1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Common boot and setup code.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 #include <linux/pgtable.h>
34 #include <linux/of.h>
35 #include <linux/of_fdt.h>
36 
37 #include <asm/asm-prototypes.h>
38 #include <asm/kvm_guest.h>
39 #include <asm/io.h>
40 #include <asm/kdump.h>
41 #include <asm/processor.h>
42 #include <asm/smp.h>
43 #include <asm/elf.h>
44 #include <asm/machdep.h>
45 #include <asm/paca.h>
46 #include <asm/time.h>
47 #include <asm/cputable.h>
48 #include <asm/dt_cpu_ftrs.h>
49 #include <asm/sections.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/rtas.h>
54 #include <asm/iommu.h>
55 #include <asm/serial.h>
56 #include <asm/cache.h>
57 #include <asm/page.h>
58 #include <asm/mmu.h>
59 #include <asm/firmware.h>
60 #include <asm/xmon.h>
61 #include <asm/udbg.h>
62 #include <asm/kexec.h>
63 #include <asm/code-patching.h>
64 #include <asm/ftrace.h>
65 #include <asm/opal.h>
66 #include <asm/cputhreads.h>
67 #include <asm/hw_irq.h>
68 #include <asm/feature-fixups.h>
69 #include <asm/kup.h>
70 #include <asm/early_ioremap.h>
71 #include <asm/pgalloc.h>
72 
73 #include "setup.h"
74 
75 int spinning_secondaries;
76 u64 ppc64_pft_size;
77 
78 struct ppc64_caches ppc64_caches = {
79 	.l1d = {
80 		.block_size = 0x40,
81 		.log_block_size = 6,
82 	},
83 	.l1i = {
84 		.block_size = 0x40,
85 		.log_block_size = 6
86 	},
87 };
88 EXPORT_SYMBOL_GPL(ppc64_caches);
89 
90 #if defined(CONFIG_PPC_BOOK3E_64) && defined(CONFIG_SMP)
setup_tlb_core_data(void)91 void __init setup_tlb_core_data(void)
92 {
93 	int cpu;
94 
95 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
96 
97 	for_each_possible_cpu(cpu) {
98 		int first = cpu_first_thread_sibling(cpu);
99 
100 		/*
101 		 * If we boot via kdump on a non-primary thread,
102 		 * make sure we point at the thread that actually
103 		 * set up this TLB.
104 		 */
105 		if (cpu_first_thread_sibling(boot_cpuid) == first)
106 			first = boot_cpuid;
107 
108 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
109 
110 		/*
111 		 * If we have threads, we need either tlbsrx.
112 		 * or e6500 tablewalk mode, or else TLB handlers
113 		 * will be racy and could produce duplicate entries.
114 		 * Should we panic instead?
115 		 */
116 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
117 			  book3e_htw_mode != PPC_HTW_E6500,
118 			  "%s: unsupported MMU configuration\n", __func__);
119 	}
120 }
121 #endif
122 
123 #ifdef CONFIG_SMP
124 
125 static char *smt_enabled_cmdline;
126 
127 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)128 void __init check_smt_enabled(void)
129 {
130 	struct device_node *dn;
131 	const char *smt_option;
132 
133 	/* Default to enabling all threads */
134 	smt_enabled_at_boot = threads_per_core;
135 
136 	/* Allow the command line to overrule the OF option */
137 	if (smt_enabled_cmdline) {
138 		if (!strcmp(smt_enabled_cmdline, "on"))
139 			smt_enabled_at_boot = threads_per_core;
140 		else if (!strcmp(smt_enabled_cmdline, "off"))
141 			smt_enabled_at_boot = 0;
142 		else {
143 			int smt;
144 			int rc;
145 
146 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
147 			if (!rc)
148 				smt_enabled_at_boot =
149 					min(threads_per_core, smt);
150 		}
151 	} else {
152 		dn = of_find_node_by_path("/options");
153 		if (dn) {
154 			smt_option = of_get_property(dn, "ibm,smt-enabled",
155 						     NULL);
156 
157 			if (smt_option) {
158 				if (!strcmp(smt_option, "on"))
159 					smt_enabled_at_boot = threads_per_core;
160 				else if (!strcmp(smt_option, "off"))
161 					smt_enabled_at_boot = 0;
162 			}
163 
164 			of_node_put(dn);
165 		}
166 	}
167 }
168 
169 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)170 static int __init early_smt_enabled(char *p)
171 {
172 	smt_enabled_cmdline = p;
173 	return 0;
174 }
175 early_param("smt-enabled", early_smt_enabled);
176 
177 #endif /* CONFIG_SMP */
178 
179 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(struct paca_struct * boot_paca)180 static void __init fixup_boot_paca(struct paca_struct *boot_paca)
181 {
182 	/* The boot cpu is started */
183 	boot_paca->cpu_start = 1;
184 #ifdef CONFIG_PPC_BOOK3S_64
185 	/*
186 	 * Give the early boot machine check stack somewhere to use, use
187 	 * half of the init stack. This is a bit hacky but there should not be
188 	 * deep stack usage in early init so shouldn't overflow it or overwrite
189 	 * things.
190 	 */
191 	boot_paca->mc_emergency_sp = (void *)&init_thread_union +
192 		(THREAD_SIZE/2);
193 #endif
194 	/* Allow percpu accesses to work until we setup percpu data */
195 	boot_paca->data_offset = 0;
196 	/* Mark interrupts soft and hard disabled in PACA */
197 	boot_paca->irq_soft_mask = IRQS_DISABLED;
198 	boot_paca->irq_happened = PACA_IRQ_HARD_DIS;
199 	WARN_ON(mfmsr() & MSR_EE);
200 }
201 
configure_exceptions(void)202 static void __init configure_exceptions(void)
203 {
204 	/*
205 	 * Setup the trampolines from the lowmem exception vectors
206 	 * to the kdump kernel when not using a relocatable kernel.
207 	 */
208 	setup_kdump_trampoline();
209 
210 	/* Under a PAPR hypervisor, we need hypercalls */
211 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
212 		/*
213 		 * - PR KVM does not support AIL mode interrupts in the host
214 		 *   while a PR guest is running.
215 		 *
216 		 * - SCV system call interrupt vectors are only implemented for
217 		 *   AIL mode interrupts.
218 		 *
219 		 * - On pseries, AIL mode can only be enabled and disabled
220 		 *   system-wide so when a PR VM is created on a pseries host,
221 		 *   all CPUs of the host are set to AIL=0 mode.
222 		 *
223 		 * - Therefore host CPUs must not execute scv while a PR VM
224 		 *   exists.
225 		 *
226 		 * - SCV support can not be disabled dynamically because the
227 		 *   feature is advertised to host userspace. Disabling the
228 		 *   facility and emulating it would be possible but is not
229 		 *   implemented.
230 		 *
231 		 * - So SCV support is blanket disabled if PR KVM could possibly
232 		 *   run. That is, PR support compiled in, booting on pseries
233 		 *   with hash MMU.
234 		 */
235 		if (IS_ENABLED(CONFIG_KVM_BOOK3S_PR_POSSIBLE) && !radix_enabled()) {
236 			init_task.thread.fscr &= ~FSCR_SCV;
237 			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
238 		}
239 
240 		/* Enable AIL if possible */
241 		if (!pseries_enable_reloc_on_exc()) {
242 			init_task.thread.fscr &= ~FSCR_SCV;
243 			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
244 		}
245 
246 		/*
247 		 * Tell the hypervisor that we want our exceptions to
248 		 * be taken in little endian mode.
249 		 *
250 		 * We don't call this for big endian as our calling convention
251 		 * makes us always enter in BE, and the call may fail under
252 		 * some circumstances with kdump.
253 		 */
254 #ifdef __LITTLE_ENDIAN__
255 		pseries_little_endian_exceptions();
256 #endif
257 	} else {
258 		/* Set endian mode using OPAL */
259 		if (firmware_has_feature(FW_FEATURE_OPAL))
260 			opal_configure_cores();
261 
262 		/* AIL on native is done in cpu_ready_for_interrupts() */
263 	}
264 }
265 
cpu_ready_for_interrupts(void)266 static void cpu_ready_for_interrupts(void)
267 {
268 	/*
269 	 * Enable AIL if supported, and we are in hypervisor mode. This
270 	 * is called once for every processor.
271 	 *
272 	 * If we are not in hypervisor mode the job is done once for
273 	 * the whole partition in configure_exceptions().
274 	 */
275 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
276 		unsigned long lpcr = mfspr(SPRN_LPCR);
277 		unsigned long new_lpcr = lpcr;
278 
279 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280 			/* P10 DD1 does not have HAIL */
281 			if (pvr_version_is(PVR_POWER10) &&
282 					(mfspr(SPRN_PVR) & 0xf00) == 0x100)
283 				new_lpcr |= LPCR_AIL_3;
284 			else
285 				new_lpcr |= LPCR_HAIL;
286 		} else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
287 			new_lpcr |= LPCR_AIL_3;
288 		}
289 
290 		if (new_lpcr != lpcr)
291 			mtspr(SPRN_LPCR, new_lpcr);
292 	}
293 
294 	/*
295 	 * Set HFSCR:TM based on CPU features:
296 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
297 	 * told TM is off via the dt-ftrs but told to (partially) use
298 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
299 	 * will be off from dt-ftrs but we need to turn it on for the
300 	 * no suspend case.
301 	 */
302 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
303 		if (cpu_has_feature(CPU_FTR_TM_COMP))
304 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
305 		else
306 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
307 	}
308 
309 	/* Set IR and DR in PACA MSR */
310 	get_paca()->kernel_msr = MSR_KERNEL;
311 }
312 
313 unsigned long spr_default_dscr = 0;
314 
record_spr_defaults(void)315 static void __init record_spr_defaults(void)
316 {
317 	if (early_cpu_has_feature(CPU_FTR_DSCR))
318 		spr_default_dscr = mfspr(SPRN_DSCR);
319 }
320 
321 /*
322  * Early initialization entry point. This is called by head.S
323  * with MMU translation disabled. We rely on the "feature" of
324  * the CPU that ignores the top 2 bits of the address in real
325  * mode so we can access kernel globals normally provided we
326  * only toy with things in the RMO region. From here, we do
327  * some early parsing of the device-tree to setup out MEMBLOCK
328  * data structures, and allocate & initialize the hash table
329  * and segment tables so we can start running with translation
330  * enabled.
331  *
332  * It is this function which will call the probe() callback of
333  * the various platform types and copy the matching one to the
334  * global ppc_md structure. Your platform can eventually do
335  * some very early initializations from the probe() routine, but
336  * this is not recommended, be very careful as, for example, the
337  * device-tree is not accessible via normal means at this point.
338  */
339 
early_setup(unsigned long dt_ptr)340 void __init early_setup(unsigned long dt_ptr)
341 {
342 	static __initdata struct paca_struct boot_paca;
343 
344 	/* -------- printk is _NOT_ safe to use here ! ------- */
345 
346 	/*
347 	 * Assume we're on cpu 0 for now.
348 	 *
349 	 * We need to load a PACA very early for a few reasons.
350 	 *
351 	 * The stack protector canary is stored in the paca, so as soon as we
352 	 * call any stack protected code we need r13 pointing somewhere valid.
353 	 *
354 	 * If we are using kcov it will call in_task() in its instrumentation,
355 	 * which relies on the current task from the PACA.
356 	 *
357 	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
358 	 * printk(), which can trigger both stack protector and kcov.
359 	 *
360 	 * percpu variables and spin locks also use the paca.
361 	 *
362 	 * So set up a temporary paca. It will be replaced below once we know
363 	 * what CPU we are on.
364 	 */
365 	initialise_paca(&boot_paca, 0);
366 	fixup_boot_paca(&boot_paca);
367 	WARN_ON(local_paca);
368 	setup_paca(&boot_paca); /* install the paca into registers */
369 
370 	/* -------- printk is now safe to use ------- */
371 
372 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && (mfmsr() & MSR_HV))
373 		enable_machine_check();
374 
375 	/* Try new device tree based feature discovery ... */
376 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
377 		/* Otherwise use the old style CPU table */
378 		identify_cpu(0, mfspr(SPRN_PVR));
379 
380 	/* Enable early debugging if any specified (see udbg.h) */
381 	udbg_early_init();
382 
383 	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
384 
385 	/*
386 	 * Do early initialization using the flattened device
387 	 * tree, such as retrieving the physical memory map or
388 	 * calculating/retrieving the hash table size, discover
389 	 * boot_cpuid and boot_cpu_hwid.
390 	 */
391 	early_init_devtree(__va(dt_ptr));
392 
393 	allocate_paca_ptrs();
394 	allocate_paca(boot_cpuid);
395 	set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid);
396 	fixup_boot_paca(paca_ptrs[boot_cpuid]);
397 	setup_paca(paca_ptrs[boot_cpuid]); /* install the paca into registers */
398 	// smp_processor_id() now reports boot_cpuid
399 
400 #ifdef CONFIG_SMP
401 	task_thread_info(current)->cpu = boot_cpuid; // fix task_cpu(current)
402 #endif
403 
404 	/*
405 	 * Configure exception handlers. This include setting up trampolines
406 	 * if needed, setting exception endian mode, etc...
407 	 */
408 	configure_exceptions();
409 
410 	/*
411 	 * Configure Kernel Userspace Protection. This needs to happen before
412 	 * feature fixups for platforms that implement this using features.
413 	 */
414 	setup_kup();
415 
416 	/* Apply all the dynamic patching */
417 	apply_feature_fixups();
418 	setup_feature_keys();
419 
420 	/* Initialize the hash table or TLB handling */
421 	early_init_mmu();
422 
423 	early_ioremap_setup();
424 
425 	/*
426 	 * After firmware and early platform setup code has set things up,
427 	 * we note the SPR values for configurable control/performance
428 	 * registers, and use those as initial defaults.
429 	 */
430 	record_spr_defaults();
431 
432 	/*
433 	 * At this point, we can let interrupts switch to virtual mode
434 	 * (the MMU has been setup), so adjust the MSR in the PACA to
435 	 * have IR and DR set and enable AIL if it exists
436 	 */
437 	cpu_ready_for_interrupts();
438 
439 	/*
440 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
441 	 * will only actually get enabled on the boot cpu much later once
442 	 * ftrace itself has been initialized.
443 	 */
444 	this_cpu_enable_ftrace();
445 
446 	udbg_printf(" <- %s()\n", __func__);
447 
448 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
449 	/*
450 	 * This needs to be done *last* (after the above udbg_printf() even)
451 	 *
452 	 * Right after we return from this function, we turn on the MMU
453 	 * which means the real-mode access trick that btext does will
454 	 * no longer work, it needs to switch to using a real MMU
455 	 * mapping. This call will ensure that it does
456 	 */
457 	btext_map();
458 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
459 }
460 
461 #ifdef CONFIG_SMP
early_setup_secondary(void)462 void early_setup_secondary(void)
463 {
464 	/* Mark interrupts disabled in PACA */
465 	irq_soft_mask_set(IRQS_DISABLED);
466 
467 	/* Initialize the hash table or TLB handling */
468 	early_init_mmu_secondary();
469 
470 	/* Perform any KUP setup that is per-cpu */
471 	setup_kup();
472 
473 	/*
474 	 * At this point, we can let interrupts switch to virtual mode
475 	 * (the MMU has been setup), so adjust the MSR in the PACA to
476 	 * have IR and DR set.
477 	 */
478 	cpu_ready_for_interrupts();
479 }
480 
481 #endif /* CONFIG_SMP */
482 
panic_smp_self_stop(void)483 void __noreturn panic_smp_self_stop(void)
484 {
485 	hard_irq_disable();
486 	spin_begin();
487 	while (1)
488 		spin_cpu_relax();
489 }
490 
491 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)492 static bool use_spinloop(void)
493 {
494 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
495 		/*
496 		 * See comments in head_64.S -- not all platforms insert
497 		 * secondaries at __secondary_hold and wait at the spin
498 		 * loop.
499 		 */
500 		if (firmware_has_feature(FW_FEATURE_OPAL))
501 			return false;
502 		return true;
503 	}
504 
505 	/*
506 	 * When book3e boots from kexec, the ePAPR spin table does
507 	 * not get used.
508 	 */
509 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
510 }
511 
smp_release_cpus(void)512 void smp_release_cpus(void)
513 {
514 	unsigned long *ptr;
515 	int i;
516 
517 	if (!use_spinloop())
518 		return;
519 
520 	/* All secondary cpus are spinning on a common spinloop, release them
521 	 * all now so they can start to spin on their individual paca
522 	 * spinloops. For non SMP kernels, the secondary cpus never get out
523 	 * of the common spinloop.
524 	 */
525 
526 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
527 			- PHYSICAL_START);
528 	*ptr = ppc_function_entry(generic_secondary_smp_init);
529 
530 	/* And wait a bit for them to catch up */
531 	for (i = 0; i < 100000; i++) {
532 		mb();
533 		HMT_low();
534 		if (spinning_secondaries == 0)
535 			break;
536 		udelay(1);
537 	}
538 	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
539 }
540 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
541 
542 /*
543  * Initialize some remaining members of the ppc64_caches and systemcfg
544  * structures
545  * (at least until we get rid of them completely). This is mostly some
546  * cache informations about the CPU that will be used by cache flush
547  * routines and/or provided to userland
548  */
549 
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)550 static void __init init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
551 			    u32 bsize, u32 sets)
552 {
553 	info->size = size;
554 	info->sets = sets;
555 	info->line_size = lsize;
556 	info->block_size = bsize;
557 	info->log_block_size = __ilog2(bsize);
558 	if (bsize)
559 		info->blocks_per_page = PAGE_SIZE / bsize;
560 	else
561 		info->blocks_per_page = 0;
562 
563 	if (sets == 0)
564 		info->assoc = 0xffff;
565 	else
566 		info->assoc = size / (sets * lsize);
567 }
568 
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)569 static bool __init parse_cache_info(struct device_node *np,
570 				    bool icache,
571 				    struct ppc_cache_info *info)
572 {
573 	static const char *ipropnames[] __initdata = {
574 		"i-cache-size",
575 		"i-cache-sets",
576 		"i-cache-block-size",
577 		"i-cache-line-size",
578 	};
579 	static const char *dpropnames[] __initdata = {
580 		"d-cache-size",
581 		"d-cache-sets",
582 		"d-cache-block-size",
583 		"d-cache-line-size",
584 	};
585 	const char **propnames = icache ? ipropnames : dpropnames;
586 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
587 	u32 size, lsize, bsize, sets;
588 	bool success = true;
589 
590 	size = 0;
591 	sets = -1u;
592 	lsize = bsize = cur_cpu_spec->dcache_bsize;
593 	sizep = of_get_property(np, propnames[0], NULL);
594 	if (sizep != NULL)
595 		size = be32_to_cpu(*sizep);
596 	setsp = of_get_property(np, propnames[1], NULL);
597 	if (setsp != NULL)
598 		sets = be32_to_cpu(*setsp);
599 	bsizep = of_get_property(np, propnames[2], NULL);
600 	lsizep = of_get_property(np, propnames[3], NULL);
601 	if (bsizep == NULL)
602 		bsizep = lsizep;
603 	if (lsizep == NULL)
604 		lsizep = bsizep;
605 	if (lsizep != NULL)
606 		lsize = be32_to_cpu(*lsizep);
607 	if (bsizep != NULL)
608 		bsize = be32_to_cpu(*bsizep);
609 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
610 		success = false;
611 
612 	/*
613 	 * OF is weird .. it represents fully associative caches
614 	 * as "1 way" which doesn't make much sense and doesn't
615 	 * leave room for direct mapped. We'll assume that 0
616 	 * in OF means direct mapped for that reason.
617 	 */
618 	if (sets == 1)
619 		sets = 0;
620 	else if (sets == 0)
621 		sets = 1;
622 
623 	init_cache_info(info, size, lsize, bsize, sets);
624 
625 	return success;
626 }
627 
initialize_cache_info(void)628 void __init initialize_cache_info(void)
629 {
630 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
631 	u32 pvr;
632 
633 	/*
634 	 * All shipping POWER8 machines have a firmware bug that
635 	 * puts incorrect information in the device-tree. This will
636 	 * be (hopefully) fixed for future chips but for now hard
637 	 * code the values if we are running on one of these
638 	 */
639 	pvr = PVR_VER(mfspr(SPRN_PVR));
640 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
641 	    pvr == PVR_POWER8NVL) {
642 						/* size    lsize   blk  sets */
643 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
644 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
645 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
646 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
647 	} else
648 		cpu = of_find_node_by_type(NULL, "cpu");
649 
650 	/*
651 	 * We're assuming *all* of the CPUs have the same
652 	 * d-cache and i-cache sizes... -Peter
653 	 */
654 	if (cpu) {
655 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
656 			pr_warn("Argh, can't find dcache properties !\n");
657 
658 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
659 			pr_warn("Argh, can't find icache properties !\n");
660 
661 		/*
662 		 * Try to find the L2 and L3 if any. Assume they are
663 		 * unified and use the D-side properties.
664 		 */
665 		l2 = of_find_next_cache_node(cpu);
666 		of_node_put(cpu);
667 		if (l2) {
668 			parse_cache_info(l2, false, &ppc64_caches.l2);
669 			l3 = of_find_next_cache_node(l2);
670 			of_node_put(l2);
671 		}
672 		if (l3) {
673 			parse_cache_info(l3, false, &ppc64_caches.l3);
674 			of_node_put(l3);
675 		}
676 	}
677 
678 	/* For use by binfmt_elf */
679 	dcache_bsize = ppc64_caches.l1d.block_size;
680 	icache_bsize = ppc64_caches.l1i.block_size;
681 
682 	cur_cpu_spec->dcache_bsize = dcache_bsize;
683 	cur_cpu_spec->icache_bsize = icache_bsize;
684 }
685 
686 /*
687  * This returns the limit below which memory accesses to the linear
688  * mapping are guarnateed not to cause an architectural exception (e.g.,
689  * TLB or SLB miss fault).
690  *
691  * This is used to allocate PACAs and various interrupt stacks that
692  * that are accessed early in interrupt handlers that must not cause
693  * re-entrant interrupts.
694  */
ppc64_bolted_size(void)695 __init u64 ppc64_bolted_size(void)
696 {
697 #ifdef CONFIG_PPC_BOOK3E_64
698 	/* Freescale BookE bolts the entire linear mapping */
699 	return linear_map_top;
700 #else
701 	/* BookS radix, does not take faults on linear mapping */
702 	if (early_radix_enabled())
703 		return ULONG_MAX;
704 
705 	/* BookS hash, the first segment is bolted */
706 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
707 		return 1UL << SID_SHIFT_1T;
708 	return 1UL << SID_SHIFT;
709 #endif
710 }
711 
alloc_stack(unsigned long limit,int cpu)712 static void *__init alloc_stack(unsigned long limit, int cpu)
713 {
714 	void *ptr;
715 
716 	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
717 
718 	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
719 				     MEMBLOCK_LOW_LIMIT, limit,
720 				     early_cpu_to_node(cpu));
721 	if (!ptr)
722 		panic("cannot allocate stacks");
723 
724 	return ptr;
725 }
726 
irqstack_early_init(void)727 void __init irqstack_early_init(void)
728 {
729 	u64 limit = ppc64_bolted_size();
730 	unsigned int i;
731 
732 	/*
733 	 * Interrupt stacks must be in the first segment since we
734 	 * cannot afford to take SLB misses on them. They are not
735 	 * accessed in realmode.
736 	 */
737 	for_each_possible_cpu(i) {
738 		softirq_ctx[i] = alloc_stack(limit, i);
739 		hardirq_ctx[i] = alloc_stack(limit, i);
740 	}
741 }
742 
743 #ifdef CONFIG_PPC_BOOK3E_64
exc_lvl_early_init(void)744 void __init exc_lvl_early_init(void)
745 {
746 	unsigned int i;
747 
748 	for_each_possible_cpu(i) {
749 		void *sp;
750 
751 		sp = alloc_stack(ULONG_MAX, i);
752 		critirq_ctx[i] = sp;
753 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
754 
755 		sp = alloc_stack(ULONG_MAX, i);
756 		dbgirq_ctx[i] = sp;
757 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
758 
759 		sp = alloc_stack(ULONG_MAX, i);
760 		mcheckirq_ctx[i] = sp;
761 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
762 	}
763 
764 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
765 		patch_exception(0x040, exc_debug_debug_book3e);
766 }
767 #endif
768 
769 /*
770  * Stack space used when we detect a bad kernel stack pointer, and
771  * early in SMP boots before relocation is enabled. Exclusive emergency
772  * stack for machine checks.
773  */
emergency_stack_init(void)774 void __init emergency_stack_init(void)
775 {
776 	u64 limit, mce_limit;
777 	unsigned int i;
778 
779 	/*
780 	 * Emergency stacks must be under 256MB, we cannot afford to take
781 	 * SLB misses on them. The ABI also requires them to be 128-byte
782 	 * aligned.
783 	 *
784 	 * Since we use these as temporary stacks during secondary CPU
785 	 * bringup, machine check, system reset, and HMI, we need to get
786 	 * at them in real mode. This means they must also be within the RMO
787 	 * region.
788 	 *
789 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
790 	 * initialized in kernel/irq.c. These are initialized here in order
791 	 * to have emergency stacks available as early as possible.
792 	 */
793 	limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
794 
795 	/*
796 	 * Machine check on pseries calls rtas, but can't use the static
797 	 * rtas_args due to a machine check hitting while the lock is held.
798 	 * rtas args have to be under 4GB, so the machine check stack is
799 	 * limited to 4GB so args can be put on stack.
800 	 */
801 	if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
802 		mce_limit = SZ_4G;
803 
804 	for_each_possible_cpu(i) {
805 		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
806 
807 #ifdef CONFIG_PPC_BOOK3S_64
808 		/* emergency stack for NMI exception handling. */
809 		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
810 
811 		/* emergency stack for machine check exception handling. */
812 		paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
813 #endif
814 	}
815 }
816 
817 #ifdef CONFIG_SMP
pcpu_cpu_distance(unsigned int from,unsigned int to)818 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
819 {
820 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
821 		return LOCAL_DISTANCE;
822 	else
823 		return REMOTE_DISTANCE;
824 }
825 
pcpu_cpu_to_node(int cpu)826 static __init int pcpu_cpu_to_node(int cpu)
827 {
828 	return early_cpu_to_node(cpu);
829 }
830 
831 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
832 EXPORT_SYMBOL(__per_cpu_offset);
833 DEFINE_STATIC_KEY_FALSE(__percpu_first_chunk_is_paged);
834 
setup_per_cpu_areas(void)835 void __init setup_per_cpu_areas(void)
836 {
837 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
838 	size_t atom_size;
839 	unsigned long delta;
840 	unsigned int cpu;
841 	int rc = -EINVAL;
842 
843 	/*
844 	 * BookE and BookS radix are historical values and should be revisited.
845 	 */
846 	if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) {
847 		atom_size = SZ_1M;
848 	} else if (radix_enabled()) {
849 		atom_size = PAGE_SIZE;
850 	} else if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) {
851 		/*
852 		 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
853 		 * to group units.  For larger mappings, use 1M atom which
854 		 * should be large enough to contain a number of units.
855 		 */
856 		if (mmu_linear_psize == MMU_PAGE_4K)
857 			atom_size = PAGE_SIZE;
858 		else
859 			atom_size = SZ_1M;
860 	}
861 
862 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
863 		rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
864 					    pcpu_cpu_to_node);
865 		if (rc)
866 			pr_warn("PERCPU: %s allocator failed (%d), "
867 				"falling back to page size\n",
868 				pcpu_fc_names[pcpu_chosen_fc], rc);
869 	}
870 
871 	if (rc < 0)
872 		rc = pcpu_page_first_chunk(0, pcpu_cpu_to_node);
873 	if (rc < 0)
874 		panic("cannot initialize percpu area (err=%d)", rc);
875 
876 	static_key_enable(&__percpu_first_chunk_is_paged.key);
877 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
878 	for_each_possible_cpu(cpu) {
879                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
880 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
881 	}
882 }
883 #endif
884 
885 #ifdef CONFIG_MEMORY_HOTPLUG
memory_block_size_bytes(void)886 unsigned long memory_block_size_bytes(void)
887 {
888 	if (ppc_md.memory_block_size)
889 		return ppc_md.memory_block_size();
890 
891 	return MIN_MEMORY_BLOCK_SIZE;
892 }
893 #endif
894 
895 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
896 struct ppc_pci_io ppc_pci_io;
897 EXPORT_SYMBOL(ppc_pci_io);
898 #endif
899 
900 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)901 u64 hw_nmi_get_sample_period(int watchdog_thresh)
902 {
903 	return ppc_proc_freq * watchdog_thresh;
904 }
905 #endif
906 
907 /*
908  * The perf based hardlockup detector breaks PMU event based branches, so
909  * disable it by default. Book3S has a soft-nmi hardlockup detector based
910  * on the decrementer interrupt, so it does not suffer from this problem.
911  *
912  * It is likely to get false positives in KVM guests, so disable it there
913  * by default too. PowerVM will not stop or arbitrarily oversubscribe
914  * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
915  * the detector for non-KVM guests, assume PowerVM.
916  */
disable_hardlockup_detector(void)917 static int __init disable_hardlockup_detector(void)
918 {
919 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
920 	hardlockup_detector_disable();
921 #else
922 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
923 		if (is_kvm_guest())
924 			hardlockup_detector_disable();
925 	}
926 #endif
927 
928 	return 0;
929 }
930 early_initcall(disable_hardlockup_detector);
931