1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Hardware monitoring driver for PMBus devices
4   *
5   * Copyright (c) 2010, 2011 Ericsson AB.
6   * Copyright (c) 2012 Guenter Roeck
7   */
8  
9  #include <linux/debugfs.h>
10  #include <linux/delay.h>
11  #include <linux/kernel.h>
12  #include <linux/math64.h>
13  #include <linux/module.h>
14  #include <linux/init.h>
15  #include <linux/err.h>
16  #include <linux/slab.h>
17  #include <linux/i2c.h>
18  #include <linux/hwmon.h>
19  #include <linux/hwmon-sysfs.h>
20  #include <linux/pmbus.h>
21  #include <linux/regulator/driver.h>
22  #include <linux/regulator/machine.h>
23  #include <linux/of.h>
24  #include <linux/thermal.h>
25  #include "pmbus.h"
26  
27  /*
28   * Number of additional attribute pointers to allocate
29   * with each call to krealloc
30   */
31  #define PMBUS_ATTR_ALLOC_SIZE	32
32  #define PMBUS_NAME_SIZE		24
33  
34  struct pmbus_sensor {
35  	struct pmbus_sensor *next;
36  	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
37  	struct device_attribute attribute;
38  	u8 page;		/* page number */
39  	u8 phase;		/* phase number, 0xff for all phases */
40  	u16 reg;		/* register */
41  	enum pmbus_sensor_classes class;	/* sensor class */
42  	bool update;		/* runtime sensor update needed */
43  	bool convert;		/* Whether or not to apply linear/vid/direct */
44  	int data;		/* Sensor data.
45  				   Negative if there was a read error */
46  };
47  #define to_pmbus_sensor(_attr) \
48  	container_of(_attr, struct pmbus_sensor, attribute)
49  
50  struct pmbus_boolean {
51  	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
52  	struct sensor_device_attribute attribute;
53  	struct pmbus_sensor *s1;
54  	struct pmbus_sensor *s2;
55  };
56  #define to_pmbus_boolean(_attr) \
57  	container_of(_attr, struct pmbus_boolean, attribute)
58  
59  struct pmbus_label {
60  	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
61  	struct device_attribute attribute;
62  	char label[PMBUS_NAME_SIZE];	/* label */
63  };
64  #define to_pmbus_label(_attr) \
65  	container_of(_attr, struct pmbus_label, attribute)
66  
67  /* Macros for converting between sensor index and register/page/status mask */
68  
69  #define PB_STATUS_MASK	0xffff
70  #define PB_REG_SHIFT	16
71  #define PB_REG_MASK	0x3ff
72  #define PB_PAGE_SHIFT	26
73  #define PB_PAGE_MASK	0x3f
74  
75  #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
76  						 ((reg) << PB_REG_SHIFT) | (mask))
77  
78  #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
79  #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
80  #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
81  
82  struct pmbus_data {
83  	struct device *dev;
84  	struct device *hwmon_dev;
85  	struct regulator_dev **rdevs;
86  
87  	u32 flags;		/* from platform data */
88  
89  	u8 revision;	/* The PMBus revision the device is compliant with */
90  
91  	int exponent[PMBUS_PAGES];
92  				/* linear mode: exponent for output voltages */
93  
94  	const struct pmbus_driver_info *info;
95  
96  	int max_attributes;
97  	int num_attributes;
98  	struct attribute_group group;
99  	const struct attribute_group **groups;
100  	struct dentry *debugfs;		/* debugfs device directory */
101  
102  	struct pmbus_sensor *sensors;
103  
104  	struct mutex update_lock;
105  
106  	bool has_status_word;		/* device uses STATUS_WORD register */
107  	int (*read_status)(struct i2c_client *client, int page);
108  
109  	s16 currpage;	/* current page, -1 for unknown/unset */
110  	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
111  
112  	int vout_low[PMBUS_PAGES];	/* voltage low margin */
113  	int vout_high[PMBUS_PAGES];	/* voltage high margin */
114  	ktime_t write_time;		/* Last SMBUS write timestamp */
115  	ktime_t access_time;		/* Last SMBUS access timestamp */
116  };
117  
118  struct pmbus_debugfs_entry {
119  	struct i2c_client *client;
120  	u8 page;
121  	u8 reg;
122  };
123  
124  static const int pmbus_fan_rpm_mask[] = {
125  	PB_FAN_1_RPM,
126  	PB_FAN_2_RPM,
127  	PB_FAN_1_RPM,
128  	PB_FAN_2_RPM,
129  };
130  
131  static const int pmbus_fan_config_registers[] = {
132  	PMBUS_FAN_CONFIG_12,
133  	PMBUS_FAN_CONFIG_12,
134  	PMBUS_FAN_CONFIG_34,
135  	PMBUS_FAN_CONFIG_34
136  };
137  
138  static const int pmbus_fan_command_registers[] = {
139  	PMBUS_FAN_COMMAND_1,
140  	PMBUS_FAN_COMMAND_2,
141  	PMBUS_FAN_COMMAND_3,
142  	PMBUS_FAN_COMMAND_4,
143  };
144  
pmbus_clear_cache(struct i2c_client * client)145  void pmbus_clear_cache(struct i2c_client *client)
146  {
147  	struct pmbus_data *data = i2c_get_clientdata(client);
148  	struct pmbus_sensor *sensor;
149  
150  	for (sensor = data->sensors; sensor; sensor = sensor->next)
151  		sensor->data = -ENODATA;
152  }
153  EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
154  
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)155  void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
156  {
157  	struct pmbus_data *data = i2c_get_clientdata(client);
158  	struct pmbus_sensor *sensor;
159  
160  	for (sensor = data->sensors; sensor; sensor = sensor->next)
161  		if (sensor->reg == reg)
162  			sensor->update = update;
163  }
164  EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
165  
166  /* Some chips need a delay between accesses. */
pmbus_wait(struct i2c_client * client)167  static void pmbus_wait(struct i2c_client *client)
168  {
169  	struct pmbus_data *data = i2c_get_clientdata(client);
170  	const struct pmbus_driver_info *info = data->info;
171  	s64 delta;
172  
173  	if (info->access_delay) {
174  		delta = ktime_us_delta(ktime_get(), data->access_time);
175  
176  		if (delta < info->access_delay)
177  			fsleep(info->access_delay - delta);
178  	} else if (info->write_delay) {
179  		delta = ktime_us_delta(ktime_get(), data->write_time);
180  
181  		if (delta < info->write_delay)
182  			fsleep(info->write_delay - delta);
183  	}
184  }
185  
186  /* Sets the last accessed timestamp for pmbus_wait */
pmbus_update_ts(struct i2c_client * client,bool write_op)187  static void pmbus_update_ts(struct i2c_client *client, bool write_op)
188  {
189  	struct pmbus_data *data = i2c_get_clientdata(client);
190  	const struct pmbus_driver_info *info = data->info;
191  
192  	if (info->access_delay) {
193  		data->access_time = ktime_get();
194  	} else if (info->write_delay && write_op) {
195  		data->write_time = ktime_get();
196  	}
197  }
198  
pmbus_set_page(struct i2c_client * client,int page,int phase)199  int pmbus_set_page(struct i2c_client *client, int page, int phase)
200  {
201  	struct pmbus_data *data = i2c_get_clientdata(client);
202  	int rv;
203  
204  	if (page < 0)
205  		return 0;
206  
207  	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
208  	    data->info->pages > 1 && page != data->currpage) {
209  		pmbus_wait(client);
210  		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
211  		pmbus_update_ts(client, true);
212  		if (rv < 0)
213  			return rv;
214  
215  		pmbus_wait(client);
216  		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
217  		pmbus_update_ts(client, false);
218  		if (rv < 0)
219  			return rv;
220  
221  		if (rv != page)
222  			return -EIO;
223  	}
224  	data->currpage = page;
225  
226  	if (data->info->phases[page] && data->currphase != phase &&
227  	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
228  		pmbus_wait(client);
229  		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
230  					       phase);
231  		pmbus_update_ts(client, true);
232  		if (rv)
233  			return rv;
234  	}
235  	data->currphase = phase;
236  
237  	return 0;
238  }
239  EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
240  
pmbus_write_byte(struct i2c_client * client,int page,u8 value)241  int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
242  {
243  	int rv;
244  
245  	rv = pmbus_set_page(client, page, 0xff);
246  	if (rv < 0)
247  		return rv;
248  
249  	pmbus_wait(client);
250  	rv = i2c_smbus_write_byte(client, value);
251  	pmbus_update_ts(client, true);
252  
253  	return rv;
254  }
255  EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
256  
257  /*
258   * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
259   * a device specific mapping function exists and calls it if necessary.
260   */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)261  static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
262  {
263  	struct pmbus_data *data = i2c_get_clientdata(client);
264  	const struct pmbus_driver_info *info = data->info;
265  	int status;
266  
267  	if (info->write_byte) {
268  		status = info->write_byte(client, page, value);
269  		if (status != -ENODATA)
270  			return status;
271  	}
272  	return pmbus_write_byte(client, page, value);
273  }
274  
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)275  int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
276  			  u16 word)
277  {
278  	int rv;
279  
280  	rv = pmbus_set_page(client, page, 0xff);
281  	if (rv < 0)
282  		return rv;
283  
284  	pmbus_wait(client);
285  	rv = i2c_smbus_write_word_data(client, reg, word);
286  	pmbus_update_ts(client, true);
287  
288  	return rv;
289  }
290  EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
291  
292  
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)293  static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
294  				u16 word)
295  {
296  	int bit;
297  	int id;
298  	int rv;
299  
300  	switch (reg) {
301  	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
302  		id = reg - PMBUS_VIRT_FAN_TARGET_1;
303  		bit = pmbus_fan_rpm_mask[id];
304  		rv = pmbus_update_fan(client, page, id, bit, bit, word);
305  		break;
306  	default:
307  		rv = -ENXIO;
308  		break;
309  	}
310  
311  	return rv;
312  }
313  
314  /*
315   * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
316   * a device specific mapping function exists and calls it if necessary.
317   */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)318  static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
319  				  u16 word)
320  {
321  	struct pmbus_data *data = i2c_get_clientdata(client);
322  	const struct pmbus_driver_info *info = data->info;
323  	int status;
324  
325  	if (info->write_word_data) {
326  		status = info->write_word_data(client, page, reg, word);
327  		if (status != -ENODATA)
328  			return status;
329  	}
330  
331  	if (reg >= PMBUS_VIRT_BASE)
332  		return pmbus_write_virt_reg(client, page, reg, word);
333  
334  	return pmbus_write_word_data(client, page, reg, word);
335  }
336  
337  /*
338   * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
339   * a device specific mapping function exists and calls it if necessary.
340   */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)341  static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
342  {
343  	struct pmbus_data *data = i2c_get_clientdata(client);
344  	const struct pmbus_driver_info *info = data->info;
345  	int status;
346  
347  	if (info->write_byte_data) {
348  		status = info->write_byte_data(client, page, reg, value);
349  		if (status != -ENODATA)
350  			return status;
351  	}
352  	return pmbus_write_byte_data(client, page, reg, value);
353  }
354  
355  /*
356   * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
357   * a device specific mapping function exists and calls it if necessary.
358   */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)359  static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
360  {
361  	struct pmbus_data *data = i2c_get_clientdata(client);
362  	const struct pmbus_driver_info *info = data->info;
363  	int status;
364  
365  	if (info->read_byte_data) {
366  		status = info->read_byte_data(client, page, reg);
367  		if (status != -ENODATA)
368  			return status;
369  	}
370  	return pmbus_read_byte_data(client, page, reg);
371  }
372  
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)373  int pmbus_update_fan(struct i2c_client *client, int page, int id,
374  		     u8 config, u8 mask, u16 command)
375  {
376  	int from;
377  	int rv;
378  	u8 to;
379  
380  	from = _pmbus_read_byte_data(client, page,
381  				    pmbus_fan_config_registers[id]);
382  	if (from < 0)
383  		return from;
384  
385  	to = (from & ~mask) | (config & mask);
386  	if (to != from) {
387  		rv = _pmbus_write_byte_data(client, page,
388  					   pmbus_fan_config_registers[id], to);
389  		if (rv < 0)
390  			return rv;
391  	}
392  
393  	return _pmbus_write_word_data(client, page,
394  				      pmbus_fan_command_registers[id], command);
395  }
396  EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
397  
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)398  int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
399  {
400  	int rv;
401  
402  	rv = pmbus_set_page(client, page, phase);
403  	if (rv < 0)
404  		return rv;
405  
406  	pmbus_wait(client);
407  	rv = i2c_smbus_read_word_data(client, reg);
408  	pmbus_update_ts(client, false);
409  
410  	return rv;
411  }
412  EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
413  
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)414  static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
415  {
416  	int rv;
417  	int id;
418  
419  	switch (reg) {
420  	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
421  		id = reg - PMBUS_VIRT_FAN_TARGET_1;
422  		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
423  		break;
424  	default:
425  		rv = -ENXIO;
426  		break;
427  	}
428  
429  	return rv;
430  }
431  
432  /*
433   * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
434   * a device specific mapping function exists and calls it if necessary.
435   */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)436  static int _pmbus_read_word_data(struct i2c_client *client, int page,
437  				 int phase, int reg)
438  {
439  	struct pmbus_data *data = i2c_get_clientdata(client);
440  	const struct pmbus_driver_info *info = data->info;
441  	int status;
442  
443  	if (info->read_word_data) {
444  		status = info->read_word_data(client, page, phase, reg);
445  		if (status != -ENODATA)
446  			return status;
447  	}
448  
449  	if (reg >= PMBUS_VIRT_BASE)
450  		return pmbus_read_virt_reg(client, page, reg);
451  
452  	return pmbus_read_word_data(client, page, phase, reg);
453  }
454  
455  /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)456  static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
457  {
458  	return _pmbus_read_word_data(client, page, 0xff, reg);
459  }
460  
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)461  int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
462  {
463  	int rv;
464  
465  	rv = pmbus_set_page(client, page, 0xff);
466  	if (rv < 0)
467  		return rv;
468  
469  	pmbus_wait(client);
470  	rv = i2c_smbus_read_byte_data(client, reg);
471  	pmbus_update_ts(client, false);
472  
473  	return rv;
474  }
475  EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
476  
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)477  int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
478  {
479  	int rv;
480  
481  	rv = pmbus_set_page(client, page, 0xff);
482  	if (rv < 0)
483  		return rv;
484  
485  	pmbus_wait(client);
486  	rv = i2c_smbus_write_byte_data(client, reg, value);
487  	pmbus_update_ts(client, true);
488  
489  	return rv;
490  }
491  EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
492  
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)493  int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
494  			   u8 mask, u8 value)
495  {
496  	unsigned int tmp;
497  	int rv;
498  
499  	rv = _pmbus_read_byte_data(client, page, reg);
500  	if (rv < 0)
501  		return rv;
502  
503  	tmp = (rv & ~mask) | (value & mask);
504  
505  	if (tmp != rv)
506  		rv = _pmbus_write_byte_data(client, page, reg, tmp);
507  
508  	return rv;
509  }
510  EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
511  
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)512  static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
513  				 char *data_buf)
514  {
515  	int rv;
516  
517  	rv = pmbus_set_page(client, page, 0xff);
518  	if (rv < 0)
519  		return rv;
520  
521  	pmbus_wait(client);
522  	rv = i2c_smbus_read_block_data(client, reg, data_buf);
523  	pmbus_update_ts(client, false);
524  
525  	return rv;
526  }
527  
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)528  static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
529  					      int reg)
530  {
531  	struct pmbus_sensor *sensor;
532  
533  	for (sensor = data->sensors; sensor; sensor = sensor->next) {
534  		if (sensor->page == page && sensor->reg == reg)
535  			return sensor;
536  	}
537  
538  	return ERR_PTR(-EINVAL);
539  }
540  
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)541  static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
542  			      enum pmbus_fan_mode mode,
543  			      bool from_cache)
544  {
545  	struct pmbus_data *data = i2c_get_clientdata(client);
546  	bool want_rpm, have_rpm;
547  	struct pmbus_sensor *s;
548  	int config;
549  	int reg;
550  
551  	want_rpm = (mode == rpm);
552  
553  	if (from_cache) {
554  		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
555  		s = pmbus_find_sensor(data, page, reg + id);
556  		if (IS_ERR(s))
557  			return PTR_ERR(s);
558  
559  		return s->data;
560  	}
561  
562  	config = _pmbus_read_byte_data(client, page,
563  				      pmbus_fan_config_registers[id]);
564  	if (config < 0)
565  		return config;
566  
567  	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
568  	if (want_rpm == have_rpm)
569  		return pmbus_read_word_data(client, page, 0xff,
570  					    pmbus_fan_command_registers[id]);
571  
572  	/* Can't sensibly map between RPM and PWM, just return zero */
573  	return 0;
574  }
575  
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)576  int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
577  			      enum pmbus_fan_mode mode)
578  {
579  	return pmbus_get_fan_rate(client, page, id, mode, false);
580  }
581  EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
582  
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)583  int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
584  			      enum pmbus_fan_mode mode)
585  {
586  	return pmbus_get_fan_rate(client, page, id, mode, true);
587  }
588  EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
589  
pmbus_clear_fault_page(struct i2c_client * client,int page)590  static void pmbus_clear_fault_page(struct i2c_client *client, int page)
591  {
592  	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
593  }
594  
pmbus_clear_faults(struct i2c_client * client)595  void pmbus_clear_faults(struct i2c_client *client)
596  {
597  	struct pmbus_data *data = i2c_get_clientdata(client);
598  	int i;
599  
600  	for (i = 0; i < data->info->pages; i++)
601  		pmbus_clear_fault_page(client, i);
602  }
603  EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
604  
pmbus_check_status_cml(struct i2c_client * client)605  static int pmbus_check_status_cml(struct i2c_client *client)
606  {
607  	struct pmbus_data *data = i2c_get_clientdata(client);
608  	int status, status2;
609  
610  	status = data->read_status(client, -1);
611  	if (status < 0 || (status & PB_STATUS_CML)) {
612  		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
613  		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
614  			return -EIO;
615  	}
616  	return 0;
617  }
618  
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)619  static bool pmbus_check_register(struct i2c_client *client,
620  				 int (*func)(struct i2c_client *client,
621  					     int page, int reg),
622  				 int page, int reg)
623  {
624  	int rv;
625  	struct pmbus_data *data = i2c_get_clientdata(client);
626  
627  	rv = func(client, page, reg);
628  	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
629  		rv = pmbus_check_status_cml(client);
630  	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
631  		data->read_status(client, -1);
632  	if (reg < PMBUS_VIRT_BASE)
633  		pmbus_clear_fault_page(client, -1);
634  	return rv >= 0;
635  }
636  
pmbus_check_status_register(struct i2c_client * client,int page)637  static bool pmbus_check_status_register(struct i2c_client *client, int page)
638  {
639  	int status;
640  	struct pmbus_data *data = i2c_get_clientdata(client);
641  
642  	status = data->read_status(client, page);
643  	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
644  	    (status & PB_STATUS_CML)) {
645  		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
646  		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
647  			status = -EIO;
648  	}
649  
650  	pmbus_clear_fault_page(client, -1);
651  	return status >= 0;
652  }
653  
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)654  bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
655  {
656  	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
657  }
658  EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
659  
pmbus_check_word_register(struct i2c_client * client,int page,int reg)660  bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
661  {
662  	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
663  }
664  EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
665  
pmbus_check_block_register(struct i2c_client * client,int page,int reg)666  static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
667  						      int page, int reg)
668  {
669  	int rv;
670  	struct pmbus_data *data = i2c_get_clientdata(client);
671  	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
672  
673  	rv = pmbus_read_block_data(client, page, reg, data_buf);
674  	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
675  		rv = pmbus_check_status_cml(client);
676  	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
677  		data->read_status(client, -1);
678  	pmbus_clear_fault_page(client, -1);
679  	return rv >= 0;
680  }
681  
pmbus_get_driver_info(struct i2c_client * client)682  const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
683  {
684  	struct pmbus_data *data = i2c_get_clientdata(client);
685  
686  	return data->info;
687  }
688  EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
689  
pmbus_get_status(struct i2c_client * client,int page,int reg)690  static int pmbus_get_status(struct i2c_client *client, int page, int reg)
691  {
692  	struct pmbus_data *data = i2c_get_clientdata(client);
693  	int status;
694  
695  	switch (reg) {
696  	case PMBUS_STATUS_WORD:
697  		status = data->read_status(client, page);
698  		break;
699  	default:
700  		status = _pmbus_read_byte_data(client, page, reg);
701  		break;
702  	}
703  	if (status < 0)
704  		pmbus_clear_faults(client);
705  	return status;
706  }
707  
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)708  static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
709  {
710  	if (sensor->data < 0 || sensor->update)
711  		sensor->data = _pmbus_read_word_data(client, sensor->page,
712  						     sensor->phase, sensor->reg);
713  }
714  
715  /*
716   * Convert ieee754 sensor values to milli- or micro-units
717   * depending on sensor type.
718   *
719   * ieee754 data format:
720   *	bit 15:		sign
721   *	bit 10..14:	exponent
722   *	bit 0..9:	mantissa
723   * exponent=0:
724   *	v=(−1)^signbit * 2^(−14) * 0.significantbits
725   * exponent=1..30:
726   *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
727   * exponent=31:
728   *	v=NaN
729   *
730   * Add the number mantissa bits into the calculations for simplicity.
731   * To do that, add '10' to the exponent. By doing that, we can just add
732   * 0x400 to normal values and get the expected result.
733   */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)734  static long pmbus_reg2data_ieee754(struct pmbus_data *data,
735  				   struct pmbus_sensor *sensor)
736  {
737  	int exponent;
738  	bool sign;
739  	long val;
740  
741  	/* only support half precision for now */
742  	sign = sensor->data & 0x8000;
743  	exponent = (sensor->data >> 10) & 0x1f;
744  	val = sensor->data & 0x3ff;
745  
746  	if (exponent == 0) {			/* subnormal */
747  		exponent = -(14 + 10);
748  	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
749  		exponent = 0;
750  		val = 65504;
751  	} else {
752  		exponent -= (15 + 10);		/* normal */
753  		val |= 0x400;
754  	}
755  
756  	/* scale result to milli-units for all sensors except fans */
757  	if (sensor->class != PSC_FAN)
758  		val = val * 1000L;
759  
760  	/* scale result to micro-units for power sensors */
761  	if (sensor->class == PSC_POWER)
762  		val = val * 1000L;
763  
764  	if (exponent >= 0)
765  		val <<= exponent;
766  	else
767  		val >>= -exponent;
768  
769  	if (sign)
770  		val = -val;
771  
772  	return val;
773  }
774  
775  /*
776   * Convert linear sensor values to milli- or micro-units
777   * depending on sensor type.
778   */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)779  static s64 pmbus_reg2data_linear(struct pmbus_data *data,
780  				 struct pmbus_sensor *sensor)
781  {
782  	s16 exponent;
783  	s32 mantissa;
784  	s64 val;
785  
786  	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
787  		exponent = data->exponent[sensor->page];
788  		mantissa = (u16) sensor->data;
789  	} else {				/* LINEAR11 */
790  		exponent = ((s16)sensor->data) >> 11;
791  		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
792  	}
793  
794  	val = mantissa;
795  
796  	/* scale result to milli-units for all sensors except fans */
797  	if (sensor->class != PSC_FAN)
798  		val = val * 1000LL;
799  
800  	/* scale result to micro-units for power sensors */
801  	if (sensor->class == PSC_POWER)
802  		val = val * 1000LL;
803  
804  	if (exponent >= 0)
805  		val <<= exponent;
806  	else
807  		val >>= -exponent;
808  
809  	return val;
810  }
811  
812  /*
813   * Convert direct sensor values to milli- or micro-units
814   * depending on sensor type.
815   */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)816  static s64 pmbus_reg2data_direct(struct pmbus_data *data,
817  				 struct pmbus_sensor *sensor)
818  {
819  	s64 b, val = (s16)sensor->data;
820  	s32 m, R;
821  
822  	m = data->info->m[sensor->class];
823  	b = data->info->b[sensor->class];
824  	R = data->info->R[sensor->class];
825  
826  	if (m == 0)
827  		return 0;
828  
829  	/* X = 1/m * (Y * 10^-R - b) */
830  	R = -R;
831  	/* scale result to milli-units for everything but fans */
832  	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
833  		R += 3;
834  		b *= 1000;
835  	}
836  
837  	/* scale result to micro-units for power sensors */
838  	if (sensor->class == PSC_POWER) {
839  		R += 3;
840  		b *= 1000;
841  	}
842  
843  	while (R > 0) {
844  		val *= 10;
845  		R--;
846  	}
847  	while (R < 0) {
848  		val = div_s64(val + 5LL, 10L);  /* round closest */
849  		R++;
850  	}
851  
852  	val = div_s64(val - b, m);
853  	return val;
854  }
855  
856  /*
857   * Convert VID sensor values to milli- or micro-units
858   * depending on sensor type.
859   */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)860  static s64 pmbus_reg2data_vid(struct pmbus_data *data,
861  			      struct pmbus_sensor *sensor)
862  {
863  	long val = sensor->data;
864  	long rv = 0;
865  
866  	switch (data->info->vrm_version[sensor->page]) {
867  	case vr11:
868  		if (val >= 0x02 && val <= 0xb2)
869  			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
870  		break;
871  	case vr12:
872  		if (val >= 0x01)
873  			rv = 250 + (val - 1) * 5;
874  		break;
875  	case vr13:
876  		if (val >= 0x01)
877  			rv = 500 + (val - 1) * 10;
878  		break;
879  	case imvp9:
880  		if (val >= 0x01)
881  			rv = 200 + (val - 1) * 10;
882  		break;
883  	case amd625mv:
884  		if (val >= 0x0 && val <= 0xd8)
885  			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
886  		break;
887  	}
888  	return rv;
889  }
890  
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)891  static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
892  {
893  	s64 val;
894  
895  	if (!sensor->convert)
896  		return sensor->data;
897  
898  	switch (data->info->format[sensor->class]) {
899  	case direct:
900  		val = pmbus_reg2data_direct(data, sensor);
901  		break;
902  	case vid:
903  		val = pmbus_reg2data_vid(data, sensor);
904  		break;
905  	case ieee754:
906  		val = pmbus_reg2data_ieee754(data, sensor);
907  		break;
908  	case linear:
909  	default:
910  		val = pmbus_reg2data_linear(data, sensor);
911  		break;
912  	}
913  	return val;
914  }
915  
916  #define MAX_IEEE_MANTISSA	(0x7ff * 1000)
917  #define MIN_IEEE_MANTISSA	(0x400 * 1000)
918  
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)919  static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
920  				  struct pmbus_sensor *sensor, long val)
921  {
922  	u16 exponent = (15 + 10);
923  	long mantissa;
924  	u16 sign = 0;
925  
926  	/* simple case */
927  	if (val == 0)
928  		return 0;
929  
930  	if (val < 0) {
931  		sign = 0x8000;
932  		val = -val;
933  	}
934  
935  	/* Power is in uW. Convert to mW before converting. */
936  	if (sensor->class == PSC_POWER)
937  		val = DIV_ROUND_CLOSEST(val, 1000L);
938  
939  	/*
940  	 * For simplicity, convert fan data to milli-units
941  	 * before calculating the exponent.
942  	 */
943  	if (sensor->class == PSC_FAN)
944  		val = val * 1000;
945  
946  	/* Reduce large mantissa until it fits into 10 bit */
947  	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
948  		exponent++;
949  		val >>= 1;
950  	}
951  	/*
952  	 * Increase small mantissa to generate valid 'normal'
953  	 * number
954  	 */
955  	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
956  		exponent--;
957  		val <<= 1;
958  	}
959  
960  	/* Convert mantissa from milli-units to units */
961  	mantissa = DIV_ROUND_CLOSEST(val, 1000);
962  
963  	/*
964  	 * Ensure that the resulting number is within range.
965  	 * Valid range is 0x400..0x7ff, where bit 10 reflects
966  	 * the implied high bit in normalized ieee754 numbers.
967  	 * Set the range to 0x400..0x7ff to reflect this.
968  	 * The upper bit is then removed by the mask against
969  	 * 0x3ff in the final assignment.
970  	 */
971  	if (mantissa > 0x7ff)
972  		mantissa = 0x7ff;
973  	else if (mantissa < 0x400)
974  		mantissa = 0x400;
975  
976  	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
977  	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
978  }
979  
980  #define MAX_LIN_MANTISSA	(1023 * 1000)
981  #define MIN_LIN_MANTISSA	(511 * 1000)
982  
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)983  static u16 pmbus_data2reg_linear(struct pmbus_data *data,
984  				 struct pmbus_sensor *sensor, s64 val)
985  {
986  	s16 exponent = 0, mantissa;
987  	bool negative = false;
988  
989  	/* simple case */
990  	if (val == 0)
991  		return 0;
992  
993  	if (sensor->class == PSC_VOLTAGE_OUT) {
994  		/* LINEAR16 does not support negative voltages */
995  		if (val < 0)
996  			return 0;
997  
998  		/*
999  		 * For a static exponents, we don't have a choice
1000  		 * but to adjust the value to it.
1001  		 */
1002  		if (data->exponent[sensor->page] < 0)
1003  			val <<= -data->exponent[sensor->page];
1004  		else
1005  			val >>= data->exponent[sensor->page];
1006  		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1007  		return clamp_val(val, 0, 0xffff);
1008  	}
1009  
1010  	if (val < 0) {
1011  		negative = true;
1012  		val = -val;
1013  	}
1014  
1015  	/* Power is in uW. Convert to mW before converting. */
1016  	if (sensor->class == PSC_POWER)
1017  		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1018  
1019  	/*
1020  	 * For simplicity, convert fan data to milli-units
1021  	 * before calculating the exponent.
1022  	 */
1023  	if (sensor->class == PSC_FAN)
1024  		val = val * 1000LL;
1025  
1026  	/* Reduce large mantissa until it fits into 10 bit */
1027  	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1028  		exponent++;
1029  		val >>= 1;
1030  	}
1031  	/* Increase small mantissa to improve precision */
1032  	while (val < MIN_LIN_MANTISSA && exponent > -15) {
1033  		exponent--;
1034  		val <<= 1;
1035  	}
1036  
1037  	/* Convert mantissa from milli-units to units */
1038  	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1039  
1040  	/* restore sign */
1041  	if (negative)
1042  		mantissa = -mantissa;
1043  
1044  	/* Convert to 5 bit exponent, 11 bit mantissa */
1045  	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1046  }
1047  
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1048  static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1049  				 struct pmbus_sensor *sensor, s64 val)
1050  {
1051  	s64 b;
1052  	s32 m, R;
1053  
1054  	m = data->info->m[sensor->class];
1055  	b = data->info->b[sensor->class];
1056  	R = data->info->R[sensor->class];
1057  
1058  	/* Power is in uW. Adjust R and b. */
1059  	if (sensor->class == PSC_POWER) {
1060  		R -= 3;
1061  		b *= 1000;
1062  	}
1063  
1064  	/* Calculate Y = (m * X + b) * 10^R */
1065  	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1066  		R -= 3;		/* Adjust R and b for data in milli-units */
1067  		b *= 1000;
1068  	}
1069  	val = val * m + b;
1070  
1071  	while (R > 0) {
1072  		val *= 10;
1073  		R--;
1074  	}
1075  	while (R < 0) {
1076  		val = div_s64(val + 5LL, 10L);  /* round closest */
1077  		R++;
1078  	}
1079  
1080  	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1081  }
1082  
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1083  static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1084  			      struct pmbus_sensor *sensor, s64 val)
1085  {
1086  	val = clamp_val(val, 500, 1600);
1087  
1088  	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1089  }
1090  
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1091  static u16 pmbus_data2reg(struct pmbus_data *data,
1092  			  struct pmbus_sensor *sensor, s64 val)
1093  {
1094  	u16 regval;
1095  
1096  	if (!sensor->convert)
1097  		return val;
1098  
1099  	switch (data->info->format[sensor->class]) {
1100  	case direct:
1101  		regval = pmbus_data2reg_direct(data, sensor, val);
1102  		break;
1103  	case vid:
1104  		regval = pmbus_data2reg_vid(data, sensor, val);
1105  		break;
1106  	case ieee754:
1107  		regval = pmbus_data2reg_ieee754(data, sensor, val);
1108  		break;
1109  	case linear:
1110  	default:
1111  		regval = pmbus_data2reg_linear(data, sensor, val);
1112  		break;
1113  	}
1114  	return regval;
1115  }
1116  
1117  /*
1118   * Return boolean calculated from converted data.
1119   * <index> defines a status register index and mask.
1120   * The mask is in the lower 8 bits, the register index is in bits 8..23.
1121   *
1122   * The associated pmbus_boolean structure contains optional pointers to two
1123   * sensor attributes. If specified, those attributes are compared against each
1124   * other to determine if a limit has been exceeded.
1125   *
1126   * If the sensor attribute pointers are NULL, the function returns true if
1127   * (status[reg] & mask) is true.
1128   *
1129   * If sensor attribute pointers are provided, a comparison against a specified
1130   * limit has to be performed to determine the boolean result.
1131   * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1132   * sensor values referenced by sensor attribute pointers s1 and s2).
1133   *
1134   * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1135   * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1136   *
1137   * If a negative value is stored in any of the referenced registers, this value
1138   * reflects an error code which will be returned.
1139   */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1140  static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1141  			     int index)
1142  {
1143  	struct pmbus_data *data = i2c_get_clientdata(client);
1144  	struct pmbus_sensor *s1 = b->s1;
1145  	struct pmbus_sensor *s2 = b->s2;
1146  	u16 mask = pb_index_to_mask(index);
1147  	u8 page = pb_index_to_page(index);
1148  	u16 reg = pb_index_to_reg(index);
1149  	int ret, status;
1150  	u16 regval;
1151  
1152  	mutex_lock(&data->update_lock);
1153  	status = pmbus_get_status(client, page, reg);
1154  	if (status < 0) {
1155  		ret = status;
1156  		goto unlock;
1157  	}
1158  
1159  	if (s1)
1160  		pmbus_update_sensor_data(client, s1);
1161  	if (s2)
1162  		pmbus_update_sensor_data(client, s2);
1163  
1164  	regval = status & mask;
1165  	if (regval) {
1166  		if (data->revision >= PMBUS_REV_12) {
1167  			ret = _pmbus_write_byte_data(client, page, reg, regval);
1168  			if (ret)
1169  				goto unlock;
1170  		} else {
1171  			pmbus_clear_fault_page(client, page);
1172  		}
1173  
1174  	}
1175  	if (s1 && s2) {
1176  		s64 v1, v2;
1177  
1178  		if (s1->data < 0) {
1179  			ret = s1->data;
1180  			goto unlock;
1181  		}
1182  		if (s2->data < 0) {
1183  			ret = s2->data;
1184  			goto unlock;
1185  		}
1186  
1187  		v1 = pmbus_reg2data(data, s1);
1188  		v2 = pmbus_reg2data(data, s2);
1189  		ret = !!(regval && v1 >= v2);
1190  	} else {
1191  		ret = !!regval;
1192  	}
1193  unlock:
1194  	mutex_unlock(&data->update_lock);
1195  	return ret;
1196  }
1197  
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1198  static ssize_t pmbus_show_boolean(struct device *dev,
1199  				  struct device_attribute *da, char *buf)
1200  {
1201  	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1202  	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1203  	struct i2c_client *client = to_i2c_client(dev->parent);
1204  	int val;
1205  
1206  	val = pmbus_get_boolean(client, boolean, attr->index);
1207  	if (val < 0)
1208  		return val;
1209  	return sysfs_emit(buf, "%d\n", val);
1210  }
1211  
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1212  static ssize_t pmbus_show_sensor(struct device *dev,
1213  				 struct device_attribute *devattr, char *buf)
1214  {
1215  	struct i2c_client *client = to_i2c_client(dev->parent);
1216  	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1217  	struct pmbus_data *data = i2c_get_clientdata(client);
1218  	ssize_t ret;
1219  
1220  	mutex_lock(&data->update_lock);
1221  	pmbus_update_sensor_data(client, sensor);
1222  	if (sensor->data < 0)
1223  		ret = sensor->data;
1224  	else
1225  		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1226  	mutex_unlock(&data->update_lock);
1227  	return ret;
1228  }
1229  
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1230  static ssize_t pmbus_set_sensor(struct device *dev,
1231  				struct device_attribute *devattr,
1232  				const char *buf, size_t count)
1233  {
1234  	struct i2c_client *client = to_i2c_client(dev->parent);
1235  	struct pmbus_data *data = i2c_get_clientdata(client);
1236  	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1237  	ssize_t rv = count;
1238  	s64 val;
1239  	int ret;
1240  	u16 regval;
1241  
1242  	if (kstrtos64(buf, 10, &val) < 0)
1243  		return -EINVAL;
1244  
1245  	mutex_lock(&data->update_lock);
1246  	regval = pmbus_data2reg(data, sensor, val);
1247  	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1248  	if (ret < 0)
1249  		rv = ret;
1250  	else
1251  		sensor->data = -ENODATA;
1252  	mutex_unlock(&data->update_lock);
1253  	return rv;
1254  }
1255  
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1256  static ssize_t pmbus_show_label(struct device *dev,
1257  				struct device_attribute *da, char *buf)
1258  {
1259  	struct pmbus_label *label = to_pmbus_label(da);
1260  
1261  	return sysfs_emit(buf, "%s\n", label->label);
1262  }
1263  
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1264  static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1265  {
1266  	if (data->num_attributes >= data->max_attributes - 1) {
1267  		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1268  		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1269  						      new_max_attrs, sizeof(void *),
1270  						      GFP_KERNEL);
1271  		if (!new_attrs)
1272  			return -ENOMEM;
1273  		data->group.attrs = new_attrs;
1274  		data->max_attributes = new_max_attrs;
1275  	}
1276  
1277  	data->group.attrs[data->num_attributes++] = attr;
1278  	data->group.attrs[data->num_attributes] = NULL;
1279  	return 0;
1280  }
1281  
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1282  static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1283  				const char *name,
1284  				umode_t mode,
1285  				ssize_t (*show)(struct device *dev,
1286  						struct device_attribute *attr,
1287  						char *buf),
1288  				ssize_t (*store)(struct device *dev,
1289  						 struct device_attribute *attr,
1290  						 const char *buf, size_t count))
1291  {
1292  	sysfs_attr_init(&dev_attr->attr);
1293  	dev_attr->attr.name = name;
1294  	dev_attr->attr.mode = mode;
1295  	dev_attr->show = show;
1296  	dev_attr->store = store;
1297  }
1298  
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1299  static void pmbus_attr_init(struct sensor_device_attribute *a,
1300  			    const char *name,
1301  			    umode_t mode,
1302  			    ssize_t (*show)(struct device *dev,
1303  					    struct device_attribute *attr,
1304  					    char *buf),
1305  			    ssize_t (*store)(struct device *dev,
1306  					     struct device_attribute *attr,
1307  					     const char *buf, size_t count),
1308  			    int idx)
1309  {
1310  	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1311  	a->index = idx;
1312  }
1313  
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1314  static int pmbus_add_boolean(struct pmbus_data *data,
1315  			     const char *name, const char *type, int seq,
1316  			     struct pmbus_sensor *s1,
1317  			     struct pmbus_sensor *s2,
1318  			     u8 page, u16 reg, u16 mask)
1319  {
1320  	struct pmbus_boolean *boolean;
1321  	struct sensor_device_attribute *a;
1322  
1323  	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1324  		return -EINVAL;
1325  
1326  	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1327  	if (!boolean)
1328  		return -ENOMEM;
1329  
1330  	a = &boolean->attribute;
1331  
1332  	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1333  		 name, seq, type);
1334  	boolean->s1 = s1;
1335  	boolean->s2 = s2;
1336  	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1337  			pb_reg_to_index(page, reg, mask));
1338  
1339  	return pmbus_add_attribute(data, &a->dev_attr.attr);
1340  }
1341  
1342  /* of thermal for pmbus temperature sensors */
1343  struct pmbus_thermal_data {
1344  	struct pmbus_data *pmbus_data;
1345  	struct pmbus_sensor *sensor;
1346  };
1347  
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1348  static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1349  {
1350  	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1351  	struct pmbus_sensor *sensor = tdata->sensor;
1352  	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1353  	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1354  	struct device *dev = pmbus_data->hwmon_dev;
1355  	int ret = 0;
1356  
1357  	if (!dev) {
1358  		/* May not even get to hwmon yet */
1359  		*temp = 0;
1360  		return 0;
1361  	}
1362  
1363  	mutex_lock(&pmbus_data->update_lock);
1364  	pmbus_update_sensor_data(client, sensor);
1365  	if (sensor->data < 0)
1366  		ret = sensor->data;
1367  	else
1368  		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1369  	mutex_unlock(&pmbus_data->update_lock);
1370  
1371  	return ret;
1372  }
1373  
1374  static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1375  	.get_temp = pmbus_thermal_get_temp,
1376  };
1377  
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1378  static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1379  				    struct pmbus_sensor *sensor, int index)
1380  {
1381  	struct device *dev = pmbus_data->dev;
1382  	struct pmbus_thermal_data *tdata;
1383  	struct thermal_zone_device *tzd;
1384  
1385  	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1386  	if (!tdata)
1387  		return -ENOMEM;
1388  
1389  	tdata->sensor = sensor;
1390  	tdata->pmbus_data = pmbus_data;
1391  
1392  	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1393  					    &pmbus_thermal_ops);
1394  	/*
1395  	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1396  	 * so ignore that error but forward any other error.
1397  	 */
1398  	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1399  		return PTR_ERR(tzd);
1400  
1401  	return 0;
1402  }
1403  
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1404  static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1405  					     const char *name, const char *type,
1406  					     int seq, int page, int phase,
1407  					     int reg,
1408  					     enum pmbus_sensor_classes class,
1409  					     bool update, bool readonly,
1410  					     bool convert)
1411  {
1412  	struct pmbus_sensor *sensor;
1413  	struct device_attribute *a;
1414  
1415  	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1416  	if (!sensor)
1417  		return NULL;
1418  	a = &sensor->attribute;
1419  
1420  	if (type)
1421  		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1422  			 name, seq, type);
1423  	else
1424  		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1425  			 name, seq);
1426  
1427  	if (data->flags & PMBUS_WRITE_PROTECTED)
1428  		readonly = true;
1429  
1430  	sensor->page = page;
1431  	sensor->phase = phase;
1432  	sensor->reg = reg;
1433  	sensor->class = class;
1434  	sensor->update = update;
1435  	sensor->convert = convert;
1436  	sensor->data = -ENODATA;
1437  	pmbus_dev_attr_init(a, sensor->name,
1438  			    readonly ? 0444 : 0644,
1439  			    pmbus_show_sensor, pmbus_set_sensor);
1440  
1441  	if (pmbus_add_attribute(data, &a->attr))
1442  		return NULL;
1443  
1444  	sensor->next = data->sensors;
1445  	data->sensors = sensor;
1446  
1447  	/* temperature sensors with _input values are registered with thermal */
1448  	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1449  		pmbus_thermal_add_sensor(data, sensor, seq);
1450  
1451  	return sensor;
1452  }
1453  
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1454  static int pmbus_add_label(struct pmbus_data *data,
1455  			   const char *name, int seq,
1456  			   const char *lstring, int index, int phase)
1457  {
1458  	struct pmbus_label *label;
1459  	struct device_attribute *a;
1460  
1461  	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1462  	if (!label)
1463  		return -ENOMEM;
1464  
1465  	a = &label->attribute;
1466  
1467  	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1468  	if (!index) {
1469  		if (phase == 0xff)
1470  			strncpy(label->label, lstring,
1471  				sizeof(label->label) - 1);
1472  		else
1473  			snprintf(label->label, sizeof(label->label), "%s.%d",
1474  				 lstring, phase);
1475  	} else {
1476  		if (phase == 0xff)
1477  			snprintf(label->label, sizeof(label->label), "%s%d",
1478  				 lstring, index);
1479  		else
1480  			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1481  				 lstring, index, phase);
1482  	}
1483  
1484  	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1485  	return pmbus_add_attribute(data, &a->attr);
1486  }
1487  
1488  /*
1489   * Search for attributes. Allocate sensors, booleans, and labels as needed.
1490   */
1491  
1492  /*
1493   * The pmbus_limit_attr structure describes a single limit attribute
1494   * and its associated alarm attribute.
1495   */
1496  struct pmbus_limit_attr {
1497  	u16 reg;		/* Limit register */
1498  	u16 sbit;		/* Alarm attribute status bit */
1499  	bool update;		/* True if register needs updates */
1500  	bool low;		/* True if low limit; for limits with compare
1501  				   functions only */
1502  	const char *attr;	/* Attribute name */
1503  	const char *alarm;	/* Alarm attribute name */
1504  };
1505  
1506  /*
1507   * The pmbus_sensor_attr structure describes one sensor attribute. This
1508   * description includes a reference to the associated limit attributes.
1509   */
1510  struct pmbus_sensor_attr {
1511  	u16 reg;			/* sensor register */
1512  	u16 gbit;			/* generic status bit */
1513  	u8 nlimit;			/* # of limit registers */
1514  	enum pmbus_sensor_classes class;/* sensor class */
1515  	const char *label;		/* sensor label */
1516  	bool paged;			/* true if paged sensor */
1517  	bool update;			/* true if update needed */
1518  	bool compare;			/* true if compare function needed */
1519  	u32 func;			/* sensor mask */
1520  	u32 sfunc;			/* sensor status mask */
1521  	int sreg;			/* status register */
1522  	const struct pmbus_limit_attr *limit;/* limit registers */
1523  };
1524  
1525  /*
1526   * Add a set of limit attributes and, if supported, the associated
1527   * alarm attributes.
1528   * returns 0 if no alarm register found, 1 if an alarm register was found,
1529   * < 0 on errors.
1530   */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1531  static int pmbus_add_limit_attrs(struct i2c_client *client,
1532  				 struct pmbus_data *data,
1533  				 const struct pmbus_driver_info *info,
1534  				 const char *name, int index, int page,
1535  				 struct pmbus_sensor *base,
1536  				 const struct pmbus_sensor_attr *attr)
1537  {
1538  	const struct pmbus_limit_attr *l = attr->limit;
1539  	int nlimit = attr->nlimit;
1540  	int have_alarm = 0;
1541  	int i, ret;
1542  	struct pmbus_sensor *curr;
1543  
1544  	for (i = 0; i < nlimit; i++) {
1545  		if (pmbus_check_word_register(client, page, l->reg)) {
1546  			curr = pmbus_add_sensor(data, name, l->attr, index,
1547  						page, 0xff, l->reg, attr->class,
1548  						attr->update || l->update,
1549  						false, true);
1550  			if (!curr)
1551  				return -ENOMEM;
1552  			if (l->sbit && (info->func[page] & attr->sfunc)) {
1553  				ret = pmbus_add_boolean(data, name,
1554  					l->alarm, index,
1555  					attr->compare ?  l->low ? curr : base
1556  						      : NULL,
1557  					attr->compare ? l->low ? base : curr
1558  						      : NULL,
1559  					page, attr->sreg, l->sbit);
1560  				if (ret)
1561  					return ret;
1562  				have_alarm = 1;
1563  			}
1564  		}
1565  		l++;
1566  	}
1567  	return have_alarm;
1568  }
1569  
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1570  static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1571  				      struct pmbus_data *data,
1572  				      const struct pmbus_driver_info *info,
1573  				      const char *name,
1574  				      int index, int page, int phase,
1575  				      const struct pmbus_sensor_attr *attr,
1576  				      bool paged)
1577  {
1578  	struct pmbus_sensor *base;
1579  	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1580  	int ret;
1581  
1582  	if (attr->label) {
1583  		ret = pmbus_add_label(data, name, index, attr->label,
1584  				      paged ? page + 1 : 0, phase);
1585  		if (ret)
1586  			return ret;
1587  	}
1588  	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1589  				attr->reg, attr->class, true, true, true);
1590  	if (!base)
1591  		return -ENOMEM;
1592  	/* No limit and alarm attributes for phase specific sensors */
1593  	if (attr->sfunc && phase == 0xff) {
1594  		ret = pmbus_add_limit_attrs(client, data, info, name,
1595  					    index, page, base, attr);
1596  		if (ret < 0)
1597  			return ret;
1598  		/*
1599  		 * Add generic alarm attribute only if there are no individual
1600  		 * alarm attributes, if there is a global alarm bit, and if
1601  		 * the generic status register (word or byte, depending on
1602  		 * which global bit is set) for this page is accessible.
1603  		 */
1604  		if (!ret && attr->gbit &&
1605  		    (!upper || data->has_status_word) &&
1606  		    pmbus_check_status_register(client, page)) {
1607  			ret = pmbus_add_boolean(data, name, "alarm", index,
1608  						NULL, NULL,
1609  						page, PMBUS_STATUS_WORD,
1610  						attr->gbit);
1611  			if (ret)
1612  				return ret;
1613  		}
1614  	}
1615  	return 0;
1616  }
1617  
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1618  static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1619  				  const struct pmbus_sensor_attr *attr)
1620  {
1621  	int p;
1622  
1623  	if (attr->paged)
1624  		return true;
1625  
1626  	/*
1627  	 * Some attributes may be present on more than one page despite
1628  	 * not being marked with the paged attribute. If that is the case,
1629  	 * then treat the sensor as being paged and add the page suffix to the
1630  	 * attribute name.
1631  	 * We don't just add the paged attribute to all such attributes, in
1632  	 * order to maintain the un-suffixed labels in the case where the
1633  	 * attribute is only on page 0.
1634  	 */
1635  	for (p = 1; p < info->pages; p++) {
1636  		if (info->func[p] & attr->func)
1637  			return true;
1638  	}
1639  	return false;
1640  }
1641  
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1642  static int pmbus_add_sensor_attrs(struct i2c_client *client,
1643  				  struct pmbus_data *data,
1644  				  const char *name,
1645  				  const struct pmbus_sensor_attr *attrs,
1646  				  int nattrs)
1647  {
1648  	const struct pmbus_driver_info *info = data->info;
1649  	int index, i;
1650  	int ret;
1651  
1652  	index = 1;
1653  	for (i = 0; i < nattrs; i++) {
1654  		int page, pages;
1655  		bool paged = pmbus_sensor_is_paged(info, attrs);
1656  
1657  		pages = paged ? info->pages : 1;
1658  		for (page = 0; page < pages; page++) {
1659  			if (info->func[page] & attrs->func) {
1660  				ret = pmbus_add_sensor_attrs_one(client, data, info,
1661  								 name, index, page,
1662  								 0xff, attrs, paged);
1663  				if (ret)
1664  					return ret;
1665  				index++;
1666  			}
1667  			if (info->phases[page]) {
1668  				int phase;
1669  
1670  				for (phase = 0; phase < info->phases[page];
1671  				     phase++) {
1672  					if (!(info->pfunc[phase] & attrs->func))
1673  						continue;
1674  					ret = pmbus_add_sensor_attrs_one(client,
1675  						data, info, name, index, page,
1676  						phase, attrs, paged);
1677  					if (ret)
1678  						return ret;
1679  					index++;
1680  				}
1681  			}
1682  		}
1683  		attrs++;
1684  	}
1685  	return 0;
1686  }
1687  
1688  static const struct pmbus_limit_attr vin_limit_attrs[] = {
1689  	{
1690  		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1691  		.attr = "min",
1692  		.alarm = "min_alarm",
1693  		.sbit = PB_VOLTAGE_UV_WARNING,
1694  	}, {
1695  		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1696  		.attr = "lcrit",
1697  		.alarm = "lcrit_alarm",
1698  		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1699  	}, {
1700  		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1701  		.attr = "max",
1702  		.alarm = "max_alarm",
1703  		.sbit = PB_VOLTAGE_OV_WARNING,
1704  	}, {
1705  		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1706  		.attr = "crit",
1707  		.alarm = "crit_alarm",
1708  		.sbit = PB_VOLTAGE_OV_FAULT,
1709  	}, {
1710  		.reg = PMBUS_VIRT_READ_VIN_AVG,
1711  		.update = true,
1712  		.attr = "average",
1713  	}, {
1714  		.reg = PMBUS_VIRT_READ_VIN_MIN,
1715  		.update = true,
1716  		.attr = "lowest",
1717  	}, {
1718  		.reg = PMBUS_VIRT_READ_VIN_MAX,
1719  		.update = true,
1720  		.attr = "highest",
1721  	}, {
1722  		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1723  		.attr = "reset_history",
1724  	}, {
1725  		.reg = PMBUS_MFR_VIN_MIN,
1726  		.attr = "rated_min",
1727  	}, {
1728  		.reg = PMBUS_MFR_VIN_MAX,
1729  		.attr = "rated_max",
1730  	},
1731  };
1732  
1733  static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1734  	{
1735  		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1736  		.attr = "min",
1737  		.alarm = "min_alarm",
1738  		.sbit = PB_VOLTAGE_UV_WARNING,
1739  	}, {
1740  		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1741  		.attr = "lcrit",
1742  		.alarm = "lcrit_alarm",
1743  		.sbit = PB_VOLTAGE_UV_FAULT,
1744  	}, {
1745  		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1746  		.attr = "max",
1747  		.alarm = "max_alarm",
1748  		.sbit = PB_VOLTAGE_OV_WARNING,
1749  	}, {
1750  		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1751  		.attr = "crit",
1752  		.alarm = "crit_alarm",
1753  		.sbit = PB_VOLTAGE_OV_FAULT,
1754  	}
1755  };
1756  
1757  static const struct pmbus_limit_attr vout_limit_attrs[] = {
1758  	{
1759  		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1760  		.attr = "min",
1761  		.alarm = "min_alarm",
1762  		.sbit = PB_VOLTAGE_UV_WARNING,
1763  	}, {
1764  		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1765  		.attr = "lcrit",
1766  		.alarm = "lcrit_alarm",
1767  		.sbit = PB_VOLTAGE_UV_FAULT,
1768  	}, {
1769  		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1770  		.attr = "max",
1771  		.alarm = "max_alarm",
1772  		.sbit = PB_VOLTAGE_OV_WARNING,
1773  	}, {
1774  		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1775  		.attr = "crit",
1776  		.alarm = "crit_alarm",
1777  		.sbit = PB_VOLTAGE_OV_FAULT,
1778  	}, {
1779  		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1780  		.update = true,
1781  		.attr = "average",
1782  	}, {
1783  		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1784  		.update = true,
1785  		.attr = "lowest",
1786  	}, {
1787  		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1788  		.update = true,
1789  		.attr = "highest",
1790  	}, {
1791  		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1792  		.attr = "reset_history",
1793  	}, {
1794  		.reg = PMBUS_MFR_VOUT_MIN,
1795  		.attr = "rated_min",
1796  	}, {
1797  		.reg = PMBUS_MFR_VOUT_MAX,
1798  		.attr = "rated_max",
1799  	},
1800  };
1801  
1802  static const struct pmbus_sensor_attr voltage_attributes[] = {
1803  	{
1804  		.reg = PMBUS_READ_VIN,
1805  		.class = PSC_VOLTAGE_IN,
1806  		.label = "vin",
1807  		.func = PMBUS_HAVE_VIN,
1808  		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1809  		.sreg = PMBUS_STATUS_INPUT,
1810  		.gbit = PB_STATUS_VIN_UV,
1811  		.limit = vin_limit_attrs,
1812  		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1813  	}, {
1814  		.reg = PMBUS_VIRT_READ_VMON,
1815  		.class = PSC_VOLTAGE_IN,
1816  		.label = "vmon",
1817  		.func = PMBUS_HAVE_VMON,
1818  		.sfunc = PMBUS_HAVE_STATUS_VMON,
1819  		.sreg = PMBUS_VIRT_STATUS_VMON,
1820  		.limit = vmon_limit_attrs,
1821  		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1822  	}, {
1823  		.reg = PMBUS_READ_VCAP,
1824  		.class = PSC_VOLTAGE_IN,
1825  		.label = "vcap",
1826  		.func = PMBUS_HAVE_VCAP,
1827  	}, {
1828  		.reg = PMBUS_READ_VOUT,
1829  		.class = PSC_VOLTAGE_OUT,
1830  		.label = "vout",
1831  		.paged = true,
1832  		.func = PMBUS_HAVE_VOUT,
1833  		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1834  		.sreg = PMBUS_STATUS_VOUT,
1835  		.gbit = PB_STATUS_VOUT_OV,
1836  		.limit = vout_limit_attrs,
1837  		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1838  	}
1839  };
1840  
1841  /* Current attributes */
1842  
1843  static const struct pmbus_limit_attr iin_limit_attrs[] = {
1844  	{
1845  		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1846  		.attr = "max",
1847  		.alarm = "max_alarm",
1848  		.sbit = PB_IIN_OC_WARNING,
1849  	}, {
1850  		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1851  		.attr = "crit",
1852  		.alarm = "crit_alarm",
1853  		.sbit = PB_IIN_OC_FAULT,
1854  	}, {
1855  		.reg = PMBUS_VIRT_READ_IIN_AVG,
1856  		.update = true,
1857  		.attr = "average",
1858  	}, {
1859  		.reg = PMBUS_VIRT_READ_IIN_MIN,
1860  		.update = true,
1861  		.attr = "lowest",
1862  	}, {
1863  		.reg = PMBUS_VIRT_READ_IIN_MAX,
1864  		.update = true,
1865  		.attr = "highest",
1866  	}, {
1867  		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1868  		.attr = "reset_history",
1869  	}, {
1870  		.reg = PMBUS_MFR_IIN_MAX,
1871  		.attr = "rated_max",
1872  	},
1873  };
1874  
1875  static const struct pmbus_limit_attr iout_limit_attrs[] = {
1876  	{
1877  		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1878  		.attr = "max",
1879  		.alarm = "max_alarm",
1880  		.sbit = PB_IOUT_OC_WARNING,
1881  	}, {
1882  		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1883  		.attr = "lcrit",
1884  		.alarm = "lcrit_alarm",
1885  		.sbit = PB_IOUT_UC_FAULT,
1886  	}, {
1887  		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1888  		.attr = "crit",
1889  		.alarm = "crit_alarm",
1890  		.sbit = PB_IOUT_OC_FAULT,
1891  	}, {
1892  		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1893  		.update = true,
1894  		.attr = "average",
1895  	}, {
1896  		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1897  		.update = true,
1898  		.attr = "lowest",
1899  	}, {
1900  		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1901  		.update = true,
1902  		.attr = "highest",
1903  	}, {
1904  		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1905  		.attr = "reset_history",
1906  	}, {
1907  		.reg = PMBUS_MFR_IOUT_MAX,
1908  		.attr = "rated_max",
1909  	},
1910  };
1911  
1912  static const struct pmbus_sensor_attr current_attributes[] = {
1913  	{
1914  		.reg = PMBUS_READ_IIN,
1915  		.class = PSC_CURRENT_IN,
1916  		.label = "iin",
1917  		.func = PMBUS_HAVE_IIN,
1918  		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1919  		.sreg = PMBUS_STATUS_INPUT,
1920  		.gbit = PB_STATUS_INPUT,
1921  		.limit = iin_limit_attrs,
1922  		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1923  	}, {
1924  		.reg = PMBUS_READ_IOUT,
1925  		.class = PSC_CURRENT_OUT,
1926  		.label = "iout",
1927  		.paged = true,
1928  		.func = PMBUS_HAVE_IOUT,
1929  		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1930  		.sreg = PMBUS_STATUS_IOUT,
1931  		.gbit = PB_STATUS_IOUT_OC,
1932  		.limit = iout_limit_attrs,
1933  		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1934  	}
1935  };
1936  
1937  /* Power attributes */
1938  
1939  static const struct pmbus_limit_attr pin_limit_attrs[] = {
1940  	{
1941  		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1942  		.attr = "max",
1943  		.alarm = "alarm",
1944  		.sbit = PB_PIN_OP_WARNING,
1945  	}, {
1946  		.reg = PMBUS_VIRT_READ_PIN_AVG,
1947  		.update = true,
1948  		.attr = "average",
1949  	}, {
1950  		.reg = PMBUS_VIRT_READ_PIN_MIN,
1951  		.update = true,
1952  		.attr = "input_lowest",
1953  	}, {
1954  		.reg = PMBUS_VIRT_READ_PIN_MAX,
1955  		.update = true,
1956  		.attr = "input_highest",
1957  	}, {
1958  		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1959  		.attr = "reset_history",
1960  	}, {
1961  		.reg = PMBUS_MFR_PIN_MAX,
1962  		.attr = "rated_max",
1963  	},
1964  };
1965  
1966  static const struct pmbus_limit_attr pout_limit_attrs[] = {
1967  	{
1968  		.reg = PMBUS_POUT_MAX,
1969  		.attr = "cap",
1970  		.alarm = "cap_alarm",
1971  		.sbit = PB_POWER_LIMITING,
1972  	}, {
1973  		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1974  		.attr = "max",
1975  		.alarm = "max_alarm",
1976  		.sbit = PB_POUT_OP_WARNING,
1977  	}, {
1978  		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1979  		.attr = "crit",
1980  		.alarm = "crit_alarm",
1981  		.sbit = PB_POUT_OP_FAULT,
1982  	}, {
1983  		.reg = PMBUS_VIRT_READ_POUT_AVG,
1984  		.update = true,
1985  		.attr = "average",
1986  	}, {
1987  		.reg = PMBUS_VIRT_READ_POUT_MIN,
1988  		.update = true,
1989  		.attr = "input_lowest",
1990  	}, {
1991  		.reg = PMBUS_VIRT_READ_POUT_MAX,
1992  		.update = true,
1993  		.attr = "input_highest",
1994  	}, {
1995  		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1996  		.attr = "reset_history",
1997  	}, {
1998  		.reg = PMBUS_MFR_POUT_MAX,
1999  		.attr = "rated_max",
2000  	},
2001  };
2002  
2003  static const struct pmbus_sensor_attr power_attributes[] = {
2004  	{
2005  		.reg = PMBUS_READ_PIN,
2006  		.class = PSC_POWER,
2007  		.label = "pin",
2008  		.func = PMBUS_HAVE_PIN,
2009  		.sfunc = PMBUS_HAVE_STATUS_INPUT,
2010  		.sreg = PMBUS_STATUS_INPUT,
2011  		.gbit = PB_STATUS_INPUT,
2012  		.limit = pin_limit_attrs,
2013  		.nlimit = ARRAY_SIZE(pin_limit_attrs),
2014  	}, {
2015  		.reg = PMBUS_READ_POUT,
2016  		.class = PSC_POWER,
2017  		.label = "pout",
2018  		.paged = true,
2019  		.func = PMBUS_HAVE_POUT,
2020  		.sfunc = PMBUS_HAVE_STATUS_IOUT,
2021  		.sreg = PMBUS_STATUS_IOUT,
2022  		.limit = pout_limit_attrs,
2023  		.nlimit = ARRAY_SIZE(pout_limit_attrs),
2024  	}
2025  };
2026  
2027  /* Temperature atributes */
2028  
2029  static const struct pmbus_limit_attr temp_limit_attrs[] = {
2030  	{
2031  		.reg = PMBUS_UT_WARN_LIMIT,
2032  		.low = true,
2033  		.attr = "min",
2034  		.alarm = "min_alarm",
2035  		.sbit = PB_TEMP_UT_WARNING,
2036  	}, {
2037  		.reg = PMBUS_UT_FAULT_LIMIT,
2038  		.low = true,
2039  		.attr = "lcrit",
2040  		.alarm = "lcrit_alarm",
2041  		.sbit = PB_TEMP_UT_FAULT,
2042  	}, {
2043  		.reg = PMBUS_OT_WARN_LIMIT,
2044  		.attr = "max",
2045  		.alarm = "max_alarm",
2046  		.sbit = PB_TEMP_OT_WARNING,
2047  	}, {
2048  		.reg = PMBUS_OT_FAULT_LIMIT,
2049  		.attr = "crit",
2050  		.alarm = "crit_alarm",
2051  		.sbit = PB_TEMP_OT_FAULT,
2052  	}, {
2053  		.reg = PMBUS_VIRT_READ_TEMP_MIN,
2054  		.attr = "lowest",
2055  	}, {
2056  		.reg = PMBUS_VIRT_READ_TEMP_AVG,
2057  		.attr = "average",
2058  	}, {
2059  		.reg = PMBUS_VIRT_READ_TEMP_MAX,
2060  		.attr = "highest",
2061  	}, {
2062  		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2063  		.attr = "reset_history",
2064  	}, {
2065  		.reg = PMBUS_MFR_MAX_TEMP_1,
2066  		.attr = "rated_max",
2067  	},
2068  };
2069  
2070  static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2071  	{
2072  		.reg = PMBUS_UT_WARN_LIMIT,
2073  		.low = true,
2074  		.attr = "min",
2075  		.alarm = "min_alarm",
2076  		.sbit = PB_TEMP_UT_WARNING,
2077  	}, {
2078  		.reg = PMBUS_UT_FAULT_LIMIT,
2079  		.low = true,
2080  		.attr = "lcrit",
2081  		.alarm = "lcrit_alarm",
2082  		.sbit = PB_TEMP_UT_FAULT,
2083  	}, {
2084  		.reg = PMBUS_OT_WARN_LIMIT,
2085  		.attr = "max",
2086  		.alarm = "max_alarm",
2087  		.sbit = PB_TEMP_OT_WARNING,
2088  	}, {
2089  		.reg = PMBUS_OT_FAULT_LIMIT,
2090  		.attr = "crit",
2091  		.alarm = "crit_alarm",
2092  		.sbit = PB_TEMP_OT_FAULT,
2093  	}, {
2094  		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2095  		.attr = "lowest",
2096  	}, {
2097  		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2098  		.attr = "average",
2099  	}, {
2100  		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2101  		.attr = "highest",
2102  	}, {
2103  		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2104  		.attr = "reset_history",
2105  	}, {
2106  		.reg = PMBUS_MFR_MAX_TEMP_2,
2107  		.attr = "rated_max",
2108  	},
2109  };
2110  
2111  static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2112  	{
2113  		.reg = PMBUS_UT_WARN_LIMIT,
2114  		.low = true,
2115  		.attr = "min",
2116  		.alarm = "min_alarm",
2117  		.sbit = PB_TEMP_UT_WARNING,
2118  	}, {
2119  		.reg = PMBUS_UT_FAULT_LIMIT,
2120  		.low = true,
2121  		.attr = "lcrit",
2122  		.alarm = "lcrit_alarm",
2123  		.sbit = PB_TEMP_UT_FAULT,
2124  	}, {
2125  		.reg = PMBUS_OT_WARN_LIMIT,
2126  		.attr = "max",
2127  		.alarm = "max_alarm",
2128  		.sbit = PB_TEMP_OT_WARNING,
2129  	}, {
2130  		.reg = PMBUS_OT_FAULT_LIMIT,
2131  		.attr = "crit",
2132  		.alarm = "crit_alarm",
2133  		.sbit = PB_TEMP_OT_FAULT,
2134  	}, {
2135  		.reg = PMBUS_MFR_MAX_TEMP_3,
2136  		.attr = "rated_max",
2137  	},
2138  };
2139  
2140  static const struct pmbus_sensor_attr temp_attributes[] = {
2141  	{
2142  		.reg = PMBUS_READ_TEMPERATURE_1,
2143  		.class = PSC_TEMPERATURE,
2144  		.paged = true,
2145  		.update = true,
2146  		.compare = true,
2147  		.func = PMBUS_HAVE_TEMP,
2148  		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2149  		.sreg = PMBUS_STATUS_TEMPERATURE,
2150  		.gbit = PB_STATUS_TEMPERATURE,
2151  		.limit = temp_limit_attrs,
2152  		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2153  	}, {
2154  		.reg = PMBUS_READ_TEMPERATURE_2,
2155  		.class = PSC_TEMPERATURE,
2156  		.paged = true,
2157  		.update = true,
2158  		.compare = true,
2159  		.func = PMBUS_HAVE_TEMP2,
2160  		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2161  		.sreg = PMBUS_STATUS_TEMPERATURE,
2162  		.gbit = PB_STATUS_TEMPERATURE,
2163  		.limit = temp_limit_attrs2,
2164  		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2165  	}, {
2166  		.reg = PMBUS_READ_TEMPERATURE_3,
2167  		.class = PSC_TEMPERATURE,
2168  		.paged = true,
2169  		.update = true,
2170  		.compare = true,
2171  		.func = PMBUS_HAVE_TEMP3,
2172  		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2173  		.sreg = PMBUS_STATUS_TEMPERATURE,
2174  		.gbit = PB_STATUS_TEMPERATURE,
2175  		.limit = temp_limit_attrs3,
2176  		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2177  	}
2178  };
2179  
2180  static const int pmbus_fan_registers[] = {
2181  	PMBUS_READ_FAN_SPEED_1,
2182  	PMBUS_READ_FAN_SPEED_2,
2183  	PMBUS_READ_FAN_SPEED_3,
2184  	PMBUS_READ_FAN_SPEED_4
2185  };
2186  
2187  static const int pmbus_fan_status_registers[] = {
2188  	PMBUS_STATUS_FAN_12,
2189  	PMBUS_STATUS_FAN_12,
2190  	PMBUS_STATUS_FAN_34,
2191  	PMBUS_STATUS_FAN_34
2192  };
2193  
2194  static const u32 pmbus_fan_flags[] = {
2195  	PMBUS_HAVE_FAN12,
2196  	PMBUS_HAVE_FAN12,
2197  	PMBUS_HAVE_FAN34,
2198  	PMBUS_HAVE_FAN34
2199  };
2200  
2201  static const u32 pmbus_fan_status_flags[] = {
2202  	PMBUS_HAVE_STATUS_FAN12,
2203  	PMBUS_HAVE_STATUS_FAN12,
2204  	PMBUS_HAVE_STATUS_FAN34,
2205  	PMBUS_HAVE_STATUS_FAN34
2206  };
2207  
2208  /* Fans */
2209  
2210  /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2211  static int pmbus_add_fan_ctrl(struct i2c_client *client,
2212  		struct pmbus_data *data, int index, int page, int id,
2213  		u8 config)
2214  {
2215  	struct pmbus_sensor *sensor;
2216  
2217  	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2218  				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2219  				  false, false, true);
2220  
2221  	if (!sensor)
2222  		return -ENOMEM;
2223  
2224  	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2225  			(data->info->func[page] & PMBUS_HAVE_PWM34)))
2226  		return 0;
2227  
2228  	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2229  				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2230  				  false, false, true);
2231  
2232  	if (!sensor)
2233  		return -ENOMEM;
2234  
2235  	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2236  				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2237  				  true, false, false);
2238  
2239  	if (!sensor)
2240  		return -ENOMEM;
2241  
2242  	return 0;
2243  }
2244  
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2245  static int pmbus_add_fan_attributes(struct i2c_client *client,
2246  				    struct pmbus_data *data)
2247  {
2248  	const struct pmbus_driver_info *info = data->info;
2249  	int index = 1;
2250  	int page;
2251  	int ret;
2252  
2253  	for (page = 0; page < info->pages; page++) {
2254  		int f;
2255  
2256  		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2257  			int regval;
2258  
2259  			if (!(info->func[page] & pmbus_fan_flags[f]))
2260  				break;
2261  
2262  			if (!pmbus_check_word_register(client, page,
2263  						       pmbus_fan_registers[f]))
2264  				break;
2265  
2266  			/*
2267  			 * Skip fan if not installed.
2268  			 * Each fan configuration register covers multiple fans,
2269  			 * so we have to do some magic.
2270  			 */
2271  			regval = _pmbus_read_byte_data(client, page,
2272  				pmbus_fan_config_registers[f]);
2273  			if (regval < 0 ||
2274  			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2275  				continue;
2276  
2277  			if (pmbus_add_sensor(data, "fan", "input", index,
2278  					     page, 0xff, pmbus_fan_registers[f],
2279  					     PSC_FAN, true, true, true) == NULL)
2280  				return -ENOMEM;
2281  
2282  			/* Fan control */
2283  			if (pmbus_check_word_register(client, page,
2284  					pmbus_fan_command_registers[f])) {
2285  				ret = pmbus_add_fan_ctrl(client, data, index,
2286  							 page, f, regval);
2287  				if (ret < 0)
2288  					return ret;
2289  			}
2290  
2291  			/*
2292  			 * Each fan status register covers multiple fans,
2293  			 * so we have to do some magic.
2294  			 */
2295  			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2296  			    pmbus_check_byte_register(client,
2297  					page, pmbus_fan_status_registers[f])) {
2298  				int reg;
2299  
2300  				if (f > 1)	/* fan 3, 4 */
2301  					reg = PMBUS_STATUS_FAN_34;
2302  				else
2303  					reg = PMBUS_STATUS_FAN_12;
2304  				ret = pmbus_add_boolean(data, "fan",
2305  					"alarm", index, NULL, NULL, page, reg,
2306  					PB_FAN_FAN1_WARNING >> (f & 1));
2307  				if (ret)
2308  					return ret;
2309  				ret = pmbus_add_boolean(data, "fan",
2310  					"fault", index, NULL, NULL, page, reg,
2311  					PB_FAN_FAN1_FAULT >> (f & 1));
2312  				if (ret)
2313  					return ret;
2314  			}
2315  			index++;
2316  		}
2317  	}
2318  	return 0;
2319  }
2320  
2321  struct pmbus_samples_attr {
2322  	int reg;
2323  	char *name;
2324  };
2325  
2326  struct pmbus_samples_reg {
2327  	int page;
2328  	struct pmbus_samples_attr *attr;
2329  	struct device_attribute dev_attr;
2330  };
2331  
2332  static struct pmbus_samples_attr pmbus_samples_registers[] = {
2333  	{
2334  		.reg = PMBUS_VIRT_SAMPLES,
2335  		.name = "samples",
2336  	}, {
2337  		.reg = PMBUS_VIRT_IN_SAMPLES,
2338  		.name = "in_samples",
2339  	}, {
2340  		.reg = PMBUS_VIRT_CURR_SAMPLES,
2341  		.name = "curr_samples",
2342  	}, {
2343  		.reg = PMBUS_VIRT_POWER_SAMPLES,
2344  		.name = "power_samples",
2345  	}, {
2346  		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2347  		.name = "temp_samples",
2348  	}
2349  };
2350  
2351  #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2352  
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2353  static ssize_t pmbus_show_samples(struct device *dev,
2354  				  struct device_attribute *devattr, char *buf)
2355  {
2356  	int val;
2357  	struct i2c_client *client = to_i2c_client(dev->parent);
2358  	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2359  	struct pmbus_data *data = i2c_get_clientdata(client);
2360  
2361  	mutex_lock(&data->update_lock);
2362  	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2363  	mutex_unlock(&data->update_lock);
2364  	if (val < 0)
2365  		return val;
2366  
2367  	return sysfs_emit(buf, "%d\n", val);
2368  }
2369  
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2370  static ssize_t pmbus_set_samples(struct device *dev,
2371  				 struct device_attribute *devattr,
2372  				 const char *buf, size_t count)
2373  {
2374  	int ret;
2375  	long val;
2376  	struct i2c_client *client = to_i2c_client(dev->parent);
2377  	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2378  	struct pmbus_data *data = i2c_get_clientdata(client);
2379  
2380  	if (kstrtol(buf, 0, &val) < 0)
2381  		return -EINVAL;
2382  
2383  	mutex_lock(&data->update_lock);
2384  	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2385  	mutex_unlock(&data->update_lock);
2386  
2387  	return ret ? : count;
2388  }
2389  
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2390  static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2391  				  struct pmbus_samples_attr *attr)
2392  {
2393  	struct pmbus_samples_reg *reg;
2394  
2395  	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2396  	if (!reg)
2397  		return -ENOMEM;
2398  
2399  	reg->attr = attr;
2400  	reg->page = page;
2401  
2402  	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2403  			    pmbus_show_samples, pmbus_set_samples);
2404  
2405  	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2406  }
2407  
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2408  static int pmbus_add_samples_attributes(struct i2c_client *client,
2409  					struct pmbus_data *data)
2410  {
2411  	const struct pmbus_driver_info *info = data->info;
2412  	int s;
2413  
2414  	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2415  		return 0;
2416  
2417  	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2418  		struct pmbus_samples_attr *attr;
2419  		int ret;
2420  
2421  		attr = &pmbus_samples_registers[s];
2422  		if (!pmbus_check_word_register(client, 0, attr->reg))
2423  			continue;
2424  
2425  		ret = pmbus_add_samples_attr(data, 0, attr);
2426  		if (ret)
2427  			return ret;
2428  	}
2429  
2430  	return 0;
2431  }
2432  
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2433  static int pmbus_find_attributes(struct i2c_client *client,
2434  				 struct pmbus_data *data)
2435  {
2436  	int ret;
2437  
2438  	/* Voltage sensors */
2439  	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2440  				     ARRAY_SIZE(voltage_attributes));
2441  	if (ret)
2442  		return ret;
2443  
2444  	/* Current sensors */
2445  	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2446  				     ARRAY_SIZE(current_attributes));
2447  	if (ret)
2448  		return ret;
2449  
2450  	/* Power sensors */
2451  	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2452  				     ARRAY_SIZE(power_attributes));
2453  	if (ret)
2454  		return ret;
2455  
2456  	/* Temperature sensors */
2457  	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2458  				     ARRAY_SIZE(temp_attributes));
2459  	if (ret)
2460  		return ret;
2461  
2462  	/* Fans */
2463  	ret = pmbus_add_fan_attributes(client, data);
2464  	if (ret)
2465  		return ret;
2466  
2467  	ret = pmbus_add_samples_attributes(client, data);
2468  	return ret;
2469  }
2470  
2471  /*
2472   * The pmbus_class_attr_map structure maps one sensor class to
2473   * it's corresponding sensor attributes array.
2474   */
2475  struct pmbus_class_attr_map {
2476  	enum pmbus_sensor_classes class;
2477  	int nattr;
2478  	const struct pmbus_sensor_attr *attr;
2479  };
2480  
2481  static const struct pmbus_class_attr_map class_attr_map[] = {
2482  	{
2483  		.class = PSC_VOLTAGE_IN,
2484  		.attr = voltage_attributes,
2485  		.nattr = ARRAY_SIZE(voltage_attributes),
2486  	}, {
2487  		.class = PSC_VOLTAGE_OUT,
2488  		.attr = voltage_attributes,
2489  		.nattr = ARRAY_SIZE(voltage_attributes),
2490  	}, {
2491  		.class = PSC_CURRENT_IN,
2492  		.attr = current_attributes,
2493  		.nattr = ARRAY_SIZE(current_attributes),
2494  	}, {
2495  		.class = PSC_CURRENT_OUT,
2496  		.attr = current_attributes,
2497  		.nattr = ARRAY_SIZE(current_attributes),
2498  	}, {
2499  		.class = PSC_POWER,
2500  		.attr = power_attributes,
2501  		.nattr = ARRAY_SIZE(power_attributes),
2502  	}, {
2503  		.class = PSC_TEMPERATURE,
2504  		.attr = temp_attributes,
2505  		.nattr = ARRAY_SIZE(temp_attributes),
2506  	}
2507  };
2508  
2509  /*
2510   * Read the coefficients for direct mode.
2511   */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2512  static int pmbus_read_coefficients(struct i2c_client *client,
2513  				   struct pmbus_driver_info *info,
2514  				   const struct pmbus_sensor_attr *attr)
2515  {
2516  	int rv;
2517  	union i2c_smbus_data data;
2518  	enum pmbus_sensor_classes class = attr->class;
2519  	s8 R;
2520  	s16 m, b;
2521  
2522  	data.block[0] = 2;
2523  	data.block[1] = attr->reg;
2524  	data.block[2] = 0x01;
2525  
2526  	pmbus_wait(client);
2527  	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2528  			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2529  			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2530  	pmbus_update_ts(client, true);
2531  
2532  	if (rv < 0)
2533  		return rv;
2534  
2535  	if (data.block[0] != 5)
2536  		return -EIO;
2537  
2538  	m = data.block[1] | (data.block[2] << 8);
2539  	b = data.block[3] | (data.block[4] << 8);
2540  	R = data.block[5];
2541  	info->m[class] = m;
2542  	info->b[class] = b;
2543  	info->R[class] = R;
2544  
2545  	return rv;
2546  }
2547  
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2548  static int pmbus_init_coefficients(struct i2c_client *client,
2549  				   struct pmbus_driver_info *info)
2550  {
2551  	int i, n, ret = -EINVAL;
2552  	const struct pmbus_class_attr_map *map;
2553  	const struct pmbus_sensor_attr *attr;
2554  
2555  	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2556  		map = &class_attr_map[i];
2557  		if (info->format[map->class] != direct)
2558  			continue;
2559  		for (n = 0; n < map->nattr; n++) {
2560  			attr = &map->attr[n];
2561  			if (map->class != attr->class)
2562  				continue;
2563  			ret = pmbus_read_coefficients(client, info, attr);
2564  			if (ret >= 0)
2565  				break;
2566  		}
2567  		if (ret < 0) {
2568  			dev_err(&client->dev,
2569  				"No coefficients found for sensor class %d\n",
2570  				map->class);
2571  			return -EINVAL;
2572  		}
2573  	}
2574  
2575  	return 0;
2576  }
2577  
2578  /*
2579   * Identify chip parameters.
2580   * This function is called for all chips.
2581   */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2582  static int pmbus_identify_common(struct i2c_client *client,
2583  				 struct pmbus_data *data, int page)
2584  {
2585  	int vout_mode = -1;
2586  
2587  	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2588  		vout_mode = _pmbus_read_byte_data(client, page,
2589  						  PMBUS_VOUT_MODE);
2590  	if (vout_mode >= 0 && vout_mode != 0xff) {
2591  		/*
2592  		 * Not all chips support the VOUT_MODE command,
2593  		 * so a failure to read it is not an error.
2594  		 */
2595  		switch (vout_mode >> 5) {
2596  		case 0:	/* linear mode      */
2597  			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2598  				return -ENODEV;
2599  
2600  			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2601  			break;
2602  		case 1: /* VID mode         */
2603  			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2604  				return -ENODEV;
2605  			break;
2606  		case 2:	/* direct mode      */
2607  			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2608  				return -ENODEV;
2609  			break;
2610  		case 3:	/* ieee 754 half precision */
2611  			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2612  				return -ENODEV;
2613  			break;
2614  		default:
2615  			return -ENODEV;
2616  		}
2617  	}
2618  
2619  	return 0;
2620  }
2621  
pmbus_read_status_byte(struct i2c_client * client,int page)2622  static int pmbus_read_status_byte(struct i2c_client *client, int page)
2623  {
2624  	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2625  }
2626  
pmbus_read_status_word(struct i2c_client * client,int page)2627  static int pmbus_read_status_word(struct i2c_client *client, int page)
2628  {
2629  	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2630  }
2631  
2632  /* PEC attribute support */
2633  
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2634  static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2635  			char *buf)
2636  {
2637  	struct i2c_client *client = to_i2c_client(dev);
2638  
2639  	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2640  }
2641  
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2642  static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2643  			 const char *buf, size_t count)
2644  {
2645  	struct i2c_client *client = to_i2c_client(dev);
2646  	bool enable;
2647  	int err;
2648  
2649  	err = kstrtobool(buf, &enable);
2650  	if (err < 0)
2651  		return err;
2652  
2653  	if (enable)
2654  		client->flags |= I2C_CLIENT_PEC;
2655  	else
2656  		client->flags &= ~I2C_CLIENT_PEC;
2657  
2658  	return count;
2659  }
2660  
2661  static DEVICE_ATTR_RW(pec);
2662  
pmbus_remove_pec(void * dev)2663  static void pmbus_remove_pec(void *dev)
2664  {
2665  	device_remove_file(dev, &dev_attr_pec);
2666  }
2667  
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2668  static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2669  			     struct pmbus_driver_info *info)
2670  {
2671  	struct device *dev = &client->dev;
2672  	int page, ret;
2673  
2674  	/*
2675  	 * Figure out if PEC is enabled before accessing any other register.
2676  	 * Make sure PEC is disabled, will be enabled later if needed.
2677  	 */
2678  	client->flags &= ~I2C_CLIENT_PEC;
2679  
2680  	/* Enable PEC if the controller and bus supports it */
2681  	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2682  		pmbus_wait(client);
2683  		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2684  		pmbus_update_ts(client, false);
2685  
2686  		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2687  			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2688  				client->flags |= I2C_CLIENT_PEC;
2689  		}
2690  	}
2691  
2692  	/*
2693  	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2694  	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2695  	 * Bail out if both registers are not supported.
2696  	 */
2697  	data->read_status = pmbus_read_status_word;
2698  	pmbus_wait(client);
2699  	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2700  	pmbus_update_ts(client, false);
2701  
2702  	if (ret < 0 || ret == 0xffff) {
2703  		data->read_status = pmbus_read_status_byte;
2704  		pmbus_wait(client);
2705  		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2706  		pmbus_update_ts(client, false);
2707  
2708  		if (ret < 0 || ret == 0xff) {
2709  			dev_err(dev, "PMBus status register not found\n");
2710  			return -ENODEV;
2711  		}
2712  	} else {
2713  		data->has_status_word = true;
2714  	}
2715  
2716  	/*
2717  	 * Check if the chip is write protected. If it is, we can not clear
2718  	 * faults, and we should not try it. Also, in that case, writes into
2719  	 * limit registers need to be disabled.
2720  	 */
2721  	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2722  		pmbus_wait(client);
2723  		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2724  		pmbus_update_ts(client, false);
2725  
2726  		if (ret > 0 && (ret & PB_WP_ANY))
2727  			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2728  	}
2729  
2730  	ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2731  	if (ret >= 0)
2732  		data->revision = ret;
2733  
2734  	if (data->info->pages)
2735  		pmbus_clear_faults(client);
2736  	else
2737  		pmbus_clear_fault_page(client, -1);
2738  
2739  	if (info->identify) {
2740  		ret = (*info->identify)(client, info);
2741  		if (ret < 0) {
2742  			dev_err(dev, "Chip identification failed\n");
2743  			return ret;
2744  		}
2745  	}
2746  
2747  	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2748  		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2749  		return -ENODEV;
2750  	}
2751  
2752  	for (page = 0; page < info->pages; page++) {
2753  		ret = pmbus_identify_common(client, data, page);
2754  		if (ret < 0) {
2755  			dev_err(dev, "Failed to identify chip capabilities\n");
2756  			return ret;
2757  		}
2758  	}
2759  
2760  	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2761  		if (!i2c_check_functionality(client->adapter,
2762  					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2763  			return -ENODEV;
2764  
2765  		ret = pmbus_init_coefficients(client, info);
2766  		if (ret < 0)
2767  			return ret;
2768  	}
2769  
2770  	if (client->flags & I2C_CLIENT_PEC) {
2771  		/*
2772  		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2773  		 * chip support PEC. Add 'pec' attribute to client device to let
2774  		 * the user control it.
2775  		 */
2776  		ret = device_create_file(dev, &dev_attr_pec);
2777  		if (ret)
2778  			return ret;
2779  		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2780  		if (ret)
2781  			return ret;
2782  	}
2783  
2784  	return 0;
2785  }
2786  
2787  /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2788  struct pmbus_status_assoc {
2789  	int pflag, rflag, eflag;
2790  };
2791  
2792  /* PMBus->regulator bit mappings for a PMBus status register */
2793  struct pmbus_status_category {
2794  	int func;
2795  	int reg;
2796  	const struct pmbus_status_assoc *bits; /* zero-terminated */
2797  };
2798  
2799  static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2800  	{
2801  		.func = PMBUS_HAVE_STATUS_VOUT,
2802  		.reg = PMBUS_STATUS_VOUT,
2803  		.bits = (const struct pmbus_status_assoc[]) {
2804  			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2805  			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2806  			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2807  			REGULATOR_EVENT_UNDER_VOLTAGE },
2808  			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2809  			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2810  			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2811  			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2812  			{ },
2813  		},
2814  	}, {
2815  		.func = PMBUS_HAVE_STATUS_IOUT,
2816  		.reg = PMBUS_STATUS_IOUT,
2817  		.bits = (const struct pmbus_status_assoc[]) {
2818  			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2819  			REGULATOR_EVENT_OVER_CURRENT_WARN },
2820  			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2821  			REGULATOR_EVENT_OVER_CURRENT },
2822  			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2823  			REGULATOR_EVENT_OVER_CURRENT },
2824  			{ },
2825  		},
2826  	}, {
2827  		.func = PMBUS_HAVE_STATUS_TEMP,
2828  		.reg = PMBUS_STATUS_TEMPERATURE,
2829  		.bits = (const struct pmbus_status_assoc[]) {
2830  			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2831  			REGULATOR_EVENT_OVER_TEMP_WARN },
2832  			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2833  			REGULATOR_EVENT_OVER_TEMP },
2834  			{ },
2835  		},
2836  	},
2837  };
2838  
_pmbus_is_enabled(struct i2c_client * client,u8 page)2839  static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2840  {
2841  	int ret;
2842  
2843  	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2844  
2845  	if (ret < 0)
2846  		return ret;
2847  
2848  	return !!(ret & PB_OPERATION_CONTROL_ON);
2849  }
2850  
pmbus_is_enabled(struct i2c_client * client,u8 page)2851  static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2852  {
2853  	struct pmbus_data *data = i2c_get_clientdata(client);
2854  	int ret;
2855  
2856  	mutex_lock(&data->update_lock);
2857  	ret = _pmbus_is_enabled(client, page);
2858  	mutex_unlock(&data->update_lock);
2859  
2860  	return ret;
2861  }
2862  
2863  #define to_dev_attr(_dev_attr) \
2864  	container_of(_dev_attr, struct device_attribute, attr)
2865  
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2866  static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2867  {
2868  	int i;
2869  
2870  	for (i = 0; i < data->num_attributes; i++) {
2871  		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2872  		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2873  		int index = attr->index;
2874  		u16 smask = pb_index_to_mask(index);
2875  		u8 spage = pb_index_to_page(index);
2876  		u16 sreg = pb_index_to_reg(index);
2877  
2878  		if (reg == sreg && page == spage && (smask & flags)) {
2879  			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2880  			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2881  			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2882  			flags &= ~smask;
2883  		}
2884  
2885  		if (!flags)
2886  			break;
2887  	}
2888  }
2889  
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2890  static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2891  			   unsigned int *event, bool notify)
2892  {
2893  	int i, status;
2894  	const struct pmbus_status_category *cat;
2895  	const struct pmbus_status_assoc *bit;
2896  	struct device *dev = data->dev;
2897  	struct i2c_client *client = to_i2c_client(dev);
2898  	int func = data->info->func[page];
2899  
2900  	*flags = 0;
2901  	*event = 0;
2902  
2903  	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2904  		cat = &pmbus_status_flag_map[i];
2905  		if (!(func & cat->func))
2906  			continue;
2907  
2908  		status = _pmbus_read_byte_data(client, page, cat->reg);
2909  		if (status < 0)
2910  			return status;
2911  
2912  		for (bit = cat->bits; bit->pflag; bit++)
2913  			if (status & bit->pflag) {
2914  				*flags |= bit->rflag;
2915  				*event |= bit->eflag;
2916  			}
2917  
2918  		if (notify && status)
2919  			pmbus_notify(data, page, cat->reg, status);
2920  
2921  	}
2922  
2923  	/*
2924  	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2925  	 * bits.  Some of the other bits are tempting (especially for cases
2926  	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2927  	 * functionality), but there's an unfortunate ambiguity in that
2928  	 * they're defined as indicating a fault *or* a warning, so we can't
2929  	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2930  	 * REGULATOR_ERROR_<foo>_WARN.
2931  	 */
2932  	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2933  	if (status < 0)
2934  		return status;
2935  
2936  	if (_pmbus_is_enabled(client, page)) {
2937  		if (status & PB_STATUS_OFF) {
2938  			*flags |= REGULATOR_ERROR_FAIL;
2939  			*event |= REGULATOR_EVENT_FAIL;
2940  		}
2941  
2942  		if (status & PB_STATUS_POWER_GOOD_N) {
2943  			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2944  			*event |= REGULATOR_EVENT_REGULATION_OUT;
2945  		}
2946  	}
2947  	/*
2948  	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2949  	 * defined strictly as fault indicators (not warnings).
2950  	 */
2951  	if (status & PB_STATUS_IOUT_OC) {
2952  		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2953  		*event |= REGULATOR_EVENT_OVER_CURRENT;
2954  	}
2955  	if (status & PB_STATUS_VOUT_OV) {
2956  		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2957  		*event |= REGULATOR_EVENT_FAIL;
2958  	}
2959  
2960  	/*
2961  	 * If we haven't discovered any thermal faults or warnings via
2962  	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2963  	 * a (conservative) best-effort interpretation.
2964  	 */
2965  	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2966  	    (status & PB_STATUS_TEMPERATURE)) {
2967  		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2968  		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2969  	}
2970  
2971  
2972  	return 0;
2973  }
2974  
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2975  static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2976  					  unsigned int *event, bool notify)
2977  {
2978  	int ret;
2979  
2980  	mutex_lock(&data->update_lock);
2981  	ret = _pmbus_get_flags(data, page, flags, event, notify);
2982  	mutex_unlock(&data->update_lock);
2983  
2984  	return ret;
2985  }
2986  
2987  #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2988  static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2989  {
2990  	struct device *dev = rdev_get_dev(rdev);
2991  	struct i2c_client *client = to_i2c_client(dev->parent);
2992  
2993  	return pmbus_is_enabled(client, rdev_get_id(rdev));
2994  }
2995  
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2996  static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2997  {
2998  	struct device *dev = rdev_get_dev(rdev);
2999  	struct i2c_client *client = to_i2c_client(dev->parent);
3000  	struct pmbus_data *data = i2c_get_clientdata(client);
3001  	u8 page = rdev_get_id(rdev);
3002  	int ret;
3003  
3004  	mutex_lock(&data->update_lock);
3005  	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3006  				     PB_OPERATION_CONTROL_ON,
3007  				     enable ? PB_OPERATION_CONTROL_ON : 0);
3008  	mutex_unlock(&data->update_lock);
3009  
3010  	return ret;
3011  }
3012  
pmbus_regulator_enable(struct regulator_dev * rdev)3013  static int pmbus_regulator_enable(struct regulator_dev *rdev)
3014  {
3015  	return _pmbus_regulator_on_off(rdev, 1);
3016  }
3017  
pmbus_regulator_disable(struct regulator_dev * rdev)3018  static int pmbus_regulator_disable(struct regulator_dev *rdev)
3019  {
3020  	return _pmbus_regulator_on_off(rdev, 0);
3021  }
3022  
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)3023  static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3024  {
3025  	struct device *dev = rdev_get_dev(rdev);
3026  	struct i2c_client *client = to_i2c_client(dev->parent);
3027  	struct pmbus_data *data = i2c_get_clientdata(client);
3028  	int event;
3029  
3030  	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3031  }
3032  
pmbus_regulator_get_status(struct regulator_dev * rdev)3033  static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3034  {
3035  	struct device *dev = rdev_get_dev(rdev);
3036  	struct i2c_client *client = to_i2c_client(dev->parent);
3037  	struct pmbus_data *data = i2c_get_clientdata(client);
3038  	u8 page = rdev_get_id(rdev);
3039  	int status, ret;
3040  	int event;
3041  
3042  	mutex_lock(&data->update_lock);
3043  	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3044  	if (status < 0) {
3045  		ret = status;
3046  		goto unlock;
3047  	}
3048  
3049  	if (status & PB_STATUS_OFF) {
3050  		ret = REGULATOR_STATUS_OFF;
3051  		goto unlock;
3052  	}
3053  
3054  	/* If regulator is ON & reports power good then return ON */
3055  	if (!(status & PB_STATUS_POWER_GOOD_N)) {
3056  		ret = REGULATOR_STATUS_ON;
3057  		goto unlock;
3058  	}
3059  
3060  	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3061  	if (ret)
3062  		goto unlock;
3063  
3064  	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3065  	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3066  		ret = REGULATOR_STATUS_ERROR;
3067  		goto unlock;
3068  	}
3069  
3070  	ret = REGULATOR_STATUS_UNDEFINED;
3071  
3072  unlock:
3073  	mutex_unlock(&data->update_lock);
3074  	return ret;
3075  }
3076  
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)3077  static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3078  {
3079  	struct pmbus_data *data = i2c_get_clientdata(client);
3080  	struct pmbus_sensor s = {
3081  		.page = page,
3082  		.class = PSC_VOLTAGE_OUT,
3083  		.convert = true,
3084  		.data = -1,
3085  	};
3086  
3087  	if (data->vout_low[page] < 0) {
3088  		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3089  			s.data = _pmbus_read_word_data(client, page, 0xff,
3090  						       PMBUS_MFR_VOUT_MIN);
3091  		if (s.data < 0) {
3092  			s.data = _pmbus_read_word_data(client, page, 0xff,
3093  						       PMBUS_VOUT_MARGIN_LOW);
3094  			if (s.data < 0)
3095  				return s.data;
3096  		}
3097  		data->vout_low[page] = pmbus_reg2data(data, &s);
3098  	}
3099  
3100  	return data->vout_low[page];
3101  }
3102  
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3103  static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3104  {
3105  	struct pmbus_data *data = i2c_get_clientdata(client);
3106  	struct pmbus_sensor s = {
3107  		.page = page,
3108  		.class = PSC_VOLTAGE_OUT,
3109  		.convert = true,
3110  		.data = -1,
3111  	};
3112  
3113  	if (data->vout_high[page] < 0) {
3114  		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3115  			s.data = _pmbus_read_word_data(client, page, 0xff,
3116  						       PMBUS_MFR_VOUT_MAX);
3117  		if (s.data < 0) {
3118  			s.data = _pmbus_read_word_data(client, page, 0xff,
3119  						       PMBUS_VOUT_MARGIN_HIGH);
3120  			if (s.data < 0)
3121  				return s.data;
3122  		}
3123  		data->vout_high[page] = pmbus_reg2data(data, &s);
3124  	}
3125  
3126  	return data->vout_high[page];
3127  }
3128  
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3129  static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3130  {
3131  	struct device *dev = rdev_get_dev(rdev);
3132  	struct i2c_client *client = to_i2c_client(dev->parent);
3133  	struct pmbus_data *data = i2c_get_clientdata(client);
3134  	struct pmbus_sensor s = {
3135  		.page = rdev_get_id(rdev),
3136  		.class = PSC_VOLTAGE_OUT,
3137  		.convert = true,
3138  	};
3139  
3140  	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3141  	if (s.data < 0)
3142  		return s.data;
3143  
3144  	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3145  }
3146  
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3147  static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3148  				       int max_uv, unsigned int *selector)
3149  {
3150  	struct device *dev = rdev_get_dev(rdev);
3151  	struct i2c_client *client = to_i2c_client(dev->parent);
3152  	struct pmbus_data *data = i2c_get_clientdata(client);
3153  	struct pmbus_sensor s = {
3154  		.page = rdev_get_id(rdev),
3155  		.class = PSC_VOLTAGE_OUT,
3156  		.convert = true,
3157  		.data = -1,
3158  	};
3159  	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3160  	int low, high;
3161  
3162  	*selector = 0;
3163  
3164  	low = pmbus_regulator_get_low_margin(client, s.page);
3165  	if (low < 0)
3166  		return low;
3167  
3168  	high = pmbus_regulator_get_high_margin(client, s.page);
3169  	if (high < 0)
3170  		return high;
3171  
3172  	/* Make sure we are within margins */
3173  	if (low > val)
3174  		val = low;
3175  	if (high < val)
3176  		val = high;
3177  
3178  	val = pmbus_data2reg(data, &s, val);
3179  
3180  	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3181  }
3182  
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3183  static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3184  					 unsigned int selector)
3185  {
3186  	struct device *dev = rdev_get_dev(rdev);
3187  	struct i2c_client *client = to_i2c_client(dev->parent);
3188  	int val, low, high;
3189  
3190  	if (selector >= rdev->desc->n_voltages ||
3191  	    selector < rdev->desc->linear_min_sel)
3192  		return -EINVAL;
3193  
3194  	selector -= rdev->desc->linear_min_sel;
3195  	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3196  				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3197  
3198  	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3199  	if (low < 0)
3200  		return low;
3201  
3202  	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3203  	if (high < 0)
3204  		return high;
3205  
3206  	if (val >= low && val <= high)
3207  		return val * 1000; /* unit is uV */
3208  
3209  	return 0;
3210  }
3211  
3212  const struct regulator_ops pmbus_regulator_ops = {
3213  	.enable = pmbus_regulator_enable,
3214  	.disable = pmbus_regulator_disable,
3215  	.is_enabled = pmbus_regulator_is_enabled,
3216  	.get_error_flags = pmbus_regulator_get_error_flags,
3217  	.get_status = pmbus_regulator_get_status,
3218  	.get_voltage = pmbus_regulator_get_voltage,
3219  	.set_voltage = pmbus_regulator_set_voltage,
3220  	.list_voltage = pmbus_regulator_list_voltage,
3221  };
3222  EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3223  
pmbus_regulator_register(struct pmbus_data * data)3224  static int pmbus_regulator_register(struct pmbus_data *data)
3225  {
3226  	struct device *dev = data->dev;
3227  	const struct pmbus_driver_info *info = data->info;
3228  	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3229  	int i;
3230  
3231  	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3232  				   GFP_KERNEL);
3233  	if (!data->rdevs)
3234  		return -ENOMEM;
3235  
3236  	for (i = 0; i < info->num_regulators; i++) {
3237  		struct regulator_config config = { };
3238  
3239  		config.dev = dev;
3240  		config.driver_data = data;
3241  
3242  		if (pdata && pdata->reg_init_data)
3243  			config.init_data = &pdata->reg_init_data[i];
3244  
3245  		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3246  							 &config);
3247  		if (IS_ERR(data->rdevs[i]))
3248  			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3249  					     "Failed to register %s regulator\n",
3250  					     info->reg_desc[i].name);
3251  	}
3252  
3253  	return 0;
3254  }
3255  
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3256  static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3257  {
3258  		int j;
3259  
3260  		for (j = 0; j < data->info->num_regulators; j++) {
3261  			if (page == rdev_get_id(data->rdevs[j])) {
3262  				regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3263  				break;
3264  			}
3265  		}
3266  		return 0;
3267  }
3268  #else
pmbus_regulator_register(struct pmbus_data * data)3269  static int pmbus_regulator_register(struct pmbus_data *data)
3270  {
3271  	return 0;
3272  }
3273  
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3274  static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3275  {
3276  		return 0;
3277  }
3278  #endif
3279  
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3280  static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3281  {
3282  	return _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3283  }
3284  
pmbus_fault_handler(int irq,void * pdata)3285  static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3286  {
3287  	struct pmbus_data *data = pdata;
3288  	struct i2c_client *client = to_i2c_client(data->dev);
3289  
3290  	int i, status, event;
3291  	mutex_lock(&data->update_lock);
3292  	for (i = 0; i < data->info->pages; i++) {
3293  		_pmbus_get_flags(data, i, &status, &event, true);
3294  
3295  		if (event)
3296  			pmbus_regulator_notify(data, i, event);
3297  	}
3298  
3299  	pmbus_clear_faults(client);
3300  	mutex_unlock(&data->update_lock);
3301  
3302  	return IRQ_HANDLED;
3303  }
3304  
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3305  static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3306  {
3307  	struct device *dev = &client->dev;
3308  	const struct pmbus_status_category *cat;
3309  	const struct pmbus_status_assoc *bit;
3310  	int i, j, err, func;
3311  	u8 mask;
3312  
3313  	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3314  					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3315  					 PMBUS_STATUS_FAN_34};
3316  
3317  	if (!client->irq)
3318  		return 0;
3319  
3320  	for (i = 0; i < data->info->pages; i++) {
3321  		func = data->info->func[i];
3322  
3323  		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3324  			cat = &pmbus_status_flag_map[j];
3325  			if (!(func & cat->func))
3326  				continue;
3327  			mask = 0;
3328  			for (bit = cat->bits; bit->pflag; bit++)
3329  				mask |= bit->pflag;
3330  
3331  			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3332  			if (err)
3333  				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3334  					     cat->reg);
3335  		}
3336  
3337  		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3338  			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3339  	}
3340  
3341  	/* Register notifiers */
3342  	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3343  					IRQF_ONESHOT, "pmbus-irq", data);
3344  	if (err) {
3345  		dev_err(dev, "failed to request an irq %d\n", err);
3346  		return err;
3347  	}
3348  
3349  	return 0;
3350  }
3351  
3352  static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3353  
3354  #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)3355  static int pmbus_debugfs_get(void *data, u64 *val)
3356  {
3357  	int rc;
3358  	struct pmbus_debugfs_entry *entry = data;
3359  	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3360  
3361  	rc = mutex_lock_interruptible(&pdata->update_lock);
3362  	if (rc)
3363  		return rc;
3364  	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3365  	mutex_unlock(&pdata->update_lock);
3366  	if (rc < 0)
3367  		return rc;
3368  
3369  	*val = rc;
3370  
3371  	return 0;
3372  }
3373  DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3374  			 "0x%02llx\n");
3375  
pmbus_debugfs_get_status(void * data,u64 * val)3376  static int pmbus_debugfs_get_status(void *data, u64 *val)
3377  {
3378  	int rc;
3379  	struct pmbus_debugfs_entry *entry = data;
3380  	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3381  
3382  	rc = mutex_lock_interruptible(&pdata->update_lock);
3383  	if (rc)
3384  		return rc;
3385  	rc = pdata->read_status(entry->client, entry->page);
3386  	mutex_unlock(&pdata->update_lock);
3387  	if (rc < 0)
3388  		return rc;
3389  
3390  	*val = rc;
3391  
3392  	return 0;
3393  }
3394  DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3395  			 NULL, "0x%04llx\n");
3396  
pmbus_debugfs_mfr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3397  static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3398  				       size_t count, loff_t *ppos)
3399  {
3400  	int rc;
3401  	struct pmbus_debugfs_entry *entry = file->private_data;
3402  	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3403  	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3404  
3405  	rc = mutex_lock_interruptible(&pdata->update_lock);
3406  	if (rc)
3407  		return rc;
3408  	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3409  				   data);
3410  	mutex_unlock(&pdata->update_lock);
3411  	if (rc < 0)
3412  		return rc;
3413  
3414  	/* Add newline at the end of a read data */
3415  	data[rc] = '\n';
3416  
3417  	/* Include newline into the length */
3418  	rc += 1;
3419  
3420  	return simple_read_from_buffer(buf, count, ppos, data, rc);
3421  }
3422  
3423  static const struct file_operations pmbus_debugfs_ops_mfr = {
3424  	.llseek = noop_llseek,
3425  	.read = pmbus_debugfs_mfr_read,
3426  	.write = NULL,
3427  	.open = simple_open,
3428  };
3429  
pmbus_remove_debugfs(void * data)3430  static void pmbus_remove_debugfs(void *data)
3431  {
3432  	struct dentry *entry = data;
3433  
3434  	debugfs_remove_recursive(entry);
3435  }
3436  
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3437  static int pmbus_init_debugfs(struct i2c_client *client,
3438  			      struct pmbus_data *data)
3439  {
3440  	int i, idx = 0;
3441  	char name[PMBUS_NAME_SIZE];
3442  	struct pmbus_debugfs_entry *entries;
3443  
3444  	if (!pmbus_debugfs_dir)
3445  		return -ENODEV;
3446  
3447  	/*
3448  	 * Create the debugfs directory for this device. Use the hwmon device
3449  	 * name to avoid conflicts (hwmon numbers are globally unique).
3450  	 */
3451  	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3452  					   pmbus_debugfs_dir);
3453  	if (IS_ERR_OR_NULL(data->debugfs)) {
3454  		data->debugfs = NULL;
3455  		return -ENODEV;
3456  	}
3457  
3458  	/*
3459  	 * Allocate the max possible entries we need.
3460  	 * 6 entries device-specific
3461  	 * 10 entries page-specific
3462  	 */
3463  	entries = devm_kcalloc(data->dev,
3464  			       6 + data->info->pages * 10, sizeof(*entries),
3465  			       GFP_KERNEL);
3466  	if (!entries)
3467  		return -ENOMEM;
3468  
3469  	/*
3470  	 * Add device-specific entries.
3471  	 * Please note that the PMBUS standard allows all registers to be
3472  	 * page-specific.
3473  	 * To reduce the number of debugfs entries for devices with many pages
3474  	 * assume that values of the following registers are the same for all
3475  	 * pages and report values only for page 0.
3476  	 */
3477  	if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3478  		entries[idx].client = client;
3479  		entries[idx].page = 0;
3480  		entries[idx].reg = PMBUS_MFR_ID;
3481  		debugfs_create_file("mfr_id", 0444, data->debugfs,
3482  				    &entries[idx++],
3483  				    &pmbus_debugfs_ops_mfr);
3484  	}
3485  
3486  	if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3487  		entries[idx].client = client;
3488  		entries[idx].page = 0;
3489  		entries[idx].reg = PMBUS_MFR_MODEL;
3490  		debugfs_create_file("mfr_model", 0444, data->debugfs,
3491  				    &entries[idx++],
3492  				    &pmbus_debugfs_ops_mfr);
3493  	}
3494  
3495  	if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3496  		entries[idx].client = client;
3497  		entries[idx].page = 0;
3498  		entries[idx].reg = PMBUS_MFR_REVISION;
3499  		debugfs_create_file("mfr_revision", 0444, data->debugfs,
3500  				    &entries[idx++],
3501  				    &pmbus_debugfs_ops_mfr);
3502  	}
3503  
3504  	if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3505  		entries[idx].client = client;
3506  		entries[idx].page = 0;
3507  		entries[idx].reg = PMBUS_MFR_LOCATION;
3508  		debugfs_create_file("mfr_location", 0444, data->debugfs,
3509  				    &entries[idx++],
3510  				    &pmbus_debugfs_ops_mfr);
3511  	}
3512  
3513  	if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3514  		entries[idx].client = client;
3515  		entries[idx].page = 0;
3516  		entries[idx].reg = PMBUS_MFR_DATE;
3517  		debugfs_create_file("mfr_date", 0444, data->debugfs,
3518  				    &entries[idx++],
3519  				    &pmbus_debugfs_ops_mfr);
3520  	}
3521  
3522  	if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3523  		entries[idx].client = client;
3524  		entries[idx].page = 0;
3525  		entries[idx].reg = PMBUS_MFR_SERIAL;
3526  		debugfs_create_file("mfr_serial", 0444, data->debugfs,
3527  				    &entries[idx++],
3528  				    &pmbus_debugfs_ops_mfr);
3529  	}
3530  
3531  	/* Add page specific entries */
3532  	for (i = 0; i < data->info->pages; ++i) {
3533  		/* Check accessibility of status register if it's not page 0 */
3534  		if (!i || pmbus_check_status_register(client, i)) {
3535  			/* No need to set reg as we have special read op. */
3536  			entries[idx].client = client;
3537  			entries[idx].page = i;
3538  			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3539  			debugfs_create_file(name, 0444, data->debugfs,
3540  					    &entries[idx++],
3541  					    &pmbus_debugfs_ops_status);
3542  		}
3543  
3544  		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3545  			entries[idx].client = client;
3546  			entries[idx].page = i;
3547  			entries[idx].reg = PMBUS_STATUS_VOUT;
3548  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3549  			debugfs_create_file(name, 0444, data->debugfs,
3550  					    &entries[idx++],
3551  					    &pmbus_debugfs_ops);
3552  		}
3553  
3554  		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3555  			entries[idx].client = client;
3556  			entries[idx].page = i;
3557  			entries[idx].reg = PMBUS_STATUS_IOUT;
3558  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3559  			debugfs_create_file(name, 0444, data->debugfs,
3560  					    &entries[idx++],
3561  					    &pmbus_debugfs_ops);
3562  		}
3563  
3564  		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3565  			entries[idx].client = client;
3566  			entries[idx].page = i;
3567  			entries[idx].reg = PMBUS_STATUS_INPUT;
3568  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3569  			debugfs_create_file(name, 0444, data->debugfs,
3570  					    &entries[idx++],
3571  					    &pmbus_debugfs_ops);
3572  		}
3573  
3574  		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3575  			entries[idx].client = client;
3576  			entries[idx].page = i;
3577  			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3578  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3579  			debugfs_create_file(name, 0444, data->debugfs,
3580  					    &entries[idx++],
3581  					    &pmbus_debugfs_ops);
3582  		}
3583  
3584  		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3585  			entries[idx].client = client;
3586  			entries[idx].page = i;
3587  			entries[idx].reg = PMBUS_STATUS_CML;
3588  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3589  			debugfs_create_file(name, 0444, data->debugfs,
3590  					    &entries[idx++],
3591  					    &pmbus_debugfs_ops);
3592  		}
3593  
3594  		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3595  			entries[idx].client = client;
3596  			entries[idx].page = i;
3597  			entries[idx].reg = PMBUS_STATUS_OTHER;
3598  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3599  			debugfs_create_file(name, 0444, data->debugfs,
3600  					    &entries[idx++],
3601  					    &pmbus_debugfs_ops);
3602  		}
3603  
3604  		if (pmbus_check_byte_register(client, i,
3605  					      PMBUS_STATUS_MFR_SPECIFIC)) {
3606  			entries[idx].client = client;
3607  			entries[idx].page = i;
3608  			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3609  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3610  			debugfs_create_file(name, 0444, data->debugfs,
3611  					    &entries[idx++],
3612  					    &pmbus_debugfs_ops);
3613  		}
3614  
3615  		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3616  			entries[idx].client = client;
3617  			entries[idx].page = i;
3618  			entries[idx].reg = PMBUS_STATUS_FAN_12;
3619  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3620  			debugfs_create_file(name, 0444, data->debugfs,
3621  					    &entries[idx++],
3622  					    &pmbus_debugfs_ops);
3623  		}
3624  
3625  		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3626  			entries[idx].client = client;
3627  			entries[idx].page = i;
3628  			entries[idx].reg = PMBUS_STATUS_FAN_34;
3629  			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3630  			debugfs_create_file(name, 0444, data->debugfs,
3631  					    &entries[idx++],
3632  					    &pmbus_debugfs_ops);
3633  		}
3634  	}
3635  
3636  	return devm_add_action_or_reset(data->dev,
3637  					pmbus_remove_debugfs, data->debugfs);
3638  }
3639  #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3640  static int pmbus_init_debugfs(struct i2c_client *client,
3641  			      struct pmbus_data *data)
3642  {
3643  	return 0;
3644  }
3645  #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
3646  
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3647  int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3648  {
3649  	struct device *dev = &client->dev;
3650  	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3651  	struct pmbus_data *data;
3652  	size_t groups_num = 0;
3653  	int ret;
3654  	int i;
3655  	char *name;
3656  
3657  	if (!info)
3658  		return -ENODEV;
3659  
3660  	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3661  				     | I2C_FUNC_SMBUS_BYTE_DATA
3662  				     | I2C_FUNC_SMBUS_WORD_DATA))
3663  		return -ENODEV;
3664  
3665  	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3666  	if (!data)
3667  		return -ENOMEM;
3668  
3669  	if (info->groups)
3670  		while (info->groups[groups_num])
3671  			groups_num++;
3672  
3673  	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3674  				    GFP_KERNEL);
3675  	if (!data->groups)
3676  		return -ENOMEM;
3677  
3678  	i2c_set_clientdata(client, data);
3679  	mutex_init(&data->update_lock);
3680  	data->dev = dev;
3681  
3682  	if (pdata)
3683  		data->flags = pdata->flags;
3684  	data->info = info;
3685  	data->currpage = -1;
3686  	data->currphase = -1;
3687  
3688  	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3689  		data->vout_low[i] = -1;
3690  		data->vout_high[i] = -1;
3691  	}
3692  
3693  	ret = pmbus_init_common(client, data, info);
3694  	if (ret < 0)
3695  		return ret;
3696  
3697  	ret = pmbus_find_attributes(client, data);
3698  	if (ret)
3699  		return ret;
3700  
3701  	/*
3702  	 * If there are no attributes, something is wrong.
3703  	 * Bail out instead of trying to register nothing.
3704  	 */
3705  	if (!data->num_attributes) {
3706  		dev_err(dev, "No attributes found\n");
3707  		return -ENODEV;
3708  	}
3709  
3710  	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3711  	if (!name)
3712  		return -ENOMEM;
3713  	strreplace(name, '-', '_');
3714  
3715  	data->groups[0] = &data->group;
3716  	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3717  	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3718  					name, data, data->groups);
3719  	if (IS_ERR(data->hwmon_dev)) {
3720  		dev_err(dev, "Failed to register hwmon device\n");
3721  		return PTR_ERR(data->hwmon_dev);
3722  	}
3723  
3724  	ret = pmbus_regulator_register(data);
3725  	if (ret)
3726  		return ret;
3727  
3728  	ret = pmbus_irq_setup(client, data);
3729  	if (ret)
3730  		return ret;
3731  
3732  	ret = pmbus_init_debugfs(client, data);
3733  	if (ret)
3734  		dev_warn(dev, "Failed to register debugfs\n");
3735  
3736  	return 0;
3737  }
3738  EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3739  
pmbus_get_debugfs_dir(struct i2c_client * client)3740  struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3741  {
3742  	struct pmbus_data *data = i2c_get_clientdata(client);
3743  
3744  	return data->debugfs;
3745  }
3746  EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3747  
pmbus_lock_interruptible(struct i2c_client * client)3748  int pmbus_lock_interruptible(struct i2c_client *client)
3749  {
3750  	struct pmbus_data *data = i2c_get_clientdata(client);
3751  
3752  	return mutex_lock_interruptible(&data->update_lock);
3753  }
3754  EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
3755  
pmbus_unlock(struct i2c_client * client)3756  void pmbus_unlock(struct i2c_client *client)
3757  {
3758  	struct pmbus_data *data = i2c_get_clientdata(client);
3759  
3760  	mutex_unlock(&data->update_lock);
3761  }
3762  EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
3763  
pmbus_core_init(void)3764  static int __init pmbus_core_init(void)
3765  {
3766  	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3767  	if (IS_ERR(pmbus_debugfs_dir))
3768  		pmbus_debugfs_dir = NULL;
3769  
3770  	return 0;
3771  }
3772  
pmbus_core_exit(void)3773  static void __exit pmbus_core_exit(void)
3774  {
3775  	debugfs_remove_recursive(pmbus_debugfs_dir);
3776  }
3777  
3778  module_init(pmbus_core_init);
3779  module_exit(pmbus_core_exit);
3780  
3781  MODULE_AUTHOR("Guenter Roeck");
3782  MODULE_DESCRIPTION("PMBus core driver");
3783  MODULE_LICENSE("GPL");
3784