1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   *  Universal power supply monitor class
4   *
5   *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6   *  Copyright © 2004  Szabolcs Gyurko
7   *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8   *
9   *  Modified: 2004, Oct     Szabolcs Gyurko
10   */
11  
12  #ifndef __LINUX_POWER_SUPPLY_H__
13  #define __LINUX_POWER_SUPPLY_H__
14  
15  #include <linux/device.h>
16  #include <linux/workqueue.h>
17  #include <linux/leds.h>
18  #include <linux/spinlock.h>
19  #include <linux/notifier.h>
20  
21  /*
22   * All voltages, currents, charges, energies, time and temperatures in uV,
23   * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
24   * stated. It's driver's job to convert its raw values to units in which
25   * this class operates.
26   */
27  
28  /*
29   * For systems where the charger determines the maximum battery capacity
30   * the min and max fields should be used to present these values to user
31   * space. Unused/unknown fields will not appear in sysfs.
32   */
33  
34  enum {
35  	POWER_SUPPLY_STATUS_UNKNOWN = 0,
36  	POWER_SUPPLY_STATUS_CHARGING,
37  	POWER_SUPPLY_STATUS_DISCHARGING,
38  	POWER_SUPPLY_STATUS_NOT_CHARGING,
39  	POWER_SUPPLY_STATUS_FULL,
40  };
41  
42  /* What algorithm is the charger using? */
43  enum {
44  	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
45  	POWER_SUPPLY_CHARGE_TYPE_NONE,
46  	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
47  	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
48  	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
49  	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
50  	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
51  	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
52  	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
53  };
54  
55  enum {
56  	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
57  	POWER_SUPPLY_HEALTH_GOOD,
58  	POWER_SUPPLY_HEALTH_OVERHEAT,
59  	POWER_SUPPLY_HEALTH_DEAD,
60  	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
61  	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
62  	POWER_SUPPLY_HEALTH_COLD,
63  	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
64  	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
65  	POWER_SUPPLY_HEALTH_OVERCURRENT,
66  	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
67  	POWER_SUPPLY_HEALTH_WARM,
68  	POWER_SUPPLY_HEALTH_COOL,
69  	POWER_SUPPLY_HEALTH_HOT,
70  	POWER_SUPPLY_HEALTH_NO_BATTERY,
71  };
72  
73  enum {
74  	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
75  	POWER_SUPPLY_TECHNOLOGY_NiMH,
76  	POWER_SUPPLY_TECHNOLOGY_LION,
77  	POWER_SUPPLY_TECHNOLOGY_LIPO,
78  	POWER_SUPPLY_TECHNOLOGY_LiFe,
79  	POWER_SUPPLY_TECHNOLOGY_NiCd,
80  	POWER_SUPPLY_TECHNOLOGY_LiMn,
81  };
82  
83  enum {
84  	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
85  	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
86  	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
87  	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
88  	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
89  	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
90  };
91  
92  enum {
93  	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
94  	POWER_SUPPLY_SCOPE_SYSTEM,
95  	POWER_SUPPLY_SCOPE_DEVICE,
96  };
97  
98  enum power_supply_property {
99  	/* Properties of type `int' */
100  	POWER_SUPPLY_PROP_STATUS = 0,
101  	POWER_SUPPLY_PROP_CHARGE_TYPE,
102  	POWER_SUPPLY_PROP_HEALTH,
103  	POWER_SUPPLY_PROP_PRESENT,
104  	POWER_SUPPLY_PROP_ONLINE,
105  	POWER_SUPPLY_PROP_AUTHENTIC,
106  	POWER_SUPPLY_PROP_TECHNOLOGY,
107  	POWER_SUPPLY_PROP_CYCLE_COUNT,
108  	POWER_SUPPLY_PROP_VOLTAGE_MAX,
109  	POWER_SUPPLY_PROP_VOLTAGE_MIN,
110  	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
111  	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
112  	POWER_SUPPLY_PROP_VOLTAGE_NOW,
113  	POWER_SUPPLY_PROP_VOLTAGE_AVG,
114  	POWER_SUPPLY_PROP_VOLTAGE_OCV,
115  	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
116  	POWER_SUPPLY_PROP_CURRENT_MAX,
117  	POWER_SUPPLY_PROP_CURRENT_NOW,
118  	POWER_SUPPLY_PROP_CURRENT_AVG,
119  	POWER_SUPPLY_PROP_CURRENT_BOOT,
120  	POWER_SUPPLY_PROP_POWER_NOW,
121  	POWER_SUPPLY_PROP_POWER_AVG,
122  	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
123  	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
124  	POWER_SUPPLY_PROP_CHARGE_FULL,
125  	POWER_SUPPLY_PROP_CHARGE_EMPTY,
126  	POWER_SUPPLY_PROP_CHARGE_NOW,
127  	POWER_SUPPLY_PROP_CHARGE_AVG,
128  	POWER_SUPPLY_PROP_CHARGE_COUNTER,
129  	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
130  	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
131  	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
132  	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
133  	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
134  	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
135  	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
136  	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
137  	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
138  	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
139  	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
140  	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
141  	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
142  	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
143  	POWER_SUPPLY_PROP_ENERGY_FULL,
144  	POWER_SUPPLY_PROP_ENERGY_EMPTY,
145  	POWER_SUPPLY_PROP_ENERGY_NOW,
146  	POWER_SUPPLY_PROP_ENERGY_AVG,
147  	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
148  	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
149  	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
150  	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
151  	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
152  	POWER_SUPPLY_PROP_TEMP,
153  	POWER_SUPPLY_PROP_TEMP_MAX,
154  	POWER_SUPPLY_PROP_TEMP_MIN,
155  	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
156  	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
157  	POWER_SUPPLY_PROP_TEMP_AMBIENT,
158  	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
159  	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
160  	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
161  	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
162  	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
163  	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
164  	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
165  	POWER_SUPPLY_PROP_USB_TYPE,
166  	POWER_SUPPLY_PROP_SCOPE,
167  	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
168  	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
169  	POWER_SUPPLY_PROP_CALIBRATE,
170  	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
171  	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
172  	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
173  	/* Properties of type `const char *' */
174  	POWER_SUPPLY_PROP_MODEL_NAME,
175  	POWER_SUPPLY_PROP_MANUFACTURER,
176  	POWER_SUPPLY_PROP_SERIAL_NUMBER,
177  };
178  
179  enum power_supply_type {
180  	POWER_SUPPLY_TYPE_UNKNOWN = 0,
181  	POWER_SUPPLY_TYPE_BATTERY,
182  	POWER_SUPPLY_TYPE_UPS,
183  	POWER_SUPPLY_TYPE_MAINS,
184  	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
185  	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
186  	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
187  	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
188  	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
189  	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
190  	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
191  	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
192  	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
193  };
194  
195  enum power_supply_usb_type {
196  	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
197  	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
198  	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
199  	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
200  	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
201  	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
202  	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
203  	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
204  	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
205  	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
206  };
207  
208  enum power_supply_charge_behaviour {
209  	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
210  	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
211  	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
212  };
213  
214  enum power_supply_notifier_events {
215  	PSY_EVENT_PROP_CHANGED,
216  };
217  
218  union power_supply_propval {
219  	int intval;
220  	const char *strval;
221  };
222  
223  struct device_node;
224  struct power_supply;
225  
226  /* Run-time specific power supply configuration */
227  struct power_supply_config {
228  	struct device_node *of_node;
229  	struct fwnode_handle *fwnode;
230  
231  	/* Driver private data */
232  	void *drv_data;
233  
234  	/* Device specific sysfs attributes */
235  	const struct attribute_group **attr_grp;
236  
237  	char **supplied_to;
238  	size_t num_supplicants;
239  };
240  
241  /* Description of power supply */
242  struct power_supply_desc {
243  	const char *name;
244  	enum power_supply_type type;
245  	u8 charge_behaviours;
246  	u32 usb_types;
247  	const enum power_supply_property *properties;
248  	size_t num_properties;
249  
250  	/*
251  	 * Functions for drivers implementing power supply class.
252  	 * These shouldn't be called directly by other drivers for accessing
253  	 * this power supply. Instead use power_supply_*() functions (for
254  	 * example power_supply_get_property()).
255  	 */
256  	int (*get_property)(struct power_supply *psy,
257  			    enum power_supply_property psp,
258  			    union power_supply_propval *val);
259  	int (*set_property)(struct power_supply *psy,
260  			    enum power_supply_property psp,
261  			    const union power_supply_propval *val);
262  	/*
263  	 * property_is_writeable() will be called during registration
264  	 * of power supply. If this happens during device probe then it must
265  	 * not access internal data of device (because probe did not end).
266  	 */
267  	int (*property_is_writeable)(struct power_supply *psy,
268  				     enum power_supply_property psp);
269  	void (*external_power_changed)(struct power_supply *psy);
270  	void (*set_charged)(struct power_supply *psy);
271  
272  	/*
273  	 * Set if thermal zone should not be created for this power supply.
274  	 * For example for virtual supplies forwarding calls to actual
275  	 * sensors or other supplies.
276  	 */
277  	bool no_thermal;
278  	/* For APM emulation, think legacy userspace. */
279  	int use_for_apm;
280  };
281  
282  struct power_supply {
283  	const struct power_supply_desc *desc;
284  
285  	char **supplied_to;
286  	size_t num_supplicants;
287  
288  	char **supplied_from;
289  	size_t num_supplies;
290  	struct device_node *of_node;
291  
292  	/* Driver private data */
293  	void *drv_data;
294  
295  	/* private */
296  	struct device dev;
297  	struct work_struct changed_work;
298  	struct delayed_work deferred_register_work;
299  	spinlock_t changed_lock;
300  	bool changed;
301  	bool initialized;
302  	bool removing;
303  	atomic_t use_cnt;
304  	struct power_supply_battery_info *battery_info;
305  #ifdef CONFIG_THERMAL
306  	struct thermal_zone_device *tzd;
307  	struct thermal_cooling_device *tcd;
308  #endif
309  
310  #ifdef CONFIG_LEDS_TRIGGERS
311  	struct led_trigger *trig;
312  	struct led_trigger *charging_trig;
313  	struct led_trigger *full_trig;
314  	struct led_trigger *charging_blink_full_solid_trig;
315  	struct led_trigger *charging_orange_full_green_trig;
316  #endif
317  };
318  
319  /*
320   * This is recommended structure to specify static power supply parameters.
321   * Generic one, parametrizable for different power supplies. Power supply
322   * class itself does not use it, but that's what implementing most platform
323   * drivers, should try reuse for consistency.
324   */
325  
326  struct power_supply_info {
327  	const char *name;
328  	int technology;
329  	int voltage_max_design;
330  	int voltage_min_design;
331  	int charge_full_design;
332  	int charge_empty_design;
333  	int energy_full_design;
334  	int energy_empty_design;
335  	int use_for_apm;
336  };
337  
338  struct power_supply_battery_ocv_table {
339  	int ocv;	/* microVolts */
340  	int capacity;	/* percent */
341  };
342  
343  struct power_supply_resistance_temp_table {
344  	int temp;	/* celsius */
345  	int resistance;	/* internal resistance percent */
346  };
347  
348  struct power_supply_vbat_ri_table {
349  	int vbat_uv;	/* Battery voltage in microvolt */
350  	int ri_uohm;	/* Internal resistance in microohm */
351  };
352  
353  /**
354   * struct power_supply_maintenance_charge_table - setting for maintenace charging
355   * @charge_current_max_ua: maintenance charging current that is used to keep
356   *   the charge of the battery full as current is consumed after full charging.
357   *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
358   *   reach this voltage the maintenance charging current is turned off. It is
359   *   turned back on if we fall below this voltage.
360   * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
361   *   lower than the constant_charge_voltage_max_uv. We can apply this settings
362   *   charge_current_max_ua until we get back up to this voltage.
363   * @safety_timer_minutes: maintenance charging safety timer, with an expiry
364   *   time in minutes. We will only use maintenance charging in this setting
365   *   for a certain amount of time, then we will first move to the next
366   *   maintenance charge current and voltage pair in respective array and wait
367   *   for the next safety timer timeout, or, if we reached the last maintencance
368   *   charging setting, disable charging until we reach
369   *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
370   *   These timers should be chosen to align with the typical discharge curve
371   *   for the battery.
372   *
373   * Ordinary CC/CV charging will stop charging when the charge current goes
374   * below charge_term_current_ua, and then restart it (if the device is still
375   * plugged into the charger) at charge_restart_voltage_uv. This happens in most
376   * consumer products because the power usage while connected to a charger is
377   * not zero, and devices are not manufactured to draw power directly from the
378   * charger: instead they will at all times dissipate the battery a little, like
379   * the power used in standby mode. This will over time give a charge graph
380   * such as this:
381   *
382   * Energy
383   *  ^      ...        ...      ...      ...      ...      ...      ...
384   *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
385   *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
386   *  |.          ..        ..       ..       ..       ..       ..
387   *  +-------------------------------------------------------------------> t
388   *
389   * Practically this means that the Li-ions are wandering back and forth in the
390   * battery and this causes degeneration of the battery anode and cathode.
391   * To prolong the life of the battery, maintenance charging is applied after
392   * reaching charge_term_current_ua to hold up the charge in the battery while
393   * consuming power, thus lowering the wear on the battery:
394   *
395   * Energy
396   *  ^      .......................................
397   *  |    .                                        ......................
398   *  |  ..
399   *  |.
400   *  +-------------------------------------------------------------------> t
401   *
402   * Maintenance charging uses the voltages from this table: a table of settings
403   * is traversed using a slightly lower current and voltage than what is used for
404   * CC/CV charging. The maintenance charging will for safety reasons not go on
405   * indefinately: we lower the current and voltage with successive maintenance
406   * settings, then disable charging completely after we reach the last one,
407   * and after that we do not restart charging until we reach
408   * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
409   * ordinary CC/CV charging from there.
410   *
411   * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
412   * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
413   * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
414   * After this the charge cycle is restarted waiting for
415   * charge_restart_voltage_uv.
416   *
417   * For most mobile electronics this type of maintenance charging is enough for
418   * the user to disconnect the device and make use of it before both maintenance
419   * charging cycles are complete, if the current and voltage has been chosen
420   * appropriately. These need to be determined from battery discharge curves
421   * and expected standby current.
422   *
423   * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
424   * charging, ordinary CC/CV charging is restarted. This can happen if the
425   * device is e.g. actively used during charging, so more current is drawn than
426   * the expected stand-by current. Also overvoltage protection will be applied
427   * as usual.
428   */
429  struct power_supply_maintenance_charge_table {
430  	int charge_current_max_ua;
431  	int charge_voltage_max_uv;
432  	int charge_safety_timer_minutes;
433  };
434  
435  #define POWER_SUPPLY_OCV_TEMP_MAX 20
436  
437  /**
438   * struct power_supply_battery_info - information about batteries
439   * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
440   * @energy_full_design_uwh: energy content when fully charged in microwatt
441   *   hours
442   * @charge_full_design_uah: charge content when fully charged in microampere
443   *   hours
444   * @voltage_min_design_uv: minimum voltage across the poles when the battery
445   *   is at minimum voltage level in microvolts. If the voltage drops below this
446   *   level the battery will need precharging when using CC/CV charging.
447   * @voltage_max_design_uv: voltage across the poles when the battery is fully
448   *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
449   *   printed on the label of the battery.
450   * @tricklecharge_current_ua: the tricklecharge current used when trickle
451   *   charging the battery in microamperes. This is the charging phase when the
452   *   battery is completely empty and we need to carefully trickle in some
453   *   charge until we reach the precharging voltage.
454   * @precharge_current_ua: current to use in the precharge phase in microamperes,
455   *   the precharge rate is limited by limiting the current to this value.
456   * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
457   *   microvolts. When we pass this voltage we will nominally switch over to the
458   *   CC (constant current) charging phase defined by constant_charge_current_ua
459   *   and constant_charge_voltage_max_uv.
460   * @charge_term_current_ua: when the current in the CV (constant voltage)
461   *   charging phase drops below this value in microamperes the charging will
462   *   terminate completely and not restart until the voltage over the battery
463   *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
464   * @charge_restart_voltage_uv: when the battery has been fully charged by
465   *   CC/CV charging and charging has been disabled, and the voltage subsequently
466   *   drops below this value in microvolts, the charging will be restarted
467   *   (typically using CV charging).
468   * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
469   *   voltage_max_design_uv and we reach this voltage level, all charging must
470   *   stop and emergency procedures take place, such as shutting down the system
471   *   in some cases.
472   * @constant_charge_current_max_ua: current in microamperes to use in the CC
473   *   (constant current) charging phase. The charging rate is limited
474   *   by this current. This is the main charging phase and as the current is
475   *   constant into the battery the voltage slowly ascends to
476   *   constant_charge_voltage_max_uv.
477   * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
478   *   the CC (constant current) charging phase and the beginning of the CV
479   *   (constant voltage) charging phase.
480   * @maintenance_charge: an array of maintenance charging settings to be used
481   *   after the main CC/CV charging phase is complete.
482   * @maintenance_charge_size: the number of maintenance charging settings in
483   *   maintenance_charge.
484   * @alert_low_temp_charge_current_ua: The charging current to use if the battery
485   *   enters low alert temperature, i.e. if the internal temperature is between
486   *   temp_alert_min and temp_min. No matter the charging phase, this
487   *   and alert_high_temp_charge_voltage_uv will be applied.
488   * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
489   *   but for the charging voltage.
490   * @alert_high_temp_charge_current_ua: The charging current to use if the
491   *   battery enters high alert temperature, i.e. if the internal temperature is
492   *   between temp_alert_max and temp_max. No matter the charging phase, this
493   *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
494   *   the charging current as an evasive manouver.
495   * @alert_high_temp_charge_voltage_uv: Same as
496   *   alert_high_temp_charge_current_ua, but for the charging voltage.
497   * @factory_internal_resistance_uohm: the internal resistance of the battery
498   *   at fabrication time, expressed in microohms. This resistance will vary
499   *   depending on the lifetime and charge of the battery, so this is just a
500   *   nominal ballpark figure. This internal resistance is given for the state
501   *   when the battery is discharging.
502   * @factory_internal_resistance_charging_uohm: the internal resistance of the
503   *   battery at fabrication time while charging, expressed in microohms.
504   *   The charging process will affect the internal resistance of the battery
505   *   so this value provides a better resistance under these circumstances.
506   *   This resistance will vary depending on the lifetime and charge of the
507   *   battery, so this is just a nominal ballpark figure.
508   * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
509   *   temperature indices. This is an array of temperatures in degrees Celsius
510   *   indicating which capacity table to use for a certain temperature, since
511   *   the capacity for reasons of chemistry will be different at different
512   *   temperatures. Determining capacity is a multivariate problem and the
513   *   temperature is the first variable we determine.
514   * @temp_ambient_alert_min: the battery will go outside of operating conditions
515   *   when the ambient temperature goes below this temperature in degrees
516   *   Celsius.
517   * @temp_ambient_alert_max: the battery will go outside of operating conditions
518   *   when the ambient temperature goes above this temperature in degrees
519   *   Celsius.
520   * @temp_alert_min: the battery should issue an alert if the internal
521   *   temperature goes below this temperature in degrees Celsius.
522   * @temp_alert_max: the battery should issue an alert if the internal
523   *   temperature goes above this temperature in degrees Celsius.
524   * @temp_min: the battery will go outside of operating conditions when
525   *   the internal temperature goes below this temperature in degrees Celsius.
526   *   Normally this means the system should shut down.
527   * @temp_max: the battery will go outside of operating conditions when
528   *   the internal temperature goes above this temperature in degrees Celsius.
529   *   Normally this means the system should shut down.
530   * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
531   *   ocv_table and a size for each entry in ocv_table_size. These arrays
532   *   determine the capacity in percent in relation to the voltage in microvolts
533   *   at the indexed temperature.
534   * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
535   *   each entry in the array of capacity arrays in ocv_table.
536   * @resist_table: this is a table that correlates a battery temperature to the
537   *   expected internal resistance at this temperature. The resistance is given
538   *   as a percentage of factory_internal_resistance_uohm. Knowing the
539   *   resistance of the battery is usually necessary for calculating the open
540   *   circuit voltage (OCV) that is then used with the ocv_table to calculate
541   *   the capacity of the battery. The resist_table must be ordered descending
542   *   by temperature: highest temperature with lowest resistance first, lowest
543   *   temperature with highest resistance last.
544   * @resist_table_size: the number of items in the resist_table.
545   * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
546   *   to internal resistance (Ri). The resistance is given in microohm for the
547   *   corresponding voltage in microvolts. The internal resistance is used to
548   *   determine the open circuit voltage so that we can determine the capacity
549   *   of the battery. These voltages to resistance tables apply when the battery
550   *   is discharging. The table must be ordered descending by voltage: highest
551   *   voltage first.
552   * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
553   *   table.
554   * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
555   *   when the battery is charging. Being under charge changes the battery's
556   *   internal resistance characteristics so a separate table is needed.*
557   *   The table must be ordered descending by voltage: highest voltage first.
558   * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
559   *   table.
560   * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
561   *   in ohms for this battery, if an identification resistor is mounted
562   *   between a third battery terminal and ground. This scheme is used by a lot
563   *   of mobile device batteries.
564   * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
565   *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
566   *   tolerance is 10% we will detect a proper battery if the BTI resistance
567   *   is between 6300 and 7700 Ohm.
568   *
569   * This is the recommended struct to manage static battery parameters,
570   * populated by power_supply_get_battery_info(). Most platform drivers should
571   * use these for consistency.
572   *
573   * Its field names must correspond to elements in enum power_supply_property.
574   * The default field value is -EINVAL or NULL for pointers.
575   *
576   * CC/CV CHARGING:
577   *
578   * The charging parameters here assume a CC/CV charging scheme. This method
579   * is most common with Lithium Ion batteries (other methods are possible) and
580   * looks as follows:
581   *
582   * ^ Battery voltage
583   * |                                               --- overvoltage_limit_uv
584   * |
585   * |                    ...................................................
586   * |                 .. constant_charge_voltage_max_uv
587   * |              ..
588   * |             .
589   * |            .
590   * |           .
591   * |          .
592   * |         .
593   * |     .. precharge_voltage_max_uv
594   * |  ..
595   * |. (trickle charging)
596   * +------------------------------------------------------------------> time
597   *
598   * ^ Current into the battery
599   * |
600   * |      ............. constant_charge_current_max_ua
601   * |      .            .
602   * |      .             .
603   * |      .              .
604   * |      .               .
605   * |      .                ..
606   * |      .                  ....
607   * |      .                       .....
608   * |    ... precharge_current_ua       .......  charge_term_current_ua
609   * |    .                                    .
610   * |    .                                    .
611   * |.... tricklecharge_current_ua            .
612   * |                                         .
613   * +-----------------------------------------------------------------> time
614   *
615   * These diagrams are synchronized on time and the voltage and current
616   * follow each other.
617   *
618   * With CC/CV charging commence over time like this for an empty battery:
619   *
620   * 1. When the battery is completely empty it may need to be charged with
621   *    an especially small current so that electrons just "trickle in",
622   *    this is the tricklecharge_current_ua.
623   *
624   * 2. Next a small initial pre-charge current (precharge_current_ua)
625   *    is applied if the voltage is below precharge_voltage_max_uv until we
626   *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
627   *    to as "trickle charging" but the use in the Linux kernel is different
628   *    see below!
629   *
630   * 3. Then the main charging current is applied, which is called the constant
631   *    current (CC) phase. A current regulator is set up to allow
632   *    constant_charge_current_max_ua of current to flow into the battery.
633   *    The chemical reaction in the battery will make the voltage go up as
634   *    charge goes into the battery. This current is applied until we reach
635   *    the constant_charge_voltage_max_uv voltage.
636   *
637   * 4. At this voltage we switch over to the constant voltage (CV) phase. This
638   *    means we allow current to go into the battery, but we keep the voltage
639   *    fixed. This current will continue to charge the battery while keeping
640   *    the voltage the same. A chemical reaction in the battery goes on
641   *    storing energy without affecting the voltage. Over time the current
642   *    will slowly drop and when we reach charge_term_current_ua we will
643   *    end the constant voltage phase.
644   *
645   * After this the battery is fully charged, and if we do not support maintenance
646   * charging, the charging will not restart until power dissipation makes the
647   * voltage fall so that we reach charge_restart_voltage_uv and at this point
648   * we restart charging at the appropriate phase, usually this will be inside
649   * the CV phase.
650   *
651   * If we support maintenance charging the voltage is however kept high after
652   * the CV phase with a very low current. This is meant to let the same charge
653   * go in for usage while the charger is still connected, mainly for
654   * dissipation for the power consuming entity while connected to the
655   * charger.
656   *
657   * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
658   * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
659   * explosions.
660   *
661   * DETERMINING BATTERY CAPACITY:
662   *
663   * Several members of the struct deal with trying to determine the remaining
664   * capacity in the battery, usually as a percentage of charge. In practice
665   * many chargers uses a so-called fuel gauge or coloumb counter that measure
666   * how much charge goes into the battery and how much goes out (+/- leak
667   * consumption). This does not help if we do not know how much capacity the
668   * battery has to begin with, such as when it is first used or was taken out
669   * and charged in a separate charger. Therefore many capacity algorithms use
670   * the open circuit voltage with a look-up table to determine the rough
671   * capacity of the battery. The open circuit voltage can be conceptualized
672   * with an ideal voltage source (V) in series with an internal resistance (Ri)
673   * like this:
674   *
675   *      +-------> IBAT >----------------+
676   *      |                    ^          |
677   *     [ ] Ri                |          |
678   *      |                    | VBAT     |
679   *      o <----------        |          |
680   *     +|           ^        |         [ ] Rload
681   *    .---.         |        |          |
682   *    | V |         | OCV    |          |
683   *    '---'         |        |          |
684   *      |           |        |          |
685   *  GND +-------------------------------+
686   *
687   * If we disconnect the load (here simplified as a fixed resistance Rload)
688   * and measure VBAT with a infinite impedance voltage meter we will get
689   * VBAT = OCV and this assumption is sometimes made even under load, assuming
690   * Rload is insignificant. However this will be of dubious quality because the
691   * load is rarely that small and Ri is strongly nonlinear depending on
692   * temperature and how much capacity is left in the battery due to the
693   * chemistry involved.
694   *
695   * In many practical applications we cannot just disconnect the battery from
696   * the load, so instead we often try to measure the instantaneous IBAT (the
697   * current out from the battery), estimate the Ri and thus calculate the
698   * voltage drop over Ri and compensate like this:
699   *
700   *   OCV = VBAT - (IBAT * Ri)
701   *
702   * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
703   * (by interpolation) the Ri from the VBAT under load. These curves are highly
704   * nonlinear and may need many datapoints but can be found in datasheets for
705   * some batteries. This gives the compensated open circuit voltage (OCV) for
706   * the battery even under load. Using this method will also compensate for
707   * temperature changes in the environment: this will also make the internal
708   * resistance change, and it will affect the VBAT under load, so correlating
709   * VBAT to Ri takes both remaining capacity and temperature into consideration.
710   *
711   * Alternatively a manufacturer can specify how the capacity of the battery
712   * is dependent on the battery temperature which is the main factor affecting
713   * Ri. As we know all checmical reactions are faster when it is warm and slower
714   * when it is cold. You can put in 1500mAh and only get 800mAh out before the
715   * voltage drops too low for example. This effect is also highly nonlinear and
716   * the purpose of the table resist_table: this will take a temperature and
717   * tell us how big percentage of Ri the specified temperature correlates to.
718   * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
719   * Celsius.
720   *
721   * The power supply class itself doesn't use this struct as of now.
722   */
723  
724  struct power_supply_battery_info {
725  	unsigned int technology;
726  	int energy_full_design_uwh;
727  	int charge_full_design_uah;
728  	int voltage_min_design_uv;
729  	int voltage_max_design_uv;
730  	int tricklecharge_current_ua;
731  	int precharge_current_ua;
732  	int precharge_voltage_max_uv;
733  	int charge_term_current_ua;
734  	int charge_restart_voltage_uv;
735  	int overvoltage_limit_uv;
736  	int constant_charge_current_max_ua;
737  	int constant_charge_voltage_max_uv;
738  	const struct power_supply_maintenance_charge_table *maintenance_charge;
739  	int maintenance_charge_size;
740  	int alert_low_temp_charge_current_ua;
741  	int alert_low_temp_charge_voltage_uv;
742  	int alert_high_temp_charge_current_ua;
743  	int alert_high_temp_charge_voltage_uv;
744  	int factory_internal_resistance_uohm;
745  	int factory_internal_resistance_charging_uohm;
746  	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
747  	int temp_ambient_alert_min;
748  	int temp_ambient_alert_max;
749  	int temp_alert_min;
750  	int temp_alert_max;
751  	int temp_min;
752  	int temp_max;
753  	struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
754  	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
755  	struct power_supply_resistance_temp_table *resist_table;
756  	int resist_table_size;
757  	const struct power_supply_vbat_ri_table *vbat2ri_discharging;
758  	int vbat2ri_discharging_size;
759  	const struct power_supply_vbat_ri_table *vbat2ri_charging;
760  	int vbat2ri_charging_size;
761  	int bti_resistance_ohm;
762  	int bti_resistance_tolerance;
763  };
764  
765  extern int power_supply_reg_notifier(struct notifier_block *nb);
766  extern void power_supply_unreg_notifier(struct notifier_block *nb);
767  #if IS_ENABLED(CONFIG_POWER_SUPPLY)
768  extern struct power_supply *power_supply_get_by_name(const char *name);
769  extern void power_supply_put(struct power_supply *psy);
770  #else
power_supply_put(struct power_supply * psy)771  static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)772  static inline struct power_supply *power_supply_get_by_name(const char *name)
773  { return NULL; }
774  #endif
775  #ifdef CONFIG_OF
776  extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
777  							const char *property);
778  extern struct power_supply *devm_power_supply_get_by_phandle(
779  				    struct device *dev, const char *property);
780  #else /* !CONFIG_OF */
781  static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)782  power_supply_get_by_phandle(struct device_node *np, const char *property)
783  { return NULL; }
784  static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)785  devm_power_supply_get_by_phandle(struct device *dev, const char *property)
786  { return NULL; }
787  #endif /* CONFIG_OF */
788  
789  extern const enum power_supply_property power_supply_battery_info_properties[];
790  extern const size_t power_supply_battery_info_properties_size;
791  extern int power_supply_get_battery_info(struct power_supply *psy,
792  					 struct power_supply_battery_info **info_out);
793  extern void power_supply_put_battery_info(struct power_supply *psy,
794  					  struct power_supply_battery_info *info);
795  extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
796  					       enum power_supply_property psp);
797  extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
798  					      enum power_supply_property psp,
799  					      union power_supply_propval *val);
800  extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
801  				       int table_len, int ocv);
802  extern struct power_supply_battery_ocv_table *
803  power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
804  				int temp, int *table_len);
805  extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
806  					int ocv, int temp);
807  extern int
808  power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
809  				int table_len, int temp);
810  extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
811  				int vbat_uv, bool charging);
812  extern const struct power_supply_maintenance_charge_table *
813  power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
814  extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
815  					      int resistance);
816  extern void power_supply_changed(struct power_supply *psy);
817  extern int power_supply_am_i_supplied(struct power_supply *psy);
818  int power_supply_get_property_from_supplier(struct power_supply *psy,
819  					    enum power_supply_property psp,
820  					    union power_supply_propval *val);
821  extern int power_supply_set_battery_charged(struct power_supply *psy);
822  
823  static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)824  power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
825  {
826  	const struct power_supply_maintenance_charge_table *mt;
827  
828  	mt = power_supply_get_maintenance_charging_setting(info, 0);
829  
830  	return (mt != NULL);
831  }
832  
833  static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)834  power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
835  {
836  	return ((info->vbat2ri_discharging != NULL) &&
837  		info->vbat2ri_discharging_size > 0);
838  }
839  
840  static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)841  power_supply_supports_temp2ri(struct power_supply_battery_info *info)
842  {
843  	return ((info->resist_table != NULL) &&
844  		info->resist_table_size > 0);
845  }
846  
847  #ifdef CONFIG_POWER_SUPPLY
848  extern int power_supply_is_system_supplied(void);
849  #else
power_supply_is_system_supplied(void)850  static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
851  #endif
852  
853  extern int power_supply_get_property(struct power_supply *psy,
854  			    enum power_supply_property psp,
855  			    union power_supply_propval *val);
856  #if IS_ENABLED(CONFIG_POWER_SUPPLY)
857  extern int power_supply_set_property(struct power_supply *psy,
858  			    enum power_supply_property psp,
859  			    const union power_supply_propval *val);
860  #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)861  static inline int power_supply_set_property(struct power_supply *psy,
862  			    enum power_supply_property psp,
863  			    const union power_supply_propval *val)
864  { return 0; }
865  #endif
866  extern int power_supply_property_is_writeable(struct power_supply *psy,
867  					enum power_supply_property psp);
868  extern void power_supply_external_power_changed(struct power_supply *psy);
869  
870  extern struct power_supply *__must_check
871  power_supply_register(struct device *parent,
872  				 const struct power_supply_desc *desc,
873  				 const struct power_supply_config *cfg);
874  extern struct power_supply *__must_check
875  power_supply_register_no_ws(struct device *parent,
876  				 const struct power_supply_desc *desc,
877  				 const struct power_supply_config *cfg);
878  extern struct power_supply *__must_check
879  devm_power_supply_register(struct device *parent,
880  				 const struct power_supply_desc *desc,
881  				 const struct power_supply_config *cfg);
882  extern struct power_supply *__must_check
883  devm_power_supply_register_no_ws(struct device *parent,
884  				 const struct power_supply_desc *desc,
885  				 const struct power_supply_config *cfg);
886  extern void power_supply_unregister(struct power_supply *psy);
887  extern int power_supply_powers(struct power_supply *psy, struct device *dev);
888  
889  #define to_power_supply(device) container_of(device, struct power_supply, dev)
890  
891  extern void *power_supply_get_drvdata(struct power_supply *psy);
892  extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data));
893  
power_supply_is_amp_property(enum power_supply_property psp)894  static inline bool power_supply_is_amp_property(enum power_supply_property psp)
895  {
896  	switch (psp) {
897  	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
898  	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
899  	case POWER_SUPPLY_PROP_CHARGE_FULL:
900  	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
901  	case POWER_SUPPLY_PROP_CHARGE_NOW:
902  	case POWER_SUPPLY_PROP_CHARGE_AVG:
903  	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
904  	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
905  	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
906  	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
907  	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
908  	case POWER_SUPPLY_PROP_CURRENT_MAX:
909  	case POWER_SUPPLY_PROP_CURRENT_NOW:
910  	case POWER_SUPPLY_PROP_CURRENT_AVG:
911  	case POWER_SUPPLY_PROP_CURRENT_BOOT:
912  		return true;
913  	default:
914  		break;
915  	}
916  
917  	return false;
918  }
919  
power_supply_is_watt_property(enum power_supply_property psp)920  static inline bool power_supply_is_watt_property(enum power_supply_property psp)
921  {
922  	switch (psp) {
923  	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
924  	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
925  	case POWER_SUPPLY_PROP_ENERGY_FULL:
926  	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
927  	case POWER_SUPPLY_PROP_ENERGY_NOW:
928  	case POWER_SUPPLY_PROP_ENERGY_AVG:
929  	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
930  	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
931  	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
932  	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
933  	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
934  	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
935  	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
936  	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
937  	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
938  	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
939  	case POWER_SUPPLY_PROP_POWER_NOW:
940  		return true;
941  	default:
942  		break;
943  	}
944  
945  	return false;
946  }
947  
948  #ifdef CONFIG_POWER_SUPPLY_HWMON
949  int power_supply_add_hwmon_sysfs(struct power_supply *psy);
950  void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
951  #else
power_supply_add_hwmon_sysfs(struct power_supply * psy)952  static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
953  {
954  	return 0;
955  }
956  
957  static inline
power_supply_remove_hwmon_sysfs(struct power_supply * psy)958  void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
959  #endif
960  
961  #ifdef CONFIG_SYSFS
962  ssize_t power_supply_charge_behaviour_show(struct device *dev,
963  					   unsigned int available_behaviours,
964  					   enum power_supply_charge_behaviour behaviour,
965  					   char *buf);
966  
967  int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
968  #else
969  static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)970  ssize_t power_supply_charge_behaviour_show(struct device *dev,
971  					   unsigned int available_behaviours,
972  					   enum power_supply_charge_behaviour behaviour,
973  					   char *buf)
974  {
975  	return -EOPNOTSUPP;
976  }
977  
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)978  static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
979  						      const char *buf)
980  {
981  	return -EOPNOTSUPP;
982  }
983  #endif
984  
985  #endif /* __LINUX_POWER_SUPPLY_H__ */
986