpupid_to_pid(int cpupid)1664 static inline int cpupid_to_pid(int cpupid)
1665 {
1666 	return cpupid & LAST__PID_MASK;
1667 }
1668 
cpupid_to_cpu(int cpupid)1669 static inline int cpupid_to_cpu(int cpupid)
1670 {
1671 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1672 }
1673 
cpupid_to_nid(int cpupid)1674 static inline int cpupid_to_nid(int cpupid)
1675 {
1676 	return cpu_to_node(cpupid_to_cpu(cpupid));
1677 }
1678 
cpupid_pid_unset(int cpupid)1679 static inline bool cpupid_pid_unset(int cpupid)
1680 {
1681 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1682 }
1683 
cpupid_cpu_unset(int cpupid)1684 static inline bool cpupid_cpu_unset(int cpupid)
1685 {
1686 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1687 }
1688 
__cpupid_match_pid(pid_t task_pid,int cpupid)1689 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1690 {
1691 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1692 }
1693 
1694 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1695 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1696 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1697 {
1698 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1699 }
1700 
folio_last_cpupid(struct folio * folio)1701 static inline int folio_last_cpupid(struct folio *folio)
1702 {
1703 	return folio->_last_cpupid;
1704 }
page_cpupid_reset_last(struct page * page)1705 static inline void page_cpupid_reset_last(struct page *page)
1706 {
1707 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1708 }
1709 #else
folio_last_cpupid(struct folio * folio)1710 static inline int folio_last_cpupid(struct folio *folio)
1711 {
1712 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1713 }
1714 
1715 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1716 
page_cpupid_reset_last(struct page * page)1717 static inline void page_cpupid_reset_last(struct page *page)
1718 {
1719 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1720 }
1721 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1722 
folio_xchg_access_time(struct folio * folio,int time)1723 static inline int folio_xchg_access_time(struct folio *folio, int time)
1724 {
1725 	int last_time;
1726 
1727 	last_time = folio_xchg_last_cpupid(folio,
1728 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1729 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1730 }
1731 
vma_set_access_pid_bit(struct vm_area_struct * vma)1732 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1733 {
1734 	unsigned int pid_bit;
1735 
1736 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1737 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1738 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1739 	}
1740 }
1741 
1742 bool folio_use_access_time(struct folio *folio);
1743 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1744 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1745 {
1746 	return folio_nid(folio); /* XXX */
1747 }
1748 
folio_xchg_access_time(struct folio * folio,int time)1749 static inline int folio_xchg_access_time(struct folio *folio, int time)
1750 {
1751 	return 0;
1752 }
1753 
folio_last_cpupid(struct folio * folio)1754 static inline int folio_last_cpupid(struct folio *folio)
1755 {
1756 	return folio_nid(folio); /* XXX */
1757 }
1758 
cpupid_to_nid(int cpupid)1759 static inline int cpupid_to_nid(int cpupid)
1760 {
1761 	return -1;
1762 }
1763 
cpupid_to_pid(int cpupid)1764 static inline int cpupid_to_pid(int cpupid)
1765 {
1766 	return -1;
1767 }
1768 
cpupid_to_cpu(int cpupid)1769 static inline int cpupid_to_cpu(int cpupid)
1770 {
1771 	return -1;
1772 }
1773 
cpu_pid_to_cpupid(int nid,int pid)1774 static inline int cpu_pid_to_cpupid(int nid, int pid)
1775 {
1776 	return -1;
1777 }
1778 
cpupid_pid_unset(int cpupid)1779 static inline bool cpupid_pid_unset(int cpupid)
1780 {
1781 	return true;
1782 }
1783 
page_cpupid_reset_last(struct page * page)1784 static inline void page_cpupid_reset_last(struct page *page)
1785 {
1786 }
1787 
cpupid_match_pid(struct task_struct * task,int cpupid)1788 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1789 {
1790 	return false;
1791 }
1792 
vma_set_access_pid_bit(struct vm_area_struct * vma)1793 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1794 {
1795 }
folio_use_access_time(struct folio * folio)1796 static inline bool folio_use_access_time(struct folio *folio)
1797 {
1798 	return false;
1799 }
1800 #endif /* CONFIG_NUMA_BALANCING */
1801 
1802 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1803 
1804 /*
1805  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1806  * setting tags for all pages to native kernel tag value 0xff, as the default
1807  * value 0x00 maps to 0xff.
1808  */
1809 
page_kasan_tag(const struct page * page)1810 static inline u8 page_kasan_tag(const struct page *page)
1811 {
1812 	u8 tag = KASAN_TAG_KERNEL;
1813 
1814 	if (kasan_enabled()) {
1815 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1816 		tag ^= 0xff;
1817 	}
1818 
1819 	return tag;
1820 }
1821 
page_kasan_tag_set(struct page * page,u8 tag)1822 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1823 {
1824 	unsigned long old_flags, flags;
1825 
1826 	if (!kasan_enabled())
1827 		return;
1828 
1829 	tag ^= 0xff;
1830 	old_flags = READ_ONCE(page->flags);
1831 	do {
1832 		flags = old_flags;
1833 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1834 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1835 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1836 }
1837 
page_kasan_tag_reset(struct page * page)1838 static inline void page_kasan_tag_reset(struct page *page)
1839 {
1840 	if (kasan_enabled())
1841 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1842 }
1843 
1844 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1845 
page_kasan_tag(const struct page * page)1846 static inline u8 page_kasan_tag(const struct page *page)
1847 {
1848 	return 0xff;
1849 }
1850 
page_kasan_tag_set(struct page * page,u8 tag)1851 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1852 static inline void page_kasan_tag_reset(struct page *page) { }
1853 
1854 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1855 
page_zone(const struct page * page)1856 static inline struct zone *page_zone(const struct page *page)
1857 {
1858 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1859 }
1860 
page_pgdat(const struct page * page)1861 static inline pg_data_t *page_pgdat(const struct page *page)
1862 {
1863 	return NODE_DATA(page_to_nid(page));
1864 }
1865 
folio_zone(const struct folio * folio)1866 static inline struct zone *folio_zone(const struct folio *folio)
1867 {
1868 	return page_zone(&folio->page);
1869 }
1870 
folio_pgdat(const struct folio * folio)1871 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1872 {
1873 	return page_pgdat(&folio->page);
1874 }
1875 
1876 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1877 static inline void set_page_section(struct page *page, unsigned long section)
1878 {
1879 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1880 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1881 }
1882 
page_to_section(const struct page * page)1883 static inline unsigned long page_to_section(const struct page *page)
1884 {
1885 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1886 }
1887 #endif
1888 
1889 /**
1890  * folio_pfn - Return the Page Frame Number of a folio.
1891  * @folio: The folio.
1892  *
1893  * A folio may contain multiple pages.  The pages have consecutive
1894  * Page Frame Numbers.
1895  *
1896  * Return: The Page Frame Number of the first page in the folio.
1897  */
folio_pfn(struct folio * folio)1898 static inline unsigned long folio_pfn(struct folio *folio)
1899 {
1900 	return page_to_pfn(&folio->page);
1901 }
1902 
pfn_folio(unsigned long pfn)1903 static inline struct folio *pfn_folio(unsigned long pfn)
1904 {
1905 	return page_folio(pfn_to_page(pfn));
1906 }
1907 
1908 /**
1909  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1910  * @folio: The folio.
1911  *
1912  * This function checks if a folio has been pinned via a call to
1913  * a function in the pin_user_pages() family.
1914  *
1915  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1916  * because it means "definitely not pinned for DMA", but true means "probably
1917  * pinned for DMA, but possibly a false positive due to having at least
1918  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1919  *
1920  * False positives are OK, because: a) it's unlikely for a folio to
1921  * get that many refcounts, and b) all the callers of this routine are
1922  * expected to be able to deal gracefully with a false positive.
1923  *
1924  * For large folios, the result will be exactly correct. That's because
1925  * we have more tracking data available: the _pincount field is used
1926  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1927  *
1928  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1929  *
1930  * Return: True, if it is likely that the folio has been "dma-pinned".
1931  * False, if the folio is definitely not dma-pinned.
1932  */
folio_maybe_dma_pinned(struct folio * folio)1933 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1934 {
1935 	if (folio_test_large(folio))
1936 		return atomic_read(&folio->_pincount) > 0;
1937 
1938 	/*
1939 	 * folio_ref_count() is signed. If that refcount overflows, then
1940 	 * folio_ref_count() returns a negative value, and callers will avoid
1941 	 * further incrementing the refcount.
1942 	 *
1943 	 * Here, for that overflow case, use the sign bit to count a little
1944 	 * bit higher via unsigned math, and thus still get an accurate result.
1945 	 */
1946 	return ((unsigned int)folio_ref_count(folio)) >=
1947 		GUP_PIN_COUNTING_BIAS;
1948 }
1949 
1950 /*
1951  * This should most likely only be called during fork() to see whether we
1952  * should break the cow immediately for an anon page on the src mm.
1953  *
1954  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1955  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1956 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1957 					  struct folio *folio)
1958 {
1959 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1960 
1961 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1962 		return false;
1963 
1964 	return folio_maybe_dma_pinned(folio);
1965 }
1966 
1967 /**
1968  * is_zero_page - Query if a page is a zero page
1969  * @page: The page to query
1970  *
1971  * This returns true if @page is one of the permanent zero pages.
1972  */
is_zero_page(const struct page * page)1973 static inline bool is_zero_page(const struct page *page)
1974 {
1975 	return is_zero_pfn(page_to_pfn(page));
1976 }
1977 
1978 /**
1979  * is_zero_folio - Query if a folio is a zero page
1980  * @folio: The folio to query
1981  *
1982  * This returns true if @folio is one of the permanent zero pages.
1983  */
is_zero_folio(const struct folio * folio)1984 static inline bool is_zero_folio(const struct folio *folio)
1985 {
1986 	return is_zero_page(&folio->page);
1987 }
1988 
1989 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1990 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)1991 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1992 {
1993 #ifdef CONFIG_CMA
1994 	int mt = folio_migratetype(folio);
1995 
1996 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1997 		return false;
1998 #endif
1999 	/* The zero page can be "pinned" but gets special handling. */
2000 	if (is_zero_folio(folio))
2001 		return true;
2002 
2003 	/* Coherent device memory must always allow eviction. */
2004 	if (folio_is_device_coherent(folio))
2005 		return false;
2006 
2007 	/* Otherwise, non-movable zone folios can be pinned. */
2008 	return !folio_is_zone_movable(folio);
2009 
2010 }
2011 #else
folio_is_longterm_pinnable(struct folio * folio)2012 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2013 {
2014 	return true;
2015 }
2016 #endif
2017 
set_page_zone(struct page * page,enum zone_type zone)2018 static inline void set_page_zone(struct page *page, enum zone_type zone)
2019 {
2020 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2021 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2022 }
2023 
set_page_node(struct page * page,unsigned long node)2024 static inline void set_page_node(struct page *page, unsigned long node)
2025 {
2026 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2027 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2028 }
2029 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2030 static inline void set_page_links(struct page *page, enum zone_type zone,
2031 	unsigned long node, unsigned long pfn)
2032 {
2033 	set_page_zone(page, zone);
2034 	set_page_node(page, node);
2035 #ifdef SECTION_IN_PAGE_FLAGS
2036 	set_page_section(page, pfn_to_section_nr(pfn));
2037 #endif
2038 }
2039 
2040 /**
2041  * folio_nr_pages - The number of pages in the folio.
2042  * @folio: The folio.
2043  *
2044  * Return: A positive power of two.
2045  */
folio_nr_pages(const struct folio * folio)2046 static inline long folio_nr_pages(const struct folio *folio)
2047 {
2048 	if (!folio_test_large(folio))
2049 		return 1;
2050 #ifdef CONFIG_64BIT
2051 	return folio->_folio_nr_pages;
2052 #else
2053 	return 1L << (folio->_flags_1 & 0xff);
2054 #endif
2055 }
2056 
2057 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2058 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2059 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2060 #else
2061 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2062 #endif
2063 
2064 /*
2065  * compound_nr() returns the number of pages in this potentially compound
2066  * page.  compound_nr() can be called on a tail page, and is defined to
2067  * return 1 in that case.
2068  */
compound_nr(struct page * page)2069 static inline unsigned long compound_nr(struct page *page)
2070 {
2071 	struct folio *folio = (struct folio *)page;
2072 
2073 	if (!test_bit(PG_head, &folio->flags))
2074 		return 1;
2075 #ifdef CONFIG_64BIT
2076 	return folio->_folio_nr_pages;
2077 #else
2078 	return 1L << (folio->_flags_1 & 0xff);
2079 #endif
2080 }
2081 
2082 /**
2083  * thp_nr_pages - The number of regular pages in this huge page.
2084  * @page: The head page of a huge page.
2085  */
thp_nr_pages(struct page * page)2086 static inline int thp_nr_pages(struct page *page)
2087 {
2088 	return folio_nr_pages((struct folio *)page);
2089 }
2090 
2091 /**
2092  * folio_next - Move to the next physical folio.
2093  * @folio: The folio we're currently operating on.
2094  *
2095  * If you have physically contiguous memory which may span more than
2096  * one folio (eg a &struct bio_vec), use this function to move from one
2097  * folio to the next.  Do not use it if the memory is only virtually
2098  * contiguous as the folios are almost certainly not adjacent to each
2099  * other.  This is the folio equivalent to writing ``page++``.
2100  *
2101  * Context: We assume that the folios are refcounted and/or locked at a
2102  * higher level and do not adjust the reference counts.
2103  * Return: The next struct folio.
2104  */
folio_next(struct folio * folio)2105 static inline struct folio *folio_next(struct folio *folio)
2106 {
2107 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2108 }
2109 
2110 /**
2111  * folio_shift - The size of the memory described by this folio.
2112  * @folio: The folio.
2113  *
2114  * A folio represents a number of bytes which is a power-of-two in size.
2115  * This function tells you which power-of-two the folio is.  See also
2116  * folio_size() and folio_order().
2117  *
2118  * Context: The caller should have a reference on the folio to prevent
2119  * it from being split.  It is not necessary for the folio to be locked.
2120  * Return: The base-2 logarithm of the size of this folio.
2121  */
folio_shift(const struct folio * folio)2122 static inline unsigned int folio_shift(const struct folio *folio)
2123 {
2124 	return PAGE_SHIFT + folio_order(folio);
2125 }
2126 
2127 /**
2128  * folio_size - The number of bytes in a folio.
2129  * @folio: The folio.
2130  *
2131  * Context: The caller should have a reference on the folio to prevent
2132  * it from being split.  It is not necessary for the folio to be locked.
2133  * Return: The number of bytes in this folio.
2134  */
folio_size(const struct folio * folio)2135 static inline size_t folio_size(const struct folio *folio)
2136 {
2137 	return PAGE_SIZE << folio_order(folio);
2138 }
2139 
2140 /**
2141  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2142  *				tables of more than one MM
2143  * @folio: The folio.
2144  *
2145  * This function checks if the folio is currently mapped into more than one
2146  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2147  * ("mapped exclusively").
2148  *
2149  * For KSM folios, this function also returns "mapped shared" when a folio is
2150  * mapped multiple times into the same MM, because the individual page mappings
2151  * are independent.
2152  *
2153  * As precise information is not easily available for all folios, this function
2154  * estimates the number of MMs ("sharers") that are currently mapping a folio
2155  * using the number of times the first page of the folio is currently mapped
2156  * into page tables.
2157  *
2158  * For small anonymous folios and anonymous hugetlb folios, the return
2159  * value will be exactly correct: non-KSM folios can only be mapped at most once
2160  * into an MM, and they cannot be partially mapped. KSM folios are
2161  * considered shared even if mapped multiple times into the same MM.
2162  *
2163  * For other folios, the result can be fuzzy:
2164  *    #. For partially-mappable large folios (THP), the return value can wrongly
2165  *       indicate "mapped exclusively" (false negative) when the folio is
2166  *       only partially mapped into at least one MM.
2167  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2168  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2169  *       cover the same file range.
2170  *
2171  * Further, this function only considers current page table mappings that
2172  * are tracked using the folio mapcount(s).
2173  *
2174  * This function does not consider:
2175  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2176  *       pagecache, temporary unmapping for migration).
2177  *    #. If the folio is mapped differently (VM_PFNMAP).
2178  *    #. If hugetlb page table sharing applies. Callers might want to check
2179  *       hugetlb_pmd_shared().
2180  *
2181  * Return: Whether the folio is estimated to be mapped into more than one MM.
2182  */
folio_likely_mapped_shared(struct folio * folio)2183 static inline bool folio_likely_mapped_shared(struct folio *folio)
2184 {
2185 	int mapcount = folio_mapcount(folio);
2186 
2187 	/* Only partially-mappable folios require more care. */
2188 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2189 		return mapcount > 1;
2190 
2191 	/* A single mapping implies "mapped exclusively". */
2192 	if (mapcount <= 1)
2193 		return false;
2194 
2195 	/* If any page is mapped more than once we treat it "mapped shared". */
2196 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2197 		return true;
2198 
2199 	/* Let's guess based on the first subpage. */
2200 	return atomic_read(&folio->_mapcount) > 0;
2201 }
2202 
2203 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2204 static inline int arch_make_folio_accessible(struct folio *folio)
2205 {
2206 	return 0;
2207 }
2208 #endif
2209 
2210 /*
2211  * Some inline functions in vmstat.h depend on page_zone()
2212  */
2213 #include <linux/vmstat.h>
2214 
2215 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2216 #define HASHED_PAGE_VIRTUAL
2217 #endif
2218 
2219 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2220 static inline void *page_address(const struct page *page)
2221 {
2222 	return page->virtual;
2223 }
set_page_address(struct page * page,void * address)2224 static inline void set_page_address(struct page *page, void *address)
2225 {
2226 	page->virtual = address;
2227 }
2228 #define page_address_init()  do { } while(0)
2229 #endif
2230 
2231 #if defined(HASHED_PAGE_VIRTUAL)
2232 void *page_address(const struct page *page);
2233 void set_page_address(struct page *page, void *virtual);
2234 void page_address_init(void);
2235 #endif
2236 
lowmem_page_address(const struct page * page)2237 static __always_inline void *lowmem_page_address(const struct page *page)
2238 {
2239 	return page_to_virt(page);
2240 }
2241 
2242 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2243 #define page_address(page) lowmem_page_address(page)
2244 #define set_page_address(page, address)  do { } while(0)
2245 #define page_address_init()  do { } while(0)
2246 #endif
2247 
folio_address(const struct folio * folio)2248 static inline void *folio_address(const struct folio *folio)
2249 {
2250 	return page_address(&folio->page);
2251 }
2252 
2253 /*
2254  * Return true only if the page has been allocated with
2255  * ALLOC_NO_WATERMARKS and the low watermark was not
2256  * met implying that the system is under some pressure.
2257  */
page_is_pfmemalloc(const struct page * page)2258 static inline bool page_is_pfmemalloc(const struct page *page)
2259 {
2260 	/*
2261 	 * lru.next has bit 1 set if the page is allocated from the
2262 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2263 	 * they do not need to preserve that information.
2264 	 */
2265 	return (uintptr_t)page->lru.next & BIT(1);
2266 }
2267 
2268 /*
2269  * Return true only if the folio has been allocated with
2270  * ALLOC_NO_WATERMARKS and the low watermark was not
2271  * met implying that the system is under some pressure.
2272  */
folio_is_pfmemalloc(const struct folio * folio)2273 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2274 {
2275 	/*
2276 	 * lru.next has bit 1 set if the page is allocated from the
2277 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2278 	 * they do not need to preserve that information.
2279 	 */
2280 	return (uintptr_t)folio->lru.next & BIT(1);
2281 }
2282 
2283 /*
2284  * Only to be called by the page allocator on a freshly allocated
2285  * page.
2286  */
set_page_pfmemalloc(struct page * page)2287 static inline void set_page_pfmemalloc(struct page *page)
2288 {
2289 	page->lru.next = (void *)BIT(1);
2290 }
2291 
clear_page_pfmemalloc(struct page * page)2292 static inline void clear_page_pfmemalloc(struct page *page)
2293 {
2294 	page->lru.next = NULL;
2295 }
2296 
2297 /*
2298  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2299  */
2300 extern void pagefault_out_of_memory(void);
2301 
2302 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2303 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2304 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2305 
2306 /*
2307  * Parameter block passed down to zap_pte_range in exceptional cases.
2308  */
2309 struct zap_details {
2310 	struct folio *single_folio;	/* Locked folio to be unmapped */
2311 	bool even_cows;			/* Zap COWed private pages too? */
2312 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2313 };
2314 
2315 /*
2316  * Whether to drop the pte markers, for example, the uffd-wp information for
2317  * file-backed memory.  This should only be specified when we will completely
2318  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2319  * default, the flag is not set.
2320  */
2321 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2322 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2323 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2324 
2325 #ifdef CONFIG_SCHED_MM_CID
2326 void sched_mm_cid_before_execve(struct task_struct *t);
2327 void sched_mm_cid_after_execve(struct task_struct *t);
2328 void sched_mm_cid_fork(struct task_struct *t);
2329 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2330 static inline int task_mm_cid(struct task_struct *t)
2331 {
2332 	return t->mm_cid;
2333 }
2334 #else
sched_mm_cid_before_execve(struct task_struct * t)2335 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2336 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2337 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2338 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2339 static inline int task_mm_cid(struct task_struct *t)
2340 {
2341 	/*
2342 	 * Use the processor id as a fall-back when the mm cid feature is
2343 	 * disabled. This provides functional per-cpu data structure accesses
2344 	 * in user-space, althrough it won't provide the memory usage benefits.
2345 	 */
2346 	return raw_smp_processor_id();
2347 }
2348 #endif
2349 
2350 #ifdef CONFIG_MMU
2351 extern bool can_do_mlock(void);
2352 #else
can_do_mlock(void)2353 static inline bool can_do_mlock(void) { return false; }
2354 #endif
2355 extern int user_shm_lock(size_t, struct ucounts *);
2356 extern void user_shm_unlock(size_t, struct ucounts *);
2357 
2358 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2359 			     pte_t pte);
2360 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2361 			     pte_t pte);
2362 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2363 				  unsigned long addr, pmd_t pmd);
2364 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2365 				pmd_t pmd);
2366 
2367 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2368 		  unsigned long size);
2369 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2370 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2371 static inline void zap_vma_pages(struct vm_area_struct *vma)
2372 {
2373 	zap_page_range_single(vma, vma->vm_start,
2374 			      vma->vm_end - vma->vm_start, NULL);
2375 }
2376 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2377 		struct vm_area_struct *start_vma, unsigned long start,
2378 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2379 
2380 struct mmu_notifier_range;
2381 
2382 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2383 		unsigned long end, unsigned long floor, unsigned long ceiling);
2384 int
2385 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2386 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2387 			void *buf, int len, int write);
2388 
2389 struct follow_pfnmap_args {
2390 	/**
2391 	 * Inputs:
2392 	 * @vma: Pointer to @vm_area_struct struct
2393 	 * @address: the virtual address to walk
2394 	 */
2395 	struct vm_area_struct *vma;
2396 	unsigned long address;
2397 	/**
2398 	 * Internals:
2399 	 *
2400 	 * The caller shouldn't touch any of these.
2401 	 */
2402 	spinlock_t *lock;
2403 	pte_t *ptep;
2404 	/**
2405 	 * Outputs:
2406 	 *
2407 	 * @pfn: the PFN of the address
2408 	 * @pgprot: the pgprot_t of the mapping
2409 	 * @writable: whether the mapping is writable
2410 	 * @special: whether the mapping is a special mapping (real PFN maps)
2411 	 */
2412 	unsigned long pfn;
2413 	pgprot_t pgprot;
2414 	bool writable;
2415 	bool special;
2416 };
2417 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2418 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2419 
2420 extern void truncate_pagecache(struct inode *inode, loff_t new);
2421 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2422 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2423 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2424 int generic_error_remove_folio(struct address_space *mapping,
2425 		struct folio *folio);
2426 
2427 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2428 		unsigned long address, struct pt_regs *regs);
2429 
2430 #ifdef CONFIG_MMU
2431 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2432 				  unsigned long address, unsigned int flags,
2433 				  struct pt_regs *regs);
2434 extern int fixup_user_fault(struct mm_struct *mm,
2435 			    unsigned long address, unsigned int fault_flags,
2436 			    bool *unlocked);
2437 void unmap_mapping_pages(struct address_space *mapping,
2438 		pgoff_t start, pgoff_t nr, bool even_cows);
2439 void unmap_mapping_range(struct address_space *mapping,
2440 		loff_t const holebegin, loff_t const holelen, int even_cows);
2441 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2442 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2443 					 unsigned long address, unsigned int flags,
2444 					 struct pt_regs *regs)
2445 {
2446 	/* should never happen if there's no MMU */
2447 	BUG();
2448 	return VM_FAULT_SIGBUS;
2449 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2450 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2451 		unsigned int fault_flags, bool *unlocked)
2452 {
2453 	/* should never happen if there's no MMU */
2454 	BUG();
2455 	return -EFAULT;
2456 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2457 static inline void unmap_mapping_pages(struct address_space *mapping,
2458 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2459 static inline void unmap_mapping_range(struct address_space *mapping,
2460 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2461 #endif
2462 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2463 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2464 		loff_t const holebegin, loff_t const holelen)
2465 {
2466 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2467 }
2468 
2469 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2470 						unsigned long addr);
2471 
2472 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2473 		void *buf, int len, unsigned int gup_flags);
2474 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2475 		void *buf, int len, unsigned int gup_flags);
2476 
2477 long get_user_pages_remote(struct mm_struct *mm,
2478 			   unsigned long start, unsigned long nr_pages,
2479 			   unsigned int gup_flags, struct page **pages,
2480 			   int *locked);
2481 long pin_user_pages_remote(struct mm_struct *mm,
2482 			   unsigned long start, unsigned long nr_pages,
2483 			   unsigned int gup_flags, struct page **pages,
2484 			   int *locked);
2485 
2486 /*
2487  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2488  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2489 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2490 						    unsigned long addr,
2491 						    int gup_flags,
2492 						    struct vm_area_struct **vmap)
2493 {
2494 	struct page *page;
2495 	struct vm_area_struct *vma;
2496 	int got;
2497 
2498 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2499 		return ERR_PTR(-EINVAL);
2500 
2501 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2502 
2503 	if (got < 0)
2504 		return ERR_PTR(got);
2505 
2506 	vma = vma_lookup(mm, addr);
2507 	if (WARN_ON_ONCE(!vma)) {
2508 		put_page(page);
2509 		return ERR_PTR(-EINVAL);
2510 	}
2511 
2512 	*vmap = vma;
2513 	return page;
2514 }
2515 
2516 long get_user_pages(unsigned long start, unsigned long nr_pages,
2517 		    unsigned int gup_flags, struct page **pages);
2518 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2519 		    unsigned int gup_flags, struct page **pages);
2520 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2521 		    struct page **pages, unsigned int gup_flags);
2522 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2523 		    struct page **pages, unsigned int gup_flags);
2524 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2525 		      struct folio **folios, unsigned int max_folios,
2526 		      pgoff_t *offset);
2527 
2528 int get_user_pages_fast(unsigned long start, int nr_pages,
2529 			unsigned int gup_flags, struct page **pages);
2530 int pin_user_pages_fast(unsigned long start, int nr_pages,
2531 			unsigned int gup_flags, struct page **pages);
2532 void folio_add_pin(struct folio *folio);
2533 
2534 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2535 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2536 			struct task_struct *task, bool bypass_rlim);
2537 
2538 struct kvec;
2539 struct page *get_dump_page(unsigned long addr);
2540 
2541 bool folio_mark_dirty(struct folio *folio);
2542 bool set_page_dirty(struct page *page);
2543 int set_page_dirty_lock(struct page *page);
2544 
2545 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2546 
2547 /*
2548  * Flags used by change_protection().  For now we make it a bitmap so
2549  * that we can pass in multiple flags just like parameters.  However
2550  * for now all the callers are only use one of the flags at the same
2551  * time.
2552  */
2553 /*
2554  * Whether we should manually check if we can map individual PTEs writable,
2555  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2556  * PTEs automatically in a writable mapping.
2557  */
2558 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2559 /* Whether this protection change is for NUMA hints */
2560 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2561 /* Whether this change is for write protecting */
2562 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2563 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2564 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2565 					    MM_CP_UFFD_WP_RESOLVE)
2566 
2567 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2568 			     pte_t pte);
2569 extern long change_protection(struct mmu_gather *tlb,
2570 			      struct vm_area_struct *vma, unsigned long start,
2571 			      unsigned long end, unsigned long cp_flags);
2572 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2573 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2574 	  unsigned long start, unsigned long end, unsigned long newflags);
2575 
2576 /*
2577  * doesn't attempt to fault and will return short.
2578  */
2579 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2580 			     unsigned int gup_flags, struct page **pages);
2581 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2582 static inline bool get_user_page_fast_only(unsigned long addr,
2583 			unsigned int gup_flags, struct page **pagep)
2584 {
2585 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2586 }
2587 /*
2588  * per-process(per-mm_struct) statistics.
2589  */
get_mm_counter(struct mm_struct * mm,int member)2590 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2591 {
2592 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2593 }
2594 
2595 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2596 
add_mm_counter(struct mm_struct * mm,int member,long value)2597 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2598 {
2599 	percpu_counter_add(&mm->rss_stat[member], value);
2600 
2601 	mm_trace_rss_stat(mm, member);
2602 }
2603 
inc_mm_counter(struct mm_struct * mm,int member)2604 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2605 {
2606 	percpu_counter_inc(&mm->rss_stat[member]);
2607 
2608 	mm_trace_rss_stat(mm, member);
2609 }
2610 
dec_mm_counter(struct mm_struct * mm,int member)2611 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2612 {
2613 	percpu_counter_dec(&mm->rss_stat[member]);
2614 
2615 	mm_trace_rss_stat(mm, member);
2616 }
2617 
2618 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2619 static inline int mm_counter_file(struct folio *folio)
2620 {
2621 	if (folio_test_swapbacked(folio))
2622 		return MM_SHMEMPAGES;
2623 	return MM_FILEPAGES;
2624 }
2625 
mm_counter(struct folio * folio)2626 static inline int mm_counter(struct folio *folio)
2627 {
2628 	if (folio_test_anon(folio))
2629 		return MM_ANONPAGES;
2630 	return mm_counter_file(folio);
2631 }
2632 
get_mm_rss(struct mm_struct * mm)2633 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2634 {
2635 	return get_mm_counter(mm, MM_FILEPAGES) +
2636 		get_mm_counter(mm, MM_ANONPAGES) +
2637 		get_mm_counter(mm, MM_SHMEMPAGES);
2638 }
2639 
get_mm_hiwater_rss(struct mm_struct * mm)2640 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2641 {
2642 	return max(mm->hiwater_rss, get_mm_rss(mm));
2643 }
2644 
get_mm_hiwater_vm(struct mm_struct * mm)2645 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2646 {
2647 	return max(mm->hiwater_vm, mm->total_vm);
2648 }
2649 
update_hiwater_rss(struct mm_struct * mm)2650 static inline void update_hiwater_rss(struct mm_struct *mm)
2651 {
2652 	unsigned long _rss = get_mm_rss(mm);
2653 
2654 	if ((mm)->hiwater_rss < _rss)
2655 		(mm)->hiwater_rss = _rss;
2656 }
2657 
update_hiwater_vm(struct mm_struct * mm)2658 static inline void update_hiwater_vm(struct mm_struct *mm)
2659 {
2660 	if (mm->hiwater_vm < mm->total_vm)
2661 		mm->hiwater_vm = mm->total_vm;
2662 }
2663 
reset_mm_hiwater_rss(struct mm_struct * mm)2664 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2665 {
2666 	mm->hiwater_rss = get_mm_rss(mm);
2667 }
2668 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2669 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2670 					 struct mm_struct *mm)
2671 {
2672 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2673 
2674 	if (*maxrss < hiwater_rss)
2675 		*maxrss = hiwater_rss;
2676 }
2677 
2678 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2679 static inline int pte_special(pte_t pte)
2680 {
2681 	return 0;
2682 }
2683 
pte_mkspecial(pte_t pte)2684 static inline pte_t pte_mkspecial(pte_t pte)
2685 {
2686 	return pte;
2687 }
2688 #endif
2689 
2690 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2691 static inline bool pmd_special(pmd_t pmd)
2692 {
2693 	return false;
2694 }
2695 
pmd_mkspecial(pmd_t pmd)2696 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2697 {
2698 	return pmd;
2699 }
2700 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2701 
2702 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2703 static inline bool pud_special(pud_t pud)
2704 {
2705 	return false;
2706 }
2707 
pud_mkspecial(pud_t pud)2708 static inline pud_t pud_mkspecial(pud_t pud)
2709 {
2710 	return pud;
2711 }
2712 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2713 
2714 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2715 static inline int pte_devmap(pte_t pte)
2716 {
2717 	return 0;
2718 }
2719 #endif
2720 
2721 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2722 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2723 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2724 				    spinlock_t **ptl)
2725 {
2726 	pte_t *ptep;
2727 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2728 	return ptep;
2729 }
2730 
2731 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2732 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2733 						unsigned long address)
2734 {
2735 	return 0;
2736 }
2737 #else
2738 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2739 #endif
2740 
2741 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2742 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2743 						unsigned long address)
2744 {
2745 	return 0;
2746 }
mm_inc_nr_puds(struct mm_struct * mm)2747 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2748 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2749 
2750 #else
2751 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2752 
mm_inc_nr_puds(struct mm_struct * mm)2753 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2754 {
2755 	if (mm_pud_folded(mm))
2756 		return;
2757 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2758 }
2759 
mm_dec_nr_puds(struct mm_struct * mm)2760 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2761 {
2762 	if (mm_pud_folded(mm))
2763 		return;
2764 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2765 }
2766 #endif
2767 
2768 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2769 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2770 						unsigned long address)
2771 {
2772 	return 0;
2773 }
2774 
mm_inc_nr_pmds(struct mm_struct * mm)2775 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2776 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2777 
2778 #else
2779 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2780 
mm_inc_nr_pmds(struct mm_struct * mm)2781 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2782 {
2783 	if (mm_pmd_folded(mm))
2784 		return;
2785 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2786 }
2787 
mm_dec_nr_pmds(struct mm_struct * mm)2788 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2789 {
2790 	if (mm_pmd_folded(mm))
2791 		return;
2792 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2793 }
2794 #endif
2795 
2796 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2797 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2798 {
2799 	atomic_long_set(&mm->pgtables_bytes, 0);
2800 }
2801 
mm_pgtables_bytes(const struct mm_struct * mm)2802 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2803 {
2804 	return atomic_long_read(&mm->pgtables_bytes);
2805 }
2806 
mm_inc_nr_ptes(struct mm_struct * mm)2807 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2808 {
2809 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2810 }
2811 
mm_dec_nr_ptes(struct mm_struct * mm)2812 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2813 {
2814 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2815 }
2816 #else
2817 
mm_pgtables_bytes_init(struct mm_struct * mm)2818 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2819 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2820 {
2821 	return 0;
2822 }
2823 
mm_inc_nr_ptes(struct mm_struct * mm)2824 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2825 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2826 #endif
2827 
2828 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2829 int __pte_alloc_kernel(pmd_t *pmd);
2830 
2831 #if defined(CONFIG_MMU)
2832 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2833 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2834 		unsigned long address)
2835 {
2836 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2837 		NULL : p4d_offset(pgd, address);
2838 }
2839 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2840 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2841 		unsigned long address)
2842 {
2843 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2844 		NULL : pud_offset(p4d, address);
2845 }
2846 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2847 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2848 {
2849 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2850 		NULL: pmd_offset(pud, address);
2851 }
2852 #endif /* CONFIG_MMU */
2853 
virt_to_ptdesc(const void * x)2854 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2855 {
2856 	return page_ptdesc(virt_to_page(x));
2857 }
2858 
ptdesc_to_virt(const struct ptdesc * pt)2859 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2860 {
2861 	return page_to_virt(ptdesc_page(pt));
2862 }
2863 
ptdesc_address(const struct ptdesc * pt)2864 static inline void *ptdesc_address(const struct ptdesc *pt)
2865 {
2866 	return folio_address(ptdesc_folio(pt));
2867 }
2868 
pagetable_is_reserved(struct ptdesc * pt)2869 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2870 {
2871 	return folio_test_reserved(ptdesc_folio(pt));
2872 }
2873 
2874 /**
2875  * pagetable_alloc - Allocate pagetables
2876  * @gfp:    GFP flags
2877  * @order:  desired pagetable order
2878  *
2879  * pagetable_alloc allocates memory for page tables as well as a page table
2880  * descriptor to describe that memory.
2881  *
2882  * Return: The ptdesc describing the allocated page tables.
2883  */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2884 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2885 {
2886 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2887 
2888 	return page_ptdesc(page);
2889 }
2890 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2891 
2892 /**
2893  * pagetable_free - Free pagetables
2894  * @pt:	The page table descriptor
2895  *
2896  * pagetable_free frees the memory of all page tables described by a page
2897  * table descriptor and the memory for the descriptor itself.
2898  */
pagetable_free(struct ptdesc * pt)2899 static inline void pagetable_free(struct ptdesc *pt)
2900 {
2901 	struct page *page = ptdesc_page(pt);
2902 
2903 	__free_pages(page, compound_order(page));
2904 }
2905 
2906 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2907 #if ALLOC_SPLIT_PTLOCKS
2908 void __init ptlock_cache_init(void);
2909 bool ptlock_alloc(struct ptdesc *ptdesc);
2910 void ptlock_free(struct ptdesc *ptdesc);
2911 
ptlock_ptr(struct ptdesc * ptdesc)2912 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2913 {
2914 	return ptdesc->ptl;
2915 }
2916 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2917 static inline void ptlock_cache_init(void)
2918 {
2919 }
2920 
ptlock_alloc(struct ptdesc * ptdesc)2921 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2922 {
2923 	return true;
2924 }
2925 
ptlock_free(struct ptdesc * ptdesc)2926 static inline void ptlock_free(struct ptdesc *ptdesc)
2927 {
2928 }
2929 
ptlock_ptr(struct ptdesc * ptdesc)2930 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2931 {
2932 	return &ptdesc->ptl;
2933 }
2934 #endif /* ALLOC_SPLIT_PTLOCKS */
2935 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2937 {
2938 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2939 }
2940 
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2941 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2942 {
2943 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2944 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2945 	return ptlock_ptr(virt_to_ptdesc(pte));
2946 }
2947 
ptlock_init(struct ptdesc * ptdesc)2948 static inline bool ptlock_init(struct ptdesc *ptdesc)
2949 {
2950 	/*
2951 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2952 	 * with 0. Make sure nobody took it in use in between.
2953 	 *
2954 	 * It can happen if arch try to use slab for page table allocation:
2955 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2956 	 */
2957 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2958 	if (!ptlock_alloc(ptdesc))
2959 		return false;
2960 	spin_lock_init(ptlock_ptr(ptdesc));
2961 	return true;
2962 }
2963 
2964 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2965 /*
2966  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2967  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2968 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2969 {
2970 	return &mm->page_table_lock;
2971 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2972 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2973 {
2974 	return &mm->page_table_lock;
2975 }
ptlock_cache_init(void)2976 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2977 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2978 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2979 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2980 
pagetable_pte_ctor(struct ptdesc * ptdesc)2981 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2982 {
2983 	struct folio *folio = ptdesc_folio(ptdesc);
2984 
2985 	if (!ptlock_init(ptdesc))
2986 		return false;
2987 	__folio_set_pgtable(folio);
2988 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2989 	return true;
2990 }
2991 
pagetable_pte_dtor(struct ptdesc * ptdesc)2992 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2993 {
2994 	struct folio *folio = ptdesc_folio(ptdesc);
2995 
2996 	ptlock_free(ptdesc);
2997 	__folio_clear_pgtable(folio);
2998 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2999 }
3000 
3001 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
pte_offset_map(pmd_t * pmd,unsigned long addr)3002 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3003 {
3004 	return __pte_offset_map(pmd, addr, NULL);
3005 }
3006 
3007 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3008 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3009 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3010 			unsigned long addr, spinlock_t **ptlp)
3011 {
3012 	pte_t *pte;
3013 
3014 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3015 	return pte;
3016 }
3017 
3018 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3019 			unsigned long addr, spinlock_t **ptlp);
3020 
3021 #define pte_unmap_unlock(pte, ptl)	do {		\
3022 	spin_unlock(ptl);				\
3023 	pte_unmap(pte);					\
3024 } while (0)
3025 
3026 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3027 
3028 #define pte_alloc_map(mm, pmd, address)			\
3029 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3030 
3031 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3032 	(pte_alloc(mm, pmd) ?			\
3033 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3034 
3035 #define pte_alloc_kernel(pmd, address)			\
3036 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3037 		NULL: pte_offset_kernel(pmd, address))
3038 
3039 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3040 
pmd_pgtable_page(pmd_t * pmd)3041 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3042 {
3043 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3044 	return virt_to_page((void *)((unsigned long) pmd & mask));
3045 }
3046 
pmd_ptdesc(pmd_t * pmd)3047 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3048 {
3049 	return page_ptdesc(pmd_pgtable_page(pmd));
3050 }
3051 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3052 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3053 {
3054 	return ptlock_ptr(pmd_ptdesc(pmd));
3055 }
3056 
pmd_ptlock_init(struct ptdesc * ptdesc)3057 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3058 {
3059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3060 	ptdesc->pmd_huge_pte = NULL;
3061 #endif
3062 	return ptlock_init(ptdesc);
3063 }
3064 
pmd_ptlock_free(struct ptdesc * ptdesc)3065 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3066 {
3067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3068 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3069 #endif
3070 	ptlock_free(ptdesc);
3071 }
3072 
3073 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3074 
3075 #else
3076 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3077 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3078 {
3079 	return &mm->page_table_lock;
3080 }
3081 
pmd_ptlock_init(struct ptdesc * ptdesc)3082 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
pmd_ptlock_free(struct ptdesc * ptdesc)3083 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3084 
3085 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3086 
3087 #endif
3088 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3089 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3090 {
3091 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3092 	spin_lock(ptl);
3093 	return ptl;
3094 }
3095 
pagetable_pmd_ctor(struct ptdesc * ptdesc)3096 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3097 {
3098 	struct folio *folio = ptdesc_folio(ptdesc);
3099 
3100 	if (!pmd_ptlock_init(ptdesc))
3101 		return false;
3102 	__folio_set_pgtable(folio);
3103 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3104 	return true;
3105 }
3106 
pagetable_pmd_dtor(struct ptdesc * ptdesc)3107 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3108 {
3109 	struct folio *folio = ptdesc_folio(ptdesc);
3110 
3111 	pmd_ptlock_free(ptdesc);
3112 	__folio_clear_pgtable(folio);
3113 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3114 }
3115 
3116 /*
3117  * No scalability reason to split PUD locks yet, but follow the same pattern
3118  * as the PMD locks to make it easier if we decide to.  The VM should not be
3119  * considered ready to switch to split PUD locks yet; there may be places
3120  * which need to be converted from page_table_lock.
3121  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3122 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3123 {
3124 	return &mm->page_table_lock;
3125 }
3126 
pud_lock(struct mm_struct * mm,pud_t * pud)3127 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3128 {
3129 	spinlock_t *ptl = pud_lockptr(mm, pud);
3130 
3131 	spin_lock(ptl);
3132 	return ptl;
3133 }
3134 
pagetable_pud_ctor(struct ptdesc * ptdesc)3135 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3136 {
3137 	struct folio *folio = ptdesc_folio(ptdesc);
3138 
3139 	__folio_set_pgtable(folio);
3140 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3141 }
3142 
pagetable_pud_dtor(struct ptdesc * ptdesc)3143 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3144 {
3145 	struct folio *folio = ptdesc_folio(ptdesc);
3146 
3147 	__folio_clear_pgtable(folio);
3148 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3149 }
3150 
3151 extern void __init pagecache_init(void);
3152 extern void free_initmem(void);
3153 
3154 /*
3155  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3156  * into the buddy system. The freed pages will be poisoned with pattern
3157  * "poison" if it's within range [0, UCHAR_MAX].
3158  * Return pages freed into the buddy system.
3159  */
3160 extern unsigned long free_reserved_area(void *start, void *end,
3161 					int poison, const char *s);
3162 
3163 extern void adjust_managed_page_count(struct page *page, long count);
3164 
3165 extern void reserve_bootmem_region(phys_addr_t start,
3166 				   phys_addr_t end, int nid);
3167 
3168 /* Free the reserved page into the buddy system, so it gets managed. */
3169 void free_reserved_page(struct page *page);
3170 #define free_highmem_page(page) free_reserved_page(page)
3171 
mark_page_reserved(struct page * page)3172 static inline void mark_page_reserved(struct page *page)
3173 {
3174 	SetPageReserved(page);
3175 	adjust_managed_page_count(page, -1);
3176 }
3177 
free_reserved_ptdesc(struct ptdesc * pt)3178 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3179 {
3180 	free_reserved_page(ptdesc_page(pt));
3181 }
3182 
3183 /*
3184  * Default method to free all the __init memory into the buddy system.
3185  * The freed pages will be poisoned with pattern "poison" if it's within
3186  * range [0, UCHAR_MAX].
3187  * Return pages freed into the buddy system.
3188  */
free_initmem_default(int poison)3189 static inline unsigned long free_initmem_default(int poison)
3190 {
3191 	extern char __init_begin[], __init_end[];
3192 
3193 	return free_reserved_area(&__init_begin, &__init_end,
3194 				  poison, "unused kernel image (initmem)");
3195 }
3196 
get_num_physpages(void)3197 static inline unsigned long get_num_physpages(void)
3198 {
3199 	int nid;
3200 	unsigned long phys_pages = 0;
3201 
3202 	for_each_online_node(nid)
3203 		phys_pages += node_present_pages(nid);
3204 
3205 	return phys_pages;
3206 }
3207 
3208 /*
3209  * Using memblock node mappings, an architecture may initialise its
3210  * zones, allocate the backing mem_map and account for memory holes in an
3211  * architecture independent manner.
3212  *
3213  * An architecture is expected to register range of page frames backed by
3214  * physical memory with memblock_add[_node]() before calling
3215  * free_area_init() passing in the PFN each zone ends at. At a basic
3216  * usage, an architecture is expected to do something like
3217  *
3218  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3219  * 							 max_highmem_pfn};
3220  * for_each_valid_physical_page_range()
3221  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3222  * free_area_init(max_zone_pfns);
3223  */
3224 void free_area_init(unsigned long *max_zone_pfn);
3225 unsigned long node_map_pfn_alignment(void);
3226 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3227 						unsigned long end_pfn);
3228 extern void get_pfn_range_for_nid(unsigned int nid,
3229 			unsigned long *start_pfn, unsigned long *end_pfn);
3230 
3231 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3232 static inline int early_pfn_to_nid(unsigned long pfn)
3233 {
3234 	return 0;
3235 }
3236 #else
3237 /* please see mm/page_alloc.c */
3238 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3239 #endif
3240 
3241 extern void mem_init(void);
3242 extern void __init mmap_init(void);
3243 
3244 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3245 static inline void show_mem(void)
3246 {
3247 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3248 }
3249 extern long si_mem_available(void);
3250 extern void si_meminfo(struct sysinfo * val);
3251 extern void si_meminfo_node(struct sysinfo *val, int nid);
3252 
3253 extern __printf(3, 4)
3254 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3255 
3256 extern void setup_per_cpu_pageset(void);
3257 
3258 /* nommu.c */
3259 extern atomic_long_t mmap_pages_allocated;
3260 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3261 
3262 /* interval_tree.c */
3263 void vma_interval_tree_insert(struct vm_area_struct *node,
3264 			      struct rb_root_cached *root);
3265 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3266 				    struct vm_area_struct *prev,
3267 				    struct rb_root_cached *root);
3268 void vma_interval_tree_remove(struct vm_area_struct *node,
3269 			      struct rb_root_cached *root);
3270 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3271 				unsigned long start, unsigned long last);
3272 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3273 				unsigned long start, unsigned long last);
3274 
3275 #define vma_interval_tree_foreach(vma, root, start, last)		\
3276 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3277 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3278 
3279 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3280 				   struct rb_root_cached *root);
3281 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3282 				   struct rb_root_cached *root);
3283 struct anon_vma_chain *
3284 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3285 				  unsigned long start, unsigned long last);
3286 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3287 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3288 #ifdef CONFIG_DEBUG_VM_RB
3289 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3290 #endif
3291 
3292 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3293 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3294 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3295 
3296 /* mmap.c */
3297 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3298 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3299 extern void exit_mmap(struct mm_struct *);
3300 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3301 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3302 static inline int check_data_rlimit(unsigned long rlim,
3303 				    unsigned long new,
3304 				    unsigned long start,
3305 				    unsigned long end_data,
3306 				    unsigned long start_data)
3307 {
3308 	if (rlim < RLIM_INFINITY) {
3309 		if (((new - start) + (end_data - start_data)) > rlim)
3310 			return -ENOSPC;
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 extern int mm_take_all_locks(struct mm_struct *mm);
3317 extern void mm_drop_all_locks(struct mm_struct *mm);
3318 
3319 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3320 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3321 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3322 extern struct file *get_task_exe_file(struct task_struct *task);
3323 
3324 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3325 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3326 
3327 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3328 				   const struct vm_special_mapping *sm);
3329 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3330 				   unsigned long addr, unsigned long len,
3331 				   unsigned long flags,
3332 				   const struct vm_special_mapping *spec);
3333 
3334 unsigned long randomize_stack_top(unsigned long stack_top);
3335 unsigned long randomize_page(unsigned long start, unsigned long range);
3336 
3337 unsigned long
3338 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3339 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3340 
3341 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3342 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3343 		  unsigned long pgoff, unsigned long flags)
3344 {
3345 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3346 }
3347 
3348 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3349 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3350 	struct list_head *uf);
3351 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3352 	unsigned long len, unsigned long prot, unsigned long flags,
3353 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3354 	struct list_head *uf);
3355 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3356 			 unsigned long start, size_t len, struct list_head *uf,
3357 			 bool unlock);
3358 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3359 		    struct mm_struct *mm, unsigned long start,
3360 		    unsigned long end, struct list_head *uf, bool unlock);
3361 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3362 		     struct list_head *uf);
3363 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3364 
3365 #ifdef CONFIG_MMU
3366 extern int __mm_populate(unsigned long addr, unsigned long len,
3367 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3368 static inline void mm_populate(unsigned long addr, unsigned long len)
3369 {
3370 	/* Ignore errors */
3371 	(void) __mm_populate(addr, len, 1);
3372 }
3373 #else
mm_populate(unsigned long addr,unsigned long len)3374 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3375 #endif
3376 
3377 /* This takes the mm semaphore itself */
3378 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3379 extern int vm_munmap(unsigned long, size_t);
3380 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3381         unsigned long, unsigned long,
3382         unsigned long, unsigned long);
3383 
3384 struct vm_unmapped_area_info {
3385 #define VM_UNMAPPED_AREA_TOPDOWN 1
3386 	unsigned long flags;
3387 	unsigned long length;
3388 	unsigned long low_limit;
3389 	unsigned long high_limit;
3390 	unsigned long align_mask;
3391 	unsigned long align_offset;
3392 	unsigned long start_gap;
3393 };
3394 
3395 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3396 
3397 /* truncate.c */
3398 extern void truncate_inode_pages(struct address_space *, loff_t);
3399 extern void truncate_inode_pages_range(struct address_space *,
3400 				       loff_t lstart, loff_t lend);
3401 extern void truncate_inode_pages_final(struct address_space *);
3402 
3403 /* generic vm_area_ops exported for stackable file systems */
3404 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3405 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3406 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3407 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3408 
3409 extern unsigned long stack_guard_gap;
3410 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3411 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3412 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3413 
3414 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3415 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3416 
3417 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3418 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3419 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3420 					     struct vm_area_struct **pprev);
3421 
3422 /*
3423  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3424  * NULL if none.  Assume start_addr < end_addr.
3425  */
3426 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3427 			unsigned long start_addr, unsigned long end_addr);
3428 
3429 /**
3430  * vma_lookup() - Find a VMA at a specific address
3431  * @mm: The process address space.
3432  * @addr: The user address.
3433  *
3434  * Return: The vm_area_struct at the given address, %NULL otherwise.
3435  */
3436 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3437 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3438 {
3439 	return mtree_load(&mm->mm_mt, addr);
3440 }
3441 
stack_guard_start_gap(struct vm_area_struct * vma)3442 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3443 {
3444 	if (vma->vm_flags & VM_GROWSDOWN)
3445 		return stack_guard_gap;
3446 
3447 	/* See reasoning around the VM_SHADOW_STACK definition */
3448 	if (vma->vm_flags & VM_SHADOW_STACK)
3449 		return PAGE_SIZE;
3450 
3451 	return 0;
3452 }
3453 
vm_start_gap(struct vm_area_struct * vma)3454 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3455 {
3456 	unsigned long gap = stack_guard_start_gap(vma);
3457 	unsigned long vm_start = vma->vm_start;
3458 
3459 	vm_start -= gap;
3460 	if (vm_start > vma->vm_start)
3461 		vm_start = 0;
3462 	return vm_start;
3463 }
3464 
vm_end_gap(struct vm_area_struct * vma)3465 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3466 {
3467 	unsigned long vm_end = vma->vm_end;
3468 
3469 	if (vma->vm_flags & VM_GROWSUP) {
3470 		vm_end += stack_guard_gap;
3471 		if (vm_end < vma->vm_end)
3472 			vm_end = -PAGE_SIZE;
3473 	}
3474 	return vm_end;
3475 }
3476 
vma_pages(struct vm_area_struct * vma)3477 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3478 {
3479 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3480 }
3481 
3482 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3483 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3484 				unsigned long vm_start, unsigned long vm_end)
3485 {
3486 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3487 
3488 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3489 		vma = NULL;
3490 
3491 	return vma;
3492 }
3493 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3494 static inline bool range_in_vma(struct vm_area_struct *vma,
3495 				unsigned long start, unsigned long end)
3496 {
3497 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3498 }
3499 
3500 #ifdef CONFIG_MMU
3501 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3502 void vma_set_page_prot(struct vm_area_struct *vma);
3503 #else
vm_get_page_prot(unsigned long vm_flags)3504 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3505 {
3506 	return __pgprot(0);
3507 }
vma_set_page_prot(struct vm_area_struct * vma)3508 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3509 {
3510 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3511 }
3512 #endif
3513 
3514 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3515 
3516 #ifdef CONFIG_NUMA_BALANCING
3517 unsigned long change_prot_numa(struct vm_area_struct *vma,
3518 			unsigned long start, unsigned long end);
3519 #endif
3520 
3521 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3522 		unsigned long addr);
3523 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3524 			unsigned long pfn, unsigned long size, pgprot_t);
3525 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3526 		unsigned long pfn, unsigned long size, pgprot_t prot);
3527 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3528 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3529 			struct page **pages, unsigned long *num);
3530 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3531 				unsigned long num);
3532 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3533 				unsigned long num);
3534 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3535 			unsigned long pfn);
3536 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3537 			unsigned long pfn, pgprot_t pgprot);
3538 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3539 			pfn_t pfn);
3540 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3541 		unsigned long addr, pfn_t pfn);
3542 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3543 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3544 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3545 				unsigned long addr, struct page *page)
3546 {
3547 	int err = vm_insert_page(vma, addr, page);
3548 
3549 	if (err == -ENOMEM)
3550 		return VM_FAULT_OOM;
3551 	if (err < 0 && err != -EBUSY)
3552 		return VM_FAULT_SIGBUS;
3553 
3554 	return VM_FAULT_NOPAGE;
3555 }
3556 
3557 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3558 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3559 				     unsigned long addr, unsigned long pfn,
3560 				     unsigned long size, pgprot_t prot)
3561 {
3562 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3563 }
3564 #endif
3565 
vmf_error(int err)3566 static inline vm_fault_t vmf_error(int err)
3567 {
3568 	if (err == -ENOMEM)
3569 		return VM_FAULT_OOM;
3570 	else if (err == -EHWPOISON)
3571 		return VM_FAULT_HWPOISON;
3572 	return VM_FAULT_SIGBUS;
3573 }
3574 
3575 /*
3576  * Convert errno to return value for ->page_mkwrite() calls.
3577  *
3578  * This should eventually be merged with vmf_error() above, but will need a
3579  * careful audit of all vmf_error() callers.
3580  */
vmf_fs_error(int err)3581 static inline vm_fault_t vmf_fs_error(int err)
3582 {
3583 	if (err == 0)
3584 		return VM_FAULT_LOCKED;
3585 	if (err == -EFAULT || err == -EAGAIN)
3586 		return VM_FAULT_NOPAGE;
3587 	if (err == -ENOMEM)
3588 		return VM_FAULT_OOM;
3589 	/* -ENOSPC, -EDQUOT, -EIO ... */
3590 	return VM_FAULT_SIGBUS;
3591 }
3592 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3593 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3594 {
3595 	if (vm_fault & VM_FAULT_OOM)
3596 		return -ENOMEM;
3597 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3598 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3599 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3600 		return -EFAULT;
3601 	return 0;
3602 }
3603 
3604 /*
3605  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3606  * a (NUMA hinting) fault is required.
3607  */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3608 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3609 					   unsigned int flags)
3610 {
3611 	/*
3612 	 * If callers don't want to honor NUMA hinting faults, no need to
3613 	 * determine if we would actually have to trigger a NUMA hinting fault.
3614 	 */
3615 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3616 		return true;
3617 
3618 	/*
3619 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3620 	 *
3621 	 * Requiring a fault here even for inaccessible VMAs would mean that
3622 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3623 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3624 	 */
3625 	return !vma_is_accessible(vma);
3626 }
3627 
3628 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3629 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3630 			       unsigned long size, pte_fn_t fn, void *data);
3631 extern int apply_to_existing_page_range(struct mm_struct *mm,
3632 				   unsigned long address, unsigned long size,
3633 				   pte_fn_t fn, void *data);
3634 
3635 #ifdef CONFIG_PAGE_POISONING
3636 extern void __kernel_poison_pages(struct page *page, int numpages);
3637 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3638 extern bool _page_poisoning_enabled_early;
3639 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3640 static inline bool page_poisoning_enabled(void)
3641 {
3642 	return _page_poisoning_enabled_early;
3643 }
3644 /*
3645  * For use in fast paths after init_mem_debugging() has run, or when a
3646  * false negative result is not harmful when called too early.
3647  */
page_poisoning_enabled_static(void)3648 static inline bool page_poisoning_enabled_static(void)
3649 {
3650 	return static_branch_unlikely(&_page_poisoning_enabled);
3651 }
kernel_poison_pages(struct page * page,int numpages)3652 static inline void kernel_poison_pages(struct page *page, int numpages)
3653 {
3654 	if (page_poisoning_enabled_static())
3655 		__kernel_poison_pages(page, numpages);
3656 }
kernel_unpoison_pages(struct page * page,int numpages)3657 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3658 {
3659 	if (page_poisoning_enabled_static())
3660 		__kernel_unpoison_pages(page, numpages);
3661 }
3662 #else
page_poisoning_enabled(void)3663 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3664 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3665 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3666 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3667 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3668 #endif
3669 
3670 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3671 static inline bool want_init_on_alloc(gfp_t flags)
3672 {
3673 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3674 				&init_on_alloc))
3675 		return true;
3676 	return flags & __GFP_ZERO;
3677 }
3678 
3679 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3680 static inline bool want_init_on_free(void)
3681 {
3682 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3683 				   &init_on_free);
3684 }
3685 
3686 extern bool _debug_pagealloc_enabled_early;
3687 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3688 
debug_pagealloc_enabled(void)3689 static inline bool debug_pagealloc_enabled(void)
3690 {
3691 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3692 		_debug_pagealloc_enabled_early;
3693 }
3694 
3695 /*
3696  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3697  * or when a false negative result is not harmful when called too early.
3698  */
debug_pagealloc_enabled_static(void)3699 static inline bool debug_pagealloc_enabled_static(void)
3700 {
3701 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3702 		return false;
3703 
3704 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3705 }
3706 
3707 /*
3708  * To support DEBUG_PAGEALLOC architecture must ensure that
3709  * __kernel_map_pages() never fails
3710  */
3711 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3712 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3713 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3714 {
3715 	if (debug_pagealloc_enabled_static())
3716 		__kernel_map_pages(page, numpages, 1);
3717 }
3718 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3719 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3720 {
3721 	if (debug_pagealloc_enabled_static())
3722 		__kernel_map_pages(page, numpages, 0);
3723 }
3724 
3725 extern unsigned int _debug_guardpage_minorder;
3726 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3727 
debug_guardpage_minorder(void)3728 static inline unsigned int debug_guardpage_minorder(void)
3729 {
3730 	return _debug_guardpage_minorder;
3731 }
3732 
debug_guardpage_enabled(void)3733 static inline bool debug_guardpage_enabled(void)
3734 {
3735 	return static_branch_unlikely(&_debug_guardpage_enabled);
3736 }
3737 
page_is_guard(struct page * page)3738 static inline bool page_is_guard(struct page *page)
3739 {
3740 	if (!debug_guardpage_enabled())
3741 		return false;
3742 
3743 	return PageGuard(page);
3744 }
3745 
3746 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3747 static inline bool set_page_guard(struct zone *zone, struct page *page,
3748 				  unsigned int order)
3749 {
3750 	if (!debug_guardpage_enabled())
3751 		return false;
3752 	return __set_page_guard(zone, page, order);
3753 }
3754 
3755 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3756 static inline void clear_page_guard(struct zone *zone, struct page *page,
3757 				    unsigned int order)
3758 {
3759 	if (!debug_guardpage_enabled())
3760 		return;
3761 	__clear_page_guard(zone, page, order);
3762 }
3763 
3764 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3765 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3766 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3767 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3768 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3769 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3770 static inline bool set_page_guard(struct zone *zone, struct page *page,
3771 			unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3772 static inline void clear_page_guard(struct zone *zone, struct page *page,
3773 				unsigned int order) {}
3774 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3775 
3776 #ifdef __HAVE_ARCH_GATE_AREA
3777 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3778 extern int in_gate_area_no_mm(unsigned long addr);
3779 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3780 #else
get_gate_vma(struct mm_struct * mm)3781 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3782 {
3783 	return NULL;
3784 }
in_gate_area_no_mm(unsigned long addr)3785 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3786 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3787 {
3788 	return 0;
3789 }
3790 #endif	/* __HAVE_ARCH_GATE_AREA */
3791 
3792 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3793 
3794 #ifdef CONFIG_SYSCTL
3795 extern int sysctl_drop_caches;
3796 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3797 		loff_t *);
3798 #endif
3799 
3800 void drop_slab(void);
3801 
3802 #ifndef CONFIG_MMU
3803 #define randomize_va_space 0
3804 #else
3805 extern int randomize_va_space;
3806 #endif
3807 
3808 const char * arch_vma_name(struct vm_area_struct *vma);
3809 #ifdef CONFIG_MMU
3810 void print_vma_addr(char *prefix, unsigned long rip);
3811 #else
print_vma_addr(char * prefix,unsigned long rip)3812 static inline void print_vma_addr(char *prefix, unsigned long rip)
3813 {
3814 }
3815 #endif
3816 
3817 void *sparse_buffer_alloc(unsigned long size);
3818 struct page * __populate_section_memmap(unsigned long pfn,
3819 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3820 		struct dev_pagemap *pgmap);
3821 void pud_init(void *addr);
3822 void pmd_init(void *addr);
3823 void kernel_pte_init(void *addr);
3824 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3825 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3826 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3827 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3828 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3829 			    struct vmem_altmap *altmap, struct page *reuse);
3830 void *vmemmap_alloc_block(unsigned long size, int node);
3831 struct vmem_altmap;
3832 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3833 			      struct vmem_altmap *altmap);
3834 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3835 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3836 		     unsigned long addr, unsigned long next);
3837 int vmemmap_check_pmd(pmd_t *pmd, int node,
3838 		      unsigned long addr, unsigned long next);
3839 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3840 			       int node, struct vmem_altmap *altmap);
3841 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3842 			       int node, struct vmem_altmap *altmap);
3843 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3844 		struct vmem_altmap *altmap);
3845 void vmemmap_populate_print_last(void);
3846 #ifdef CONFIG_MEMORY_HOTPLUG
3847 void vmemmap_free(unsigned long start, unsigned long end,
3848 		struct vmem_altmap *altmap);
3849 #endif
3850 
3851 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3852 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3853 {
3854 	/* number of pfns from base where pfn_to_page() is valid */
3855 	if (altmap)
3856 		return altmap->reserve + altmap->free;
3857 	return 0;
3858 }
3859 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3860 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3861 				    unsigned long nr_pfns)
3862 {
3863 	altmap->alloc -= nr_pfns;
3864 }
3865 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3866 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3867 {
3868 	return 0;
3869 }
3870 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3871 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3872 				    unsigned long nr_pfns)
3873 {
3874 }
3875 #endif
3876 
3877 #define VMEMMAP_RESERVE_NR	2
3878 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3879 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3880 					  struct dev_pagemap *pgmap)
3881 {
3882 	unsigned long nr_pages;
3883 	unsigned long nr_vmemmap_pages;
3884 
3885 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3886 		return false;
3887 
3888 	nr_pages = pgmap_vmemmap_nr(pgmap);
3889 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3890 	/*
3891 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3892 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3893 	 */
3894 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3895 }
3896 /*
3897  * If we don't have an architecture override, use the generic rule
3898  */
3899 #ifndef vmemmap_can_optimize
3900 #define vmemmap_can_optimize __vmemmap_can_optimize
3901 #endif
3902 
3903 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3904 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3905 					   struct dev_pagemap *pgmap)
3906 {
3907 	return false;
3908 }
3909 #endif
3910 
3911 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3912 				  unsigned long nr_pages);
3913 
3914 enum mf_flags {
3915 	MF_COUNT_INCREASED = 1 << 0,
3916 	MF_ACTION_REQUIRED = 1 << 1,
3917 	MF_MUST_KILL = 1 << 2,
3918 	MF_SOFT_OFFLINE = 1 << 3,
3919 	MF_UNPOISON = 1 << 4,
3920 	MF_SW_SIMULATED = 1 << 5,
3921 	MF_NO_RETRY = 1 << 6,
3922 	MF_MEM_PRE_REMOVE = 1 << 7,
3923 };
3924 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3925 		      unsigned long count, int mf_flags);
3926 extern int memory_failure(unsigned long pfn, int flags);
3927 extern void memory_failure_queue_kick(int cpu);
3928 extern int unpoison_memory(unsigned long pfn);
3929 extern atomic_long_t num_poisoned_pages __read_mostly;
3930 extern int soft_offline_page(unsigned long pfn, int flags);
3931 #ifdef CONFIG_MEMORY_FAILURE
3932 /*
3933  * Sysfs entries for memory failure handling statistics.
3934  */
3935 extern const struct attribute_group memory_failure_attr_group;
3936 extern void memory_failure_queue(unsigned long pfn, int flags);
3937 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3938 					bool *migratable_cleared);
3939 void num_poisoned_pages_inc(unsigned long pfn);
3940 void num_poisoned_pages_sub(unsigned long pfn, long i);
3941 #else
memory_failure_queue(unsigned long pfn,int flags)3942 static inline void memory_failure_queue(unsigned long pfn, int flags)
3943 {
3944 }
3945 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3946 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3947 					bool *migratable_cleared)
3948 {
3949 	return 0;
3950 }
3951 
num_poisoned_pages_inc(unsigned long pfn)3952 static inline void num_poisoned_pages_inc(unsigned long pfn)
3953 {
3954 }
3955 
num_poisoned_pages_sub(unsigned long pfn,long i)3956 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3957 {
3958 }
3959 #endif
3960 
3961 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3962 extern void memblk_nr_poison_inc(unsigned long pfn);
3963 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3964 #else
memblk_nr_poison_inc(unsigned long pfn)3965 static inline void memblk_nr_poison_inc(unsigned long pfn)
3966 {
3967 }
3968 
memblk_nr_poison_sub(unsigned long pfn,long i)3969 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3970 {
3971 }
3972 #endif
3973 
3974 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3975 static inline int arch_memory_failure(unsigned long pfn, int flags)
3976 {
3977 	return -ENXIO;
3978 }
3979 #endif
3980 
3981 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3982 static inline bool arch_is_platform_page(u64 paddr)
3983 {
3984 	return false;
3985 }
3986 #endif
3987 
3988 /*
3989  * Error handlers for various types of pages.
3990  */
3991 enum mf_result {
3992 	MF_IGNORED,	/* Error: cannot be handled */
3993 	MF_FAILED,	/* Error: handling failed */
3994 	MF_DELAYED,	/* Will be handled later */
3995 	MF_RECOVERED,	/* Successfully recovered */
3996 };
3997 
3998 enum mf_action_page_type {
3999 	MF_MSG_KERNEL,
4000 	MF_MSG_KERNEL_HIGH_ORDER,
4001 	MF_MSG_DIFFERENT_COMPOUND,
4002 	MF_MSG_HUGE,
4003 	MF_MSG_FREE_HUGE,
4004 	MF_MSG_GET_HWPOISON,
4005 	MF_MSG_UNMAP_FAILED,
4006 	MF_MSG_DIRTY_SWAPCACHE,
4007 	MF_MSG_CLEAN_SWAPCACHE,
4008 	MF_MSG_DIRTY_MLOCKED_LRU,
4009 	MF_MSG_CLEAN_MLOCKED_LRU,
4010 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4011 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4012 	MF_MSG_DIRTY_LRU,
4013 	MF_MSG_CLEAN_LRU,
4014 	MF_MSG_TRUNCATED_LRU,
4015 	MF_MSG_BUDDY,
4016 	MF_MSG_DAX,
4017 	MF_MSG_UNSPLIT_THP,
4018 	MF_MSG_ALREADY_POISONED,
4019 	MF_MSG_UNKNOWN,
4020 };
4021 
4022 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4023 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4024 int copy_user_large_folio(struct folio *dst, struct folio *src,
4025 			  unsigned long addr_hint,
4026 			  struct vm_area_struct *vma);
4027 long copy_folio_from_user(struct folio *dst_folio,
4028 			   const void __user *usr_src,
4029 			   bool allow_pagefault);
4030 
4031 /**
4032  * vma_is_special_huge - Are transhuge page-table entries considered special?
4033  * @vma: Pointer to the struct vm_area_struct to consider
4034  *
4035  * Whether transhuge page-table entries are considered "special" following
4036  * the definition in vm_normal_page().
4037  *
4038  * Return: true if transhuge page-table entries should be considered special,
4039  * false otherwise.
4040  */
vma_is_special_huge(const struct vm_area_struct * vma)4041 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4042 {
4043 	return vma_is_dax(vma) || (vma->vm_file &&
4044 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4045 }
4046 
4047 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4048 
4049 #if MAX_NUMNODES > 1
4050 void __init setup_nr_node_ids(void);
4051 #else
setup_nr_node_ids(void)4052 static inline void setup_nr_node_ids(void) {}
4053 #endif
4054 
4055 extern int memcmp_pages(struct page *page1, struct page *page2);
4056 
pages_identical(struct page * page1,struct page * page2)4057 static inline int pages_identical(struct page *page1, struct page *page2)
4058 {
4059 	return !memcmp_pages(page1, page2);
4060 }
4061 
4062 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4063 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4064 						pgoff_t first_index, pgoff_t nr,
4065 						pgoff_t bitmap_pgoff,
4066 						unsigned long *bitmap,
4067 						pgoff_t *start,
4068 						pgoff_t *end);
4069 
4070 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4071 				      pgoff_t first_index, pgoff_t nr);
4072 #endif
4073 
4074 extern int sysctl_nr_trim_pages;
4075 
4076 #ifdef CONFIG_PRINTK
4077 void mem_dump_obj(void *object);
4078 #else
mem_dump_obj(void * object)4079 static inline void mem_dump_obj(void *object) {}
4080 #endif
4081 
4082 /**
4083  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4084  *                    handle them.
4085  * @seals: the seals to check
4086  * @vma: the vma to operate on
4087  *
4088  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4089  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4090  */
seal_check_write(int seals,struct vm_area_struct * vma)4091 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4092 {
4093 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4094 		/*
4095 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4096 		 * write seals are active.
4097 		 */
4098 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4099 			return -EPERM;
4100 
4101 		/*
4102 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4103 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4104 		 * revert protections on such mappings. Do this only for shared
4105 		 * mappings. For private mappings, don't need to mask
4106 		 * VM_MAYWRITE as we still want them to be COW-writable.
4107 		 */
4108 		if (vma->vm_flags & VM_SHARED)
4109 			vm_flags_clear(vma, VM_MAYWRITE);
4110 	}
4111 
4112 	return 0;
4113 }
4114 
4115 #ifdef CONFIG_ANON_VMA_NAME
4116 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4117 			  unsigned long len_in,
4118 			  struct anon_vma_name *anon_name);
4119 #else
4120 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4121 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4122 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4123 	return 0;
4124 }
4125 #endif
4126 
4127 #ifdef CONFIG_UNACCEPTED_MEMORY
4128 
4129 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4130 void accept_memory(phys_addr_t start, unsigned long size);
4131 
4132 #else
4133 
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4134 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4135 						    unsigned long size)
4136 {
4137 	return false;
4138 }
4139 
accept_memory(phys_addr_t start,unsigned long size)4140 static inline void accept_memory(phys_addr_t start, unsigned long size)
4141 {
4142 }
4143 
4144 #endif
4145 
pfn_is_unaccepted_memory(unsigned long pfn)4146 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4147 {
4148 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4149 }
4150 
4151 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4152 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4153 
4154 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4155 
4156 #ifdef CONFIG_64BIT
4157 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4158 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4159 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4160 {
4161 	/* noop on 32 bit */
4162 	return 0;
4163 }
4164 #endif
4165 
4166 #ifdef CONFIG_MEM_ALLOC_PROFILING
pgalloc_tag_split(struct folio * folio,int old_order,int new_order)4167 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4168 {
4169 	int i;
4170 	struct alloc_tag *tag;
4171 	unsigned int nr_pages = 1 << new_order;
4172 
4173 	if (!mem_alloc_profiling_enabled())
4174 		return;
4175 
4176 	tag = pgalloc_tag_get(&folio->page);
4177 	if (!tag)
4178 		return;
4179 
4180 	for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
4181 		union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i));
4182 
4183 		if (ref) {
4184 			/* Set new reference to point to the original tag */
4185 			alloc_tag_ref_set(ref, tag);
4186 			put_page_tag_ref(ref);
4187 		}
4188 	}
4189 }
4190 
pgalloc_tag_copy(struct folio * new,struct folio * old)4191 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4192 {
4193 	struct alloc_tag *tag;
4194 	union codetag_ref *ref;
4195 
4196 	tag = pgalloc_tag_get(&old->page);
4197 	if (!tag)
4198 		return;
4199 
4200 	ref = get_page_tag_ref(&new->page);
4201 	if (!ref)
4202 		return;
4203 
4204 	/* Clear the old ref to the original allocation tag. */
4205 	clear_page_tag_ref(&old->page);
4206 	/* Decrement the counters of the tag on get_new_folio. */
4207 	alloc_tag_sub(ref, folio_nr_pages(new));
4208 
4209 	__alloc_tag_ref_set(ref, tag);
4210 
4211 	put_page_tag_ref(ref);
4212 }
4213 #else /* !CONFIG_MEM_ALLOC_PROFILING */
pgalloc_tag_split(struct folio * folio,int old_order,int new_order)4214 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4215 {
4216 }
4217 
pgalloc_tag_copy(struct folio * new,struct folio * old)4218 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4219 {
4220 }
4221 #endif /* CONFIG_MEM_ALLOC_PROFILING */
4222 
4223 #endif /* _LINUX_MM_H */
4224