1  // SPDX-License-Identifier: GPL-2.0-only
2  /* cpu_feature_enabled() cannot be used this early */
3  #define USE_EARLY_PGTABLE_L5
4  
5  #include <linux/memblock.h>
6  #include <linux/linkage.h>
7  #include <linux/bitops.h>
8  #include <linux/kernel.h>
9  #include <linux/export.h>
10  #include <linux/percpu.h>
11  #include <linux/string.h>
12  #include <linux/ctype.h>
13  #include <linux/delay.h>
14  #include <linux/sched/mm.h>
15  #include <linux/sched/clock.h>
16  #include <linux/sched/task.h>
17  #include <linux/sched/smt.h>
18  #include <linux/init.h>
19  #include <linux/kprobes.h>
20  #include <linux/kgdb.h>
21  #include <linux/mem_encrypt.h>
22  #include <linux/smp.h>
23  #include <linux/cpu.h>
24  #include <linux/io.h>
25  #include <linux/syscore_ops.h>
26  #include <linux/pgtable.h>
27  #include <linux/stackprotector.h>
28  #include <linux/utsname.h>
29  
30  #include <asm/alternative.h>
31  #include <asm/cmdline.h>
32  #include <asm/perf_event.h>
33  #include <asm/mmu_context.h>
34  #include <asm/doublefault.h>
35  #include <asm/archrandom.h>
36  #include <asm/hypervisor.h>
37  #include <asm/processor.h>
38  #include <asm/tlbflush.h>
39  #include <asm/debugreg.h>
40  #include <asm/sections.h>
41  #include <asm/vsyscall.h>
42  #include <linux/topology.h>
43  #include <linux/cpumask.h>
44  #include <linux/atomic.h>
45  #include <asm/proto.h>
46  #include <asm/setup.h>
47  #include <asm/apic.h>
48  #include <asm/desc.h>
49  #include <asm/fpu/api.h>
50  #include <asm/mtrr.h>
51  #include <asm/hwcap2.h>
52  #include <linux/numa.h>
53  #include <asm/numa.h>
54  #include <asm/asm.h>
55  #include <asm/bugs.h>
56  #include <asm/cpu.h>
57  #include <asm/mce.h>
58  #include <asm/msr.h>
59  #include <asm/cacheinfo.h>
60  #include <asm/memtype.h>
61  #include <asm/microcode.h>
62  #include <asm/intel-family.h>
63  #include <asm/cpu_device_id.h>
64  #include <asm/fred.h>
65  #include <asm/uv/uv.h>
66  #include <asm/ia32.h>
67  #include <asm/set_memory.h>
68  #include <asm/traps.h>
69  #include <asm/sev.h>
70  #include <asm/tdx.h>
71  #include <asm/posted_intr.h>
72  #include <asm/runtime-const.h>
73  
74  #include "cpu.h"
75  
76  DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
77  EXPORT_PER_CPU_SYMBOL(cpu_info);
78  
79  u32 elf_hwcap2 __read_mostly;
80  
81  /* Number of siblings per CPU package */
82  unsigned int __max_threads_per_core __ro_after_init = 1;
83  EXPORT_SYMBOL(__max_threads_per_core);
84  
85  unsigned int __max_dies_per_package __ro_after_init = 1;
86  EXPORT_SYMBOL(__max_dies_per_package);
87  
88  unsigned int __max_logical_packages __ro_after_init = 1;
89  EXPORT_SYMBOL(__max_logical_packages);
90  
91  unsigned int __num_cores_per_package __ro_after_init = 1;
92  EXPORT_SYMBOL(__num_cores_per_package);
93  
94  unsigned int __num_threads_per_package __ro_after_init = 1;
95  EXPORT_SYMBOL(__num_threads_per_package);
96  
97  static struct ppin_info {
98  	int	feature;
99  	int	msr_ppin_ctl;
100  	int	msr_ppin;
101  } ppin_info[] = {
102  	[X86_VENDOR_INTEL] = {
103  		.feature = X86_FEATURE_INTEL_PPIN,
104  		.msr_ppin_ctl = MSR_PPIN_CTL,
105  		.msr_ppin = MSR_PPIN
106  	},
107  	[X86_VENDOR_AMD] = {
108  		.feature = X86_FEATURE_AMD_PPIN,
109  		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
110  		.msr_ppin = MSR_AMD_PPIN
111  	},
112  };
113  
114  static const struct x86_cpu_id ppin_cpuids[] = {
115  	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
116  	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
117  
118  	/* Legacy models without CPUID enumeration */
119  	X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
120  	X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
121  	X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
122  	X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
123  	X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
124  	X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
125  	X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
126  	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
127  	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
128  	X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
129  	X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
130  
131  	{}
132  };
133  
ppin_init(struct cpuinfo_x86 * c)134  static void ppin_init(struct cpuinfo_x86 *c)
135  {
136  	const struct x86_cpu_id *id;
137  	unsigned long long val;
138  	struct ppin_info *info;
139  
140  	id = x86_match_cpu(ppin_cpuids);
141  	if (!id)
142  		return;
143  
144  	/*
145  	 * Testing the presence of the MSR is not enough. Need to check
146  	 * that the PPIN_CTL allows reading of the PPIN.
147  	 */
148  	info = (struct ppin_info *)id->driver_data;
149  
150  	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
151  		goto clear_ppin;
152  
153  	if ((val & 3UL) == 1UL) {
154  		/* PPIN locked in disabled mode */
155  		goto clear_ppin;
156  	}
157  
158  	/* If PPIN is disabled, try to enable */
159  	if (!(val & 2UL)) {
160  		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
161  		rdmsrl_safe(info->msr_ppin_ctl, &val);
162  	}
163  
164  	/* Is the enable bit set? */
165  	if (val & 2UL) {
166  		c->ppin = __rdmsr(info->msr_ppin);
167  		set_cpu_cap(c, info->feature);
168  		return;
169  	}
170  
171  clear_ppin:
172  	clear_cpu_cap(c, info->feature);
173  }
174  
default_init(struct cpuinfo_x86 * c)175  static void default_init(struct cpuinfo_x86 *c)
176  {
177  #ifdef CONFIG_X86_64
178  	cpu_detect_cache_sizes(c);
179  #else
180  	/* Not much we can do here... */
181  	/* Check if at least it has cpuid */
182  	if (c->cpuid_level == -1) {
183  		/* No cpuid. It must be an ancient CPU */
184  		if (c->x86 == 4)
185  			strcpy(c->x86_model_id, "486");
186  		else if (c->x86 == 3)
187  			strcpy(c->x86_model_id, "386");
188  	}
189  #endif
190  }
191  
192  static const struct cpu_dev default_cpu = {
193  	.c_init		= default_init,
194  	.c_vendor	= "Unknown",
195  	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
196  };
197  
198  static const struct cpu_dev *this_cpu = &default_cpu;
199  
200  DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
201  #ifdef CONFIG_X86_64
202  	/*
203  	 * We need valid kernel segments for data and code in long mode too
204  	 * IRET will check the segment types  kkeil 2000/10/28
205  	 * Also sysret mandates a special GDT layout
206  	 *
207  	 * TLS descriptors are currently at a different place compared to i386.
208  	 * Hopefully nobody expects them at a fixed place (Wine?)
209  	 */
210  	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
211  	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
212  	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
213  	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
214  	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
215  	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
216  #else
217  	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
218  	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
219  	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
220  	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
221  	/*
222  	 * Segments used for calling PnP BIOS have byte granularity.
223  	 * They code segments and data segments have fixed 64k limits,
224  	 * the transfer segment sizes are set at run time.
225  	 */
226  	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
227  	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
228  	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
229  	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
230  	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
231  	/*
232  	 * The APM segments have byte granularity and their bases
233  	 * are set at run time.  All have 64k limits.
234  	 */
235  	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
236  	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
237  	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
238  
239  	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
240  	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
241  #endif
242  } };
243  EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
244  
245  #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)246  static int __init x86_nopcid_setup(char *s)
247  {
248  	/* nopcid doesn't accept parameters */
249  	if (s)
250  		return -EINVAL;
251  
252  	/* do not emit a message if the feature is not present */
253  	if (!boot_cpu_has(X86_FEATURE_PCID))
254  		return 0;
255  
256  	setup_clear_cpu_cap(X86_FEATURE_PCID);
257  	pr_info("nopcid: PCID feature disabled\n");
258  	return 0;
259  }
260  early_param("nopcid", x86_nopcid_setup);
261  #endif
262  
x86_noinvpcid_setup(char * s)263  static int __init x86_noinvpcid_setup(char *s)
264  {
265  	/* noinvpcid doesn't accept parameters */
266  	if (s)
267  		return -EINVAL;
268  
269  	/* do not emit a message if the feature is not present */
270  	if (!boot_cpu_has(X86_FEATURE_INVPCID))
271  		return 0;
272  
273  	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
274  	pr_info("noinvpcid: INVPCID feature disabled\n");
275  	return 0;
276  }
277  early_param("noinvpcid", x86_noinvpcid_setup);
278  
279  #ifdef CONFIG_X86_32
280  static int cachesize_override = -1;
281  static int disable_x86_serial_nr = 1;
282  
cachesize_setup(char * str)283  static int __init cachesize_setup(char *str)
284  {
285  	get_option(&str, &cachesize_override);
286  	return 1;
287  }
288  __setup("cachesize=", cachesize_setup);
289  
290  /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)291  static inline int flag_is_changeable_p(u32 flag)
292  {
293  	u32 f1, f2;
294  
295  	/*
296  	 * Cyrix and IDT cpus allow disabling of CPUID
297  	 * so the code below may return different results
298  	 * when it is executed before and after enabling
299  	 * the CPUID. Add "volatile" to not allow gcc to
300  	 * optimize the subsequent calls to this function.
301  	 */
302  	asm volatile ("pushfl		\n\t"
303  		      "pushfl		\n\t"
304  		      "popl %0		\n\t"
305  		      "movl %0, %1	\n\t"
306  		      "xorl %2, %0	\n\t"
307  		      "pushl %0		\n\t"
308  		      "popfl		\n\t"
309  		      "pushfl		\n\t"
310  		      "popl %0		\n\t"
311  		      "popfl		\n\t"
312  
313  		      : "=&r" (f1), "=&r" (f2)
314  		      : "ir" (flag));
315  
316  	return ((f1^f2) & flag) != 0;
317  }
318  
319  /* Probe for the CPUID instruction */
have_cpuid_p(void)320  int have_cpuid_p(void)
321  {
322  	return flag_is_changeable_p(X86_EFLAGS_ID);
323  }
324  
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)325  static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
326  {
327  	unsigned long lo, hi;
328  
329  	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
330  		return;
331  
332  	/* Disable processor serial number: */
333  
334  	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335  	lo |= 0x200000;
336  	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
337  
338  	pr_notice("CPU serial number disabled.\n");
339  	clear_cpu_cap(c, X86_FEATURE_PN);
340  
341  	/* Disabling the serial number may affect the cpuid level */
342  	c->cpuid_level = cpuid_eax(0);
343  }
344  
x86_serial_nr_setup(char * s)345  static int __init x86_serial_nr_setup(char *s)
346  {
347  	disable_x86_serial_nr = 0;
348  	return 1;
349  }
350  __setup("serialnumber", x86_serial_nr_setup);
351  #else
flag_is_changeable_p(u32 flag)352  static inline int flag_is_changeable_p(u32 flag)
353  {
354  	return 1;
355  }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)356  static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
357  {
358  }
359  #endif
360  
setup_smep(struct cpuinfo_x86 * c)361  static __always_inline void setup_smep(struct cpuinfo_x86 *c)
362  {
363  	if (cpu_has(c, X86_FEATURE_SMEP))
364  		cr4_set_bits(X86_CR4_SMEP);
365  }
366  
setup_smap(struct cpuinfo_x86 * c)367  static __always_inline void setup_smap(struct cpuinfo_x86 *c)
368  {
369  	unsigned long eflags = native_save_fl();
370  
371  	/* This should have been cleared long ago */
372  	BUG_ON(eflags & X86_EFLAGS_AC);
373  
374  	if (cpu_has(c, X86_FEATURE_SMAP))
375  		cr4_set_bits(X86_CR4_SMAP);
376  }
377  
setup_umip(struct cpuinfo_x86 * c)378  static __always_inline void setup_umip(struct cpuinfo_x86 *c)
379  {
380  	/* Check the boot processor, plus build option for UMIP. */
381  	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
382  		goto out;
383  
384  	/* Check the current processor's cpuid bits. */
385  	if (!cpu_has(c, X86_FEATURE_UMIP))
386  		goto out;
387  
388  	cr4_set_bits(X86_CR4_UMIP);
389  
390  	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
391  
392  	return;
393  
394  out:
395  	/*
396  	 * Make sure UMIP is disabled in case it was enabled in a
397  	 * previous boot (e.g., via kexec).
398  	 */
399  	cr4_clear_bits(X86_CR4_UMIP);
400  }
401  
402  /* These bits should not change their value after CPU init is finished. */
403  static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
404  					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
405  static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
406  static unsigned long cr4_pinned_bits __ro_after_init;
407  
native_write_cr0(unsigned long val)408  void native_write_cr0(unsigned long val)
409  {
410  	unsigned long bits_missing = 0;
411  
412  set_register:
413  	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
414  
415  	if (static_branch_likely(&cr_pinning)) {
416  		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
417  			bits_missing = X86_CR0_WP;
418  			val |= bits_missing;
419  			goto set_register;
420  		}
421  		/* Warn after we've set the missing bits. */
422  		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
423  	}
424  }
425  EXPORT_SYMBOL(native_write_cr0);
426  
native_write_cr4(unsigned long val)427  void __no_profile native_write_cr4(unsigned long val)
428  {
429  	unsigned long bits_changed = 0;
430  
431  set_register:
432  	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
433  
434  	if (static_branch_likely(&cr_pinning)) {
435  		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
436  			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
437  			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
438  			goto set_register;
439  		}
440  		/* Warn after we've corrected the changed bits. */
441  		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
442  			  bits_changed);
443  	}
444  }
445  #if IS_MODULE(CONFIG_LKDTM)
446  EXPORT_SYMBOL_GPL(native_write_cr4);
447  #endif
448  
cr4_update_irqsoff(unsigned long set,unsigned long clear)449  void cr4_update_irqsoff(unsigned long set, unsigned long clear)
450  {
451  	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
452  
453  	lockdep_assert_irqs_disabled();
454  
455  	newval = (cr4 & ~clear) | set;
456  	if (newval != cr4) {
457  		this_cpu_write(cpu_tlbstate.cr4, newval);
458  		__write_cr4(newval);
459  	}
460  }
461  EXPORT_SYMBOL(cr4_update_irqsoff);
462  
463  /* Read the CR4 shadow. */
cr4_read_shadow(void)464  unsigned long cr4_read_shadow(void)
465  {
466  	return this_cpu_read(cpu_tlbstate.cr4);
467  }
468  EXPORT_SYMBOL_GPL(cr4_read_shadow);
469  
cr4_init(void)470  void cr4_init(void)
471  {
472  	unsigned long cr4 = __read_cr4();
473  
474  	if (boot_cpu_has(X86_FEATURE_PCID))
475  		cr4 |= X86_CR4_PCIDE;
476  	if (static_branch_likely(&cr_pinning))
477  		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
478  
479  	__write_cr4(cr4);
480  
481  	/* Initialize cr4 shadow for this CPU. */
482  	this_cpu_write(cpu_tlbstate.cr4, cr4);
483  }
484  
485  /*
486   * Once CPU feature detection is finished (and boot params have been
487   * parsed), record any of the sensitive CR bits that are set, and
488   * enable CR pinning.
489   */
setup_cr_pinning(void)490  static void __init setup_cr_pinning(void)
491  {
492  	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
493  	static_key_enable(&cr_pinning.key);
494  }
495  
x86_nofsgsbase_setup(char * arg)496  static __init int x86_nofsgsbase_setup(char *arg)
497  {
498  	/* Require an exact match without trailing characters. */
499  	if (strlen(arg))
500  		return 0;
501  
502  	/* Do not emit a message if the feature is not present. */
503  	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
504  		return 1;
505  
506  	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
507  	pr_info("FSGSBASE disabled via kernel command line\n");
508  	return 1;
509  }
510  __setup("nofsgsbase", x86_nofsgsbase_setup);
511  
512  /*
513   * Protection Keys are not available in 32-bit mode.
514   */
515  static bool pku_disabled;
516  
setup_pku(struct cpuinfo_x86 * c)517  static __always_inline void setup_pku(struct cpuinfo_x86 *c)
518  {
519  	if (c == &boot_cpu_data) {
520  		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
521  			return;
522  		/*
523  		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
524  		 * bit to be set.  Enforce it.
525  		 */
526  		setup_force_cpu_cap(X86_FEATURE_OSPKE);
527  
528  	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
529  		return;
530  	}
531  
532  	cr4_set_bits(X86_CR4_PKE);
533  	/* Load the default PKRU value */
534  	pkru_write_default();
535  }
536  
537  #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)538  static __init int setup_disable_pku(char *arg)
539  {
540  	/*
541  	 * Do not clear the X86_FEATURE_PKU bit.  All of the
542  	 * runtime checks are against OSPKE so clearing the
543  	 * bit does nothing.
544  	 *
545  	 * This way, we will see "pku" in cpuinfo, but not
546  	 * "ospke", which is exactly what we want.  It shows
547  	 * that the CPU has PKU, but the OS has not enabled it.
548  	 * This happens to be exactly how a system would look
549  	 * if we disabled the config option.
550  	 */
551  	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
552  	pku_disabled = true;
553  	return 1;
554  }
555  __setup("nopku", setup_disable_pku);
556  #endif
557  
558  #ifdef CONFIG_X86_KERNEL_IBT
559  
ibt_save(bool disable)560  __noendbr u64 ibt_save(bool disable)
561  {
562  	u64 msr = 0;
563  
564  	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
565  		rdmsrl(MSR_IA32_S_CET, msr);
566  		if (disable)
567  			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
568  	}
569  
570  	return msr;
571  }
572  
ibt_restore(u64 save)573  __noendbr void ibt_restore(u64 save)
574  {
575  	u64 msr;
576  
577  	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
578  		rdmsrl(MSR_IA32_S_CET, msr);
579  		msr &= ~CET_ENDBR_EN;
580  		msr |= (save & CET_ENDBR_EN);
581  		wrmsrl(MSR_IA32_S_CET, msr);
582  	}
583  }
584  
585  #endif
586  
setup_cet(struct cpuinfo_x86 * c)587  static __always_inline void setup_cet(struct cpuinfo_x86 *c)
588  {
589  	bool user_shstk, kernel_ibt;
590  
591  	if (!IS_ENABLED(CONFIG_X86_CET))
592  		return;
593  
594  	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
595  	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
596  		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
597  
598  	if (!kernel_ibt && !user_shstk)
599  		return;
600  
601  	if (user_shstk)
602  		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
603  
604  	if (kernel_ibt)
605  		wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
606  	else
607  		wrmsrl(MSR_IA32_S_CET, 0);
608  
609  	cr4_set_bits(X86_CR4_CET);
610  
611  	if (kernel_ibt && ibt_selftest()) {
612  		pr_err("IBT selftest: Failed!\n");
613  		wrmsrl(MSR_IA32_S_CET, 0);
614  		setup_clear_cpu_cap(X86_FEATURE_IBT);
615  	}
616  }
617  
cet_disable(void)618  __noendbr void cet_disable(void)
619  {
620  	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
621  	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
622  		return;
623  
624  	wrmsrl(MSR_IA32_S_CET, 0);
625  	wrmsrl(MSR_IA32_U_CET, 0);
626  }
627  
628  /*
629   * Some CPU features depend on higher CPUID levels, which may not always
630   * be available due to CPUID level capping or broken virtualization
631   * software.  Add those features to this table to auto-disable them.
632   */
633  struct cpuid_dependent_feature {
634  	u32 feature;
635  	u32 level;
636  };
637  
638  static const struct cpuid_dependent_feature
639  cpuid_dependent_features[] = {
640  	{ X86_FEATURE_MWAIT,		0x00000005 },
641  	{ X86_FEATURE_DCA,		0x00000009 },
642  	{ X86_FEATURE_XSAVE,		0x0000000d },
643  	{ 0, 0 }
644  };
645  
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)646  static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
647  {
648  	const struct cpuid_dependent_feature *df;
649  
650  	for (df = cpuid_dependent_features; df->feature; df++) {
651  
652  		if (!cpu_has(c, df->feature))
653  			continue;
654  		/*
655  		 * Note: cpuid_level is set to -1 if unavailable, but
656  		 * extended_extended_level is set to 0 if unavailable
657  		 * and the legitimate extended levels are all negative
658  		 * when signed; hence the weird messing around with
659  		 * signs here...
660  		 */
661  		if (!((s32)df->level < 0 ?
662  		     (u32)df->level > (u32)c->extended_cpuid_level :
663  		     (s32)df->level > (s32)c->cpuid_level))
664  			continue;
665  
666  		clear_cpu_cap(c, df->feature);
667  		if (!warn)
668  			continue;
669  
670  		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
671  			x86_cap_flag(df->feature), df->level);
672  	}
673  }
674  
675  /*
676   * Naming convention should be: <Name> [(<Codename>)]
677   * This table only is used unless init_<vendor>() below doesn't set it;
678   * in particular, if CPUID levels 0x80000002..4 are supported, this
679   * isn't used
680   */
681  
682  /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)683  static const char *table_lookup_model(struct cpuinfo_x86 *c)
684  {
685  #ifdef CONFIG_X86_32
686  	const struct legacy_cpu_model_info *info;
687  
688  	if (c->x86_model >= 16)
689  		return NULL;	/* Range check */
690  
691  	if (!this_cpu)
692  		return NULL;
693  
694  	info = this_cpu->legacy_models;
695  
696  	while (info->family) {
697  		if (info->family == c->x86)
698  			return info->model_names[c->x86_model];
699  		info++;
700  	}
701  #endif
702  	return NULL;		/* Not found */
703  }
704  
705  /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
706  __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
707  __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
708  
709  #ifdef CONFIG_X86_32
710  /* The 32-bit entry code needs to find cpu_entry_area. */
711  DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
712  #endif
713  
714  /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)715  void load_direct_gdt(int cpu)
716  {
717  	struct desc_ptr gdt_descr;
718  
719  	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
720  	gdt_descr.size = GDT_SIZE - 1;
721  	load_gdt(&gdt_descr);
722  }
723  EXPORT_SYMBOL_GPL(load_direct_gdt);
724  
725  /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)726  void load_fixmap_gdt(int cpu)
727  {
728  	struct desc_ptr gdt_descr;
729  
730  	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
731  	gdt_descr.size = GDT_SIZE - 1;
732  	load_gdt(&gdt_descr);
733  }
734  EXPORT_SYMBOL_GPL(load_fixmap_gdt);
735  
736  /**
737   * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
738   * @cpu:	The CPU number for which this is invoked
739   *
740   * Invoked during early boot to switch from early GDT and early per CPU to
741   * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
742   * switch is implicit by loading the direct GDT. On 64bit this requires
743   * to update GSBASE.
744   */
switch_gdt_and_percpu_base(int cpu)745  void __init switch_gdt_and_percpu_base(int cpu)
746  {
747  	load_direct_gdt(cpu);
748  
749  #ifdef CONFIG_X86_64
750  	/*
751  	 * No need to load %gs. It is already correct.
752  	 *
753  	 * Writing %gs on 64bit would zero GSBASE which would make any per
754  	 * CPU operation up to the point of the wrmsrl() fault.
755  	 *
756  	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
757  	 * early mapping is still valid. That means the GSBASE update will
758  	 * lose any prior per CPU data which was not copied over in
759  	 * setup_per_cpu_areas().
760  	 *
761  	 * This works even with stackprotector enabled because the
762  	 * per CPU stack canary is 0 in both per CPU areas.
763  	 */
764  	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
765  #else
766  	/*
767  	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
768  	 * it is required to load FS again so that the 'hidden' part is
769  	 * updated from the new GDT. Up to this point the early per CPU
770  	 * translation is active. Any content of the early per CPU data
771  	 * which was not copied over in setup_per_cpu_areas() is lost.
772  	 */
773  	loadsegment(fs, __KERNEL_PERCPU);
774  #endif
775  }
776  
777  static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
778  
get_model_name(struct cpuinfo_x86 * c)779  static void get_model_name(struct cpuinfo_x86 *c)
780  {
781  	unsigned int *v;
782  	char *p, *q, *s;
783  
784  	if (c->extended_cpuid_level < 0x80000004)
785  		return;
786  
787  	v = (unsigned int *)c->x86_model_id;
788  	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
789  	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
790  	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
791  	c->x86_model_id[48] = 0;
792  
793  	/* Trim whitespace */
794  	p = q = s = &c->x86_model_id[0];
795  
796  	while (*p == ' ')
797  		p++;
798  
799  	while (*p) {
800  		/* Note the last non-whitespace index */
801  		if (!isspace(*p))
802  			s = q;
803  
804  		*q++ = *p++;
805  	}
806  
807  	*(s + 1) = '\0';
808  }
809  
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)810  void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
811  {
812  	unsigned int n, dummy, ebx, ecx, edx, l2size;
813  
814  	n = c->extended_cpuid_level;
815  
816  	if (n >= 0x80000005) {
817  		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
818  		c->x86_cache_size = (ecx>>24) + (edx>>24);
819  #ifdef CONFIG_X86_64
820  		/* On K8 L1 TLB is inclusive, so don't count it */
821  		c->x86_tlbsize = 0;
822  #endif
823  	}
824  
825  	if (n < 0x80000006)	/* Some chips just has a large L1. */
826  		return;
827  
828  	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
829  	l2size = ecx >> 16;
830  
831  #ifdef CONFIG_X86_64
832  	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
833  #else
834  	/* do processor-specific cache resizing */
835  	if (this_cpu->legacy_cache_size)
836  		l2size = this_cpu->legacy_cache_size(c, l2size);
837  
838  	/* Allow user to override all this if necessary. */
839  	if (cachesize_override != -1)
840  		l2size = cachesize_override;
841  
842  	if (l2size == 0)
843  		return;		/* Again, no L2 cache is possible */
844  #endif
845  
846  	c->x86_cache_size = l2size;
847  }
848  
849  u16 __read_mostly tlb_lli_4k[NR_INFO];
850  u16 __read_mostly tlb_lli_2m[NR_INFO];
851  u16 __read_mostly tlb_lli_4m[NR_INFO];
852  u16 __read_mostly tlb_lld_4k[NR_INFO];
853  u16 __read_mostly tlb_lld_2m[NR_INFO];
854  u16 __read_mostly tlb_lld_4m[NR_INFO];
855  u16 __read_mostly tlb_lld_1g[NR_INFO];
856  
cpu_detect_tlb(struct cpuinfo_x86 * c)857  static void cpu_detect_tlb(struct cpuinfo_x86 *c)
858  {
859  	if (this_cpu->c_detect_tlb)
860  		this_cpu->c_detect_tlb(c);
861  
862  	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
863  		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
864  		tlb_lli_4m[ENTRIES]);
865  
866  	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
867  		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
868  		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
869  }
870  
get_cpu_vendor(struct cpuinfo_x86 * c)871  static void get_cpu_vendor(struct cpuinfo_x86 *c)
872  {
873  	char *v = c->x86_vendor_id;
874  	int i;
875  
876  	for (i = 0; i < X86_VENDOR_NUM; i++) {
877  		if (!cpu_devs[i])
878  			break;
879  
880  		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
881  		    (cpu_devs[i]->c_ident[1] &&
882  		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
883  
884  			this_cpu = cpu_devs[i];
885  			c->x86_vendor = this_cpu->c_x86_vendor;
886  			return;
887  		}
888  	}
889  
890  	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
891  		    "CPU: Your system may be unstable.\n", v);
892  
893  	c->x86_vendor = X86_VENDOR_UNKNOWN;
894  	this_cpu = &default_cpu;
895  }
896  
cpu_detect(struct cpuinfo_x86 * c)897  void cpu_detect(struct cpuinfo_x86 *c)
898  {
899  	/* Get vendor name */
900  	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
901  	      (unsigned int *)&c->x86_vendor_id[0],
902  	      (unsigned int *)&c->x86_vendor_id[8],
903  	      (unsigned int *)&c->x86_vendor_id[4]);
904  
905  	c->x86 = 4;
906  	/* Intel-defined flags: level 0x00000001 */
907  	if (c->cpuid_level >= 0x00000001) {
908  		u32 junk, tfms, cap0, misc;
909  
910  		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
911  		c->x86		= x86_family(tfms);
912  		c->x86_model	= x86_model(tfms);
913  		c->x86_stepping	= x86_stepping(tfms);
914  
915  		if (cap0 & (1<<19)) {
916  			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
917  			c->x86_cache_alignment = c->x86_clflush_size;
918  		}
919  	}
920  }
921  
apply_forced_caps(struct cpuinfo_x86 * c)922  static void apply_forced_caps(struct cpuinfo_x86 *c)
923  {
924  	int i;
925  
926  	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
927  		c->x86_capability[i] &= ~cpu_caps_cleared[i];
928  		c->x86_capability[i] |= cpu_caps_set[i];
929  	}
930  }
931  
init_speculation_control(struct cpuinfo_x86 * c)932  static void init_speculation_control(struct cpuinfo_x86 *c)
933  {
934  	/*
935  	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
936  	 * and they also have a different bit for STIBP support. Also,
937  	 * a hypervisor might have set the individual AMD bits even on
938  	 * Intel CPUs, for finer-grained selection of what's available.
939  	 */
940  	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
941  		set_cpu_cap(c, X86_FEATURE_IBRS);
942  		set_cpu_cap(c, X86_FEATURE_IBPB);
943  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
944  	}
945  
946  	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
947  		set_cpu_cap(c, X86_FEATURE_STIBP);
948  
949  	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
950  	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
951  		set_cpu_cap(c, X86_FEATURE_SSBD);
952  
953  	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
954  		set_cpu_cap(c, X86_FEATURE_IBRS);
955  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
956  	}
957  
958  	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
959  		set_cpu_cap(c, X86_FEATURE_IBPB);
960  
961  	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
962  		set_cpu_cap(c, X86_FEATURE_STIBP);
963  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
964  	}
965  
966  	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
967  		set_cpu_cap(c, X86_FEATURE_SSBD);
968  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
969  		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
970  	}
971  }
972  
get_cpu_cap(struct cpuinfo_x86 * c)973  void get_cpu_cap(struct cpuinfo_x86 *c)
974  {
975  	u32 eax, ebx, ecx, edx;
976  
977  	/* Intel-defined flags: level 0x00000001 */
978  	if (c->cpuid_level >= 0x00000001) {
979  		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
980  
981  		c->x86_capability[CPUID_1_ECX] = ecx;
982  		c->x86_capability[CPUID_1_EDX] = edx;
983  	}
984  
985  	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
986  	if (c->cpuid_level >= 0x00000006)
987  		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
988  
989  	/* Additional Intel-defined flags: level 0x00000007 */
990  	if (c->cpuid_level >= 0x00000007) {
991  		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
992  		c->x86_capability[CPUID_7_0_EBX] = ebx;
993  		c->x86_capability[CPUID_7_ECX] = ecx;
994  		c->x86_capability[CPUID_7_EDX] = edx;
995  
996  		/* Check valid sub-leaf index before accessing it */
997  		if (eax >= 1) {
998  			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
999  			c->x86_capability[CPUID_7_1_EAX] = eax;
1000  		}
1001  	}
1002  
1003  	/* Extended state features: level 0x0000000d */
1004  	if (c->cpuid_level >= 0x0000000d) {
1005  		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1006  
1007  		c->x86_capability[CPUID_D_1_EAX] = eax;
1008  	}
1009  
1010  	/* AMD-defined flags: level 0x80000001 */
1011  	eax = cpuid_eax(0x80000000);
1012  	c->extended_cpuid_level = eax;
1013  
1014  	if ((eax & 0xffff0000) == 0x80000000) {
1015  		if (eax >= 0x80000001) {
1016  			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1017  
1018  			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1019  			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1020  		}
1021  	}
1022  
1023  	if (c->extended_cpuid_level >= 0x80000007) {
1024  		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1025  
1026  		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1027  		c->x86_power = edx;
1028  	}
1029  
1030  	if (c->extended_cpuid_level >= 0x80000008) {
1031  		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1032  		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1033  	}
1034  
1035  	if (c->extended_cpuid_level >= 0x8000000a)
1036  		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1037  
1038  	if (c->extended_cpuid_level >= 0x8000001f)
1039  		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1040  
1041  	if (c->extended_cpuid_level >= 0x80000021)
1042  		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1043  
1044  	init_scattered_cpuid_features(c);
1045  	init_speculation_control(c);
1046  
1047  	/*
1048  	 * Clear/Set all flags overridden by options, after probe.
1049  	 * This needs to happen each time we re-probe, which may happen
1050  	 * several times during CPU initialization.
1051  	 */
1052  	apply_forced_caps(c);
1053  }
1054  
get_cpu_address_sizes(struct cpuinfo_x86 * c)1055  void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1056  {
1057  	u32 eax, ebx, ecx, edx;
1058  
1059  	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1060  	    (c->extended_cpuid_level < 0x80000008)) {
1061  		if (IS_ENABLED(CONFIG_X86_64)) {
1062  			c->x86_clflush_size = 64;
1063  			c->x86_phys_bits = 36;
1064  			c->x86_virt_bits = 48;
1065  		} else {
1066  			c->x86_clflush_size = 32;
1067  			c->x86_virt_bits = 32;
1068  			c->x86_phys_bits = 32;
1069  
1070  			if (cpu_has(c, X86_FEATURE_PAE) ||
1071  			    cpu_has(c, X86_FEATURE_PSE36))
1072  				c->x86_phys_bits = 36;
1073  		}
1074  	} else {
1075  		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1076  
1077  		c->x86_virt_bits = (eax >> 8) & 0xff;
1078  		c->x86_phys_bits = eax & 0xff;
1079  
1080  		/* Provide a sane default if not enumerated: */
1081  		if (!c->x86_clflush_size)
1082  			c->x86_clflush_size = 32;
1083  	}
1084  
1085  	c->x86_cache_bits = c->x86_phys_bits;
1086  	c->x86_cache_alignment = c->x86_clflush_size;
1087  }
1088  
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1089  static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1090  {
1091  #ifdef CONFIG_X86_32
1092  	int i;
1093  
1094  	/*
1095  	 * First of all, decide if this is a 486 or higher
1096  	 * It's a 486 if we can modify the AC flag
1097  	 */
1098  	if (flag_is_changeable_p(X86_EFLAGS_AC))
1099  		c->x86 = 4;
1100  	else
1101  		c->x86 = 3;
1102  
1103  	for (i = 0; i < X86_VENDOR_NUM; i++)
1104  		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1105  			c->x86_vendor_id[0] = 0;
1106  			cpu_devs[i]->c_identify(c);
1107  			if (c->x86_vendor_id[0]) {
1108  				get_cpu_vendor(c);
1109  				break;
1110  			}
1111  		}
1112  #endif
1113  }
1114  
1115  #define NO_SPECULATION		BIT(0)
1116  #define NO_MELTDOWN		BIT(1)
1117  #define NO_SSB			BIT(2)
1118  #define NO_L1TF			BIT(3)
1119  #define NO_MDS			BIT(4)
1120  #define MSBDS_ONLY		BIT(5)
1121  #define NO_SWAPGS		BIT(6)
1122  #define NO_ITLB_MULTIHIT	BIT(7)
1123  #define NO_SPECTRE_V2		BIT(8)
1124  #define NO_MMIO			BIT(9)
1125  #define NO_EIBRS_PBRSB		BIT(10)
1126  #define NO_BHI			BIT(11)
1127  
1128  #define VULNWL(vendor, family, model, whitelist)	\
1129  	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1130  
1131  #define VULNWL_INTEL(vfm, whitelist)		\
1132  	X86_MATCH_VFM(vfm, whitelist)
1133  
1134  #define VULNWL_AMD(family, whitelist)		\
1135  	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1136  
1137  #define VULNWL_HYGON(family, whitelist)		\
1138  	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1139  
1140  static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1141  	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1142  	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1143  	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1144  	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1145  	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1146  	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1147  
1148  	/* Intel Family 6 */
1149  	VULNWL_INTEL(INTEL_TIGERLAKE,		NO_MMIO),
1150  	VULNWL_INTEL(INTEL_TIGERLAKE_L,		NO_MMIO),
1151  	VULNWL_INTEL(INTEL_ALDERLAKE,		NO_MMIO),
1152  	VULNWL_INTEL(INTEL_ALDERLAKE_L,		NO_MMIO),
1153  
1154  	VULNWL_INTEL(INTEL_ATOM_SALTWELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1155  	VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1156  	VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1157  	VULNWL_INTEL(INTEL_ATOM_BONNELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1158  	VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1159  
1160  	VULNWL_INTEL(INTEL_ATOM_SILVERMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161  	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162  	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163  	VULNWL_INTEL(INTEL_ATOM_AIRMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164  	VULNWL_INTEL(INTEL_XEON_PHI_KNL,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1165  	VULNWL_INTEL(INTEL_XEON_PHI_KNM,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1166  
1167  	VULNWL_INTEL(INTEL_CORE_YONAH,		NO_SSB),
1168  
1169  	VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID,	NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1170  	VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,	NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1171  
1172  	VULNWL_INTEL(INTEL_ATOM_GOLDMONT,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1173  	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1174  	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1175  
1176  	/*
1177  	 * Technically, swapgs isn't serializing on AMD (despite it previously
1178  	 * being documented as such in the APM).  But according to AMD, %gs is
1179  	 * updated non-speculatively, and the issuing of %gs-relative memory
1180  	 * operands will be blocked until the %gs update completes, which is
1181  	 * good enough for our purposes.
1182  	 */
1183  
1184  	VULNWL_INTEL(INTEL_ATOM_TREMONT,	NO_EIBRS_PBRSB),
1185  	VULNWL_INTEL(INTEL_ATOM_TREMONT_L,	NO_EIBRS_PBRSB),
1186  	VULNWL_INTEL(INTEL_ATOM_TREMONT_D,	NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1187  
1188  	/* AMD Family 0xf - 0x12 */
1189  	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190  	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191  	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1192  	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1193  
1194  	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1195  	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1196  	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1197  
1198  	/* Zhaoxin Family 7 */
1199  	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1200  	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1201  	{}
1202  };
1203  
1204  #define VULNBL(vendor, family, model, blacklist)	\
1205  	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1206  
1207  #define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues)		   \
1208  	X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
1209  
1210  #define VULNBL_AMD(family, blacklist)		\
1211  	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1212  
1213  #define VULNBL_HYGON(family, blacklist)		\
1214  	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1215  
1216  #define SRBDS		BIT(0)
1217  /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1218  #define MMIO		BIT(1)
1219  /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1220  #define MMIO_SBDS	BIT(2)
1221  /* CPU is affected by RETbleed, speculating where you would not expect it */
1222  #define RETBLEED	BIT(3)
1223  /* CPU is affected by SMT (cross-thread) return predictions */
1224  #define SMT_RSB		BIT(4)
1225  /* CPU is affected by SRSO */
1226  #define SRSO		BIT(5)
1227  /* CPU is affected by GDS */
1228  #define GDS		BIT(6)
1229  /* CPU is affected by Register File Data Sampling */
1230  #define RFDS		BIT(7)
1231  
1232  static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1233  	VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE,		X86_STEPPING_ANY,		SRBDS),
1234  	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL,		X86_STEPPING_ANY,		SRBDS),
1235  	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L,		X86_STEPPING_ANY,		SRBDS),
1236  	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G,		X86_STEPPING_ANY,		SRBDS),
1237  	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X,		X86_STEPPING_ANY,		MMIO),
1238  	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1239  	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1240  	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1241  	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL,		X86_STEPPING_ANY,		SRBDS),
1242  	VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1243  	VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1244  	VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1245  	VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1246  	VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1247  	VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1248  	VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L,		X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1249  	VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D,		X86_STEPPING_ANY,		MMIO | GDS),
1250  	VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X,		X86_STEPPING_ANY,		MMIO | GDS),
1251  	VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE,		X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1252  	VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1253  	VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1254  	VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1255  	VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE,		X86_STEPPING_ANY,		GDS),
1256  	VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD,		X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1257  	VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1258  	VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE,		X86_STEPPING_ANY,		RFDS),
1259  	VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L,	X86_STEPPING_ANY,		RFDS),
1260  	VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE,	X86_STEPPING_ANY,		RFDS),
1261  	VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P,	X86_STEPPING_ANY,		RFDS),
1262  	VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S,	X86_STEPPING_ANY,		RFDS),
1263  	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT,	X86_STEPPING_ANY,		RFDS),
1264  	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1265  	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO | RFDS),
1266  	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1267  	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT,	X86_STEPPING_ANY,		RFDS),
1268  	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D,	X86_STEPPING_ANY,		RFDS),
1269  	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY,		RFDS),
1270  
1271  	VULNBL_AMD(0x15, RETBLEED),
1272  	VULNBL_AMD(0x16, RETBLEED),
1273  	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1274  	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1275  	VULNBL_AMD(0x19, SRSO),
1276  	{}
1277  };
1278  
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1279  static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1280  {
1281  	const struct x86_cpu_id *m = x86_match_cpu(table);
1282  
1283  	return m && !!(m->driver_data & which);
1284  }
1285  
x86_read_arch_cap_msr(void)1286  u64 x86_read_arch_cap_msr(void)
1287  {
1288  	u64 x86_arch_cap_msr = 0;
1289  
1290  	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1291  		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1292  
1293  	return x86_arch_cap_msr;
1294  }
1295  
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1296  static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1297  {
1298  	return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1299  		x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1300  		x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1301  }
1302  
vulnerable_to_rfds(u64 x86_arch_cap_msr)1303  static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1304  {
1305  	/* The "immunity" bit trumps everything else: */
1306  	if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1307  		return false;
1308  
1309  	/*
1310  	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1311  	 * indicate that mitigation is needed because guest is running on a
1312  	 * vulnerable hardware or may migrate to such hardware:
1313  	 */
1314  	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1315  		return true;
1316  
1317  	/* Only consult the blacklist when there is no enumeration: */
1318  	return cpu_matches(cpu_vuln_blacklist, RFDS);
1319  }
1320  
cpu_set_bug_bits(struct cpuinfo_x86 * c)1321  static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1322  {
1323  	u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1324  
1325  	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1326  	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1327  	    !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1328  		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1329  
1330  	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1331  		return;
1332  
1333  	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1334  
1335  	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1336  		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1337  
1338  	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1339  	    !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1340  	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1341  		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1342  
1343  	/*
1344  	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1345  	 * flag and protect from vendor-specific bugs via the whitelist.
1346  	 *
1347  	 * Don't use AutoIBRS when SNP is enabled because it degrades host
1348  	 * userspace indirect branch performance.
1349  	 */
1350  	if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1351  	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1352  	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1353  		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1354  		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1355  		    !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1356  			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1357  	}
1358  
1359  	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1360  	    !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1361  		setup_force_cpu_bug(X86_BUG_MDS);
1362  		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1363  			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1364  	}
1365  
1366  	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1367  		setup_force_cpu_bug(X86_BUG_SWAPGS);
1368  
1369  	/*
1370  	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1371  	 *	- TSX is supported or
1372  	 *	- TSX_CTRL is present
1373  	 *
1374  	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1375  	 * the kernel boot e.g. kexec.
1376  	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1377  	 * update is not present or running as guest that don't get TSX_CTRL.
1378  	 */
1379  	if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1380  	    (cpu_has(c, X86_FEATURE_RTM) ||
1381  	     (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1382  		setup_force_cpu_bug(X86_BUG_TAA);
1383  
1384  	/*
1385  	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1386  	 * in the vulnerability blacklist.
1387  	 *
1388  	 * Some of the implications and mitigation of Shared Buffers Data
1389  	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1390  	 * SRBDS.
1391  	 */
1392  	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1393  	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1394  	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1395  		    setup_force_cpu_bug(X86_BUG_SRBDS);
1396  
1397  	/*
1398  	 * Processor MMIO Stale Data bug enumeration
1399  	 *
1400  	 * Affected CPU list is generally enough to enumerate the vulnerability,
1401  	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1402  	 * not want the guest to enumerate the bug.
1403  	 *
1404  	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1405  	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1406  	 */
1407  	if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1408  		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1409  			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1410  		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1411  			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1412  	}
1413  
1414  	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1415  		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1416  			setup_force_cpu_bug(X86_BUG_RETBLEED);
1417  	}
1418  
1419  	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1420  		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1421  
1422  	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1423  		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1424  			setup_force_cpu_bug(X86_BUG_SRSO);
1425  	}
1426  
1427  	/*
1428  	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1429  	 * an affected processor, the VMM may have disabled the use of GATHER by
1430  	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1431  	 * which means that AVX will be disabled.
1432  	 */
1433  	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1434  	    boot_cpu_has(X86_FEATURE_AVX))
1435  		setup_force_cpu_bug(X86_BUG_GDS);
1436  
1437  	if (vulnerable_to_rfds(x86_arch_cap_msr))
1438  		setup_force_cpu_bug(X86_BUG_RFDS);
1439  
1440  	/* When virtualized, eIBRS could be hidden, assume vulnerable */
1441  	if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1442  	    !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1443  	    (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1444  	     boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1445  		setup_force_cpu_bug(X86_BUG_BHI);
1446  
1447  	if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1448  		setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1449  
1450  	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1451  		return;
1452  
1453  	/* Rogue Data Cache Load? No! */
1454  	if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1455  		return;
1456  
1457  	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1458  
1459  	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1460  		return;
1461  
1462  	setup_force_cpu_bug(X86_BUG_L1TF);
1463  }
1464  
1465  /*
1466   * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1467   * unfortunately, that's not true in practice because of early VIA
1468   * chips and (more importantly) broken virtualizers that are not easy
1469   * to detect. In the latter case it doesn't even *fail* reliably, so
1470   * probing for it doesn't even work. Disable it completely on 32-bit
1471   * unless we can find a reliable way to detect all the broken cases.
1472   * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1473   */
detect_nopl(void)1474  static void detect_nopl(void)
1475  {
1476  #ifdef CONFIG_X86_32
1477  	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1478  #else
1479  	setup_force_cpu_cap(X86_FEATURE_NOPL);
1480  #endif
1481  }
1482  
1483  /*
1484   * We parse cpu parameters early because fpu__init_system() is executed
1485   * before parse_early_param().
1486   */
cpu_parse_early_param(void)1487  static void __init cpu_parse_early_param(void)
1488  {
1489  	char arg[128];
1490  	char *argptr = arg, *opt;
1491  	int arglen, taint = 0;
1492  
1493  #ifdef CONFIG_X86_32
1494  	if (cmdline_find_option_bool(boot_command_line, "no387"))
1495  #ifdef CONFIG_MATH_EMULATION
1496  		setup_clear_cpu_cap(X86_FEATURE_FPU);
1497  #else
1498  		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1499  #endif
1500  
1501  	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1502  		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1503  #endif
1504  
1505  	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1506  		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1507  
1508  	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1509  		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1510  
1511  	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1512  		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1513  
1514  	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1515  		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1516  
1517  	/* Minimize the gap between FRED is available and available but disabled. */
1518  	arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1519  	if (arglen != 2 || strncmp(arg, "on", 2))
1520  		setup_clear_cpu_cap(X86_FEATURE_FRED);
1521  
1522  	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1523  	if (arglen <= 0)
1524  		return;
1525  
1526  	pr_info("Clearing CPUID bits:");
1527  
1528  	while (argptr) {
1529  		bool found __maybe_unused = false;
1530  		unsigned int bit;
1531  
1532  		opt = strsep(&argptr, ",");
1533  
1534  		/*
1535  		 * Handle naked numbers first for feature flags which don't
1536  		 * have names.
1537  		 */
1538  		if (!kstrtouint(opt, 10, &bit)) {
1539  			if (bit < NCAPINTS * 32) {
1540  
1541  				/* empty-string, i.e., ""-defined feature flags */
1542  				if (!x86_cap_flags[bit])
1543  					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1544  				else
1545  					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1546  
1547  				setup_clear_cpu_cap(bit);
1548  				taint++;
1549  			}
1550  			/*
1551  			 * The assumption is that there are no feature names with only
1552  			 * numbers in the name thus go to the next argument.
1553  			 */
1554  			continue;
1555  		}
1556  
1557  		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1558  			if (!x86_cap_flag(bit))
1559  				continue;
1560  
1561  			if (strcmp(x86_cap_flag(bit), opt))
1562  				continue;
1563  
1564  			pr_cont(" %s", opt);
1565  			setup_clear_cpu_cap(bit);
1566  			taint++;
1567  			found = true;
1568  			break;
1569  		}
1570  
1571  		if (!found)
1572  			pr_cont(" (unknown: %s)", opt);
1573  	}
1574  	pr_cont("\n");
1575  
1576  	if (taint)
1577  		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1578  }
1579  
1580  /*
1581   * Do minimum CPU detection early.
1582   * Fields really needed: vendor, cpuid_level, family, model, mask,
1583   * cache alignment.
1584   * The others are not touched to avoid unwanted side effects.
1585   *
1586   * WARNING: this function is only called on the boot CPU.  Don't add code
1587   * here that is supposed to run on all CPUs.
1588   */
early_identify_cpu(struct cpuinfo_x86 * c)1589  static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1590  {
1591  	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1592  	c->extended_cpuid_level = 0;
1593  
1594  	if (!have_cpuid_p())
1595  		identify_cpu_without_cpuid(c);
1596  
1597  	/* cyrix could have cpuid enabled via c_identify()*/
1598  	if (have_cpuid_p()) {
1599  		cpu_detect(c);
1600  		get_cpu_vendor(c);
1601  		intel_unlock_cpuid_leafs(c);
1602  		get_cpu_cap(c);
1603  		setup_force_cpu_cap(X86_FEATURE_CPUID);
1604  		get_cpu_address_sizes(c);
1605  		cpu_parse_early_param();
1606  
1607  		cpu_init_topology(c);
1608  
1609  		if (this_cpu->c_early_init)
1610  			this_cpu->c_early_init(c);
1611  
1612  		c->cpu_index = 0;
1613  		filter_cpuid_features(c, false);
1614  
1615  		if (this_cpu->c_bsp_init)
1616  			this_cpu->c_bsp_init(c);
1617  	} else {
1618  		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1619  		get_cpu_address_sizes(c);
1620  		cpu_init_topology(c);
1621  	}
1622  
1623  	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1624  
1625  	cpu_set_bug_bits(c);
1626  
1627  	sld_setup(c);
1628  
1629  #ifdef CONFIG_X86_32
1630  	/*
1631  	 * Regardless of whether PCID is enumerated, the SDM says
1632  	 * that it can't be enabled in 32-bit mode.
1633  	 */
1634  	setup_clear_cpu_cap(X86_FEATURE_PCID);
1635  #endif
1636  
1637  	/*
1638  	 * Later in the boot process pgtable_l5_enabled() relies on
1639  	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1640  	 * enabled by this point we need to clear the feature bit to avoid
1641  	 * false-positives at the later stage.
1642  	 *
1643  	 * pgtable_l5_enabled() can be false here for several reasons:
1644  	 *  - 5-level paging is disabled compile-time;
1645  	 *  - it's 32-bit kernel;
1646  	 *  - machine doesn't support 5-level paging;
1647  	 *  - user specified 'no5lvl' in kernel command line.
1648  	 */
1649  	if (!pgtable_l5_enabled())
1650  		setup_clear_cpu_cap(X86_FEATURE_LA57);
1651  
1652  	detect_nopl();
1653  }
1654  
early_cpu_init(void)1655  void __init early_cpu_init(void)
1656  {
1657  	const struct cpu_dev *const *cdev;
1658  	int count = 0;
1659  
1660  #ifdef CONFIG_PROCESSOR_SELECT
1661  	pr_info("KERNEL supported cpus:\n");
1662  #endif
1663  
1664  	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1665  		const struct cpu_dev *cpudev = *cdev;
1666  
1667  		if (count >= X86_VENDOR_NUM)
1668  			break;
1669  		cpu_devs[count] = cpudev;
1670  		count++;
1671  
1672  #ifdef CONFIG_PROCESSOR_SELECT
1673  		{
1674  			unsigned int j;
1675  
1676  			for (j = 0; j < 2; j++) {
1677  				if (!cpudev->c_ident[j])
1678  					continue;
1679  				pr_info("  %s %s\n", cpudev->c_vendor,
1680  					cpudev->c_ident[j]);
1681  			}
1682  		}
1683  #endif
1684  	}
1685  	early_identify_cpu(&boot_cpu_data);
1686  }
1687  
detect_null_seg_behavior(void)1688  static bool detect_null_seg_behavior(void)
1689  {
1690  	/*
1691  	 * Empirically, writing zero to a segment selector on AMD does
1692  	 * not clear the base, whereas writing zero to a segment
1693  	 * selector on Intel does clear the base.  Intel's behavior
1694  	 * allows slightly faster context switches in the common case
1695  	 * where GS is unused by the prev and next threads.
1696  	 *
1697  	 * Since neither vendor documents this anywhere that I can see,
1698  	 * detect it directly instead of hard-coding the choice by
1699  	 * vendor.
1700  	 *
1701  	 * I've designated AMD's behavior as the "bug" because it's
1702  	 * counterintuitive and less friendly.
1703  	 */
1704  
1705  	unsigned long old_base, tmp;
1706  	rdmsrl(MSR_FS_BASE, old_base);
1707  	wrmsrl(MSR_FS_BASE, 1);
1708  	loadsegment(fs, 0);
1709  	rdmsrl(MSR_FS_BASE, tmp);
1710  	wrmsrl(MSR_FS_BASE, old_base);
1711  	return tmp == 0;
1712  }
1713  
check_null_seg_clears_base(struct cpuinfo_x86 * c)1714  void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1715  {
1716  	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1717  	if (!IS_ENABLED(CONFIG_X86_64))
1718  		return;
1719  
1720  	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1721  		return;
1722  
1723  	/*
1724  	 * CPUID bit above wasn't set. If this kernel is still running
1725  	 * as a HV guest, then the HV has decided not to advertize
1726  	 * that CPUID bit for whatever reason.	For example, one
1727  	 * member of the migration pool might be vulnerable.  Which
1728  	 * means, the bug is present: set the BUG flag and return.
1729  	 */
1730  	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1731  		set_cpu_bug(c, X86_BUG_NULL_SEG);
1732  		return;
1733  	}
1734  
1735  	/*
1736  	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1737  	 * 0x18 is the respective family for Hygon.
1738  	 */
1739  	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1740  	    detect_null_seg_behavior())
1741  		return;
1742  
1743  	/* All the remaining ones are affected */
1744  	set_cpu_bug(c, X86_BUG_NULL_SEG);
1745  }
1746  
generic_identify(struct cpuinfo_x86 * c)1747  static void generic_identify(struct cpuinfo_x86 *c)
1748  {
1749  	c->extended_cpuid_level = 0;
1750  
1751  	if (!have_cpuid_p())
1752  		identify_cpu_without_cpuid(c);
1753  
1754  	/* cyrix could have cpuid enabled via c_identify()*/
1755  	if (!have_cpuid_p())
1756  		return;
1757  
1758  	cpu_detect(c);
1759  
1760  	get_cpu_vendor(c);
1761  	intel_unlock_cpuid_leafs(c);
1762  	get_cpu_cap(c);
1763  
1764  	get_cpu_address_sizes(c);
1765  
1766  	get_model_name(c); /* Default name */
1767  
1768  	/*
1769  	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1770  	 * systems that run Linux at CPL > 0 may or may not have the
1771  	 * issue, but, even if they have the issue, there's absolutely
1772  	 * nothing we can do about it because we can't use the real IRET
1773  	 * instruction.
1774  	 *
1775  	 * NB: For the time being, only 32-bit kernels support
1776  	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1777  	 * whether to apply espfix using paravirt hooks.  If any
1778  	 * non-paravirt system ever shows up that does *not* have the
1779  	 * ESPFIX issue, we can change this.
1780  	 */
1781  #ifdef CONFIG_X86_32
1782  	set_cpu_bug(c, X86_BUG_ESPFIX);
1783  #endif
1784  }
1785  
1786  /*
1787   * This does the hard work of actually picking apart the CPU stuff...
1788   */
identify_cpu(struct cpuinfo_x86 * c)1789  static void identify_cpu(struct cpuinfo_x86 *c)
1790  {
1791  	int i;
1792  
1793  	c->loops_per_jiffy = loops_per_jiffy;
1794  	c->x86_cache_size = 0;
1795  	c->x86_vendor = X86_VENDOR_UNKNOWN;
1796  	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1797  	c->x86_vendor_id[0] = '\0'; /* Unset */
1798  	c->x86_model_id[0] = '\0';  /* Unset */
1799  #ifdef CONFIG_X86_64
1800  	c->x86_clflush_size = 64;
1801  	c->x86_phys_bits = 36;
1802  	c->x86_virt_bits = 48;
1803  #else
1804  	c->cpuid_level = -1;	/* CPUID not detected */
1805  	c->x86_clflush_size = 32;
1806  	c->x86_phys_bits = 32;
1807  	c->x86_virt_bits = 32;
1808  #endif
1809  	c->x86_cache_alignment = c->x86_clflush_size;
1810  	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1811  #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1812  	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1813  #endif
1814  
1815  	generic_identify(c);
1816  
1817  	cpu_parse_topology(c);
1818  
1819  	if (this_cpu->c_identify)
1820  		this_cpu->c_identify(c);
1821  
1822  	/* Clear/Set all flags overridden by options, after probe */
1823  	apply_forced_caps(c);
1824  
1825  	/*
1826  	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1827  	 * Hygon will clear it in ->c_init() below.
1828  	 */
1829  	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1830  
1831  	/*
1832  	 * Vendor-specific initialization.  In this section we
1833  	 * canonicalize the feature flags, meaning if there are
1834  	 * features a certain CPU supports which CPUID doesn't
1835  	 * tell us, CPUID claiming incorrect flags, or other bugs,
1836  	 * we handle them here.
1837  	 *
1838  	 * At the end of this section, c->x86_capability better
1839  	 * indicate the features this CPU genuinely supports!
1840  	 */
1841  	if (this_cpu->c_init)
1842  		this_cpu->c_init(c);
1843  
1844  	/* Disable the PN if appropriate */
1845  	squash_the_stupid_serial_number(c);
1846  
1847  	/* Set up SMEP/SMAP/UMIP */
1848  	setup_smep(c);
1849  	setup_smap(c);
1850  	setup_umip(c);
1851  
1852  	/* Enable FSGSBASE instructions if available. */
1853  	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1854  		cr4_set_bits(X86_CR4_FSGSBASE);
1855  		elf_hwcap2 |= HWCAP2_FSGSBASE;
1856  	}
1857  
1858  	/*
1859  	 * The vendor-specific functions might have changed features.
1860  	 * Now we do "generic changes."
1861  	 */
1862  
1863  	/* Filter out anything that depends on CPUID levels we don't have */
1864  	filter_cpuid_features(c, true);
1865  
1866  	/* If the model name is still unset, do table lookup. */
1867  	if (!c->x86_model_id[0]) {
1868  		const char *p;
1869  		p = table_lookup_model(c);
1870  		if (p)
1871  			strcpy(c->x86_model_id, p);
1872  		else
1873  			/* Last resort... */
1874  			sprintf(c->x86_model_id, "%02x/%02x",
1875  				c->x86, c->x86_model);
1876  	}
1877  
1878  	x86_init_rdrand(c);
1879  	setup_pku(c);
1880  	setup_cet(c);
1881  
1882  	/*
1883  	 * Clear/Set all flags overridden by options, need do it
1884  	 * before following smp all cpus cap AND.
1885  	 */
1886  	apply_forced_caps(c);
1887  
1888  	/*
1889  	 * On SMP, boot_cpu_data holds the common feature set between
1890  	 * all CPUs; so make sure that we indicate which features are
1891  	 * common between the CPUs.  The first time this routine gets
1892  	 * executed, c == &boot_cpu_data.
1893  	 */
1894  	if (c != &boot_cpu_data) {
1895  		/* AND the already accumulated flags with these */
1896  		for (i = 0; i < NCAPINTS; i++)
1897  			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1898  
1899  		/* OR, i.e. replicate the bug flags */
1900  		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1901  			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1902  	}
1903  
1904  	ppin_init(c);
1905  
1906  	/* Init Machine Check Exception if available. */
1907  	mcheck_cpu_init(c);
1908  
1909  #ifdef CONFIG_NUMA
1910  	numa_add_cpu(smp_processor_id());
1911  #endif
1912  }
1913  
1914  /*
1915   * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1916   * on 32-bit kernels:
1917   */
1918  #ifdef CONFIG_X86_32
enable_sep_cpu(void)1919  void enable_sep_cpu(void)
1920  {
1921  	struct tss_struct *tss;
1922  	int cpu;
1923  
1924  	if (!boot_cpu_has(X86_FEATURE_SEP))
1925  		return;
1926  
1927  	cpu = get_cpu();
1928  	tss = &per_cpu(cpu_tss_rw, cpu);
1929  
1930  	/*
1931  	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1932  	 * see the big comment in struct x86_hw_tss's definition.
1933  	 */
1934  
1935  	tss->x86_tss.ss1 = __KERNEL_CS;
1936  	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1937  	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1938  	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1939  
1940  	put_cpu();
1941  }
1942  #endif
1943  
identify_boot_cpu(void)1944  static __init void identify_boot_cpu(void)
1945  {
1946  	identify_cpu(&boot_cpu_data);
1947  	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1948  		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1949  #ifdef CONFIG_X86_32
1950  	enable_sep_cpu();
1951  #endif
1952  	cpu_detect_tlb(&boot_cpu_data);
1953  	setup_cr_pinning();
1954  
1955  	tsx_init();
1956  	tdx_init();
1957  	lkgs_init();
1958  }
1959  
identify_secondary_cpu(struct cpuinfo_x86 * c)1960  void identify_secondary_cpu(struct cpuinfo_x86 *c)
1961  {
1962  	BUG_ON(c == &boot_cpu_data);
1963  	identify_cpu(c);
1964  #ifdef CONFIG_X86_32
1965  	enable_sep_cpu();
1966  #endif
1967  	x86_spec_ctrl_setup_ap();
1968  	update_srbds_msr();
1969  	if (boot_cpu_has_bug(X86_BUG_GDS))
1970  		update_gds_msr();
1971  
1972  	tsx_ap_init();
1973  }
1974  
print_cpu_info(struct cpuinfo_x86 * c)1975  void print_cpu_info(struct cpuinfo_x86 *c)
1976  {
1977  	const char *vendor = NULL;
1978  
1979  	if (c->x86_vendor < X86_VENDOR_NUM) {
1980  		vendor = this_cpu->c_vendor;
1981  	} else {
1982  		if (c->cpuid_level >= 0)
1983  			vendor = c->x86_vendor_id;
1984  	}
1985  
1986  	if (vendor && !strstr(c->x86_model_id, vendor))
1987  		pr_cont("%s ", vendor);
1988  
1989  	if (c->x86_model_id[0])
1990  		pr_cont("%s", c->x86_model_id);
1991  	else
1992  		pr_cont("%d86", c->x86);
1993  
1994  	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1995  
1996  	if (c->x86_stepping || c->cpuid_level >= 0)
1997  		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1998  	else
1999  		pr_cont(")\n");
2000  }
2001  
2002  /*
2003   * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2004   * function prevents it from becoming an environment variable for init.
2005   */
setup_clearcpuid(char * arg)2006  static __init int setup_clearcpuid(char *arg)
2007  {
2008  	return 1;
2009  }
2010  __setup("clearcpuid=", setup_clearcpuid);
2011  
2012  DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2013  	.current_task	= &init_task,
2014  	.preempt_count	= INIT_PREEMPT_COUNT,
2015  	.top_of_stack	= TOP_OF_INIT_STACK,
2016  };
2017  EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2018  EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2019  
2020  #ifdef CONFIG_X86_64
2021  DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2022  		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2023  EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2024  
wrmsrl_cstar(unsigned long val)2025  static void wrmsrl_cstar(unsigned long val)
2026  {
2027  	/*
2028  	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2029  	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2030  	 * guest. Avoid the pointless write on all Intel CPUs.
2031  	 */
2032  	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2033  		wrmsrl(MSR_CSTAR, val);
2034  }
2035  
idt_syscall_init(void)2036  static inline void idt_syscall_init(void)
2037  {
2038  	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2039  
2040  	if (ia32_enabled()) {
2041  		wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2042  		/*
2043  		 * This only works on Intel CPUs.
2044  		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2045  		 * This does not cause SYSENTER to jump to the wrong location, because
2046  		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2047  		 */
2048  		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2049  		wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2050  			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2051  		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2052  	} else {
2053  		wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2054  		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2055  		wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2056  		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2057  	}
2058  
2059  	/*
2060  	 * Flags to clear on syscall; clear as much as possible
2061  	 * to minimize user space-kernel interference.
2062  	 */
2063  	wrmsrl(MSR_SYSCALL_MASK,
2064  	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2065  	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2066  	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2067  	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2068  	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2069  }
2070  
2071  /* May not be marked __init: used by software suspend */
syscall_init(void)2072  void syscall_init(void)
2073  {
2074  	/* The default user and kernel segments */
2075  	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2076  
2077  	/*
2078  	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2079  	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2080  	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2081  	 * instruction to return to ring 3 (both sysexit and sysret cause
2082  	 * #UD when FRED is enabled).
2083  	 */
2084  	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2085  		idt_syscall_init();
2086  }
2087  
2088  #else	/* CONFIG_X86_64 */
2089  
2090  #ifdef CONFIG_STACKPROTECTOR
2091  DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2092  #ifndef CONFIG_SMP
2093  EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2094  #endif
2095  #endif
2096  
2097  #endif	/* CONFIG_X86_64 */
2098  
2099  /*
2100   * Clear all 6 debug registers:
2101   */
clear_all_debug_regs(void)2102  static void clear_all_debug_regs(void)
2103  {
2104  	int i;
2105  
2106  	for (i = 0; i < 8; i++) {
2107  		/* Ignore db4, db5 */
2108  		if ((i == 4) || (i == 5))
2109  			continue;
2110  
2111  		set_debugreg(0, i);
2112  	}
2113  }
2114  
2115  #ifdef CONFIG_KGDB
2116  /*
2117   * Restore debug regs if using kgdbwait and you have a kernel debugger
2118   * connection established.
2119   */
dbg_restore_debug_regs(void)2120  static void dbg_restore_debug_regs(void)
2121  {
2122  	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2123  		arch_kgdb_ops.correct_hw_break();
2124  }
2125  #else /* ! CONFIG_KGDB */
2126  #define dbg_restore_debug_regs()
2127  #endif /* ! CONFIG_KGDB */
2128  
setup_getcpu(int cpu)2129  static inline void setup_getcpu(int cpu)
2130  {
2131  	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2132  	struct desc_struct d = { };
2133  
2134  	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2135  		wrmsr(MSR_TSC_AUX, cpudata, 0);
2136  
2137  	/* Store CPU and node number in limit. */
2138  	d.limit0 = cpudata;
2139  	d.limit1 = cpudata >> 16;
2140  
2141  	d.type = 5;		/* RO data, expand down, accessed */
2142  	d.dpl = 3;		/* Visible to user code */
2143  	d.s = 1;		/* Not a system segment */
2144  	d.p = 1;		/* Present */
2145  	d.d = 1;		/* 32-bit */
2146  
2147  	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2148  }
2149  
2150  #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2151  static inline void tss_setup_ist(struct tss_struct *tss)
2152  {
2153  	/* Set up the per-CPU TSS IST stacks */
2154  	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2155  	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2156  	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2157  	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2158  	/* Only mapped when SEV-ES is active */
2159  	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2160  }
2161  #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2162  static inline void tss_setup_ist(struct tss_struct *tss) { }
2163  #endif /* !CONFIG_X86_64 */
2164  
tss_setup_io_bitmap(struct tss_struct * tss)2165  static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2166  {
2167  	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2168  
2169  #ifdef CONFIG_X86_IOPL_IOPERM
2170  	tss->io_bitmap.prev_max = 0;
2171  	tss->io_bitmap.prev_sequence = 0;
2172  	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2173  	/*
2174  	 * Invalidate the extra array entry past the end of the all
2175  	 * permission bitmap as required by the hardware.
2176  	 */
2177  	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2178  #endif
2179  }
2180  
2181  /*
2182   * Setup everything needed to handle exceptions from the IDT, including the IST
2183   * exceptions which use paranoid_entry().
2184   */
cpu_init_exception_handling(bool boot_cpu)2185  void cpu_init_exception_handling(bool boot_cpu)
2186  {
2187  	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2188  	int cpu = raw_smp_processor_id();
2189  
2190  	/* paranoid_entry() gets the CPU number from the GDT */
2191  	setup_getcpu(cpu);
2192  
2193  	/* For IDT mode, IST vectors need to be set in TSS. */
2194  	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2195  		tss_setup_ist(tss);
2196  	tss_setup_io_bitmap(tss);
2197  	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2198  
2199  	load_TR_desc();
2200  
2201  	/* GHCB needs to be setup to handle #VC. */
2202  	setup_ghcb();
2203  
2204  	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2205  		/* The boot CPU has enabled FRED during early boot */
2206  		if (!boot_cpu)
2207  			cpu_init_fred_exceptions();
2208  
2209  		cpu_init_fred_rsps();
2210  	} else {
2211  		load_current_idt();
2212  	}
2213  }
2214  
cpu_init_replace_early_idt(void)2215  void __init cpu_init_replace_early_idt(void)
2216  {
2217  	if (cpu_feature_enabled(X86_FEATURE_FRED))
2218  		cpu_init_fred_exceptions();
2219  	else
2220  		idt_setup_early_pf();
2221  }
2222  
2223  /*
2224   * cpu_init() initializes state that is per-CPU. Some data is already
2225   * initialized (naturally) in the bootstrap process, such as the GDT.  We
2226   * reload it nevertheless, this function acts as a 'CPU state barrier',
2227   * nothing should get across.
2228   */
cpu_init(void)2229  void cpu_init(void)
2230  {
2231  	struct task_struct *cur = current;
2232  	int cpu = raw_smp_processor_id();
2233  
2234  #ifdef CONFIG_NUMA
2235  	if (this_cpu_read(numa_node) == 0 &&
2236  	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2237  		set_numa_node(early_cpu_to_node(cpu));
2238  #endif
2239  	pr_debug("Initializing CPU#%d\n", cpu);
2240  
2241  	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2242  	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2243  		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2244  
2245  	if (IS_ENABLED(CONFIG_X86_64)) {
2246  		loadsegment(fs, 0);
2247  		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2248  		syscall_init();
2249  
2250  		wrmsrl(MSR_FS_BASE, 0);
2251  		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2252  		barrier();
2253  
2254  		x2apic_setup();
2255  
2256  		intel_posted_msi_init();
2257  	}
2258  
2259  	mmgrab(&init_mm);
2260  	cur->active_mm = &init_mm;
2261  	BUG_ON(cur->mm);
2262  	initialize_tlbstate_and_flush();
2263  	enter_lazy_tlb(&init_mm, cur);
2264  
2265  	/*
2266  	 * sp0 points to the entry trampoline stack regardless of what task
2267  	 * is running.
2268  	 */
2269  	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2270  
2271  	load_mm_ldt(&init_mm);
2272  
2273  	clear_all_debug_regs();
2274  	dbg_restore_debug_regs();
2275  
2276  	doublefault_init_cpu_tss();
2277  
2278  	if (is_uv_system())
2279  		uv_cpu_init();
2280  
2281  	load_fixmap_gdt(cpu);
2282  }
2283  
2284  #ifdef CONFIG_MICROCODE_LATE_LOADING
2285  /**
2286   * store_cpu_caps() - Store a snapshot of CPU capabilities
2287   * @curr_info: Pointer where to store it
2288   *
2289   * Returns: None
2290   */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2291  void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2292  {
2293  	/* Reload CPUID max function as it might've changed. */
2294  	curr_info->cpuid_level = cpuid_eax(0);
2295  
2296  	/* Copy all capability leafs and pick up the synthetic ones. */
2297  	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2298  	       sizeof(curr_info->x86_capability));
2299  
2300  	/* Get the hardware CPUID leafs */
2301  	get_cpu_cap(curr_info);
2302  }
2303  
2304  /**
2305   * microcode_check() - Check if any CPU capabilities changed after an update.
2306   * @prev_info:	CPU capabilities stored before an update.
2307   *
2308   * The microcode loader calls this upon late microcode load to recheck features,
2309   * only when microcode has been updated. Caller holds and CPU hotplug lock.
2310   *
2311   * Return: None
2312   */
microcode_check(struct cpuinfo_x86 * prev_info)2313  void microcode_check(struct cpuinfo_x86 *prev_info)
2314  {
2315  	struct cpuinfo_x86 curr_info;
2316  
2317  	perf_check_microcode();
2318  
2319  	amd_check_microcode();
2320  
2321  	store_cpu_caps(&curr_info);
2322  
2323  	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2324  		    sizeof(prev_info->x86_capability)))
2325  		return;
2326  
2327  	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2328  	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2329  }
2330  #endif
2331  
2332  /*
2333   * Invoked from core CPU hotplug code after hotplug operations
2334   */
arch_smt_update(void)2335  void arch_smt_update(void)
2336  {
2337  	/* Handle the speculative execution misfeatures */
2338  	cpu_bugs_smt_update();
2339  	/* Check whether IPI broadcasting can be enabled */
2340  	apic_smt_update();
2341  }
2342  
arch_cpu_finalize_init(void)2343  void __init arch_cpu_finalize_init(void)
2344  {
2345  	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2346  
2347  	identify_boot_cpu();
2348  
2349  	select_idle_routine();
2350  
2351  	/*
2352  	 * identify_boot_cpu() initialized SMT support information, let the
2353  	 * core code know.
2354  	 */
2355  	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2356  
2357  	if (!IS_ENABLED(CONFIG_SMP)) {
2358  		pr_info("CPU: ");
2359  		print_cpu_info(&boot_cpu_data);
2360  	}
2361  
2362  	cpu_select_mitigations();
2363  
2364  	arch_smt_update();
2365  
2366  	if (IS_ENABLED(CONFIG_X86_32)) {
2367  		/*
2368  		 * Check whether this is a real i386 which is not longer
2369  		 * supported and fixup the utsname.
2370  		 */
2371  		if (boot_cpu_data.x86 < 4)
2372  			panic("Kernel requires i486+ for 'invlpg' and other features");
2373  
2374  		init_utsname()->machine[1] =
2375  			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2376  	}
2377  
2378  	/*
2379  	 * Must be before alternatives because it might set or clear
2380  	 * feature bits.
2381  	 */
2382  	fpu__init_system();
2383  	fpu__init_cpu();
2384  
2385  	/*
2386  	 * Ensure that access to the per CPU representation has the initial
2387  	 * boot CPU configuration.
2388  	 */
2389  	*c = boot_cpu_data;
2390  	c->initialized = true;
2391  
2392  	alternative_instructions();
2393  
2394  	if (IS_ENABLED(CONFIG_X86_64)) {
2395  		unsigned long USER_PTR_MAX = TASK_SIZE_MAX-1;
2396  
2397  		/*
2398  		 * Enable this when LAM is gated on LASS support
2399  		if (cpu_feature_enabled(X86_FEATURE_LAM))
2400  			USER_PTR_MAX = (1ul << 63) - PAGE_SIZE - 1;
2401  		 */
2402  		runtime_const_init(ptr, USER_PTR_MAX);
2403  
2404  		/*
2405  		 * Make sure the first 2MB area is not mapped by huge pages
2406  		 * There are typically fixed size MTRRs in there and overlapping
2407  		 * MTRRs into large pages causes slow downs.
2408  		 *
2409  		 * Right now we don't do that with gbpages because there seems
2410  		 * very little benefit for that case.
2411  		 */
2412  		if (!direct_gbpages)
2413  			set_memory_4k((unsigned long)__va(0), 1);
2414  	} else {
2415  		fpu__init_check_bugs();
2416  	}
2417  
2418  	/*
2419  	 * This needs to be called before any devices perform DMA
2420  	 * operations that might use the SWIOTLB bounce buffers. It will
2421  	 * mark the bounce buffers as decrypted so that their usage will
2422  	 * not cause "plain-text" data to be decrypted when accessed. It
2423  	 * must be called after late_time_init() so that Hyper-V x86/x64
2424  	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2425  	 */
2426  	mem_encrypt_init();
2427  }
2428