1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4 * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
5 */
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/reset.h>
22 #include <linux/sizes.h>
23 #include <linux/spi/spi-mem.h>
24
25 #define QSPI_CR 0x00
26 #define CR_EN BIT(0)
27 #define CR_ABORT BIT(1)
28 #define CR_DMAEN BIT(2)
29 #define CR_TCEN BIT(3)
30 #define CR_SSHIFT BIT(4)
31 #define CR_DFM BIT(6)
32 #define CR_FSEL BIT(7)
33 #define CR_FTHRES_SHIFT 8
34 #define CR_TEIE BIT(16)
35 #define CR_TCIE BIT(17)
36 #define CR_FTIE BIT(18)
37 #define CR_SMIE BIT(19)
38 #define CR_TOIE BIT(20)
39 #define CR_APMS BIT(22)
40 #define CR_PRESC_MASK GENMASK(31, 24)
41
42 #define QSPI_DCR 0x04
43 #define DCR_FSIZE_MASK GENMASK(20, 16)
44
45 #define QSPI_SR 0x08
46 #define SR_TEF BIT(0)
47 #define SR_TCF BIT(1)
48 #define SR_FTF BIT(2)
49 #define SR_SMF BIT(3)
50 #define SR_TOF BIT(4)
51 #define SR_BUSY BIT(5)
52 #define SR_FLEVEL_MASK GENMASK(13, 8)
53
54 #define QSPI_FCR 0x0c
55 #define FCR_CTEF BIT(0)
56 #define FCR_CTCF BIT(1)
57 #define FCR_CSMF BIT(3)
58
59 #define QSPI_DLR 0x10
60
61 #define QSPI_CCR 0x14
62 #define CCR_INST_MASK GENMASK(7, 0)
63 #define CCR_IMODE_MASK GENMASK(9, 8)
64 #define CCR_ADMODE_MASK GENMASK(11, 10)
65 #define CCR_ADSIZE_MASK GENMASK(13, 12)
66 #define CCR_DCYC_MASK GENMASK(22, 18)
67 #define CCR_DMODE_MASK GENMASK(25, 24)
68 #define CCR_FMODE_MASK GENMASK(27, 26)
69 #define CCR_FMODE_INDW (0U << 26)
70 #define CCR_FMODE_INDR (1U << 26)
71 #define CCR_FMODE_APM (2U << 26)
72 #define CCR_FMODE_MM (3U << 26)
73 #define CCR_BUSWIDTH_0 0x0
74 #define CCR_BUSWIDTH_1 0x1
75 #define CCR_BUSWIDTH_2 0x2
76 #define CCR_BUSWIDTH_4 0x3
77
78 #define QSPI_AR 0x18
79 #define QSPI_ABR 0x1c
80 #define QSPI_DR 0x20
81 #define QSPI_PSMKR 0x24
82 #define QSPI_PSMAR 0x28
83 #define QSPI_PIR 0x2c
84 #define QSPI_LPTR 0x30
85
86 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M
87 #define STM32_QSPI_MAX_NORCHIP 2
88
89 #define STM32_FIFO_TIMEOUT_US 30000
90 #define STM32_BUSY_TIMEOUT_US 100000
91 #define STM32_ABT_TIMEOUT_US 100000
92 #define STM32_COMP_TIMEOUT_MS 1000
93 #define STM32_AUTOSUSPEND_DELAY -1
94
95 struct stm32_qspi_flash {
96 u32 cs;
97 u32 presc;
98 };
99
100 struct stm32_qspi {
101 struct device *dev;
102 struct spi_controller *ctrl;
103 phys_addr_t phys_base;
104 void __iomem *io_base;
105 void __iomem *mm_base;
106 resource_size_t mm_size;
107 struct clk *clk;
108 u32 clk_rate;
109 struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP];
110 struct completion data_completion;
111 struct completion match_completion;
112 u32 fmode;
113
114 struct dma_chan *dma_chtx;
115 struct dma_chan *dma_chrx;
116 struct completion dma_completion;
117
118 u32 cr_reg;
119 u32 dcr_reg;
120 unsigned long status_timeout;
121
122 /*
123 * to protect device configuration, could be different between
124 * 2 flash access (bk1, bk2)
125 */
126 struct mutex lock;
127 };
128
stm32_qspi_irq(int irq,void * dev_id)129 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
130 {
131 struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
132 u32 cr, sr;
133
134 cr = readl_relaxed(qspi->io_base + QSPI_CR);
135 sr = readl_relaxed(qspi->io_base + QSPI_SR);
136
137 if (cr & CR_SMIE && sr & SR_SMF) {
138 /* disable irq */
139 cr &= ~CR_SMIE;
140 writel_relaxed(cr, qspi->io_base + QSPI_CR);
141 complete(&qspi->match_completion);
142
143 return IRQ_HANDLED;
144 }
145
146 if (sr & (SR_TEF | SR_TCF)) {
147 /* disable irq */
148 cr &= ~CR_TCIE & ~CR_TEIE;
149 writel_relaxed(cr, qspi->io_base + QSPI_CR);
150 complete(&qspi->data_completion);
151 }
152
153 return IRQ_HANDLED;
154 }
155
stm32_qspi_read_fifo(u8 * val,void __iomem * addr)156 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
157 {
158 *val = readb_relaxed(addr);
159 }
160
stm32_qspi_write_fifo(u8 * val,void __iomem * addr)161 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
162 {
163 writeb_relaxed(*val, addr);
164 }
165
stm32_qspi_tx_poll(struct stm32_qspi * qspi,const struct spi_mem_op * op)166 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
167 const struct spi_mem_op *op)
168 {
169 void (*tx_fifo)(u8 *val, void __iomem *addr);
170 u32 len = op->data.nbytes, sr;
171 u8 *buf;
172 int ret;
173
174 if (op->data.dir == SPI_MEM_DATA_IN) {
175 tx_fifo = stm32_qspi_read_fifo;
176 buf = op->data.buf.in;
177
178 } else {
179 tx_fifo = stm32_qspi_write_fifo;
180 buf = (u8 *)op->data.buf.out;
181 }
182
183 while (len--) {
184 ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR,
185 sr, (sr & SR_FTF), 1,
186 STM32_FIFO_TIMEOUT_US);
187 if (ret) {
188 dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n",
189 len, sr);
190 return ret;
191 }
192 tx_fifo(buf++, qspi->io_base + QSPI_DR);
193 }
194
195 return 0;
196 }
197
stm32_qspi_tx_mm(struct stm32_qspi * qspi,const struct spi_mem_op * op)198 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
199 const struct spi_mem_op *op)
200 {
201 memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val,
202 op->data.nbytes);
203 return 0;
204 }
205
stm32_qspi_dma_callback(void * arg)206 static void stm32_qspi_dma_callback(void *arg)
207 {
208 struct completion *dma_completion = arg;
209
210 complete(dma_completion);
211 }
212
stm32_qspi_tx_dma(struct stm32_qspi * qspi,const struct spi_mem_op * op)213 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi,
214 const struct spi_mem_op *op)
215 {
216 struct dma_async_tx_descriptor *desc;
217 enum dma_transfer_direction dma_dir;
218 struct dma_chan *dma_ch;
219 struct sg_table sgt;
220 dma_cookie_t cookie;
221 u32 cr, t_out;
222 int err;
223
224 if (op->data.dir == SPI_MEM_DATA_IN) {
225 dma_dir = DMA_DEV_TO_MEM;
226 dma_ch = qspi->dma_chrx;
227 } else {
228 dma_dir = DMA_MEM_TO_DEV;
229 dma_ch = qspi->dma_chtx;
230 }
231
232 /*
233 * spi_map_buf return -EINVAL if the buffer is not DMA-able
234 * (DMA-able: in vmalloc | kmap | virt_addr_valid)
235 */
236 err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt);
237 if (err)
238 return err;
239
240 desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents,
241 dma_dir, DMA_PREP_INTERRUPT);
242 if (!desc) {
243 err = -ENOMEM;
244 goto out_unmap;
245 }
246
247 cr = readl_relaxed(qspi->io_base + QSPI_CR);
248
249 reinit_completion(&qspi->dma_completion);
250 desc->callback = stm32_qspi_dma_callback;
251 desc->callback_param = &qspi->dma_completion;
252 cookie = dmaengine_submit(desc);
253 err = dma_submit_error(cookie);
254 if (err)
255 goto out;
256
257 dma_async_issue_pending(dma_ch);
258
259 writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR);
260
261 t_out = sgt.nents * STM32_COMP_TIMEOUT_MS;
262 if (!wait_for_completion_timeout(&qspi->dma_completion,
263 msecs_to_jiffies(t_out)))
264 err = -ETIMEDOUT;
265
266 if (err)
267 dmaengine_terminate_all(dma_ch);
268
269 out:
270 writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR);
271 out_unmap:
272 spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt);
273
274 return err;
275 }
276
stm32_qspi_tx(struct stm32_qspi * qspi,const struct spi_mem_op * op)277 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op)
278 {
279 if (!op->data.nbytes)
280 return 0;
281
282 if (qspi->fmode == CCR_FMODE_MM)
283 return stm32_qspi_tx_mm(qspi, op);
284 else if (((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) ||
285 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) &&
286 op->data.nbytes > 4)
287 if (!stm32_qspi_tx_dma(qspi, op))
288 return 0;
289
290 return stm32_qspi_tx_poll(qspi, op);
291 }
292
stm32_qspi_wait_nobusy(struct stm32_qspi * qspi)293 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
294 {
295 u32 sr;
296
297 return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr,
298 !(sr & SR_BUSY), 1,
299 STM32_BUSY_TIMEOUT_US);
300 }
301
stm32_qspi_wait_cmd(struct stm32_qspi * qspi)302 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi)
303 {
304 u32 cr, sr;
305 int err = 0;
306
307 if ((readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) ||
308 qspi->fmode == CCR_FMODE_APM)
309 goto out;
310
311 reinit_completion(&qspi->data_completion);
312 cr = readl_relaxed(qspi->io_base + QSPI_CR);
313 writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR);
314
315 if (!wait_for_completion_timeout(&qspi->data_completion,
316 msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) {
317 err = -ETIMEDOUT;
318 } else {
319 sr = readl_relaxed(qspi->io_base + QSPI_SR);
320 if (sr & SR_TEF)
321 err = -EIO;
322 }
323
324 out:
325 /* clear flags */
326 writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR);
327 if (!err)
328 err = stm32_qspi_wait_nobusy(qspi);
329
330 return err;
331 }
332
stm32_qspi_wait_poll_status(struct stm32_qspi * qspi)333 static int stm32_qspi_wait_poll_status(struct stm32_qspi *qspi)
334 {
335 u32 cr;
336
337 reinit_completion(&qspi->match_completion);
338 cr = readl_relaxed(qspi->io_base + QSPI_CR);
339 writel_relaxed(cr | CR_SMIE, qspi->io_base + QSPI_CR);
340
341 if (!wait_for_completion_timeout(&qspi->match_completion,
342 msecs_to_jiffies(qspi->status_timeout)))
343 return -ETIMEDOUT;
344
345 writel_relaxed(FCR_CSMF, qspi->io_base + QSPI_FCR);
346
347 return 0;
348 }
349
stm32_qspi_get_mode(u8 buswidth)350 static int stm32_qspi_get_mode(u8 buswidth)
351 {
352 if (buswidth >= 4)
353 return CCR_BUSWIDTH_4;
354
355 return buswidth;
356 }
357
stm32_qspi_send(struct spi_device * spi,const struct spi_mem_op * op)358 static int stm32_qspi_send(struct spi_device *spi, const struct spi_mem_op *op)
359 {
360 struct stm32_qspi *qspi = spi_controller_get_devdata(spi->controller);
361 struct stm32_qspi_flash *flash = &qspi->flash[spi_get_chipselect(spi, 0)];
362 u32 ccr, cr;
363 int timeout, err = 0, err_poll_status = 0;
364
365 dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
366 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
367 op->dummy.buswidth, op->data.buswidth,
368 op->addr.val, op->data.nbytes);
369
370 cr = readl_relaxed(qspi->io_base + QSPI_CR);
371 cr &= ~CR_PRESC_MASK & ~CR_FSEL;
372 cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc);
373 cr |= FIELD_PREP(CR_FSEL, flash->cs);
374 writel_relaxed(cr, qspi->io_base + QSPI_CR);
375
376 if (op->data.nbytes)
377 writel_relaxed(op->data.nbytes - 1,
378 qspi->io_base + QSPI_DLR);
379
380 ccr = qspi->fmode;
381 ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode);
382 ccr |= FIELD_PREP(CCR_IMODE_MASK,
383 stm32_qspi_get_mode(op->cmd.buswidth));
384
385 if (op->addr.nbytes) {
386 ccr |= FIELD_PREP(CCR_ADMODE_MASK,
387 stm32_qspi_get_mode(op->addr.buswidth));
388 ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1);
389 }
390
391 if (op->dummy.nbytes)
392 ccr |= FIELD_PREP(CCR_DCYC_MASK,
393 op->dummy.nbytes * 8 / op->dummy.buswidth);
394
395 if (op->data.nbytes) {
396 ccr |= FIELD_PREP(CCR_DMODE_MASK,
397 stm32_qspi_get_mode(op->data.buswidth));
398 }
399
400 writel_relaxed(ccr, qspi->io_base + QSPI_CCR);
401
402 if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM)
403 writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR);
404
405 if (qspi->fmode == CCR_FMODE_APM)
406 err_poll_status = stm32_qspi_wait_poll_status(qspi);
407
408 err = stm32_qspi_tx(qspi, op);
409
410 /*
411 * Abort in:
412 * -error case
413 * -read memory map: prefetching must be stopped if we read the last
414 * byte of device (device size - fifo size). like device size is not
415 * knows, the prefetching is always stop.
416 */
417 if (err || err_poll_status || qspi->fmode == CCR_FMODE_MM)
418 goto abort;
419
420 /* wait end of tx in indirect mode */
421 err = stm32_qspi_wait_cmd(qspi);
422 if (err)
423 goto abort;
424
425 return 0;
426
427 abort:
428 cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT;
429 writel_relaxed(cr, qspi->io_base + QSPI_CR);
430
431 /* wait clear of abort bit by hw */
432 timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR,
433 cr, !(cr & CR_ABORT), 1,
434 STM32_ABT_TIMEOUT_US);
435
436 writel_relaxed(FCR_CTCF | FCR_CSMF, qspi->io_base + QSPI_FCR);
437
438 if (err || err_poll_status || timeout)
439 dev_err(qspi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n",
440 __func__, err, err_poll_status, timeout);
441
442 return err;
443 }
444
stm32_qspi_poll_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 mask,u16 match,unsigned long initial_delay_us,unsigned long polling_rate_us,unsigned long timeout_ms)445 static int stm32_qspi_poll_status(struct spi_mem *mem, const struct spi_mem_op *op,
446 u16 mask, u16 match,
447 unsigned long initial_delay_us,
448 unsigned long polling_rate_us,
449 unsigned long timeout_ms)
450 {
451 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->controller);
452 int ret;
453
454 if (!spi_mem_supports_op(mem, op))
455 return -EOPNOTSUPP;
456
457 ret = pm_runtime_resume_and_get(qspi->dev);
458 if (ret < 0)
459 return ret;
460
461 mutex_lock(&qspi->lock);
462
463 writel_relaxed(mask, qspi->io_base + QSPI_PSMKR);
464 writel_relaxed(match, qspi->io_base + QSPI_PSMAR);
465 qspi->fmode = CCR_FMODE_APM;
466 qspi->status_timeout = timeout_ms;
467
468 ret = stm32_qspi_send(mem->spi, op);
469 mutex_unlock(&qspi->lock);
470
471 pm_runtime_mark_last_busy(qspi->dev);
472 pm_runtime_put_autosuspend(qspi->dev);
473
474 return ret;
475 }
476
stm32_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)477 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
478 {
479 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->controller);
480 int ret;
481
482 ret = pm_runtime_resume_and_get(qspi->dev);
483 if (ret < 0)
484 return ret;
485
486 mutex_lock(&qspi->lock);
487 if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes)
488 qspi->fmode = CCR_FMODE_INDR;
489 else
490 qspi->fmode = CCR_FMODE_INDW;
491
492 ret = stm32_qspi_send(mem->spi, op);
493 mutex_unlock(&qspi->lock);
494
495 pm_runtime_mark_last_busy(qspi->dev);
496 pm_runtime_put_autosuspend(qspi->dev);
497
498 return ret;
499 }
500
stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc * desc)501 static int stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc *desc)
502 {
503 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->controller);
504
505 if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT)
506 return -EOPNOTSUPP;
507
508 /* should never happen, as mm_base == null is an error probe exit condition */
509 if (!qspi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN)
510 return -EOPNOTSUPP;
511
512 if (!qspi->mm_size)
513 return -EOPNOTSUPP;
514
515 return 0;
516 }
517
stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)518 static ssize_t stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc *desc,
519 u64 offs, size_t len, void *buf)
520 {
521 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->controller);
522 struct spi_mem_op op;
523 u32 addr_max;
524 int ret;
525
526 ret = pm_runtime_resume_and_get(qspi->dev);
527 if (ret < 0)
528 return ret;
529
530 mutex_lock(&qspi->lock);
531 /* make a local copy of desc op_tmpl and complete dirmap rdesc
532 * spi_mem_op template with offs, len and *buf in order to get
533 * all needed transfer information into struct spi_mem_op
534 */
535 memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op));
536 dev_dbg(qspi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf);
537
538 op.data.nbytes = len;
539 op.addr.val = desc->info.offset + offs;
540 op.data.buf.in = buf;
541
542 addr_max = op.addr.val + op.data.nbytes + 1;
543 if (addr_max < qspi->mm_size && op.addr.buswidth)
544 qspi->fmode = CCR_FMODE_MM;
545 else
546 qspi->fmode = CCR_FMODE_INDR;
547
548 ret = stm32_qspi_send(desc->mem->spi, &op);
549 mutex_unlock(&qspi->lock);
550
551 pm_runtime_mark_last_busy(qspi->dev);
552 pm_runtime_put_autosuspend(qspi->dev);
553
554 return ret ?: len;
555 }
556
stm32_qspi_transfer_one_message(struct spi_controller * ctrl,struct spi_message * msg)557 static int stm32_qspi_transfer_one_message(struct spi_controller *ctrl,
558 struct spi_message *msg)
559 {
560 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
561 struct spi_transfer *transfer;
562 struct spi_device *spi = msg->spi;
563 struct spi_mem_op op;
564 int ret = 0;
565
566 if (!spi_get_csgpiod(spi, 0))
567 return -EOPNOTSUPP;
568
569 ret = pm_runtime_resume_and_get(qspi->dev);
570 if (ret < 0)
571 return ret;
572
573 mutex_lock(&qspi->lock);
574
575 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
576
577 list_for_each_entry(transfer, &msg->transfers, transfer_list) {
578 u8 dummy_bytes = 0;
579
580 memset(&op, 0, sizeof(op));
581
582 dev_dbg(qspi->dev, "tx_buf:%p tx_nbits:%d rx_buf:%p rx_nbits:%d len:%d dummy_data:%d\n",
583 transfer->tx_buf, transfer->tx_nbits,
584 transfer->rx_buf, transfer->rx_nbits,
585 transfer->len, transfer->dummy_data);
586
587 /*
588 * QSPI hardware supports dummy bytes transfer.
589 * If current transfer is dummy byte, merge it with the next
590 * transfer in order to take into account QSPI block constraint
591 */
592 if (transfer->dummy_data) {
593 op.dummy.buswidth = transfer->tx_nbits;
594 op.dummy.nbytes = transfer->len;
595 dummy_bytes = transfer->len;
596
597 /* if happens, means that message is not correctly built */
598 if (list_is_last(&transfer->transfer_list, &msg->transfers)) {
599 ret = -EINVAL;
600 goto end_of_transfer;
601 }
602
603 transfer = list_next_entry(transfer, transfer_list);
604 }
605
606 op.data.nbytes = transfer->len;
607
608 if (transfer->rx_buf) {
609 qspi->fmode = CCR_FMODE_INDR;
610 op.data.buswidth = transfer->rx_nbits;
611 op.data.dir = SPI_MEM_DATA_IN;
612 op.data.buf.in = transfer->rx_buf;
613 } else {
614 qspi->fmode = CCR_FMODE_INDW;
615 op.data.buswidth = transfer->tx_nbits;
616 op.data.dir = SPI_MEM_DATA_OUT;
617 op.data.buf.out = transfer->tx_buf;
618 }
619
620 ret = stm32_qspi_send(spi, &op);
621 if (ret)
622 goto end_of_transfer;
623
624 msg->actual_length += transfer->len + dummy_bytes;
625 }
626
627 end_of_transfer:
628 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
629
630 mutex_unlock(&qspi->lock);
631
632 msg->status = ret;
633 spi_finalize_current_message(ctrl);
634
635 pm_runtime_mark_last_busy(qspi->dev);
636 pm_runtime_put_autosuspend(qspi->dev);
637
638 return ret;
639 }
640
stm32_qspi_setup(struct spi_device * spi)641 static int stm32_qspi_setup(struct spi_device *spi)
642 {
643 struct spi_controller *ctrl = spi->controller;
644 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
645 struct stm32_qspi_flash *flash;
646 u32 presc, mode;
647 int ret;
648
649 if (ctrl->busy)
650 return -EBUSY;
651
652 if (!spi->max_speed_hz)
653 return -EINVAL;
654
655 mode = spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL);
656 if (mode && gpiod_count(qspi->dev, "cs") == -ENOENT) {
657 dev_err(qspi->dev, "spi-rx-bus-width\\/spi-tx-bus-width\\/cs-gpios\n");
658 dev_err(qspi->dev, "configuration not supported\n");
659
660 return -EINVAL;
661 }
662
663 ret = pm_runtime_resume_and_get(qspi->dev);
664 if (ret < 0)
665 return ret;
666
667 presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1;
668
669 flash = &qspi->flash[spi_get_chipselect(spi, 0)];
670 flash->cs = spi_get_chipselect(spi, 0);
671 flash->presc = presc;
672
673 mutex_lock(&qspi->lock);
674 qspi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN;
675
676 /*
677 * Dual flash mode is only enable in case SPI_TX_OCTAL or SPI_RX_OCTAL
678 * is set in spi->mode and "cs-gpios" properties is found in DT
679 */
680 if (mode) {
681 qspi->cr_reg |= CR_DFM;
682 dev_dbg(qspi->dev, "Dual flash mode enable");
683 }
684
685 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
686
687 /* set dcr fsize to max address */
688 qspi->dcr_reg = DCR_FSIZE_MASK;
689 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
690 mutex_unlock(&qspi->lock);
691
692 pm_runtime_mark_last_busy(qspi->dev);
693 pm_runtime_put_autosuspend(qspi->dev);
694
695 return 0;
696 }
697
stm32_qspi_dma_setup(struct stm32_qspi * qspi)698 static int stm32_qspi_dma_setup(struct stm32_qspi *qspi)
699 {
700 struct dma_slave_config dma_cfg;
701 struct device *dev = qspi->dev;
702 int ret = 0;
703
704 memset(&dma_cfg, 0, sizeof(dma_cfg));
705
706 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
707 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
708 dma_cfg.src_addr = qspi->phys_base + QSPI_DR;
709 dma_cfg.dst_addr = qspi->phys_base + QSPI_DR;
710 dma_cfg.src_maxburst = 4;
711 dma_cfg.dst_maxburst = 4;
712
713 qspi->dma_chrx = dma_request_chan(dev, "rx");
714 if (IS_ERR(qspi->dma_chrx)) {
715 ret = PTR_ERR(qspi->dma_chrx);
716 qspi->dma_chrx = NULL;
717 if (ret == -EPROBE_DEFER)
718 goto out;
719 } else {
720 if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) {
721 dev_err(dev, "dma rx config failed\n");
722 dma_release_channel(qspi->dma_chrx);
723 qspi->dma_chrx = NULL;
724 }
725 }
726
727 qspi->dma_chtx = dma_request_chan(dev, "tx");
728 if (IS_ERR(qspi->dma_chtx)) {
729 ret = PTR_ERR(qspi->dma_chtx);
730 qspi->dma_chtx = NULL;
731 } else {
732 if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) {
733 dev_err(dev, "dma tx config failed\n");
734 dma_release_channel(qspi->dma_chtx);
735 qspi->dma_chtx = NULL;
736 }
737 }
738
739 out:
740 init_completion(&qspi->dma_completion);
741
742 if (ret != -EPROBE_DEFER)
743 ret = 0;
744
745 return ret;
746 }
747
stm32_qspi_dma_free(struct stm32_qspi * qspi)748 static void stm32_qspi_dma_free(struct stm32_qspi *qspi)
749 {
750 if (qspi->dma_chtx)
751 dma_release_channel(qspi->dma_chtx);
752 if (qspi->dma_chrx)
753 dma_release_channel(qspi->dma_chrx);
754 }
755
756 /*
757 * no special host constraint, so use default spi_mem_default_supports_op
758 * to check supported mode.
759 */
760 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
761 .exec_op = stm32_qspi_exec_op,
762 .dirmap_create = stm32_qspi_dirmap_create,
763 .dirmap_read = stm32_qspi_dirmap_read,
764 .poll_status = stm32_qspi_poll_status,
765 };
766
stm32_qspi_probe(struct platform_device * pdev)767 static int stm32_qspi_probe(struct platform_device *pdev)
768 {
769 struct device *dev = &pdev->dev;
770 struct spi_controller *ctrl;
771 struct reset_control *rstc;
772 struct stm32_qspi *qspi;
773 struct resource *res;
774 int ret, irq;
775
776 ctrl = devm_spi_alloc_host(dev, sizeof(*qspi));
777 if (!ctrl)
778 return -ENOMEM;
779
780 qspi = spi_controller_get_devdata(ctrl);
781 qspi->ctrl = ctrl;
782
783 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
784 qspi->io_base = devm_ioremap_resource(dev, res);
785 if (IS_ERR(qspi->io_base))
786 return PTR_ERR(qspi->io_base);
787
788 qspi->phys_base = res->start;
789
790 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
791 qspi->mm_base = devm_ioremap_resource(dev, res);
792 if (IS_ERR(qspi->mm_base))
793 return PTR_ERR(qspi->mm_base);
794
795 qspi->mm_size = resource_size(res);
796 if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ)
797 return -EINVAL;
798
799 irq = platform_get_irq(pdev, 0);
800 if (irq < 0)
801 return irq;
802
803 ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
804 dev_name(dev), qspi);
805 if (ret) {
806 dev_err(dev, "failed to request irq\n");
807 return ret;
808 }
809
810 init_completion(&qspi->data_completion);
811 init_completion(&qspi->match_completion);
812
813 qspi->clk = devm_clk_get(dev, NULL);
814 if (IS_ERR(qspi->clk))
815 return PTR_ERR(qspi->clk);
816
817 qspi->clk_rate = clk_get_rate(qspi->clk);
818 if (!qspi->clk_rate)
819 return -EINVAL;
820
821 ret = clk_prepare_enable(qspi->clk);
822 if (ret) {
823 dev_err(dev, "can not enable the clock\n");
824 return ret;
825 }
826
827 rstc = devm_reset_control_get_exclusive(dev, NULL);
828 if (IS_ERR(rstc)) {
829 ret = PTR_ERR(rstc);
830 if (ret == -EPROBE_DEFER)
831 goto err_clk_disable;
832 } else {
833 reset_control_assert(rstc);
834 udelay(2);
835 reset_control_deassert(rstc);
836 }
837
838 qspi->dev = dev;
839 platform_set_drvdata(pdev, qspi);
840 ret = stm32_qspi_dma_setup(qspi);
841 if (ret)
842 goto err_dma_free;
843
844 mutex_init(&qspi->lock);
845
846 ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_OCTAL
847 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_OCTAL;
848 ctrl->setup = stm32_qspi_setup;
849 ctrl->bus_num = -1;
850 ctrl->mem_ops = &stm32_qspi_mem_ops;
851 ctrl->use_gpio_descriptors = true;
852 ctrl->transfer_one_message = stm32_qspi_transfer_one_message;
853 ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP;
854 ctrl->dev.of_node = dev->of_node;
855
856 pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY);
857 pm_runtime_use_autosuspend(dev);
858 pm_runtime_set_active(dev);
859 pm_runtime_enable(dev);
860 pm_runtime_get_noresume(dev);
861
862 ret = spi_register_controller(ctrl);
863 if (ret)
864 goto err_pm_runtime_free;
865
866 pm_runtime_mark_last_busy(dev);
867 pm_runtime_put_autosuspend(dev);
868
869 return 0;
870
871 err_pm_runtime_free:
872 pm_runtime_get_sync(qspi->dev);
873 /* disable qspi */
874 writel_relaxed(0, qspi->io_base + QSPI_CR);
875 mutex_destroy(&qspi->lock);
876 pm_runtime_put_noidle(qspi->dev);
877 pm_runtime_disable(qspi->dev);
878 pm_runtime_set_suspended(qspi->dev);
879 pm_runtime_dont_use_autosuspend(qspi->dev);
880 err_dma_free:
881 stm32_qspi_dma_free(qspi);
882 err_clk_disable:
883 clk_disable_unprepare(qspi->clk);
884
885 return ret;
886 }
887
stm32_qspi_remove(struct platform_device * pdev)888 static void stm32_qspi_remove(struct platform_device *pdev)
889 {
890 struct stm32_qspi *qspi = platform_get_drvdata(pdev);
891
892 pm_runtime_get_sync(qspi->dev);
893 spi_unregister_controller(qspi->ctrl);
894 /* disable qspi */
895 writel_relaxed(0, qspi->io_base + QSPI_CR);
896 stm32_qspi_dma_free(qspi);
897 mutex_destroy(&qspi->lock);
898 pm_runtime_put_noidle(qspi->dev);
899 pm_runtime_disable(qspi->dev);
900 pm_runtime_set_suspended(qspi->dev);
901 pm_runtime_dont_use_autosuspend(qspi->dev);
902 clk_disable_unprepare(qspi->clk);
903 }
904
stm32_qspi_runtime_suspend(struct device * dev)905 static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev)
906 {
907 struct stm32_qspi *qspi = dev_get_drvdata(dev);
908
909 clk_disable_unprepare(qspi->clk);
910
911 return 0;
912 }
913
stm32_qspi_runtime_resume(struct device * dev)914 static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev)
915 {
916 struct stm32_qspi *qspi = dev_get_drvdata(dev);
917
918 return clk_prepare_enable(qspi->clk);
919 }
920
stm32_qspi_suspend(struct device * dev)921 static int __maybe_unused stm32_qspi_suspend(struct device *dev)
922 {
923 pinctrl_pm_select_sleep_state(dev);
924
925 return pm_runtime_force_suspend(dev);
926 }
927
stm32_qspi_resume(struct device * dev)928 static int __maybe_unused stm32_qspi_resume(struct device *dev)
929 {
930 struct stm32_qspi *qspi = dev_get_drvdata(dev);
931 int ret;
932
933 ret = pm_runtime_force_resume(dev);
934 if (ret < 0)
935 return ret;
936
937 pinctrl_pm_select_default_state(dev);
938
939 ret = pm_runtime_resume_and_get(dev);
940 if (ret < 0)
941 return ret;
942
943 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
944 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
945
946 pm_runtime_mark_last_busy(dev);
947 pm_runtime_put_autosuspend(dev);
948
949 return 0;
950 }
951
952 static const struct dev_pm_ops stm32_qspi_pm_ops = {
953 SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend,
954 stm32_qspi_runtime_resume, NULL)
955 SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume)
956 };
957
958 static const struct of_device_id stm32_qspi_match[] = {
959 {.compatible = "st,stm32f469-qspi"},
960 {}
961 };
962 MODULE_DEVICE_TABLE(of, stm32_qspi_match);
963
964 static struct platform_driver stm32_qspi_driver = {
965 .probe = stm32_qspi_probe,
966 .remove_new = stm32_qspi_remove,
967 .driver = {
968 .name = "stm32-qspi",
969 .of_match_table = stm32_qspi_match,
970 .pm = &stm32_qspi_pm_ops,
971 },
972 };
973 module_platform_driver(stm32_qspi_driver);
974
975 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
976 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
977 MODULE_LICENSE("GPL v2");
978